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Two-dimensional solitary waves in media with quadratic and cubic nonlinearity
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We determine the existence and stability regimes of bright 211-dimensional spatial solitary waves in media
with quadratic~or x (2)! and focusing cubic nonlinearities. We derive a necessary criterion for linear stability of
these solitons, and use it to show that the quadratic nonlinearity enables stable solitons to exist when the cubic
nonlinearity is sufficiently weak. We discuss why the Vakhitov-Kolokolov criterion for stability inx (2) sys-
tems is only a necessary criterion, and show an example where it fails. We further derive and study a simple
adiabatical model for the soliton dynamics close to the instability threshold. Finally, we study the interesting
dynamics of the solitons in the unstable regime, where we demonstrate the existence of two different limits
described by nonlinear Schro¨dinger equations.@S1063-651X~98!15409-0#

PACS number~s!: 42.65.Tg, 42.60.Jf, 42.65.Jx
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I. INTRODUCTION

The basic theory of cascading and two-wave parame
solitons in materials with a pure quadratic~or x (2)! nonlin-
earity is now well understood, and importantly, many of t
theoretical results have been confirmed experimentally~see
@1# for a recent review!. In particular, in bulk media as we
consider here, families of stable spatial solitons exist abo
certain threshold power@2#. Their excitation from input
Gaussian beams has been confirmed experimentally@3#, as
well as numerically without walk off@4# and later with walk
off @5#. In fact, it has been shown that self-focusing, lead
to a catastrophic collapse, cannot occur inx (2) media in any
physical dimension@6#.

Attention has recently turned to the effect of cubic~or
x (3)! nonlinearity on the known characteristics of solito
and switching inx (2) media. The competition between th
two types of nonlinearity can, e.g., drastically modify t
threshold power for switching@7# and the existence and sta
bility regions of spatial solitary waves diffracting in on
transverse dimension~1D! @8–10#, and 2D@6,11–13#. It has
been shown that the simple model, with only cubic se
modulation and cross-phase modulation~SPM and XPM, re-
spectively! terms added to the known equations forx (2) me-
dia, does not apply to temporal solitary waves, unless
x (2) nonlinearity is much weaker than thex (3) nonlinearity
@10#. Thus, in contrast tox (2) media, spatial and tempora
solitary waves do not obey the same dynamical equation
media with competingx (2) and x (3) nonlinearities. The de-
pendence of the threshold power for collapse on the S
and XPM coefficients have been investigated@6,12#, but in
the soliton studies the cubic nonlinearity has so far b
PRE 581063-651X/98/58~4!/5057~13!/$15.00
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assumed to be dispersionless and the ratio of SPM and X
terms have been fixed. The effect of different SPM to XP
ratios have only recently been investigated@13#.

All x (2) materials have aninherent cubic nonlinearitythat
becomes important at high powers or when the fundame
wave ~FW! and its second harmonic~SH! are not perfectly
phase matched. However, this is not the only origin of cu
nonlinearity. When thex (2) nonlinearity is periodically vary-
ing along the direction of propagation, as in quasi-pha
matched~QPM! media, the effective averaged dynamic
equations also includeinduced cubic nonlinearities@14#, as a
result of incoherent coupling between the wave at the m
spatial~QPM! frequency with higher-order modes.

Generally, effective cubic nonlinear terms will appear
the conventional model ofx (2)-induced two-wave mixing
due to any kind of incoherent coupling with other modes
higher-order cascading effects. This can be illustrated us
the simple example of second-harmonic generation~SHG! in
a waveguide, which is single moded at the fundamental
quencyv, but supports two modes at 2v. The model describ-
ing the interaction between the slowly varying envelopes
the modes has the form@15#

2 i
dA

dz
5k1B1A* e2 iDk1z1k2B2A* e2 iDk2z, ~1!

2 i
dBn

dz
5knA2eiDknz, n51,2, ~2!

whereA(z) and B1,2(z) are the complex amplitudes of th
FW and the two SH waves, respectively. The parameterkn
characterizes the efficiency of the interaction andDkn the
corresponding phase mismatch. If the coupling to one of
5057 © 1998 The American Physical Society
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SH modes, e.g.,B2 , is not perfectly matched, we can mak
the substitutionB25B̃2exp(iDk2z) and use the approximatio
~cascading limit! dB̃2 /dz!Dk2B̃2 . From Eq. ~2! we then
obtain thatB̃2'(k2 /Dk2)A2, which introduces an effective
cubic nonlinearity in Eq.~1!,

2 i
dA

dz
5k1B1A* eiDk1z1

k2
2

Dk2
uAu2A. ~3!

Incoherent coupling between modes is thus a general ph
cal mechanism that induces cubic nonlinearity.

We note that a similar situation should appear in multis
cascading, when the influence of a third and fourth seco
order process, involving both sum and difference freque
mixing, are taken into account@16#. If one of the processes i
nearly phase matched, the others can be treated in the
cading limit, leading again to an effective cubic nonlinear
in a way similar to that discussed above for multimod
waveguides.

