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We determine the existence and stability regimes of brighfLZdimensional spatial solitary waves in media
with quadratic(or () and focusing cubic nonlinearities. We derive a necessary criterion for linear stability of
these solitons, and use it to show that the quadratic nonlinearity enables stable solitons to exist when the cubic
nonlinearity is sufficiently weak. We discuss why the Vakhitov-Kolokolov criterion for stability @ sys-
tems is only a necessary criterion, and show an example where it fails. We further derive and study a simple
adiabatical model for the soliton dynamics close to the instability threshold. Finally, we study the interesting
dynamics of the solitons in the unstable regime, where we demonstrate the existence of two different limits
described by nonlinear Schtimger equations.S1063-651%98)15409-0

PACS numbgs): 42.65.Tg, 42.60.Jf, 42.65.Jx

I. INTRODUCTION assumed to be dispersionless and the ratio of SPM and XPM

. . .terms have been fixed. The effect of different SPM to XPM
The basic theory of cascading and two-wave parametri¢,iinc have only recently been investigafad.

solitons in materials with a pure quadratiar x(?)) nonlin- All x® materials have amherent cubic nonlinearityhat
earity is now well understood, and importantly, many of thepecomes important at high powers or when the fundamental
theoretical results have been confirmed experimentale  wave (FW) and its second harmoni&SH) are not perfectly

[1] for a recent review In particular, in bulk media as we phase matched. However, this is not the only origin of cubic
consider here, families of stable spatial solitons exist above aonlinearity. When the® nonlinearity is periodically vary-
certain threshold powef2]. Their excitation from input ing along the direction of propagation, as in quasi-phase-
Gaussian beams has been confirmed experimeri@llyas Matched(QPM) media, the effective averaged dynamical
well as numerically without walk off4] and later with walk ~ €guations also includeduced cubic nonlinearitiel4], asa
off [5]. In fact, it has been shown that self-focusing, Ieadingresun of incoherent coupling between the wave at the main

to a catastrophic collapse, cannot occuyf® media in any spatial(QPM) frequency with higher-order modes. .
physical dimensiofi6]. Generally, effective cubic nonlinear terms will appear in

Attention has recently turned to the effect of culfar fjhe (t:onven':(ipr:jal fnjoderl] of((zt)-indu]:_ed tv_\;(r)]-wtart]ve mi>gng
X&) nonlinearity on the known characteristics of solitons ue 1o any kind or inconerent coupling with othér modes or
and switching iny® media. The competition between the higher-order cascading effects. This can be illustrated using

two types of nonlinearity can, e.g., drastically modify thethe simple example of second-harmonic genera&iiG) in

threshold power for switchinfj7] and the existence and sta- auv;ﬁ\éegugjli,svzhlcgrtlz ;:Ir:)grlsorggsdizﬁgzerr:‘gggﬁ;r;igt%_fre-
bility regions of spatial solitary waves diffracting in one q yo, PP

transverse dimensiofdD) [8—10], and 2D[6,11-13. It has ing the interaction between the slowly varying envelopes of

been shown that the simple model, with only cubic self-the modes has the forfd5]
modulation and cross-phase modulati®&®PM and XPM, re-

spectively terms added to the known equations §6f) me- —i gy = KaBlAT e 1tk i, B AN e IK2, ()
dia, does not apply to temporal solitary waves, unless the

x? nonlinearity is much weaker than thé® nonlinearity dB, _

[10]. Thus, in contrast tov(® media, spatial and temporal i =k A% 4% n=12, 2

solitary waves do not obey the same dynamical equations in

media with competing(‘®) and x® nonlinearities. The de- whereA(z) and B, 4(z) are the complex amplitudes of the
pendence of the threshold power for collapse on the SPNFW and the two SH waves, respectively. The parameter
and XPM coefficients have been investigafédl2], but in  characterizes the efficiency of the interaction akkl, the

the soliton studies the cubic nonlinearity has so far beemrorresponding phase mismatch. If the coupling to one of the
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SH modes, e.gB,, is not perfectly matched, we can make the dimensionless equatiofl0]
the substitutiorB,= B,exp(Ak,z) and use the approximation
(cascading limit dB,/dz<Ak,B,. From Eq.(2) we then ow . ) )
obtain thatB,~ (x,/Ak,)AZ, which introduces an effective P57 TViwEw v +s(|w|*+plv[w=0, (4)
cubic nonlinearity in Eq(1),
2

dA . Ko .
i — * alAkyz 2 2i
| 55 =xiBiATe +Ak2|A| A. (3)

W o2 1.2 2 2
E+Vlv_ﬁv+iw +s(glv|*+p|lw[*)v=0, (5

Incoherent coupling between modes is thus a general physi-, . . . . -
cal mechanism that induces cubic nonlinearity. which are valid when spatial walk off is negligible, and both

We note that a similar situation should appear in multisteptfz fundar?en]:[al frequenay, an(_j”;ts sleccl)nd harmonmz |
cascading, when the influence of a third and fourth second= <1 @r€ far fromresonances. the slowly varying compiex
order process, involving both sum and difference frequencgnvelope function of the FWw=w(r,z), and its SH,v

>

mixing, are taken into accoufit6]. If one of the processes is =uv(r,z), are assumed to propagate with a constant polariza-

nearly phase matched, the others can be treated in the cafn, e; ande,, along thez axis. The transverse Laplacian

cading limit, leading again to an effective cubic nonlinearityvz refers to the spatial coordinatés-(x,y). The electric
in a way similar to that discussed above for multimoded_* "~~~ = 2 D s
field E=E(R,Z,T) is given by

waveguides.
Since competing quadratic and cubic nonlinearities is a
general physical phenomenon, it is important to know the E=E [we e, +2ve2%1e,]+c.c., (6)

effect of such a competition. In this work we present, to our

knowledge for the first time, a complete map of the dynamic . .

properties and existence and stability regimes of the thre# physical coordinates, wher&=rqr, Z=2z5z, and 6,

classes of 2D spatial solitary waves existingyiff’ media  =k;Z— w,T. The real normalization parametdts, z,, and

when inherent focusing cubic nonlinearity is taken into ac-ro, are given by(for details se¢10])

count. The defocusing case was recently consider¢d i

whereas the power threshold for collapse in the focusing case

was investigated ifi6,12). _
The paper is organized as follows: In Sec. Il we present 0 32

the dynamical model and compare it with the models used in

earlier works on competing nonlinearities. We then consider . .

the case of a bulk medium with focusing dispersionlg€d ~ Wherepu, is the vacuum permeability arld, the wave num-

nonlinearity, and show in Sec. Il when the different classed€r at the frequency,, . The real parameters, s, 7, andp

of localized stationary solutions exist, and how their profilesd"® given by(10]

3x:2

. zg=2kyr2, r2=— 2L
16uowi(xi?)?

)

look like.

