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Radiation by weakly nonlinear shallow-water solitons due to higher-order dispersion
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Nonlinear asymptotic equations for shallow-water waves, with account of high-order dispersion and surface
tension[generalized Boussinesq systd@BS) and generalized Korteweg—de Vrié6KdV) equatior are
derived. Regular expansions of these equations in powers of a dispersion parameter lead to different types of
already used KdV-type equations, in particular to fifth- and higher-order KdV equations. It is shown that the
fifth-order KdV equation describes in a good approximation the shape of a shallow-water soliton, but is
insufficient for the consistent description of soliton resonant radiation. The latter is caused by the resonant
interaction between the soliton and a plane wave with the phase velocity equal to the soliton velocity. It is
shown that the resonant radiation can be correctly described only by equations that take into account dispersive
effects to all orders in a region beyond the soliton. The GKdV equation possesses this property and a theory of
the soliton resonant radiation, based on the GKdV equation, is developed. It is shown that an account for the
full dispersion law for the radiation significantly changes the results obtained earlier by means of the fifth-order
KdV equation. A soliton damping caused by its resonant radiation is investigated by means of the GKdV
equation[S1063-651X98)03710-9

PACS numbgs): 42.65.Tg, 47.20.Ky, 52.35.Sb

[. INTRODUCTION the problem of soliton radiation, the fifth-derivative term
(with a small coefficientis mostly significant in the region
There are a number of regular procedures for derivingoeyond the soliton. Indeed, the resonant radiation wave num-
approximate partial differential equations from the full setsber, which basically determines the properties of radiation, is
of equations describing nonlinear dispersive systéeg., calculated by applying the fifth-order KdV equation to this
[1-5], etc). For weakly nonlinear waves in shallow water domain. In the soliton domain, the fifth derivative tefas
they lead, in the lowest approximation, to the Boussinesq andell as nonlinear terms, which are of higher-order than in the
Korteweg—de VriegKdV) equations. Higher-order correc- KdV equation plays the role of small perturbations that
tions to the Boussinesq and KdV equations permit one tenainly determine the soliton deformation; it can be ne-
describe different types of perturbation effects. Among thenglected in the lowest approximation. Similar remarks are rel-
there are effects described Hlipear high-order dispersive evant to seventh- and higher-order approximations.
terms. A typical example, which has attracted significant at- However, as will be shown below, the fifth- and higher-
tention in recent years, is the fifth-order KdV equatiery., order KdV-type equations are insufficient foraantitative
Refs.[6—11]). It contains, in addition to the third-order de- description of radiation, even at small dispersion parameter
rivative, a linear fifth derivative term that can lead to a newwr. Indeed, to justify their applicability to the soliton radia-
effect: the resonant soliton radiatip®—11]. If the coefficient  tion, one must requirek?<1, wherek is the wave number
before the fifth derivative is small, the amplitude of the ra-of radiation. On the other hand, from the fifth-order KdV
diation is exponentially small and, therefore, this effect be-equation it follows thatk’~v~%, i.e., vk®~1 [6-11]. An
longs to the phenomena that are “beyond all power orders chccount of the seventh-order dispersion does not improve the
the perturbation parameter[12]. Thus, it cannot be de- situation. Due to that a quantitative theory of the soliton
scribed by a perturbation theory, based on the expansion iradiation, caused by the higher-order dispersion, cannot be
powers of the perturbation parameters. Despite the smallnesmsed on the expansion in powers of the dispersion param-
of the resonant soliton radiation, it is very interesting be-eter v.
cause it may lead to a significant soliton attenuation at large The development of the quantitative theory of soliton
distances and has a rather general nature: it may take placen@sonant radiation is the main goal of the present paper. To
other high-order dispersive systems, e.g., systems describedhieve it, we first derive equations generalizing the Bouss-
by higher-order nonlinear Schiimger equation§13,10,14— inesq and KdV equations for shallow-water waves in such a
16] in one and higher space dimensions as well as by otheway that the exact dispersive law for the gravity-capillary
equationg17-21. In higher dimensions, the soliton radia- waves follows from them. The application of such equations
tion makes a serious impact on self-focusing and collapsgwe call them generalized Boussine&gB) and generalized
[14,18. KdV (GKdV) equation$ to the soliton radiation gives cor-
The fifth-order KdV equatiorf6—11] should be consid- rect wave numbers and amplitudes of the radiation. Formal
ered a result of a proper expansion in powers of the disperexpansions of GB and GKdV equations in the powers of
sive and nonlinearity parametegsand\, defined below. For dispersion parameter give, to first order, the classical
Boussinesq and KdV equatiofsr similar equations, having
the same accuragyand, to higher orders, the fifth-order
*Electronic address: karpman@vms.huiji.as.il KdV, seventh-order KdV equations, etc.
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The paper is organized as follows. In Secs. Il and Il we D,(x,y,2)=3d,D(X,Y,2)
derive the generalized Boussinesq system and the GKdV

equation and, on their basis, other types of KdV equations. A 1 . ~

theory of the resonant soliton radiation is described in Sec. ~ 2?2 J f kA(k,Dsint k(z+h)]