Since competing quadratic and cubic nonlinearities i
general physical phenomenon, it is important to know
effect of such a competition. In this work we present, to o
knowledge for the first time, a complete map of the dynam
properties and existence and stability regimes of the th
classes of 2D spatial solitary waves existing inx (2) media
when inherent focusing cubic nonlinearity is taken into a
count. The defocusing case was recently considered in@11#,
whereas the power threshold for collapse in the focusing c
was investigated in@6,12#.

The paper is organized as follows: In Sec. II we pres
the dynamical model and compare it with the models use
earlier works on competing nonlinearities. We then consi
the case of a bulk medium with focusing dispersionlessx (3)

nonlinearity, and show in Sec. III when the different class
of localized stationary solutions exist, and how their profi
look like.

A mathematical derivation of the Vakhitov-Kolokolo
~VK ! criterion @17# for linear stability of ground-state brigh
solitary wave~henceforth soliton! solutions against radially
symmetric perturbations is presented in Appendix A, wh
we also develop a theory that describes their dynamics c
to the threshold of instability.

In Sec. IV we use the VK criterion to find the regimes
stability and instability of localized stationary solutions. T
power threshold for instability is compared with the analy
cal predictions of virial theory, which is briefly recapitulate
in Appendix B. We further discuss the applicability of th
VK stability criterion for suchx (2) systems, where it is only
a necessary condition, and present a specific example
which it fails, i.e., predicts stability of solitons that are o
served numerically to be unstable.

In Sec. V we look at the specific dynamics in the inte
esting regimes close to the instability threshold and ‘‘dee
in the collapse unstable regime. Finally, Sec. VI presen
summary.

II. MODEL

We consider beam propagation in lossless bulkx (2) media
under conditions for type-I SHG, when cubic material no
linearity is taken into account. The dynamics is described
si-

p
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the dimensionless equations@10#

i
]w

]z
1¹'

2 w1w* v1s~ uwu21ruvu2!w50, ~4!

2i
]v
]z

1¹'
2 v2bv1

1

2
w21s~huvu21ruwu2!v50, ~5!

which are valid when spatial walk off is negligible, and bo
the fundamental frequencyv1 and its second harmonicv2
52v1 are far from resonances. The slowly varying compl
envelope function of the FW,w5w(rW,z), and its SH,v
5v(rW,z), are assumed to propagate with a constant polar
tion, eW1 and eW2 , along thez axis. The transverse Laplacia
¹'

2 refers to the spatial coordinatesrW5(x,y). The electric

field EW 5EW (RW ,Z,T) is given by

EW 5E0@weiu1ê112vei2u1ê2#1c.c., ~6!

in physical coordinates, whereRW 5r 0rW, Z5z0z, and u1
5k1Z2v1T. The real normalization parametersE0 , z0 , and
r 0 , are given by~for details see@10#!

E05
4x̃1

~2!

3ux̃1s
~3!u

, z052k1r 0
2 , r 0

25
3ux̃1s

~3!u

16m0v1
2~ x̃1

~2!!2
, ~7!

wherem0 is the vacuum permeability andkn the wave num-
ber at the frequencyvn . The real parametersb, s, h, andr
are given by@10#

b52z0Dk, s5sign~ x̃1s
~3!!, h5

16x̃2s
~3!

x̃1s
~3!

, r5
8x̃1c

~3!

x̃1s
~3!

,

~8!

where Dk52k12k2!k1 is the phase-mismatch paramete
and x̃n

( j )5x̃ ( j )(vn) denote the Fourier components at fr

quencyvn of the j th order susceptibility tensor. Thusx̃1
(2)

5x̃2
(2) represents the quadratic nonlinearity, andx̃ns

(3) and

x̃1c
(3)5x̃2c

(3) the parts of the cubic nonlinearity responsible f
SPM and XPM, respectively. Compared with standard no
tion these coefficients refer tox̃ns

(3)5x̃ (3)(vn5vn2vn

1vn) and x̃nc
(3)5x̃ (3)(vn5vn2v32n1v32n).

In the form they appear in here, Eqs.~4! and ~5! were
used to study collapse in media with an arbitrary number
transverse dimensions@6#, and to study bright two-
dimensional~2D! solitons in the defocusing (s521) @11#
and focusing case (s511) @12,13#. After a simple transfor-
mation they correspond to the 1D equations earlier use
@8,9#, and later derived rigorously in@10#. Similar equations
were recently shown to describe the dynamics in QPMx (2)

media@14#.
The system~4!–~5! conserves the HamiltonianH,
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H5E F u¹'wu21u¹'vu21buvu22Re~w2v* !