A mathematical derivation of the Vakhitov-Kolokolov 16}(3) 8;((3)
(VK) criterion[17] for linear stability of ground-state bright B=2z,Ak, s=signx¥)), 7= ~(32)S y p= ~(;>c ,
solitary wave(henceforth solitopsolutions against radially X1s Xis
symmetric perturbations is presented in Appendix A, where (8)
we also develop a theory that describes their dynamics close
to the threshold of instability. where Ak=2k; —k,<k; is the phase-mismatch parameter,

In Sec. IV we use the VK criterion to find the regimes of
stability and instability of localized stationary solutions. The . e ~2)
power threshold for instability is compared with the analyti- dUe€ncyy, of the jth order susceptibility tensor. Thug;

cal predictions of virial theory, which is briefly recapitulated =x$?) represents the quadratic nonlinearity, apd and

in Appendix B. We further diSZCUSS the applicability of the Y (=" the parts of the cubic nonlinearity responsible for
VK stability criterion for suchy(®) systems, where it is only SpM and XPM, respectively. Compared with standard nota-
a necessary conditignand present a specific example in tion these coefficients refer to@=3®(w. = w.—
which it fails, i.e., predicts stability of solitons that are ob- ~(3)_~@) Ons =X (@n= 0=

+ wp) ananc =x"(wp=w,— 03yt w3 p).

served numerically to be unstable. ]
In Sec. V we look at the specific dynamics in the inter- [N the form they appear in here, Eqgl) and (5) were

esting regimes close to the instability threshold and udeepnused to study collapse in media with an arbitrary number of

in the collapse unstable regime. Finally, Sec. VI presents §ansverse dimensiong6], and to study bright two-
summary. dimensional(2D) solitons in the defocusingsE& —1) [11]

and focusing casesE +1) [12,13. After a simple transfor-

mation they correspond to the 1D equations earlier used in

[8,9], and later derived rigorously ifl0]. Similar equations
We consider beam propagation in lossless hifk media ~ were recently shown to describe the dynamics in QP4

under conditions for type- SHG, when cubic material non-media[14].

linearity is taken into account. The dynamics is described by The system4)—(5) conserves the HamiltoniaH,

and x\V=Y0(w,) denote the Fourier components at fre-

1. MODEL
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. 08 2.8
H= | ||V, wW|?+]|V, v|?+ B|v]|*-Rew?v* < S
[ 119021902+ glo - Retwo) S .l S .,
) 5
S > 0.4 T 14r¢ 0.6
= 5 (W*+ 7lo]*+2p|wo|?)|dr, © 2 |, z
g oRff g 0.7 0ol
and the dimensionless power, < ool . < 5.0 00 02 04
o 2 4 6 o 2 4 6
_ 2 2\ Hr— Eigenvalue, A Eigenvalue, A
P=| (|w|[*+4[v|*)dr=Py(2)+4P,(2), (10)

FIG. 1. Amplitude va\ of (left) the FW and(right) the SH, for
which corresponds to the physical powegP, where the the C solutions with 8= —0.5 (dotted, =0 (dasheyl and 3
normalization parametd?o=0.5\e,/uoEdrj is inverse pro-  =0.5(solid). n=2p=16, s=+1.
portional to}}(li) and independent of®). Furthermore, Egs.

(4) and (5) are invariant to the phase rotation It is well known that when the effective mismatch is large

the cascaded nonlinearity has effective cubic properties. In

w—we @, py—pel2®o (11)  this limit, where>1 andpB>\, theC solutions asymptoti-
cally develop into the singles component ol solution, for
and the Galilean transformation which the SH is weak and slaved to the FW,
far (X a12) %WS/(Z,B). The FW is the solution to the 2D nonlinear
W(X,2)—W(X—2a,z,z)e' 1" M2, Schradinger (NLS) equation
v(X,2)—v(X—2a,2,z)e' 221X a?), (12 V2Wo— AWy +W3=0, (15)
whereay ; are real constants. with power Py=P,,=P¢,. Here P%,=11.69 is the thresh-

Without knowing th‘; experignental setting, and thus theo|d power for collapse of solutions to the 2D NLS equation
specific values of thg(*) and x(*) susceptibilities, it is dif- (15) [19]. An analytical expression for the solution is not

ficult to estimate the values of the dimensionless CoeffiCientRnown, but a good approximation can be found by the varia-
n andp. However, for a large class of materials and experi+jonal technique to b§20]

mental settings, we can neglect the dispersiog®f and set

Y=, and it is further reasonable to sgff)=%{. In Wo(r)=Agy\ sectiBoyAr), (16)
this case we get)=2p=16, which we use below. These 5 5

values were also used in earlier works on competifiyand ~ WhereAg=121n2/(4In2-1) andB;=6In 2/(2In 2+1).
¥® nonlinearities[8—12). Furthermore, in this paper we N order forC andW solutions(with wo#0 andv,#0) to
consider only the case of focusing cubic nonlinearity, and®@ exponentially localizedi.e., have a purely exponential
thuss= + 1. For the defocusing case, the existence, stabilitydecay in the tails —<), the real propagation constant
and generation of bright solitary waves was analyzed in Refhust be above cutoff >\ ;,=max0,~ B/4}.

[11]. For a recent measurement of thé® coefficient in The singlev component oV solution exists forp>0. It
severaly(® materials we refer t§18]. has no FWw,=0, and its SH is the solution to the 2D NLS
equation

Ill. LOCALIZED STATIONARY SOLUTIONS Vivo—(,3+4)\)vo+ nvgzo’ (17)

We consider stationary exponentially localized bright . . )
solitary wave solutiongwith no nodes, i.e., lowest-order Which has the poweP,=4P,=4Py/7, and is approxi-
bound statesof the form mately given by

W(r,z2)=wo(r)e™?,  o(r,z)=ve(r)e? (13 vo(r)=AoV(B+4N) 7 secliBoyB+4Ar), (18

where the real functions/, and v, tend monotonically to Sincew=0 the qutoff for theV solution is different from
zero asr=+x?+y? increases. Inserting this solution into that of theC solution, i.e. \>—g/4.

Egs.(4) and(5), we obtain the stationary equations Using a standard relaxation technique, we have numeri-
cally found the families ofC andV solutions forh >\ .
V2Wo— AWo+Wqu o+ S(W3+ pv3)wo=0, The C family is found starting from the large phase-
(14)  Mmismatch limit, using théV solution (16) as a good initial
V20o— (B+4N)vg+ 2wWi+s( 73+ pwi)v=0. guess. In Fig. 1 we show the amplitudeg(0) andv,(0) of

the C solution as function oh for 8=0,£0.5. We see that
There are three types of solutions to E¢4) of the form  the C solutions exist only in a certain regioRg<A<X\,,
(13): The Combined o solution, where both components which increases with3. For positive 8 the lower limit is
are nonzerow,#0 andvy# 0, and have no particular rela- zero, \;=0, while for negativeg it is close to, but larger
tive size. This solution can generally only be found numeri-than, the cutoff\, (see inserts in Fig. 1 and Fig) 4nd
cally, even for the one-dimensional casee., for Vf increases with decreasing The upper limitA; always in-
=d?/dx?)[8,10. creases withB. Thus noC solutions will exist forg less than
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FIG. 2. Profileawy(r =x) (dotted andv(r =x) (solid) of theC FIG. 3. Profileswy(r =x) (dotted andvy(r =x) (solid) of theC
solutions shown in Fig. 1 fop=0 and(a) A\=0.3, (b) A\=1, and  solutions shown in Fig. 1 fax=1 and(a) 8=4, (b) =10, and(c)
() \=3.8. B=20.
. . . i (2) i ity i .
a critical valueg,,, which we find to be8,=—0.914. The In systems with a purq™’ nonlinearity, it has been ar

gued(not proven; see belowthat the VK criterion applies to
solitons supported by two-wav@r type-) SHG [22], and
three-wave(or type-1l) SHG[23], using an adiabatic pertur-
bation technique, and later again for three-wave solitons
[24], using spectral operator theory, as originally by Vakhi-
tov and Kolokolov. Here we derive a stability theory for
soliton solutions to Eqg4) and(5), using the adiabatic per-
turbation technique first developed for two-way€ soli-
tons by Pelinovsky, Buryak, and Kivshi2] and later for a
generalized NLS equatidi25], and three-wave(? solitons
%3]. The theory is based on a perturbation expansion around

e soliton solution, which is assumed to evolve slowly and
adiabatically.