IV using the GKdV equation. Then the results are compared

with those following from the fifth-order KdV equation. We X exp(ik-r)d’k, 2.9

also compare the obtained equations with those based on th
reductive perturbation method] and its recent improve- WNeré

ments[4]. The soliton attenuation caused by the radiation is ~
studied in Sec. V and a short conclusion is given in Sec. VI. h=h/L=\3» (210
(ﬁ is the dimensionless unperturbed dephd the function
Il. GENERALIZED BOUSSINESQ SYSTEM A(k,t) is determined by other equations and initial condi-
We start with the equations for potential gravity-capillary ins: From Eq(2.9) it is easily seen that conditiof2.2) is
waves in an incompressible fluid with the dengity satisfied. _
Observing thaZ = Z, corresponds ta,=\+/3v¢ and in-
V2d =0, (2.1)  troducing the functionp,
ID B(x,y,H)=D(x,y,01), (2.19)
E =0, (2.2)
Z=—h we have from Eqgs(2.8) and (2.9
2o, 92000 9Zo o 00\ D(X,y,20,1)= B(X,y,1) + VBN LD, (x,y,01) + O(A?w),
JdT X X 9Y 9Y dZ sy ' ) (2.12
—“0
D,(x,y,00) =k tanh(\Brk) p(x,y,0), (213
(9(1) 1 2 p_ po
—+ =z (VO)°+gZ+ —— =0, (2.9 - . .
T 2 P Z:ZO q)Z(X!yszIt):k tanr(\/ﬁk)qs(xyyvt)_)\\/ﬁgA(b(X!yvt)
whereZ,=Z,(X,Y,T) is the equation of the fluid free sur- +O(\?p). (2.14

face, =P (X,Y,Z;T) is the velocity potentialVd=V.
The equilibrium surface is the plae=0 and the bottom is
atZ=—nh.

The pressure at the free surfage Z, does not coincide
with the external pressurp, if there is a surface tension.
Generally,

Now A is the two-dimensional Laplacian
A=(2+a)=—K?, (2.153
and an operatolF(ﬁ) is defined as

1

.1 F(k)\lf(r)=(27)2fdk F(k)G(k)e'k", (2.15D

=pn.— 2\ —1/2
R]_ R2 _pO av[(1+|vzo| ) VZO]!

(2.9 whereG(k) is the Fourier transform o (r). A formal ex-

where R, , are the principal radii of curvature of the free pansion gives

surface andy is the coefficient of surface tension.

Consider long(with respect to the depttand small am- k tanh(\/3vk) = ! (3,,&2)( 1— vk2+ 6 V2KA— ...
plitude waves assuming, therefore, a smallness of the follow- J3v 5
ing two parameters: (2.16
1/h\2 a Thus, the operator in the left-hand side of E.16) can be
=3 (E) , A= h (2.6) expressed as a power series of the Lapla@atbba. [In fact,

Eq. (2.16 is an integral operatgrFrom Eq.(2.16), the ex-

whereL anda are scales of wavelength and wave amplitude Pansions of Eq(2.13 and other expressions follow.

We introduce the dimensionless quantities Using Eqgs(2.7) and(2.12—(2.14), we get from Eq(2.3)
the approximate equation

x=XIL, y=YIL, z=ZIL, t=c,T/L, (2.78 R .
~ LAV (V@) — (3v) Y% tanh(V3vk) g+ O (A v,\2)=0.
[=Zyla, ®=(colagL)d(x,y,zt), (2.7 (2.1

wherecy=gh. Then the solution to Eq2.1) with bound- N @ similar way, from Eq(2.4) it follows that
ary condition(2.2) can be written as B+ IN(V )2+ {— voAl+O(\r)=0 (2.18

1

{I'):W J' J' A(k,t)costik(z+h)]exp(ik-r)d2k, whereo is a normalized surface tension coefficient

(2.9 o=3alpgh’>0. (2.19
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It is proportional to the Bond number.
In linear approximation, Eq42.17) and(2.18 become

Li—(3v) Y% tani(\3vk) p+O(N)=0,  (2.20
b+ {—vaAl+O(N)=0. (2.21)

Eliminating ¢ from Eq. (2.20, we have

Lo+ (3v) " Y2k tank(V37k) (1— voA) L+ O(N)=0.
(2.22

Looking for a plane-wave solution to EQ.22)

foeexplik-r—iwt), (2.23

we obtain the linear dispersion equation in dimensionles$,ass transfer

variables
w?=(3v) " Yk(1+ vokdtani(3rk).  (2.24
Passing to dimensional variabl&sandK,
w=(L/cg)W, k=LK, (2.25
we have
W2=gK tani hK)[ 1+ (1/3)ch?K?], (2.26
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whereV = (dyx,dy). Equationg2.32 and(2.34) are the well-
known equations of shallow water in the nondispersive limit;
they coincide with the equations describing a two-
dimensional flow of an ideal gas with the adiabatic index
=2; Eq.(2.32 is the continuity and Eq(2.34) is the Euler
equation(H plays the role of density ang=gH?/2 is a
“pressure”). Respectively, Eq(2.30 is the continuity equa-
tion in dimensionless variables and, therefdes(x,y,t) is
the dimensionless velocity that describes the horizontal mass
transfer. Taking into account the dispersion, we come to Eq.
(2.17, which is not a continuity equation, and thus
V #(x,y,t), with the account of dispersion, does not repre-
sent the effective velocity that describes the horizontal mass
transfer.