2
s

2
~ uwu41huvu412ruwvu2!GdrW, ~9!

and the dimensionless powerP,

P5E ~ uwu214uvu2!drW5Pw~z!14Pv~z!, ~10!

which corresponds to the physical powerP0P, where the
normalization parameterP050.5Ae0 /m0E0

2r 0
2 is inverse pro-

portional tox̃1s
(3) and independent ofx (2). Furthermore, Eqs

~4! and ~5! are invariant to the phase rotation

w→weia0, v→vei2a0, ~11!

and the Galilean transformation

w~x,z!→w~x22a1z,z!eia1~x2a1z!,

v~x,z!→v~x22a1z,z!ei2a1~x2a1z!, ~12!

wherea0,1 are real constants.
Without knowing the experimental setting, and thus t

specific values of thex (2) andx (3) susceptibilities, it is dif-
ficult to estimate the values of the dimensionless coefficie
h andr. However, for a large class of materials and expe
mental settings, we can neglect the dispersion ofx (3) and set
x̃1s

(3)5x̃2s
(3) , and it is further reasonable to setx̃1s

(3)5x̃1c
(3) . In

this case we geth52r516, which we use below. Thes
values were also used in earlier works on competingx (2) and
x (3) nonlinearities@8–12#. Furthermore, in this paper w
consider only the case of focusing cubic nonlinearity, a
thuss511. For the defocusing case, the existence, stabi
and generation of bright solitary waves was analyzed in R
@11#. For a recent measurement of thex (3) coefficient in
severalx (2) materials we refer to@18#.

III. LOCALIZED STATIONARY SOLUTIONS

We consider stationary exponentially localized brig
solitary wave solutions~with no nodes, i.e., lowest-orde
bound states! of the form

w~rW,z!5w0~r !eilz, v~rW,z!5v0~r !ei2lz, ~13!

where the real functionsw0 and v0 tend monotonically to
zero asr 5Ax21y2 increases. Inserting this solution int
Eqs.~4! and ~5!, we obtain the stationary equations

¹'
2 w02lw01w0v01s~w0

21rv0
2!w050,

~14!
¹'

2 v02~b14l!v01 1
2 w0

21s~hv0
21rw0

2!v050.

There are three types of solutions to Eqs.~14! of the form
~13!: The Combined orC solution, where both componen
are nonzero,w0Þ0 andv0Þ0, and have no particular rela
tive size. This solution can generally only be found nume
cally, even for the one-dimensional case~i.e., for ¹'

2

5d2/dx2)@8,10#.
e

ts
-

d
,
f.

t

-

It is well known that when the effective mismatch is larg
the cascaded nonlinearity has effective cubic properties
this limit, whereb@1 andb@l, theC solutions asymptoti-
cally develop into the singlew component orW solution, for
which the SH is weak and slaved to the FW,v0

'w0
2/(2b). The FW is the solution to the 2D nonlinea

Schrödinger ~NLS! equation

¹'
2 w02lw01w0

350, ~15!

with powerPW.Pw5Pnls
c . Here Pnls

c 511.69 is the thresh-
old power for collapse of solutions to the 2D NLS equati
~15! @19#. An analytical expression for the solution is n
known, but a good approximation can be found by the va
tional technique to be@20#

w0~r !5A0Al sech~B0Alr !, ~16!

whereA0
2512 ln 2/(4 ln 221) andB0

256 ln 2/(2 ln 211).
In order forC andW solutions~with w0Þ0 andv0Þ0! to

be exponentially localized~i.e., have a purely exponentia
decay in the tailsr→`!, the real propagation constantl
must be above cutoffl.lcut[max$0,2b/4%.

The singlev component orV solution exists forh.0. It
has no FW,w050, and its SH is the solution to the 2D NL
equation

¹'
2 v02~b14l!v01hv0

350, ~17!

which has the powerPV54Pv54Pnls
c /h, and is approxi-

mately given by

v0~r !5A0A~b14l!/h sech~B0Ab14lr !, ~18!

Sincew050 the cutoff for theV solution is different from
that of theC solution, i.e.,l.2b/4.

Using a standard relaxation technique, we have num
cally found the families ofC and V solutions forl.lcut.
The C family is found starting from the large phase
mismatch limit, using theW solution ~16! as a good initial
guess. In Fig. 1 we show the amplitudesw0(0) andv0(0) of
the C solution as function ofl for b50,60.5. We see that
the C solutions exist only in a certain region,l0<l<l1 ,
which increases withb. For positiveb the lower limit is
zero, l050, while for negativeb it is close to, but larger
than, the cutofflcut ~see inserts in Fig. 1 and Fig. 4! and
increases with decreasingb. The upper limitl1 always in-
creases withb. Thus noC solutions will exist forb less than

FIG. 1. Amplitude vsl of ~left! the FW and~right! the SH, for
the C solutions with b520.5 ~dotted!, b50 ~dashed!, and b
50.5 ~solid!. h52r516, s511.
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a critical valuebcr , which we find to bebcr520.914. The
V solutions exist for all values ofb and l.2b/4, and its
amplitude is close to the prediction given by Eq.~18!. At l
5l1 theC solution bifurcates into theV solution. For nega-
tive b this also occurs atl0 .

The profiles of theC solutions are shown in Fig. 2 fo
b50, and three representative values ofl, being in the cen-
ter of the existence region, and close to the edgesl05lcut
50 andl154.04, respectively. We clearly see that theC
solution gradually becomes narrower and approaches thV
solution with w050, as l increases towardsl1 . Also, as
expected, the profile becomes more and more delocalize
the cutofflcut is approached.