The end result of the mathematical derivation, which is
given in Appendix A, is the dynamical equation

V solutions exist for all values o8 and\>— g/4, and its
amplitude is close to the prediction given by E#8). At A
=\, the C solution bifurcates into th¥ solution. For nega-
tive B this also occurs akg.

The profiles of theC solutions are shown in Fig. 2 for
B=0, and three representative values\pbeing in the cen-
ter of the existence region, and close to the edggs A o
=0 and\,;=4.04, respectively. We clearly see that tGe
solution gradually becomes narrower and approachedthe
solution withwy=0, as\ increases towards,. Also, as
expected, the profile becomes more and more delocalized
the cutoff ., is approached.

From Fig. 3 with\=1 andB=4, 10, and 20, we see how
the C solution asymptotically develops into th¢ solution
with the SH not just being much weaker, but also much
narrower, than the FW. In contrast, as ¥esolution is ap- d20
proached, the FW and SH seem to have approximately the M (No) F+ PL(No)Q+3PL(Ng)Q%=0, (19
same widthsee Fig. Zc)].

We have made a series of calculations as shown in Fig.
and identified the regions of existence of the different type
of localized solution$13) to Eqs.(14) in the parameter plane o i
(\,8). The results are summarized in Fig. 4, where we havé@n€ closest to the initial unperturbed soliton valug=0)
defined theW solutions as theC solutions in which more Must be chosenP()) is the soliton power, and prime de-
than 90% of the power is concentrated in the FW. notes differentiation with respect 0. The positive coeffi-

We see that th€ solutions exist above cutoff, >\,  CeNtM(A)>0 can be found numerically.
when 8> B,= —0.914, while theV solutions always exists . If A opeys E_q(19) then an approximate radially symmet-
above cutoff. As expected, t1@ solutions develop into the ric solution exists, whose slow evolution around the initial

W solutions for 8>\. However, it is not necessary that soliton is described solely b¥(z) and the soliton family.
. L i : . Thus, from the linear limi€Q2?~0, Eq.(19) predicts that the

B>1 as assumed in obtaining th& solution (16) theoreti- o . P . .

cally. solitons are stable against radially symmetric perturbations

iialid when|Q|<1 and|P{(\g)|<1. HereQ=X—N\g, \g is
defined by the relatio®((\y) =P (for several crossings the

4

V solutions

IV. STABILITY OF SOLITARY WAVES

W
|

A. VK criterion

C and V solutions

For conservative systems, under certain conditions, it is
possible to derive an analytical criterion for linear stability of
solitons, which involves only the dependence of invariants
on the solution parameters. A well-known result, first proved
by spectral operator theory for a generalized NLS equation,
is the Vakhitov-Kolokolov(VK) criterion requiring positive
(negative dP/d\ for stability (instability) [17]. The reader
is also referred to Ref21], where the VK criterion for equa- FIG. 4. Regions of existence @&, V, andW solutions in the
tions of the NLS type is rigorously proven under a quite(x g) plane. TheW solutions are defined as when 90% of the total
general hypothesis, by use of group theory and functionapowerP is in the FW. In the black region<\, and no localized
analysis. solutions existsy=2p=16, s=+ 1.

Eigenvalue, A
- )
\

W and V solutions

o

-8 -1 0 1 8 12 16 20 24
Mismatch, g
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FIG. 5. Soliton bifurcation diagram fop=16, p=8/3, andg FIG. 6. Soliton amplitudesvo(0) andwvo(0) (a) and profiles

=0.5. (a) PowerP vs \. (b) P—H plane. Hereb is the bifurcation
point betweenC and C, solitons, ands is the point where th€
solitons change their stability. In the pointthe C, solitons merge
with the V solitons.

for P{(Ag)>0 and unstable folP,(\o)<O0, in agreement

Wo(r=x) and vg(r=x) at A=0.1 (b), for =16, p=28/3, and
B=0.5, as in Fig. 5. Solid lines correspond @ solitons and
dashed lines t&, solitons.

Let us now consider stability: According to the VK crite-
rion the C family changes its stability at poins (A

with the VK criterion. However, Eq(19) permits us also to
describe the specific dynamics, as long@B/d\|<1 and
I\ —\g|<1, such as close to the instability threshold. A more
general dynamical model, which is valid further away from
threshold, but from which a stability criterion cannot be de-
duced in an analytic form, is also derived in Appendix A. We
investigate the dynamics predicted by these models in Se
VA

At this point, where the validity of the VK theorem for
x® systems seems well proven, it is appropriate to launch
warning. In all derivations published so f@22—24, as well
as the one we give here, the necessary properties of the

called shift operatof.l are simply assumed without a proof.
Thus, in the adiabatic perturbation techniqieere and
[22,23) it is assumed thatt; has only one localized eigen-
vector with eigenvalue zer@ unique neutral modeand in The \ interval in which theC, solution exists becomes
the rigorous VK spectral operator thedig4] it is assumed  narrower as the XPM parametgis increased. For the value
thatL, has only one localized eigenvector with negative ei-p=8 we use in this work theC, solution does not exist.
genvalue. However, its appearance fpr=_8/3 indicates that the prop-

Both properties are proven for the Sctimger operators erties of the y(?+ y(®) system may change significantly
of the generalized NLS equation with only one wave com-when the XPM coefficient is changed. This is supported by
ponent, but not for two-component systems wifR nonlin-  the results of Ref{13].
earity. This means that the VK stability criterion fqf?) In the remaining part of the paper we will use the VK
systems is only anecessarycondition, a fact that has not stability criterion, but keep in mind that it is only a necessary
been clearly pointed out in the literature so far. Below wecriterion, and make sure to check several cases by direct
give, for the first time, an example where the VK criterion numerical simulation before claiming stability.
fails and predicts stability of solitons that are clearly un-
stable.