To define an effective horizontal velocity determining the
we introduce the renormalized potential
¥(Xx,y,t) defined by

b= 13vk coth(\3vK) . (2.35

The expansion
2
~ ~ ~ ) 2N
V3vk coth(v3vk) =1+ vk?— k4 (239

is again a power series of the Laplacighl53. Neglecting
the terms of ordehv, we have instead of Eq2.17)

which is the well-known exact linear dispersion equation for

the gravity-capillary waves in an inviscid incompressible

fluid.

Now, consider the opposite case of nonlinear, but nondis

persive waves. Assuming in EqR.17) and (2.18 that v
—0 and taking into account E¢2.16), we have

LAV (V) +AP=0, (2.27
b+ 3NV )2+ {=0. (2.29

Introducing the quantity
7=1+\{, (2.29

we obtain from Eq(2.27)
m+AV-(7Vh)=0. (2.30

Expressingn through dimensional variables we have

n=(Zy+h)/h=H/h, (2.3)

whereH=2Z,+h is the full height of a point on the fluid

surface. Thusy is the dimensionless full height. In dimen-

sional variables, Eq2.30 takes the form

dtH+div(HV)=0, (2.32
where
V=grad®(X,Y,0,T). (2.33
Equation(2.28 can be transformed to
&TV+(V-V)V+%V(9HZ)=O, (2.39

LGAENVEV ) +AyY=0. (2.37
Introducing the dimensionless renormalized velocity as
v=Vy, (2.39

and using the full heigh2.29), we have from Eq(2.37) the
continuity equation

m+AV-(7v)=0, (2.39
which shows thav is the effective horizontal velocity deter-
mining the mass transfer with the used accurdeyms with
\v are neglected In a similar way Eq(2.18, with account
of Eq. (2.38), can be transformed to

J3vk coth(\VBrk)vi+ N (V- V)V+V = vaAV =0,
(2.40

Equations(2.39 and (2.40 will be called the generalized
Boussinesq SysteniGBS). Taking into account two first
terms in the expansiofi2.36, we come to the equation,
equivalent to the classical Boussinesq equatif]

(1= vA)V+N(v-V)V+V{—voAV{=0. (2.4
For a more convenient comparison of E§.40 with Eq.
(2.41), we define the operator

E(vk?)=1—vA—\3vk coth(\3vk),  (2.42
which has the expansion
E(vk?)=(1/5)12A2+(2/35)13A3+--- . (2.43

Then Eq.(2.40 can be written as
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[1—vA—E( V&Z)]Vﬁ- ANV- VW4 V= voAV+O(\v) From Egs.(3.5 and(3.6) it follows that
=0. (2.49 v(l—vaﬁ)z()(px— v¢t=[v&)2(+ E( vkz)]vﬁ— va’ﬁiv
We see that the classical Boussinesq equation follows from +O(\v,\?), (3.7

Eq. (2.44 when E(sz) is neglected. As long as the terms
with \v are neglected in Eq2.40 and, therefore, in Eqs. Where nowk=—idy
(2.4 and (2.44), we can substitute in the first term of Eq.  First, we take mto account the dispersive terms of the
(2.44), lowest order, neglecting term®(»?) and, respectively,
E(vk?). Then Eq.(3.7) is reduced to
Av=—-V{+0(N), (2.45
which follows from the continuity equatiof2.37) in linear
approximation. Then Eq(2.44 can be written, with the For the wave, propagating in positive direction, we can write
same accuracy, in the form in the same approximation

V(‘Px_(Pt):V(Utx+o-vxx)x+o()\21)\v)- (3.8

[1—E(vk®) v+ A (V- V)V+N "IV 4 0V (L — 0AL) U= —vxt O\, p), (3.9

+0O(Av)=0. (2.49 @ (3.10

Equation(2.46 can also be called a GB equation. In a simi- Combining Eq.(3.8) with Egs.(3.9) and(3.10, we obtain
lar way one can obtain other GB-type equations, having the

same accuracy as E(R.44).

It is easy to see that Eq2.22 and the exact linear dis-
persion equatiori2.24) follow also from the linearized GB
system.

=— @+ O(\,v).

p= %(Uxt‘f‘O'Uxx)‘i‘O()\,V):

= —%(1—U)UXX+O(7\,V).

(1= 0)u+ O\, »)
(3.11
Substituting this in Eq(3.5), we come to the following three

equations, having the same accuracy:
lll. KORTEWEG —dE VRIES-TYPE EQUATIONS

Vit Uyt IN0U— 3V(V+F 0V ) =0, (3.12
Further simplifications of GBS can be made for one-
dimensional waves, whem=uv(x,t) and p=p(x,t). In this ViUt INVU— 3V(1— 0) vy =0, (3.13
case, following an approach of R¢8], we shall derive the
Korteweg—de Vries—type equations that describe higher- Vit ogt SN0t 3 P(1— 0)vy= 0 (3.19

order dispersive effects.