From Fig. 3 withl51 andb54, 10, and 20, we see how
the C solution asymptotically develops into theW solution
with the SH not just being much weaker, but also mu
narrower, than the FW. In contrast, as theV solution is ap-
proached, the FW and SH seem to have approximately
same width@see Fig. 2~c!#.

We have made a series of calculations as shown in Fig
and identified the regions of existence of the different typ
of localized solutions~13! to Eqs.~14! in the parameter plane
~l,b!. The results are summarized in Fig. 4, where we h
defined theW solutions as theC solutions in which more
than 90% of the power is concentrated in the FW.

We see that theC solutions exist above cutoff,l.lcut,
whenb.bcr520.914, while theV solutions always exists
above cutoff. As expected, theC solutions develop into the
W solutions for b@l. However, it is not necessary tha
b@1 as assumed in obtaining theW solution ~16! theoreti-
cally.

IV. STABILITY OF SOLITARY WAVES

A. VK criterion

For conservative systems, under certain conditions, i
possible to derive an analytical criterion for linear stability
solitons, which involves only the dependence of invaria
on the solution parameters. A well-known result, first prov
by spectral operator theory for a generalized NLS equat
is the Vakhitov-Kolokolov~VK ! criterion requiring positive
~negative! dP/dl for stability ~instability! @17#. The reader
is also referred to Ref.@21#, where the VK criterion for equa
tions of the NLS type is rigorously proven under a qu
general hypothesis, by use of group theory and functio
analysis.

FIG. 2. Profilesw0(r 5x) ~dotted! andv0(r 5x) ~solid! of theC
solutions shown in Fig. 1 forb50 and~a! l50.3, ~b! l51, and
~c! l53.8.
as
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In systems with a purex (2) nonlinearity, it has been ar
gued~not proven; see below! that the VK criterion applies to
solitons supported by two-wave~or type-I! SHG @22#, and
three-wave~or type-II! SHG @23#, using an adiabatic pertur
bation technique, and later again for three-wave solito
@24#, using spectral operator theory, as originally by Vak
tov and Kolokolov. Here we derive a stability theory fo
soliton solutions to Eqs.~4! and~5!, using the adiabatic per
turbation technique first developed for two-wavex (2) soli-
tons by Pelinovsky, Buryak, and Kivshar@22# and later for a
generalized NLS equation@25#, and three-wavex (2) solitons
@23#. The theory is based on a perturbation expansion aro
the soliton solution, which is assumed to evolve slowly a
adiabatically.

The end result of the mathematical derivation, which
given in Appendix A, is the dynamical equation

M ~l0!
d2V

dz2 1Ps8~l0!V1 1
2 Ps9~l0!V250, ~19!

valid whenuVu!1 anduPs8(l0)u!1. HereV5l2l0 , l0 is
defined by the relationPs(l0)5P ~for several crossings the
one closest to the initial unperturbed soliton valuel(z50)
must be chosen!, Ps(l) is the soliton power, and prime de
notes differentiation with respect tol. The positive coeffi-
cient M (l).0 can be found numerically.

If l obeys Eq.~19! then an approximate radially symme
ric solution exists, whose slow evolution around the init
soliton is described solely byl(z) and the soliton family.
Thus, from the linear limitV2'0, Eq.~19! predicts that the
solitons are stable against radially symmetric perturbati

FIG. 3. Profilesw0(r 5x) ~dotted! andv0(r 5x) ~solid! of theC
solutions shown in Fig. 1 forl51 and~a! b54, ~b! b510, and~c!
b520.

FIG. 4. Regions of existence ofC, V, andW solutions in the
~l,b! plane. TheW solutions are defined as when 90% of the to
powerP is in the FW. In the black regionl<lcut and no localized
solutions exists.h52r516, s511.
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for Ps8(l0).0 and unstable forPs8(l0),0, in agreement
with the VK criterion. However, Eq.~19! permits us also to
describe the specific dynamics, as long asudPs /dlu!1 and
ul2l0u!1, such as close to the instability threshold. A mo
general dynamical model, which is valid further away fro
threshold, but from which a stability criterion cannot be d
duced in an analytic form, is also derived in Appendix A. W
investigate the dynamics predicted by these models in S
V A.

At this point, where the validity of the VK theorem fo
x (2) systems seems well proven, it is appropriate to launc
warning. In all derivations published so far@22–24#, as well
as the one we give here, the necessary properties of the
called shift operatorL̂1 are simply assumed without a proo
Thus, in the adiabatic perturbation technique~here and
@22,23#! it is assumed thatL̂1 has only one localized eigen
vector with eigenvalue zero~a unique neutral mode!, and in
the rigorous VK spectral operator theory@24# it is assumed
that L̂1 has only one localized eigenvector with negative
genvalue.

Both properties are proven for the Schro¨dinger operators
of the generalized NLS equation with only one wave co
ponent, but not for two-component systems withx (2) nonlin-
earity. This means that the VK stability criterion forx (2)

systems is only anecessarycondition, a fact that has no
been clearly pointed out in the literature so far. Below
give, for the first time, an example where the VK criterio
fails and predicts stability of solitons that are clearly u
stable.