Let us consider a representative example wjth 16, p
=8/3, andB=0.5. In this case, we find the bifurcation dia- In Sec. lll we showed that at least two types of localized
gram shown in Fig. 5. The dashed line represents a newtationary solutions of the forrfiL3) can coexist for given
C-soliton family, sayC,, which bifurcates from the “con- values of the mismatc® and powerP: The C andV solu-
ventional” C-soliton family (solid line) at novelty or priority  tions. Further numerical analysis shows that in general these
point b (A,=0.1178) and then merges with thesolitons  two solutions do not exist with equal values of the poWwer
characterized by the-independent valu®,=2.92, at point and when they do, the Hamiltonian of tMesolution is al-

v (\,=0.0786). ways larger than that of theC solution (at least for

The corresponding center amplitudes versuas well as  7=2p=16). An example of this is shown in Fig. 7 fg8
the profiles at\=0.1, of theC- and C,-type solutions, are =0. Consequently, when the two solutions coexist, the
shown in Fig. 6. Here we see more clearly how @esoli-  solution is always unstable and tfesolution correspond to
tons bifurcate from theC solitons and merge with th§ the ground-state solutions, whose stability properties we will
solitons withwgy(x)=0. In the bifurcation pointh the C,  determine in this section using the VK criterion derived in
solution is identical to the solution. From the profiles we Appendix A.
see how theC, soliton has the form(13); i.e., it has no In Fig. 8 we show the soliton powd? versus\ for three
nodes. values ofB3. The power of the/ solutionP, is approached as

=0.066) wheredP;/d\ changes its sign, whereas tkg
family is always stable, having alway$P;/d\>0. How-
ever, direct numerical simulation shows that g solitons
are always unstable. Indeed a numerical analysis reveals that
whereasl ; has only one negative eigenvalue for tBeso-
utions, it has two negative eigenvalues for tBgsolutions.

herefore the VK criterion is correctly applied only for t@e
family of ground-state solutions, whereas it is meaningless
‘Ijlor the C, family.

In the invariant planeR —H) the stableC-soliton branch

S%(_)rresponds to the minimum Hamiltonian for a given power,
with the C, family merging with the branch of unstab@
solitons. Note, however, that this is not directly related to the
assumptions made to prove the VK criterion using spectral
operator theory.

B. Stability regimes
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FIG. 7. HamiltonianH vs total powerP for the C solutions ismatch, §
(solid) and V solutions (dotted, at 8=0. The two bifurcate into FIG. 9. Regions of existence and stability of solitons in thg)
each other at the point marked with a filled circle, corresponding tgyjane. In the black regioh <\ ., and no localized solutions exists.
N=X\; (see Fig. L »=2p=16, s=1. The V solutions exist everywhere else, but are always unstaple.

=2p=16,s=1.
\ increases towards the bifurcation poif. Furthermore,
for B=—0.5, the solution is also th¥ solution for A
<A<\, and therefore the power is al$®,. According to
the VK criterion, the solitons are unstable in the whole re-
gion of their existence fo8=0.5, whereas a critical value of
\ exists at phase matching=0, which separate stable and
unstable regions. As the mismatch is further decreasel to
=—0.5, the soliton family exhibits a more complex multi-
stable behavior, the derivativlBP/d\ changing sign several
times.

We have made a series of calculations as shown in Fig. §>e
found dP/d\, and identified the regions of stability of the
soliton solutions in the parameter pla@eg). The results are
summarized in Fig. 9. We see that the quadratic nonlinearit
allows stable bright solitons to exist in bulk media with fo-
cusing Kerr nonlinearity, provided the effective mismatch
parameter is sufficiently smal; 0.913<8=<0.19. The pos-
sible existence of stable 2D solitons in this model was first
predicted from Lyapunov arguments [i], and is in sharp A. Close to the instability threshold

contrast to purely cubic bulk media described by the 2D NLS The adiabatic theory derived in Appendix A allows us to

equation, in which no stable solutions exist. ) ) | .
In Fig. 10 we show the regions of existence and stabilitydescrlbe the dynamics of the solitons whietP,/dA|<1,

of the soliton solutions in the parameter plaiie §). Stable such as close to the threshold of instability. Under the action

; . of symmetric perturbations the evolution of the soliton
solutions are seen to require not only moderate values of the

effective mismatchg, but also sufficiently low powersp propagatiqn constant Is ‘h‘?“ equivalt_ant o that of a single
<32 anhar_monlc oscillator with coordinatex, r_nomentum
It is interesting to compare the results in Fig. 10 with theM (M)A, and AHamlltoman enerngzéM()\))\%V()\.),
analytical predictions that can be obtained from the so-calledhereV(x)=fx [Ps(#)—P]d#, and the dot denotes differ-
virial theory (see[6] and Appendix B, given by Eqs.(B3)

narrow white region in Fig. 9 but because they are based
upon linear stability theory, they do not predict the nature of
the instability. However, numerical simulation of Eq4)
and (5) have confirmed that the instability is indeed not a
collapse instability folP<<1.3.

Using virial theory one can estimate the threshold power
for collapse to bePyq,=3.2 [6]. This is supported by our
calculations, which show that no stable solitons existRor
3.2, corresponding exactly tBy,,. However, again our
sults do not show the nature of the instability of the soli-
tons with higher powers, and we have to perform numerical
simulations. The results of thegsee Fig. 14 confirm that
¥olitons with powersP>3.2 indeed collapse after a finite
propagation distance.

V. SOLITON DYNAMICS

and(B4). A rigorous result of virial theory is that no collapse 4
can occur for powers belo®,,,=1.3[6]. Our results show o L Pwe ..
that unstable solutions do exist with powers below (lo@er o B
% L
3.3 g2
A | N s P N
g B1r S I S 1r
z i emmmm——— -__;__'__'—_"_"_"_':‘:':':;—_'-_-—_.-:-:;—_-—_-—_- &
2, 29F ,"; = i — o ‘ ‘ |
— rf: ’ Te—a T
g 57 —:’ 2.93-_‘/__ s R -1.2 -0.8 . -0.4 -0.0 0.4
2 L 2891 b | ismatch, g
o5, | ‘ 0 1 2
0.0 0.5 10 15 20 FIG. 10. Existence and stability regions of solitons as a function

Eigenvalue, A of the total powerP and mismatch3. Stable solitons exist in the
shaded region, while unstable solutions exist in both the shaded and
FIG. 8. PowerP vs \ for the solutions shown in Fig. 1, with hatched regions. The unstablesolutions exist on the dotted line.
B=—0.5 (dotted, B=0 (dasheg, and 3=0.5 (dash dotted The In the white region no localized solutions of the foiB) exist.
solid line indicates the valu®,=2.92 and the vertical dotted line The dashed lines indicate the valugg,=1.3 andPyg,=3.2. 7
indicates\ o= — 1/8. =2p=16, s=1.
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FIG. 11. (a) PowerP¢(\) and(b) “mass” M(\) for 3=0, A
=2p=16, ands=1. The instability threshold is marked with a
filled circle and the two crossings§=0.3099 and\g"=0.6918, 0.05 " RS

with the powerP,=2.96 (dashed ling are marked by circles.

(b) 1
P=P4(\g), wherePg(\) is the power in the unperturbed

soliton. If there are several solutions the one closest to the
initial unperturbed soliton valua (z=0) must be chosen.

The positive “mass”M()\)=2{(§A,lA_Q(§} can be found nu- —0.05; R YRy S a— 1o
merically by solving the equatioh,Q=04, (9, once the A
soliton family 49=[wq,vo]" is known.