First, neglecting the dispersive terms in Eg.44 and
using the full dimensionless deptR.29, we come to the
equation

[termsO(N?,\v) are neglected Each of them describes a
nonlinear quasisimple dispersive wave, propagating in the
positive direction, to the first order of and v. Equations
(3.12 and (3.13 at o=0 turn into one equation that had
been considered by Peregrine and Benjamin, Bona, and Ma-

Vi+ A (V- V)V+ N1V 9+ 0O(v)=0. (3.1

The system of equation®.39 and(3.1) has a simple wave
solution = 7n(v) with

7(v)=(1+3rv)2 (3.2
Thenv =v(x,t) satisfies the equation
Vit vyt Ihvv,+O(v)=0. (3.3

To find an extension of the simple waves for the G@8a-
sisimple wavelg we assume thd]
n(x,t)=n(v)+vhe(Xt), (3.9
wheren(v) is the same as in the simple waverat 0, i.e., it
is given by Eq.(3.2) and ¢(x,t) is an unknown function.

Substituting Eq(3.4) in Egs.(2.39 and(2.44), we come to
the following equations:

Vit Ut Aot v =0\ \p), (3.5
[1- V&i—E(sz)]vt-i-vx-{— SNvvy— Vm?iv
+v(1- VO'(9>2()QDX:O()\2,)\V). (3.6

honey[22] while Eqg.(3.14) is the well-known Korteweg—de
Vries equation.

To find the dispersive corrections to E¢3.12—(3.14) of
arbitrary order, one must add higher-order termg3®)—
(3.10. To do this, we first write Eq(3.7) in the form

v(1+ Va'kz)qox— v =|[ @ coth( \/5&) —1lv—i vok3y
+O(Av,\?). (3.15
For the wave propagating to the right, we now have

oi=—i0(k)e+0O(\),
(3.1

vi=—iw(K)v+O0(),

where, according to Eq2.24),

w(K)=(3v) Y41+ vok?) Y9k tani(\/3vk)]2
(3.17

From Eq.(3.19-(3.17) it follows that
vo(K)e=—L(K)v+O(Av,\2), (3.19

where



5074 V. I. KARPMAN PRE 58

L(K)=w(k)—k. (3.19 NowD= ko ! and if M—1 is sufficiently small, namely,
Differentiating Eq.(3.18 with respect tat and then substi- IM—1]<(1/6)|1~0, (3.28
tuting v, from Eq.(3.16, we have we have
ve=iL (K)v+O(\w,\?). (3.20 3vi2<l. (3.29

From Eqgs.(3.5 and(3.20 we easily derive the equation  Thys condition(3.25 is satisfied and the fifth-derivative
s oA o term in Eq. (3.24 can be considered as smafiside the
vit vyt shvog il (K)o +O(Av,A9)=0, (3.2) soliton core In fact, Eq.(3.24) cannot be used for the calcu-
lation of the full soliton deformation of the next order to Eq.
(3.26), because deriving Eq23.24) we have neglected non-
: ; linear terms of ordekv and\“ that may be comparable with
Egr?a}g?r:/gi;lgl)y\,\f;nﬁ;ce)g?slggge?rzltlgﬁz]l av?a;\i/?so?rflstqr;tai]:ie d the fifth-derivative term in the soliton dc_)main. Howevgr, the
fluids of finite depth. In fact, as is seen from the above deri_Iatter term is greater than other corrections at large distances
. o L P . from the soliton center. Therefore, investigating the soliton
vation, it is a rigorous approximate equation, that can be

obtained in a regular way by the multiscale method with theasymptotlcs, we can use the linearized £3j24

which will be called the generalized KdV equation. In linear
approximation it coincides with the first of Eq$3.16).

accuracy indicated in E¢3.21). In the next section it will be G+ a0+ B+ ¥ =0 (3.30
demonstrated that it leads to a consistent theory of the reso-
nant soliton radiation. with the solution
ExpandingL (k) in powers ofy we can obtain the disper-
sion corrections of any order to the KdV equation. In par- vxexp — k[x—Mt|), (3.3

ticular, from the expansion
wherex>0 and

i1 (k)= 3253 Sy...
iL(k)=Bd3+yda+--, (3.22 , BB AM 1)y -
where K== 2y (3.32
p2 (the choice of sign depends on s@h At condition (3.28),

1
B=5v(l=0), y=45[24-501+ 0)?], (323 leading to Eq(3.29, Eq.(3.32 can be reduced to

we come to the fifth-order KdV equation: K%KO[ 1— % [24—5(1+ 0)2]]

&tv+(1+%)\v)0xv+,83>3(v+75§U+O(7\V,)\2,V3)=O. 2
(3.249 ~x [1—&[24—5(1+a)z]] (3.33
o7 40(1-o0) ’ ‘
In fact the effect of the resonant soliton radiation, qualita-
tively, also follows from Eq.(3.24 [8—11]. However, only  wherex3 is given by Eq.(3.27). Evidently, k3>0 if
the full Eq. (3.21) gives a consistent and a complete theory
of this effect in shallow fluids. This is because expansion sgnM—1)=sgn1-o). (3.39