Let us consider a representative example withh516, r
58/3, andb50.5. In this case, we find the bifurcation dia
gram shown in Fig. 5. The dashed line represents a
C-soliton family, sayCx , which bifurcates from the ‘‘con-
ventional’’ C-soliton family~solid line! at novelty or priority
point b (lb50.1178) and then merges with theV solitons
characterized by thel-independent valuePV52.92, at point
v (lv50.0786).

The corresponding center amplitudes versusl, as well as
the profiles atl50.1, of theC- and Cx-type solutions, are
shown in Fig. 6. Here we see more clearly how theCx soli-
tons bifurcate from theC solitons and merge with theV
solitons with w0(x)50. In the bifurcation pointb the Cx
solution is identical to theC solution. From the profiles we
see how theCx soliton has the form~13!; i.e., it has no
nodes.

FIG. 5. Soliton bifurcation diagram forh516, r58/3, andb
50.5. ~a! PowerP vs l. ~b! P2H plane. Hereb is the bifurcation
point betweenC and Cx solitons, ands is the point where theC
solitons change their stability. In the pointv the Cx solitons merge
with the V solitons.
-

c.

a

so-

-

-

-

w

Let us now consider stability: According to the VK crite
rion the C family changes its stability at points (ls
50.066) wheredPs /dl changes its sign, whereas theCx
family is always stable, having alwaysdPs /dl.0. How-
ever, direct numerical simulation shows that theCx solitons
are always unstable. Indeed a numerical analysis reveals
whereasL1 has only one negative eigenvalue for theC so-
lutions, it has two negative eigenvalues for theCx solutions.
Therefore the VK criterion is correctly applied only for theC
family of ground-state solutions, whereas it is meaningl
for the Cx family.

In the invariant plane (P2H) the stableC-soliton branch
corresponds to the minimum Hamiltonian for a given pow
with the Cx family merging with the branch of unstableC
solitons. Note, however, that this is not directly related to
assumptions made to prove the VK criterion using spec
operator theory.

The l interval in which theCx solution exists become
narrower as the XPM parameterr is increased. For the valu
r58 we use in this work theCx solution does not exist
However, its appearance forr58/3 indicates that the prop
erties of thex (2)1x (3) system may change significantl
when the XPM coefficient is changed. This is supported
the results of Ref.@13#.

In the remaining part of the paper we will use the V
stability criterion, but keep in mind that it is only a necessa
criterion, and make sure to check several cases by di
numerical simulation before claiming stability.

B. Stability regimes

In Sec. III we showed that at least two types of localiz
stationary solutions of the form~13! can coexist for given
values of the mismatchb and powerP: The C andV solu-
tions. Further numerical analysis shows that in general th
two solutions do not exist with equal values of the powerP,
and when they do, the Hamiltonian of theV solution is al-
ways larger than that of theC solution ~at least for
h52r516!. An example of this is shown in Fig. 7 forb
50. Consequently, when the two solutions coexist, theV
solution is always unstable and theC solution correspond to
the ground-state solutions, whose stability properties we
determine in this section using the VK criterion derived
Appendix A.

In Fig. 8 we show the soliton powerP versusl for three
values ofb. The power of theV solutionPV is approached as

FIG. 6. Soliton amplitudesw0(0) and v0(0) ~a! and profiles
w0(r 5x) and v0(r 5x) at l50.1 ~b!, for h516, r58/3, and
b50.5, as in Fig. 5. Solid lines correspond toC solitons and
dashed lines toCx solitons.
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l increases towards the bifurcation pointl1 . Furthermore,
for b520.5, the solution is also theV solution for lcut
,l<l0 , and therefore the power is alsoPV . According to
the VK criterion, the solitons are unstable in the whole
gion of their existence forb50.5, whereas a critical value o
l exists at phase matching,b50, which separate stable an
unstable regions. As the mismatch is further decreasedb
520.5, the soliton family exhibits a more complex mul
stable behavior, the derivativedP/dl changing sign severa
times.

We have made a series of calculations as shown in Fig
found dP/dl, and identified the regions of stability of th
soliton solutions in the parameter plane~l,b!. The results are
summarized in Fig. 9. We see that the quadratic nonlinea
allows stable bright solitons to exist in bulk media with f
cusing Kerr nonlinearity, provided the effective mismat
parameter is sufficiently small,20.913<b<0.19. The pos-
sible existence of stable 2D solitons in this model was fi
predicted from Lyapunov arguments in@6#, and is in sharp
contrast to purely cubic bulk media described by the 2D N
equation, in which no stable solutions exist.

In Fig. 10 we show the regions of existence and stabi
of the soliton solutions in the parameter plane (P,b). Stable
solutions are seen to require not only moderate values of
effective mismatchb, but also sufficiently low powers,P
<3.2.