In Fig. 11 we show the soliton powé,(\) and the mass

M (M) at phase matching=0. The total conserved power is
P=2.960 (dashed ling which is close to the instability

threshold, Ps=2.963. The two points wher®®s(\)=P  narform regular oscillations, whose amplitude can be signifi-
(circles correspond to‘:)\g- Thus\, can have two differ-  c4nt Conversely, if the perturbation increases the total
ent values in this case\5=0.3099 and\y'=0.6918, at  poer, so thaP>Py(\.), thenho>\L". For such perturba-

which the mass i (\5) =12.6 andM (\g")=1.1. tions Fig. 12 shows that the solution will move in an un-

From the VK criterion we know that, to the right of the hounded potential, i.eN should increase indefinitely, even-
thrEShO|d, wheral Ps/d)\ is negative, the solutions are un- tua”y Causing the solution to Co”apse_
stable, and to the left of the threshold, whet®s/d\ is We verified these predictions by numerically integrating
positive, they are stable. The stable and unstable solutionfe dynamical Eqs(4) and (5) with a radially symmetric
correspond to the lower and upper branches of the curvgnite difference scheme. The initial condition is a soliton
H(P) (see Fig. 7. However the VK criterion in itself does with power P4(\) modified by multiplying its components
not give the specific dynamics of the solution. w and 6 by (1+ €), where the small perturbation is given by

In Fig. 12 we show the potentiaf(\) and the corre- = /p/P_—1. In Fig. 13 we show the evolution of an un-
sponding level curves of the oscillator enefyin the phase  giaple soliton  with Ae=A(0)=0.62<AU" and Pg(\y)
planeX—X, for Ag=\g" to the right of the thresholdsee  =2.9609>P, which is described by the closed orbit shown
Fig. 11, where the solution is unstable. From Fig. 12 we sees a solid line in Fig. 1(). As predicted we observe a
that the points\' and \§" correspond to a local minimum locked (slightly dampedl oscillation of the peak amplitudes,
and maximum of the potenti&(\), respectively, or equiva-
lently to a hyperbolic and elliptic fixpoint in the phase plane
A—\, respectively.

It is clear from the shape of the potential in Fig. 12 that
perturbed unstable solitoiisioving along level curves in the
phase planecan undergo two qualitatively different types of
motion: oscillations(closed curves around the hyperbolic
fixpoint) or decay/collapséopen curvesalong the direction
of growing A\, where the potential is unbounded. Since we

Qo

S
entiation with respect ta. Here\ is defined by the relation :,E, of

£

[e]

£

FIG. 12. (a) PotentialV(\) for a total powerP=2.96, and\,
=)\g"=0.6918.(b) Level curves of constarft/ in the phase-plane
A—p, wherep=M(A)A. B=0, =2p=16, s=1.

o
=

o
3

o
=)

Peak amplitudes, A

know that the soliton solution becomes progressively taller R / \\ /
; ; 0.3 N7 P
and narrower a& increasegsee Figs. 1 and)2we expect - -
the latter type of motion to give rise to collapse. 0.2 . , ,
Let us consider an unstable soliton with propagation con- "o 50 100 150 200
stant s and powerPg(\g), under the influence of initial Distance z

perturbations that are symmetric and real, i.a(0) FIG. 13. Numerical simulations of Eq&l) and(5), showing the
=an(0)=0 (s_ee Appendix A From Fig. 11 we see that if eygjution of the center amplitude of the FW and @i8lid), and
the perturbation decreases the total power, so thglashey for an unstable soliton with (0)=0.62, under the influ-
P<P4(\g), then\<Ag". For such perturbations Fig. 12 ence of a perturbation that decreases the total poger0, 7
shows that the solution will move along a closed orbit, i.e.,=2p=16, s=1.
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Total power, P
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o1
T

Peak amplitudes, A

FW
A 3
e g S Mismatch, g

o 2 4 6 s 10 12 12 16 18 FIG. 16. PowelP vs mismatchgB as in Fig. 10. The dotted lines
Distance z indicate Py, and Py, .

FIG. 14. Numerical simulations of Eg&}) and(5), showing the

evolution of\ (chain dasheg and the center amplitude of the FW V solution, P, = Pc|5/4' while the upper limit asymptotically
(solid) and SH(dashegl for an unstable soliton with (0)=0.75 n

i Coc o
and a perturbation that increases the total poWer0, »=2p approaches that of th&/ solutions, Py="Pps, as 5 in
—16,s=1. creases.

Thus, in the limit of large phase mismatgss>1, Eqgs.(4)

) ] o _and(5) have collapse unstable solutions with powers in be-
accompanied by a corresponding oscillation of the nonlineagyeen the two NLS limitsPy<P<7Py,. In the lower limit

phase shift\, which we measured as the derivative of thene Fyy is zero and the SH is given by the 2D NLS equation

Instantaneous phase. ) ~(17). In the upper limit, the SH is approximately zero and the
In Fig. 14 we show the evolution of an unstable solitongyy is given by the 2D NLS equatioi5). In contrast, in the

with As=X(0)=0.75>\g" and Pg(\s) =2.9581< P, which  (one-field 2D NLS equation itself, solutions only exist for

is described by the solid-line open orbit in Fig.(h2 AS  one value of the power.

predicted the perturbation induces a collapse of both fields at one might argue that the “true NLS limit” is that of large

a finite distance. phase mismatch, where the solution tends towhsolution.
We note that the oscillations faxs=\(0)=0.62<\y" |t is well known that they® nonlinearity has effective cubic
andPg(\s) =2.9609> P, as observed in Fig. 13, are not de- properties in this so-called cascading linsee[1]). How-
scribed by the expanded potentld) and Hamiltoniar,,  ever, from the point of view of the solutions to Eq4) and
given by Eqs(A26) and(A27), respectively. In this case we (5), both limits have the characteristic NLS properties.
get the potential shown in Fig. 15, which clearly predicts |n Fig. 17 we have depictel versus\ for several values
either spreading\ decreases monotonically to zgmr col-  of =1. Here we clearly see the properties discussed above.
lapse(\ increases monotonica)ly The reason why the ex- Regardless the value @ the power will always asymptoti-
panded Hamiltonian fails is that the initial value of the cally decrease toward®,, as the propagation constant
propagation constanks is too far from the thresholdv increases. At a given point; the solution will bifurcate into
=0.4429. the V solution with the exact poweP,,, as we know from
Fig. 1. Correspondingly, regardless the valué othe power
B. Collapse in the NLS limits will always increase asymptotically 1, as the mismatc|s
Even though all solutions in the hatched region in Fig. 10incregse§. However, thgre W.i" never be a bifurcation O.f the
are (collapse unstable, this region is nevertheless extremelySClution into thew solution. Finally, we see that the deriva-
interesting. In Fig. 16 we show the power versss in Fig. tive dP/d\ tends to zero as either of the NLS limits is ap-

10, but focusing on the hatched region. The lower limit ofProached, in which case the solution is so-called marginally
stable, as the solution to the 2D NLS equati2f]. Note that

the power in the solutions in this region is always that of the

0.001] 12 ?,
g; 0.000 - A 10
= o s
. 0.001_ % 8
B -0.002F o
2 : - 6
£ —-0.003F = i
| = 4
—0.004 . . ‘ . ‘ i ”
0.0 0.2 0.4 0.6 0.8 1.0 1.2 2 ‘ : ‘ !
Eigenvalue, A 0 1 2 3 4

Eigenvalue, A
FIG. 15. Expanded potentidfy(\), given by Eq.(A26), for

No=\g"=0.6918, giving the derivative®;(\g")=—0.02169 and FIG. 17. Power vs\ for different values ofg, indicated at the
Pe(Ag")=—0.01245.8=0, n=2p=16, s=1. curves. The dotted lines indicaf®y, and Py, .
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X
1 —1.1g<g=1.3,3<0.25, (20)
| 5k

wherexzniAk/kl, with n, being the refractive index at the
fundamental frequency, and,=x{?/[1pm/V] and x,

8 =%3/[1 pnt/V?] are the quadratic and cubic nonlinearities,

7 respectively, measured in mks units.