(3.22 is justified if . )
The second term in Eq3.33 represents a correction to the

vD %<1, (3.25  soliton width caused by higher-order dispersion.

whereD is the wave characteristic length. In the problem of  |v. THE RESONANT RADIATION OF WEAKLY
soliton radiation with wave numbde, D=k ! and, as will NONLINEAR SHALLOW-WATER SOLITONS

be shown in the next sectionk?~ 1, which means that con- .
dition (3.25 is not satisfied for the soliton radiation. Now we return to the full GKdV equatio(8.21). Due to

On the other hand, Eq3.24 can be used for the estima- Eq. (3.26), it is convenient to write it in the new variables
tion of influence of higher-order dispersion on the soliton

width. Indeed, using only the first term on the right-hand side u= 3—)\ v, (4.1
of Eq. (3.22, we come to the KdV equatio(8.14), which 2(M-1)
has a soliton solution of the form
E=k(Xx—Mt), 7=(M-—1)«t. (4.2
2(M—-1 .
usz(T) sech| =) (x=Mt)|, (326  This gives

o , _ Ju—du+udu+i(M—1)"1k"1L(kju=0, (4.3
where kg is the inverse width of unperturbed soliton,

where, now,
2(M—-1)

T ul-o) "

K5 (329 k= —ixd,. (4.9
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Then we put !

120
u(7,€)=uo(§) +f(7,%), (4.9

100 ~
where

uo=3 secR(&/2) (4.6 50 ]

describes the solitor{3.26) with the renormalized width
(3.33 andf(r,¢&) is a small addition. The soliton radiation, if
it exists, is described by the asymptotics fdfr,£) at ||
>1. Substituting Eq(4.5) in Eg. (4.3), and taking into ac-
count the KdV equation fougy(&), we have the following
asymptotic equation fof(7,£) in the domain beyond the 207
soliton

~ ~ 0 + + i > d
3, f—df+ 3 (upf )+HiI(M—1) "2k (k) f=—iL1(K)ug 0 0.5 1 15 2 25 3GV
(4.7 ,
FIG.1.r vsocatM-=1.1.
where
- I ars Further investigation ob-(r) becomes simpler if one writes
Beyond the soliton, Eq4.7) becomes 3(M2-1) cothr 1
; -1,_-1 (& o(n= r tanhr r r?) .19
9, f=df+i(M—1)" k" "L(k)f=0. (4.99
This equation describes the free radiation that is a superpd-he second term in Ed4.19 is a decreasing positive func-
sition of p|ane waves tion of r at all —o<r<<e and
i(qé— cothr 1 r2
focexdi(aé— )], (49D N KL PO TN
. r r 15
where, with account of Eq4.4),
Q@=M-D (kg -a. (410 R i R
It is easy to check that & =0, the corresponding wave
number isq(0)=k/k, wherek satisfies the equation The maximum of this term is equal to one. The behavior of
the full function (4.15 substantially depends on the sign of
w(k)/k=M. 41 M-1
Here At M>1, the function o(r) monotonously decreases
from o(0)=o to o(*)=0. Therefore, Eq(4.39 has two
w(K)=(3v) "Y1+ vok?) Yy k tank @k)]yz sgnk real roots,=r (o), at

(4.12 M>1, o<1 (4.17

is the frequency of the linear wave with the wave numker

[cf. (2.24)]. Therefore, Eq(4.9) at Q=0 andq=k/« de- [0 must satisfy conditiol§3.34)]. The functiono(r) is easily
scribes a wave that has phase velocity equal to the solitol@bulated at a giveM by means of Eq4.14). Thenr (a; M)
velocity M. Such a wave must resonantly interact with thecan be found graphically. AM?=1.1, the functiorr (o) is
soliton and will be called the resonant wave. Respectikgly shown in Fig. 1. At sufficiently smald, it can be written as
satisfying Eq.(4.11) at givenM, will be called the resonant

wave number. The purpose of this section is the study of this r(0)~3M%0 (o<M?~1). (4.18
resonance effect without expansion of dispersion equation . . .
(4.12 in powers ofk. Equation (4.18 can be used for estimations with a good

First, we find resonant wave numbers from Eq.13).  accuracy ab<0.5. Then from Eq(3.29 it follows that