It is interesting to compare the results in Fig. 10 with t
analytical predictions that can be obtained from the so-ca
virial theory ~see@6# and Appendix B!, given by Eqs.~B3!
and~B4!. A rigorous result of virial theory is that no collaps
can occur for powers belowPlow51.3 @6#. Our results show
that unstable solutions do exist with powers below 1.3~lower

FIG. 7. HamiltonianH vs total powerP for the C solutions
~solid! and V solutions~dotted!, at b50. The two bifurcate into
each other at the point marked with a filled circle, corresponding
l5l1 ~see Fig. 1!. h52r516, s51.

FIG. 8. PowerP vs l for the solutions shown in Fig. 1, with
b520.5 ~dotted!, b50 ~dashed!, and b50.5 ~dash dotted!. The
solid line indicates the valuePV52.92 and the vertical dotted line
indicateslcut521/8.
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narrow white region in Fig. 9!, but because they are base
upon linear stability theory, they do not predict the nature
the instability. However, numerical simulation of Eqs.~4!
and ~5! have confirmed that the instability is indeed not
collapse instability forP,1.3.

Using virial theory one can estimate the threshold pow
for collapse to bePhigh53.2 @6#. This is supported by our
calculations, which show that no stable solitons exist forP
.3.2, corresponding exactly toPhigh. However, again our
results do not show the nature of the instability of the so
tons with higher powers, and we have to perform numeri
simulations. The results of these~see Fig. 14! confirm that
solitons with powersP.3.2 indeed collapse after a finit
propagation distance.

V. SOLITON DYNAMICS

A. Close to the instability threshold

The adiabatic theory derived in Appendix A allows us
describe the dynamics of the solitons whenudPs /dlu!1,
such as close to the threshold of instability. Under the act
of symmetric perturbations the evolution of the solito
propagation constantl is then equivalent to that of a singl
anharmonic oscillator with coordinatel, momentum
M (l)l̇, and Hamiltonian energyH5 1

2 M (l)l̇21V(l),
whereV(l)5*l0

l @Ps(u)2P#du, and the dot denotes differ

o
FIG. 9. Regions of existence and stability of solitons in the~l,b!

plane. In the black regionl<lcut and no localized solutions exists
The V solutions exist everywhere else, but are always unstableh
52r516, s51.

FIG. 10. Existence and stability regions of solitons as a funct
of the total powerP and mismatchb. Stable solitons exist in the
shaded region, while unstable solutions exist in both the shaded
hatched regions. The unstableV solutions exist on the dotted line
In the white region no localized solutions of the form~13! exist.
The dashed lines indicate the valuesPlow51.3 andPhigh53.2. h
52r516, s51.
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PRE 58 5063TWO-DIMENSIONAL SOLITARY WAVES IN MEDIA . . .
entiation with respect toz. Herel0 is defined by the relation
P5Ps(l0), where Ps(l) is the power in the unperturbe
soliton. If there are several solutions the one closest to
initial unperturbed soliton valuel(z50) must be chosen
The positive ‘‘mass’’M (l)52$QW ,L̂0QW % can be found nu-
merically by solving the equationL̂0QW 5Q]lcW (0), once the
soliton family cW (0)5@w0 ,v0#T is known.

In Fig. 11 we show the soliton powerPs(l) and the mass
M (l) at phase matchingb50. The total conserved power i
P52.960 ~dashed line!, which is close to the instability
threshold, Ps52.963. The two points wherePs(l)5P
~circles! correspond tol5l0 . Thusl0 can have two differ-
ent values in this case,l0

st50.3099 andl0
un50.6918, at

which the mass isM (l0
st)512.6 andM (l0

un)51.1.
From the VK criterion we know that, to the right of th

threshold, wheredPs /dl is negative, the solutions are un
stable, and to the left of the threshold, wheredPs /dl is
positive, they are stable. The stable and unstable solut
correspond to the lower and upper branches of the cu
H(P) ~see Fig. 7!. However the VK criterion in itself does
not give the specific dynamics of the solution.

In Fig. 12 we show the potentialV(l) and the corre-
sponding level curves of the oscillator energyH in the phase
planel2l̇, for l05l0

un to the right of the threshold~see
Fig. 11!, where the solution is unstable. From Fig. 12 we s
that the pointsl0

st and l0
un correspond to a local minimum

and maximum of the potentialV(l), respectively, or equiva
lently to a hyperbolic and elliptic fixpoint in the phase pla
l2l̇, respectively.

It is clear from the shape of the potential in Fig. 12 th
perturbed unstable solitons~moving along level curves in the
phase plane! can undergo two qualitatively different types
motion: oscillations~closed curves around the hyperbo
fixpoint! or decay/collapse~open curves! along the direction
of growing l, where the potential is unbounded. Since
know that the soliton solution becomes progressively ta
and narrower asl increases~see Figs. 1 and 2!, we expect
the latter type of motion to give rise to collapse.

Let us consider an unstable soliton with propagation c
stant ls and powerPs(ls), under the influence of initia
perturbations that are symmetric and real, i.e.,l̇(0)
5an0(0)50 ~see Appendix A!. From Fig. 11 we see that i
the perturbation decreases the total power, so
P,Ps(ls), then ls,l0

un. For such perturbations Fig. 1
shows that the solution will move along a closed orbit, i.