5 From the relation(20) we see that the cubic nonlinearity,
whose strength is proportional 1 3;), must be sufficiently
weaker than the quadratic nonlinearity, whose strength is

FIG. 18. Evolution of the center amplitudes of the R@blid)  yoportional tof {12/ Ak, in order for stable bright spatial
gﬁu?aﬂfnaz??fgf_gz a:ngﬂ : 116121 10 btained from numerical solitary waves to exist. Thus even a weglk) component

q FTepT IS ST can arrest self-focusing and enable stable solitons to exist,
in this limit we could also apply the adiabatic theory to de-provided the fundamental and second-harmonic waves are
scribe the dynamics, as in Sec. V B, sifdds/d\|<1. nearly phase matched.

An interesting question regarding the unstable two- We have shown that when stable bright solitons exist,
component solutions in the hatched region, is which of thghey always have a dimensionless powerwhich is below
fields will initiate the collapse. Physical reasoning says it3.2. This corresponds to the real physical power
should be the field with the highest power. To confirm this
we show in Fig. 18 the evolution of the center amplitudes of PoP=61 kW-(10%xs]), (21
the two fields, as obtained from numerical simulation of Egs.

(4) and (5) for A\=2. We have not specifically perturbed the for & fundamental wavelength af; =1.3 um. Importantly,

solutions, since the perturbations caused by the discretizatidfiS POWer threshold for the existence of stable beams in bulk

in the numerical scheme, should be enough to make thefmedia with competing quadratic and cubic nonlinearities, is
collapse[27]. ’ in good agreement with the prediction of the threshold power

For 8=1 the solution is close to thé solution, and thus for collapse, which can be obtained analytically by the so-

the SH dominates over the FW. The specific contribution ofc@/led virial theory{6], an effective tool for analyzing wave

the two fields to the total power i®,=0.29 and #, collapse. _ ,
=2.69. Correspondingly we see that it is the SH that initiates We expect the main features discussed above to be found

the collapse. FoB= 100 the solution is close to thé/ so- in other systems where a competition between different types

lution, and thus the EW instead dominates the SH. The spé)-f nonlinearities occur. As we have argued, such nonlinear

cific contribution of the two fields to the total power is now systems are plentiful in optics, since in gerjeral any incoher-
P,=11.55 and #,=0.01. As expected it is now the FW ent couplmg between t\.NO or more waves in mul'quave Sys-
that initiates the cUoIIapse. tems, will induce effective hlg_her-order n_onllnearmes.

An important observation from Fig. 18 is that even though In ord_er to study the st_ab|||ty properties of the_gr(_)und-
one of the fields is the dominant and initiates the collapse?t":lte sol|to_qs we have derived a necessary VK criterion for
the other field is “dragged along” in the final stage of the finear Ste.‘b'“ty’ using a perturb{:ltlon technque based.on an
collapse. This seems to be a general property, and was alégsum_ptlon of ad|apat|p evolution of the solitons. This not
observed ir{6]. _only gives the VK criterion, bu_t also_e_l mode_l for the _dynam—

ics close to the threshold of instability, which predicts two
different kinds of instability induced beam evolution: Col-

lapse and regular oscillations of relatively large amplitude.

We have analyzed the structure, and existence and stabiVe have confirmed these predictions by numerical simula-
ity properties of bright spatial solitary waves propagating intions.
a lossless bulky® medium under conditions for type-I We have pointed out an obvious mathematical problem
SHG, when focusing dispersionless cubic nonlinearity igwith the stability calculations in systems wigh?) nonlinear-
taken into account. In bulk media with only focusing cubic ity, based on spectral operator theory, which has not been
nonlinearity, such beams are known to always be unstab|é:,lea.rlly discussed in the literature so far. For the conventional
i.e., they either diffract or self-focus until a catastrophic col-Schralinger operators, uniqueness of the neutral modes, in
lapse, depending on their incident power. In contrast, weparticular, and the oscillator theorem in general, has been
have shown that a sufficiently strong quadratic nonlinearityrigorously proven. However, this is not the case % and
can prevent the catastrophic self-focusing and enable sugf®+ x(® systems, and not even for coupled NLS equations,
beams to exist and be stable in media with focusing cubigvhere the corresponding operators all become matrix opera-
nonlinearity. The possible existence of such stable 2D solitors.
tons was first predicted if6]. In particular, the necessary properties of the shift operator
We have found that in order for stable bright spatial soli-have not been proven, such as uniqueness of the neutral
tary waves(henceforth, solitonsto exist the effective phase mode and existence of only one negative eigenvalue. This
mismatch 8 must be sufficiently low,—0.913<8<0.19, means that the VK stability criteriothP/d\ >0, derived here
otherwise they will always be unstable. In physical variabledor x(2+ x(®) systems, and in Ref$22-24 for pure y()
(see Sec. )Ithis corresponds to systems, is only a necessary condition. To illustrate this we

Amplitude

Distance, Z

VI. DISCUSSION
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have given a specific example in which the VK stability Egs.(4) and (5) we obtain at the lowest ordee?) the sta-
theorem fails and predicts stability of solutions that numeri-tionary problem(14). At order ¢! we obtain the inhomoge-

cal simulations show are unstable. neous linear problem
However, all of the numerical work on bright solitary
waves presented so far for pugé?) systems22—24 sup- Lo IM{gD}=\0, 00=&1, (A3)
ports the hypothesis thatP/d\>0 is indeed both a neces-
sary and sufficient criterion for stability of ground-state soli- ﬂlRe{ @(D}ZQ (A4)

ton solutions. In other words, the numerical results support

the assumption of the shift-operator of th€) system hav-  \yhere g,=© §(®) and dot means derivative with respect to

ing a unique neu_tral mode.and only one negativge eigenvaluez' Thusé, is an even function. The linearx22 matrix op-
Furthermore, in the limit of a large phase mismatch, the

pure y(?) system reduces to the NLS equation, whereas thgratorsl., are given by
x®+ x® system reduced to two NLS equations coupled
through cross-phase modulation. This strongly suggest that
the shift operator of at least the puxé?) system has the
same properties as the shift-operator in the NLS equation,
i.e., a unique neutral mode and only one negative eigenvalut‘é‘f

A mathematically rigorous proof of the necessary proper-
ties of the x(® and x@+ x(® shift operator, and thus the
stability criterion, is still an open problem, and it would be
an important issue for future studies.