Using Eq.(4.12, we reduce Eq(4.1]) to the equation M — 1<0.08. 4.19

2_ 2 _
oT?=3(M?r cothr—1), r=y3sk. .13 At 0>0.5, the restriction orM —1 is even harder. AM
The real positive roots of this equation determine the reso- —1>0 and 0.5<o<1, the intervals for(o;M) are rather
nant wave numbers for different at fixedM, i.e., the func- narrow. Writing Eq.(3.28 in the form M—1<(C/6)(1
tion r(o). The inverse functiong(r), immediately follows —o), whereC<1, and taking as an examp{@=1/5, we
from Eq. (4.13: have

o(r)=3r"2(M?r cothr—1). (4.14 0<M-1<(1/30)(1- o). (4.20
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;3100 _do(k)  o(k) dinw(k) dIn w(r)
9" dk K R TR
a 4.23
50 //——'
and using Eq(4.12), we have
0 VoM 3(or?+1) Lt
- b 9 T 2(or?+3) sinh2|
c : Substituting herer from Eq. (4.14), we come to the follow-
%0 - ing expression for the group velocity:
d M2—1 tanhr
20— Vg=M| 1+ M2 ; +x(r)|, (4.29
¢ where
10 . _ 1 tanhr r
XO= 5 "Gz
0 ' ' ‘ One can easily check that(r) is a positive and increasing
0 3 10 15 x function with
u

FIG. 2.1 vs u=M—1>0 at different I>¢=0.5. (a) 0=0.5;
(b) 6=0.6; (c) 0=0.7; (d) 0=0.8; () 0=0.9.

On the other hand, from Eq4.15 at M —1<1 it follows
that

or tanhr
6 ,

1
=3

u=M-1.
(4.2)

This determines the function(o; ), where one must take
into account thaju is restricted by Eq(3.28. Replacing it,
for instance, by Eq.4.20 and takingo=0.5, we have
Mmax—=0.017. The functiorr (o; 1), at somec=0.5 andu
inside of the interval4.20, are shown in Fig. 2.

In the other case when solitons exist,

tanhr
; -1+

M<1, o>1

(4.22

[see Eq(3.39)], the first term in Eq(4.15 is negative and
o(r)=—(1-M?»r—2 (r<1),

o(r)=3M?r 1 (r>1).

In this caseg(r) has a positive maximum. From Edg.15

and (4.163 one concludes thdto(r)]max<1. Therefore in
the casg4.22), Eq. (4.14 has no real roots(o). From the

above analysis it follows that the resonance is possible in

case(4.17 and impossible in cas@.22).

It is easy to check that Eq4.13 also has two small
imaginary rootsk~*ik, i.e., q~=i. Substituting this in
Eqg. (4.9b atQ) =0, we see that in this ca$é.9b represents,

with the assumed accuracy, the soliton asymptotic behavior

at|&—o [cf. Eq.(3.3D)].
Now consider the group velocity, of the resonant wave.
Writing

x(0)=0,x(1)=0.014, x(2)=0.091,
x(3)=0.183, x()=0.500.
We see that
Vg>M (4.253
at allr, and

Vg—M~M/2 (r>1). (4.25h

The obtained wave numbers and group velocities of the
resonant soliton radiation essentially differ from those fol-
lowing from the fifth-order KdV equatiof8,10,11. More-
over, the criteria of the soliton radiation are different. As we
have seen, from the GKdV equation it follows that solitons
can radiate only at conditiof®.17). On the other hand, from
the fifth-order KdV equatiori3.24) it follows that the radia-

tion condition isBy>0; using Eq.(3.23, we write this as
(1—0)[24-5(1+ 0)?]>0,

which gives, in addition to Eq4.17), o> 24/5-1~1.19.
Now we shall show that the soliton indeed radiates the
resonant wave with the phase velocity equaMoand the
group velocity that is larger tha, according to Eq(4.25).
For that, we solve Eq4.7) with the initial condition
f(0,£)=0. (4.26
Thus, we assume that the soliton starts to radiate=af.
Performing the Fourier transform éf r,¢),

o= | deeie @2

and transforming Eq4.7), we have the following equation:
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10,60~ 2@ om0~ 5 | eo(@=")e(na")dq

=L1(xq)eo(q), (4.28

where
<po(q)EJj;dfe*“‘fuo(é)=12#q cschimq) (4.29

and we took into account Eq$4.4) and (4.10. From Eq.
(4.26) it follows that

¢(0,9)=0. (4.30

The main contribution to the radiation fielf{ 7,¢) at
large 7 and £ comes frome(7,q) in the resonant region,
whereq is sufficiently close tag, = = k/ «; here,k satisfies
the resonant equatio®.11). As far as{(q,)=0, we can
replace((q) in the resonant region by

Q(9)=~(q—9,)Q,,

where, according to Eq$4.10, (4.8), and(3.19),

q,= =kl (4.30)

dQ(q)

Q:T

r

} =(M—1)"XVy—M), Q/>0.
q=4q;
(4.32

Equation(4.28 in the resonant region can be replaced by
i1d,0:(7,q)— Q) ¢ (7,9)
ql’ * ! ’ !
_ZJ_W@O(Qr_q )er(7,9")dq

=L41(x0,) ¢o(qr) (4.33
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5077

r¢0(0)]
p= 1+iq‘p—0()} Li(xd)eo(ar).  (4.37)

r

Using Eqgs.(4.32 and (4.29, we have

0 M—-1 k
qr;;)(r, ) _ 67wk (4.3
From Egs.(4.13, (3.33, and(3.27) it follows that
k 1-o 1/2
;~r(a) m) >1. (4.39
Then from Eqs(4.8) and(4.29 we obtain
Li(kq,)~ = (k/ k)3, (4.403
@o(Qy)~ 24 E exr{ - E) . (4.40p
K K
Now we restoref (7,£) by means of
6= 5= | sdraesida=2Tp 0 (e
+c.c., (4.4)
where
1 (= exdix(é—Q;7)—exqi
(7 6)= o J,x Hix(é rX) Aixé)] dy.