FIG. 11. ~a! PowerPs(l) and ~b! ‘‘mass’’ M (l) for b50, h
52r516, ands51. The instability threshold is marked with
filled circle and the two crossingsl0

st50.3099 andl0
un50.6918,

with the powerPs52.96 ~dashed line!, are marked by circles.
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perform regular oscillations, whose amplitude can be sign
cant. Conversely, if the perturbation increases the to
power, so thatP.Ps(ls), thenls.l0

un. For such perturba-
tions Fig. 12 shows that the solution will move in an u
bounded potential, i.e.,l should increase indefinitely, even
tually causing the solution to collapse.

We verified these predictions by numerically integrati
the dynamical Eqs.~4! and ~5! with a radially symmetric
finite difference scheme. The initial condition is a solito
with power Ps(ls) modified by multiplying its components
v andu by (11e), where the small perturbation is given b
e5AP/Ps21. In Fig. 13 we show the evolution of an un
stable soliton with ls5l(0)50.62,l0

un and Ps(ls)
52.9609.P, which is described by the closed orbit show
as a solid line in Fig. 12~b!. As predicted we observe
locked ~slightly damped! oscillation of the peak amplitudes

FIG. 12. ~a! PotentialV(l) for a total powerP52.96, andl0

5l0
un50.6918. ~b! Level curves of constantH in the phase-plane

l2p, wherep5M (l)l̇. b50, h52r516, s51.

FIG. 13. Numerical simulations of Eqs.~4! and~5!, showing the
evolution of the center amplitude of the FW and SH~solid!, andl
~dashed!, for an unstable soliton withl(0)50.62, under the influ-
ence of a perturbation that decreases the total power.b50, h
52r516, s51.
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5064 PRE 58BANG, KIVSHAR, BURYAK, De ROSSI, AND TRILLO
accompanied by a corresponding oscillation of the nonlin
phase shiftl, which we measured as the derivative of t
instantaneous phase.

In Fig. 14 we show the evolution of an unstable solit
with ls5l(0)50.75.l0

un and Ps(ls)52.9581,P, which
is described by the solid-line open orbit in Fig. 12~b!. As
predicted the perturbation induces a collapse of both field
a finite distance.

We note that the oscillations forls5l(0)50.62,l0
un

andPs(ls)52.9609.P, as observed in Fig. 13, are not d
scribed by the expanded potentialV0 and HamiltonianH0 ,
given by Eqs.~A26! and~A27!, respectively. In this case w
get the potential shown in Fig. 15, which clearly predic
either spreading~l decreases monotonically to zero! or col-
lapse~l increases monotonically!. The reason why the ex
panded Hamiltonian fails is that the initial value of th
propagation constantls is too far from the thresholdl
50.4429.

B. Collapse in the NLS limits

Even though all solutions in the hatched region in Fig.
are~collapse! unstable, this region is nevertheless extrem
interesting. In Fig. 16 we show the power versusb, as in Fig.
10, but focusing on the hatched region. The lower limit

FIG. 14. Numerical simulations of Eqs.~4! and~5!, showing the
evolution ofl ~chain dashed!, and the center amplitude of the FW
~solid! and SH~dashed!, for an unstable soliton withl(0)50.75
and a perturbation that increases the total powerb50, h52r
516, s51.

FIG. 15. Expanded potentialV0(l), given by Eq.~A26!, for
l05l0

un50.6918, giving the derivativesPs8(l0
un)520.02169 and

Ps9(l0
un)520.01245.b50, h52r516, s51.
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the power in the solutions in this region is always that of t
V solution,PV5Pnls

c /4, while the upper limit asymptotically
approaches that of theW solutions,PW5Pnls

c , as b in-
creases.

Thus, in the limit of large phase mismatch,b@1, Eqs.~4!
and ~5! have collapse unstable solutions with powers in b
tween the two NLS limits,PV<P<PW . In the lower limit
the FW is zero and the SH is given by the 2D NLS equat
~17!. In the upper limit, the SH is approximately zero and t
FW is given by the 2D NLS equation~15!. In contrast, in the
~one-field! 2D NLS equation itself, solutions only exist fo
one value of the power.

One might argue that the ‘‘true NLS limit’’ is that of larg
phase mismatch, where the solution tends to theW solution.
It is well known that thex (2) nonlinearity has effective cubic
properties in this so-called cascading limit~see@1#!. How-
ever, from the point of view of the solutions to Eqs.~4! and
~5!, both limits have the characteristic NLS properties.

In Fig. 17 we have depictedP versusl for several values
of b>1. Here we clearly see the properties discussed ab
Regardless the value ofb, the power will always asymptoti-
cally decrease towardsPV , as the propagation constantl
increases. At a given pointl1 the solution will bifurcate into
the V solution with the exact powerPV , as we know from
Fig. 1. Correspondingly, regardless the value ofl, the power
will always increase asymptotically toPW as the mismatchb
increases. However, there will never be a bifurcation of
solution into theW solution. Finally, we see that the deriva
tive dP/dl tends to zero as either of the NLS limits is a
proached, in which case the solution is so-called margin
stable, as the solution to the 2D NLS equation@26#. Note that

FIG. 16. PowerP vs mismatchb as in Fig. 10. The dotted lines
indicatePW andPV .