(A5)

n

Fn An
An Gpl’

ith the real components
Fa=A—V2+0vo—s(Wi+ pv3)—2n(vg+swi),
Gn=B+4)\—V2—S(nvg+pwg)—2n87]vg,

Ap=—Wgu—2NSpWqug.
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APPENDIX A: DERIVATION OF VK CRITERION right-hand siderhs) of Eqgs.(A3) and(A4) must be orthogo-
AND STABILITY THEORY nal to all those homogeneous solutions, which are in the

Hilbert space of localized functions that we consider, since
We consider square- ok?-integrable functions(finite {¢,Lu}=0, regardless of the functiom.
power orL? norm) in a Hilbert space the inner product of

o For the phase operatdr, the real, localized, and even
which is theL? norm p p 0

function gEo is a homogeneous solution. Let us prove the

.. N uniqueness of this neutral mode. For any localized function
{a:b}EJ (a'-bydr, (A1) G=[u;,u,]" in the Hilbert space, it is straightforward to
show that

wherea' denotes the Hermitian conjugate of the vector func-

tion a. Given the inner product, the power can be written as {G,Iioﬁ}zf [W2|V (U /Wo) |2+ 02|V (Up/vg)|?

P={0¥,0¥}, where¥=[w,0]" and ®=diag(1,2) is a

diagonal 2< 2 matrix. + (200U —WoUy)?/(2v)]dr=0,  (A6)
The stationary Eq914) have a one parameter family of

soliton solutions¥ = J(O(r;\) =[Wo(r:\),vo(r;\)]T. We  provided thaty(® is the ground-state solution, for which

assume that a certain perturbation leads to a slow and adi## 0 andvy#0 for all r and\(Z). For the ground-state

batic evolution of the solitons, determined only by the propa-solution we can further make the transformatiam ,u,)

gation constanh =\(Z), which now depends on the slow =(w,u,,2v,U,), since there is a one-to-one correspondence

evolution_ coordinateZ = ez, wheree<1. Thus we expand betweenu, andU,. From {U,L,U}=0 we then obtain the

the solution as relation

©

ZO EFM(r N, (A2) f[w§|vﬁl|2+ug|vﬁz|2+2w§uo(ﬁl—az)z]dF=o.
“=

\17(F,x)=ex+®foz>\(g)dg

where (9 is real, but the higher-order corrections can beThe last term gives thai; =, and the first two give that
complex. Substituting the expansioh?2) into the dynamical u,(r) must be a constant. This proves that the equality sign
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in Eq. (A6) applies only to functions that depend linearly on The functionsi, andJ, are purely a result of the homoge-

¢o, and thuspy is the only localized homogeneous solution neous solutions, witl, being odd and, being even. Thus

to Eq. (A3). A the rhs of Eq(A9) is odd and trivially orthogonal to the even
To assure orthogonality for all betweeng, and the rhs  neutral modep,, and the rhs of Eq(A10) is even and trivi-

of Eq. (A3), the unperturbed soliton solutiogid®” must fulfil  ally orthogonal to the odd neutral modes,, . All orthogo-
the solvability condition{¢q,&,}=0, which corresponds to nality conditions are therefore satisfied at second order.

AdP./d\=0, whereP¢(\)={o,¢o} is the soliton power. The contribution from the homogeneous solutidnsand

In general\ #0 for the solutions we consider, and thus thejz, can be accounted for by the redefinitigh8). However,
criterion reduces td P, /d\ =0, which is nothing but the VK  this is not the case for the corresponding contributions pro-
threshold condition. portional toa;, and a;,, unlessa;, anda;, are constants,
The shift operatot.; has the real and odd localized neu- i.e., excluding moving solitons to be taken into account in
tral modesp, = d,4® andcﬁy=ay¢Z(°’, and the property that the straightforwsgrd manner indicated by EAS8). In fact, at
£13A$(0)2_®50. We will assume, without a rigorous the next ordere®, there are several homogeneous contribu-

h ical f thabs deo h | | tions proportional tax;, and«,,, that cannot be accounted
mat ematha pr_oo, tha, and ¢y are_ _t € _O”Y neutral o by the redefinition(A8), unless of course that;,= a,
modes ofL,. This means that the stability criterion we de- —q
rive is only a necessary condition. Since E&4) is homo- In principle the solution to EqEA9) and(A10) could be
fg|(|a notlaou_?hequaﬂor! the dgt;]doggngmy C(t)k?d't'fn IS :ﬂv'a”ylfm'written down symbolically, as fog‘*) (whereQ was intro-
ned. ihe criterion drs/dA =1 IS therelore he only  q,ceq, and we could proceed to the next order. This would
solvability condition for Eqs(A3) and (A4). ) ¢ ) i@ simil 9 d

Under the conditiomd Ps/d\ =0 we can define the vector give a set of equations O'If . similar to Eqs.(A9) an
S=[-15 2 = Tinth b h | (A10), but both now including both even and odd compo-
Q=L, (91\‘P0=[q1’q2] In the subspace orthogonal i,  nents on the rhs, thus imposing(quite complicateg solv-
in which L, is invertible, and obtain the first-order correction apijlity condition.

(1) - - - We will instead exclude motion and consider only even
P = anxpxt aryeytil aippot Q] (A7) perturbations, i.e.qn,= any=0, which simplifies the calcu-
lations significantly. In the earlier worl22,23, where this

whereano, any, andayy depend on the slow scal with o phinie was applied, all homogeneous solutions were
n referring to the order of the correction. The homogeneou%mitted Equation$A9) and (A10) now reduce to

part of 12(”) at all orders can be accounted for by the simple

transformation Lom{#?1=0, [,ReF21=0,3,+&, (AL2)
TN F(+el 1+ ), A8) where J,= a0, 'O — ;A OQ— a2 @ ¢y, and at order
where the corrections are given by € we obtain the inhomogeneous linear problem
Q=aygteazyt -, Lolm{g®}=Lo(I3+ a1oQ) + &3, (A13)
A=(ayy,ary)+e(az az)+ . L, Re[§ 3 =1,3,, (A14)

It is clear that the odd homogeneous soluti(in(g, are re-

. ) e where the even functiof; is given b
lated to translation, while the even solutign,, with the sl g y

same symmetry as the unperturbed soliton solutions, is re- z A 2) < 3aR
lated to a change in the propagation constant. E=AMOn+T]gy +A°SQ, (A15)
At order €? we obtain after some algebra the inhomoge- ~ _ .
neous linear problem with T being defined as
Lolm{ 2} =Lol o+ O (arxpxt a1y9y), (A9) & 2sWod1t 02  2Spuodi—d;

. 2o~ 3,3 a 2SpWpd,+ 04 2snv403
L,Re{yfP}=10,J,+6&,, (A10)

andy{?=L;'&,. The functiond 3 andJ; are even, and thus

wheret‘f’2 is even and independent of the homogeneous SOlufhe only sclvability condition i9(e<z>o 53}:0. Whereasﬁg, and

tions 3
J; can be accounted for by the redefinitioh8), the term
&= —NOQ+N\3(R+549-04,Q), (A11)  proportional toa;, cannot.
R A Straightforward but lengthy calculations show that the
with R andS being given by equations at orde¢* and > become
2 2 A > A - >
| Bl | & s(a1+pa) 0 . Loim{g®)=Ly(T,+1Zy),
—q1/2)’ 0 s(na5+pad) ]’ LRI =0y (T Tu) + s,
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!