(4.42

As long as the integrand in E¢4.42) has no singularity, we
can replace its denominator ky-i 8, whereé— +0. Then,
straightforward calculations give

with Q(q) from Eq. (4.31). Based on the results, obtained Where®(Z) is the step function:

for high-dispersive systems in Refd0, 24|, we look for the
solution to Eq.(4.33 in the form

exd —i(q—q)Q/7]-1
(9—ap)Qy ’

wherep can be assumed as a constant coeffic{amtepen-
dent of g). This expression is not singular at=q,, but
¢/ (7,9,) 7, i.e., ¢ (7,q,)— at 7—o. The width of the
resonant region is

er(mQ)=p (4.34

Aq=27IQ|; (4.35

thus,Aq—0 at 7—. Due to that, at large,

| esa-anenanda~eq© [ oranda

(4.36

Substituting Eq.(4.34 into Eq. (4.33 and taking into ac-
count Eqs(4.31) and(4.36), we obtain

=—impey(0)/Q, .

I(7,§)=1[0({-Q/7) - O8], (4.43

(1 (z>0)
92)=0 (z<0). 449

Evidently, Eq.(4.43 can be written as
I(7,6)==10(§O(Q;7—§). (4.49

From Eq.(4.49 it follows that, até+# 0, the functionf,(,£)
satisfies initial condition4.26).

Collecting all factors determining Eq4.41) and using
Egs.(4.1), (4.2, and(4.5 we finally come to the following
asymptotic expression for the soliton radiation:

N (M—1)2 (k)“
Ur(t,X)~327Tm P
mk S B6(M-1) k\?
XEX%—7)|m((1+I W;)

xXexdik(x— Mt)]] O(X—=Mt)O(V4at—Xx).

(4.4
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It is valid at An extension of the above approach to the radiation of
nonlinear Schrdinger solitons and a comparison with the
IXx—=Mt|>k"1,  [Vgt—x|>xL (4.47  perturbation theory developed in RE5] will be considered
elsewhere.
In accordance with Eq(4.25, the soliton radiates forward

and from Eq.(4.46 it follows that the radiation is located at v/, SOLITON DAMPING CAUSED BY THE RADIATION

Mt<x<Vt, (4.48 The radiation must lead to the slowing down of the soliton
and, respectively, to a decrease of its amplitude. To estimate
in agreement with our initial conditions. The discontinuities this, we start from the GKdV equatio(8.21), writing it in
in Eq. (4.46 evidently appear due to its asymptotic characterthe form
at conditions(4.47).
Fr_om Eqs.(4._46)_ an_d (4.39 ano! Fig. 1 we see that the vt § )\vvx+iw(R)v=0. (5.1)
amplitude of radiation is exponentially small and it decreases 2

with ¢. In particular, as it follows from Eq4.18), the radia- ) ) )
tion vanishes at— 0. This again disagrees with a prediction The last term contains an integral operator, defined by Eq.

following from the fifth-order KdV equation. We also note (2-159. Multiplying Eq. (5.1) by v(t,x) and integrating, we
that the full perturbation theory for shallow water solitons "ave

with the assumptiorw=\ [4] was developed only fowr " "

=0. One should expect that akQr<1, when the resonant @tJ vz(t,X)dX-Hf U(t,x)w(k)v(t,x)dxz 0.
radiation takes place, this perturbation theory should be - —

somehow modified. This is, however, beyond the scope of (5.2

the present paper. .
; _ [From Egs.(4.9), (4.6), and (4.26 it follows that v(t,x)
The factor in the curly brackets of E¢t.46 has, accord vanishes ak— + =.] From Egs.(2.15b and (4.12, one can

ing to Eq.(4.24), different behavior in two cases. Namely, RN : -
see thatiw(k) is an anti-Hermitian operatofDue to that

tanhr expansion(3.22 contains only odd derivatives with real co-
<1 [r(o)~1] (4.49 efficients] From this we conclude that the second term in
Eq. (5.2 is pure imaginary. The first term is, evidently, real.
Then each term in Eq5.2 must be equal to zero. In par-

Vg-M=2(M-1) —

andVy—M~1 atr(o)>1 [see Eq(4.25h]. Of course, the

most important case is E¢.49, because then the radiation ticular,
is larger. Due to Eqs4.49 and(4.39, w
atf v2(t,x)dx=0. (5.3
B6(M=1)k 3k r o
IHi——— =~ — ——, (4.50 L _
Vg—M «  « tanhr Substituting here ~v ¢+ v, , wherevg andv, are the soliton
) and its radiatior(in the following, the soliton deformation is
and Eq.(4.46 is reduced to neglected we have
16 k\2 K >, o,
vr(t,X)%—K(M—l) P ex T o _Ocvs(t,X)dXN—ﬁt _w<l)r(t,X)>, (5.9
X codk(X—=Mt)]O(x=Mt)O(Vgt—X) where the angular brackets mean the averaging over fast os-

cillations in Eq.(4.46. Using Eqgs{(4.1), (4.2), and(4.6), we
[r(o)~1]. (45) obtain