Colm{y'®) =Lo(ls+s) + £, MK+ 0 K24 (P,—P)=0 (A21)
LiRe(¢*}=L1(Js+ To), 2

where all functions are even, leaving only the one solvability""hi‘3]t1f can be vinged "?‘i Hamilton’s equatior&g of motiog for
condition{¢g,&5}=0. Again|, andJ, can be accounted for an effective particle wit mashl (1) >0, coordinate:, an

by the redefinition(A8), whereasZ, and.7, cannot. Thus the moMentuUmp=MA, moving in the potential

homogeneous solutions proportional éq, and derivatives A

thereof do not influence the solvability conditions. V(7\)=f [Ps(6)—P]dé, (A22)
The point of the above exercise, keeping the homoge- Mo

neous contri.bl'Jt.ions as long as possible, is to show that th\‘/?/herexo is defined by the relatio((\y)=P (for several
simple redef|n|t|.on(A8) qar)not account for all thg homoge- crossings the one closest to the initial unperturbed soliton
neous contributions. This is only true to a certain order, .€.yalue ) (z=0) must be chosénThe total energy of the par-

to first order for the homogeneous parts associated with disﬂcle (or the effective Hamiltonian governing it's dynamics
placement(a,, and an,), and to second order for the part is given by

associated with a change in the propagation constagy) (
Thus one cannot simply omit all homogeneous parts and H()\,p)=%M()\)X2+V(>\). (A23)
assume they can be taken into account through(&8) in

the end. In particular, this means that the adiabatic perturbaﬁquation (A21), corresponding to Hamilton’s equations
tion technique does not allows to easily incorporate odd per-

. ' =MA+M’'N%=—9gH/dq, for the effective Hamiltonian
turbations that causes the solitons to move transversely. . . .
S . : : . . (A23), thus describes the dynamics of the soliton close to
Our aim is to find an ordinary differential equation for the

evolution of the propagation constah{Z). This can be threshold, whergldP,/d)|<1 (see Sec. ¥ However, it

done in two ways, either by using the combined solvability:jo.eslr:cOt provide a criterion for stability in an explicit ana-
condition ytical form.

To derive such an explicit stability criterion we must
specify how fari is from threshold. Inspecting Eq6A16)—
(A19) we set\ — \ o= €2Q), and assume thatP,/d\ ~ €2. In
éhis case Eq(A19) reduces to

5.

{(Eo,flgl+ 6353“1‘ 65€5+"'}:6, (Al6)

or by using the constants of motion and, e.g., inserting th
expansion(A2) into the expression for the total powep,

={®¥,0W¥}, thez derivative of which should then be zero,
sinceP, is proportional tox. Finally, expandingP4(\) and
dpP d . ) .
=e—=(Po+ €2P,+ €*Py+-+-)=0. (A17)  M(X\) in a Taylor series around,, we obtain to lowest
dz order (¢*) the relation

P=Ps+ e*MQ+0(€°), (A24)

dz

Here we have used th&,=0 for n odd. The even compo-

% ’ 1pnr 2_
nents are given by M(N)+PL(N)Q+3PIN)Q2=0.  (A25)

TN As with Eq. (A19) this relation can be viewed as the equa-
Po={¢0,¢0}=Ps, tions of motion for an effective particle, now with mass

N - - - M(\g) >0, coordinate), and momentunM (\ )Q, moving
= (1) (1) (2) 0 0

PZ {(9110 ,@lﬂ }+2{¢Oa®l// }1 (A18) in the potential

P,={0¢? 042} +2{0 4,03} +2{,0 ¢} Vo(Q)=1PL(Ng) Q2+ LP!(N) Q3. (A26)

The two relations(A16) and (A17) are identical, as also The effective Hamiltonian is now given by
pointed out in[25]. Thus it may easily be verified by inser-

tion that 2 ¢o,&,}=dP,/dZ=AdP,/d\. Ho(Q,Q)=1M (A ) Q2+ Vy(Q). (A27)
Since we consider solutions for whiohw+0 in general, ) o ) _ L,
we obtain from Eq(A17) the relation In the linear limit Eq.(A25) permits to identifyP¢(\g)>0

as a necessary condition for stability aRd(\o)<O as a

. M. sufficient condition for instability against radially symmetric
_ 2 N2 4 6
P=Pst+ e’ MM+ —- N7+ €'Py+0(e”), (AL9) perturbations ,x= a,,=0), in agreement with the VK cri-
terium.
where the coefficienmM (\) is given by Equation(A25) gives also a description of the dynamics

. . . of the soliton, which is simpler than the one given by Egs.
M()\)=Z{Q,LOQ}=2{6>\QDO,Lalﬂ)\(po}, (A20) (A21). However, its regime of validity is more restricted in
that it requires the initial soliton to be closer to threshold
and prime denotes differentiation wiEh respeclxthromaEq. than is the case for E¢A21). An example of this is given in
(AB) we see thaM >0 always, sinc&) is orthogonal tap,. Sec. V.
Taking only terms of ordee? or lower into account Egs. We note that the VK criterion does only apply to ground-
(A19) can be written in the form state solutions with no nodes, and not to higher-order solu-
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then such a collapse can never occur. To assure thaBRj.

though such higher-order solutions may decay to zero fois satisfied for allz the total power must be sufficiently low,
r—oo, and thus have finite power, the spectral properties of

both the phase and shift operatols, and L;, are not
known.

APPENDIX B: VIRIAL THEORY

To obtain predictions about the dynamics we can con
struct a “virial” identity, in analogy with studies of collapse
in the NLS equatiori26] and the purey® system[6]. This
consists in the second derivative with respectztof the
virial R?(z) (for details sed6]):

22_4 2 xAdr

JsR =5 2(H—,8PU)+Re{fw v dr”, (B1)
whereR(z) =[P~/ r2(|w|2+4|v|?)dr]"2is the mean wave
radius andr?=x?+y?. From Eq.(B1) we see that collapse
of the solutionswv andv, in the sens&(z)—0 at a finitez,
will take place if the right hand side is negative definite. It
was rigorously proven ifi6] that if both individual powers
are below a given threshold for a|

PC
c_ ' ns
<PW_1+p’

c
Pm

N+p’

(B2)

Pw(z) P,(2)<P;=

P <Piow=Min{ Py, 4P°}. (B3)

Furthermore, we can estimate that collapse should possibly
occur if the total power is sufficiently high,

P>PhighE P\(,:v+4P5 y (84)

under the additional requiremert<<0. We stress that the
limit (B3) is a rigorous result, while EqB4) is only an
estimate based on a comparison with pyf€ media[6]. In
the intermediate rang®,,,< P <Pyjqn nothing definite can
be concluded from the virial identity.

These predictions were tested numerically f+0 and
positive values ol and p, which verified the lower bound
(B3), and showed that the upper bou(i84) was reliable,
except for a narrow region of the parameter space, where it
was slightly underestimatdd,12]. In the particular casey
=2p=16, it was shown numerically ifil2], that Pyqy is a
reasonable estimate of the actual threshold power for mod-
erate values op, i.e., |B|<4.
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