It should also be mentioned that the straightforward account o, _32M —1)?
of higher-order terms describing small soliton deformations  os(tX)dx= — . (5.9

leads to small renormalizations af, in Eq. (4.7). As a re-
sult, we would have corresponding small renormalizations ofrom Eqs.(4.46 and(4.39 we have
the second term in the brackets in E4.37) as well as small
corrections to the factor beyond them. This would give in-
significant corrections to Ed4.46). From this it follows, in
particular, that higher-order nonlinear corrections can be ne-
glected as far as the soliton radiation is is considered.
Similar results can be obtainddfter a more cumbersome
algebra directly from the GB system, derived in Sec. Il.
Equation(3.22) was earlier applied to the problem of the 2(1-0) |2
soliton radiation in a two-layer model of stratified flui®s). XeXR T M)
Here, we shall not discuss this model, noting only that nei-
ther the approach nor the results of Re¥5] are similar to  Here,r =r(o,M) is the root of Eq(4.13 andM is a(slow)
ours. function oft. Substituting Eqs(5.5 and(5.6) into Eq.(5.4),

“ _ 647%(1—0)*
f_w<vr(t,X)>dX— 81)\2(Vg_ M)
6(M—1)(1—o)r?]

(Vg_ M)2

Xré 1+

t. (5.6
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we obtain an equation describing the slowing down and the

decrease of the soliton amplitude
dM-1) 47?3\ (1-0)%8 [ 2(1-0) |12
dt 81 (Vg—M) |3(1-M)

6(M—1)(1—o)r?]*
(Vg_M)2

(2(1—0))1/2
Xexp — m ri.

Taking into account Eq(3.28), we see that E(5.7) is ex-

14

(5.7
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Mo—1
[1+y, b In(1+t/ty)]?’

M(t)—1~ (5.19

whereyy is given by Eq.(5.8) att=0.

At t~t, (or large) the wave train becomes inhomoge-
neous, because its local amplitude depends on the soliton
amplitudeax<M —1 at the moment of radiation. Therefore,
the characteristic length of the radiated wave trairl ig
-~ (Vg_ M )tch .

VI. CONCLUSION

ponentially small, which justifies the adiabatic approach used Starting from the basic equations of gravity-capillary

in this paper(see also beloyw

waves in ideal incompressible fluids, we derived by a multi-

Equation(5.7) can be approximately integrated by the ap_scale method the generalized Boussinesq system and the
proach developed in Refi26]. Introducing a new dependent generalized KdV equation for shallow-water waves in which

variable
B ( 2(1-0) )1’2
y(t)=ar 3MO-D) (5.9
and denoting/,=Yy(0), we sedhat
y(t)>yo>1. (5.9

Now, for simplicity, consider the most important cdde49.
Then from Eqs(5.7) and(5.9) it follows that

dy (1-o)r?tanhr
dt 2777\/5 .

Integrating this equation with an account of E§.9), we
approximately havécf. Ref.[26])

(5.10

y()~Yol1+Yy ! In(1+t/te)]. (5.11

Here,t., is a characteristic time, defined by

2777\/5

~— gy T4aYo
ten (1—o)r? tanhr Yo €

(5.12

where 74 is the “soliton time”

Te=[ k(M —=1)]Z%. (5.13

high-order dispersive effects of any order of{from Eq.
(2.6)] are taken into account, but the considered nonlinear
terms are of ordex, as in the classical Boussinesq and KdV
equations. In linear approximation, from the GB and GKdV
equations, the exact dispersive law for the gravity-capillary
waves follows. Expanding a dispersive tefwhich contains

an integral operatgrin powers of dispersive parameter
one comes to the fifth- and higher-order KdV-type equations.
The solitons, described by the GKdiand GB equation,
radiate ifM>1 and 0<o<1. Otherwise, they are steady.

In fact, the effect of soliton radiation follows also from
the fifth-order KdV equation. However, the radiation wave
numbers, phase and group velocities as well as amplitudes,
following from the GKdV equation, essentially differ from
those predicted by the fifth-order KdV equation. Therefore,
the correct description of the radiation can be achieved only
by an account of the dispersion to all ordersvpf.e., on the
basis of GKdV or GB equations. On the other hand, the
soliton profile, following from GKdV and GB equations co-
incides, with a sufficient accuracy, with the classical
shallow-water soliton described by the regular KdV equa-
tion. All higher-order nonlinear corrections to shallow-water
solitons and their radiation can be neglected.

Finally we note that the present approach can be used to
derive generalized Kadomtzev-Petviashvili and nonlinear
Schralinger equations, taking into account higher-order dis-
persive effects and permitting one to develop a consistent
theory of the resonant soliton radiation in corresponding sys-
tems. These problems are under investigation.
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