FIG. 17. Power vsl for different values ofb, indicated at the
curves. The dotted lines indicatePW andPV .
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PRE 58 5065TWO-DIMENSIONAL SOLITARY WAVES IN MEDIA . . .
in this limit we could also apply the adiabatic theory to d
scribe the dynamics, as in Sec. V B, sinceudPs /dlu!1.

An interesting question regarding the unstable tw
component solutions in the hatched region, is which of
fields will initiate the collapse. Physical reasoning says
should be the field with the highest power. To confirm th
we show in Fig. 18 the evolution of the center amplitudes
the two fields, as obtained from numerical simulation of E
~4! and~5! for l52. We have not specifically perturbed th
solutions, since the perturbations caused by the discretiza
in the numerical scheme, should be enough to make th
collapse@27#.

For b51 the solution is close to theV solution, and thus
the SH dominates over the FW. The specific contribution
the two fields to the total power isPw50.29 and 4Pv
52.69. Correspondingly we see that it is the SH that initia
the collapse. Forb5100 the solution is close to theW so-
lution, and thus the FW instead dominates the SH. The s
cific contribution of the two fields to the total power is no
Pw511.55 and 4Pv50.01. As expected it is now the FW
that initiates the collapse.

An important observation from Fig. 18 is that even thou
one of the fields is the dominant and initiates the collap
the other field is ‘‘dragged along’’ in the final stage of th
collapse. This seems to be a general property, and was
observed in@6#.

VI. DISCUSSION

We have analyzed the structure, and existence and st
ity properties of bright spatial solitary waves propagating
a lossless bulkx (2) medium under conditions for type-
SHG, when focusing dispersionless cubic nonlinearity
taken into account. In bulk media with only focusing cub
nonlinearity, such beams are known to always be unsta
i.e., they either diffract or self-focus until a catastrophic c
lapse, depending on their incident power. In contrast,
have shown that a sufficiently strong quadratic nonlinea
can prevent the catastrophic self-focusing and enable s
beams to exist and be stable in media with focusing cu
nonlinearity. The possible existence of such stable 2D s
tons was first predicted in@6#.

We have found that in order for stable bright spatial so
tary waves~henceforth, solitons! to exist the effective phas
mismatch b must be sufficiently low,20.913<b<0.19,
otherwise they will always be unstable. In physical variab
~see Sec. II! this corresponds to

FIG. 18. Evolution of the center amplitudes of the FW~solid!
and SH~dashed! for l52, andb51,100, obtained from numerica
simulation of Eqs.~4–5!. h52r516, s51.
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21.19,
ux3u
x2

2/k
51.3b,0.25, ~20!

wherek[n1
2Dk/k1 , with n1 being the refractive index at th

fundamental frequency, andx25x̃1
(2)/@1 pm/V# and x3

5x̃1s
(3)/@1 pm2/V2# are the quadratic and cubic nonlinearitie

respectively, measured in mks units.
From the relation~20! we see that the cubic nonlinearity

whose strength is proportional tox̃1s
(3) , must be sufficiently

weaker than the quadratic nonlinearity, whose strength
proportional to@ x̃1

(2)#2/Dk, in order for stable bright spatia
solitary waves to exist. Thus even a weakx (2) component
can arrest self-focusing and enable stable solitons to e
provided the fundamental and second-harmonic waves
nearly phase matched.

We have shown that when stable bright solitons ex
they always have a dimensionless powerP, which is below
3.2. This corresponds to the real physical power

P0P<61 kW•~103/ux3u!, ~21!

for a fundamental wavelength ofl151.3 mm. Importantly,
this power threshold for the existence of stable beams in b
media with competing quadratic and cubic nonlinearities
in good agreement with the prediction of the threshold pow
for collapse, which can be obtained analytically by the s
called virial theory@6#, an effective tool for analyzing wave
collapse.

We expect the main features discussed above to be fo
in other systems where a competition between different ty
of nonlinearities occur. As we have argued, such nonlin
systems are plentiful in optics, since in general any incoh
ent coupling between two or more waves in multiwave s
tems, will induce effective higher-order nonlinearities.

In order to study the stability properties of the groun
state solitons we have derived a necessary VK criterion
linear stability, using a perturbation technique based on
assumption of adiabatic evolution of the solitons. This n
only gives the VK criterion, but also a model for the dynam
ics close to the threshold of instability, which predicts tw
different kinds of instability induced beam evolution: Co
lapse and regular oscillations of relatively large amplitud
We have confirmed these predictions by numerical simu
tions.

We have pointed out an obvious mathematical probl
with the stability calculations in systems withx (2) nonlinear-
ity, based on spectral operator theory, which has not b
clearly discussed in the literature so far. For the conventio
Schrödinger operators, uniqueness of the neutral modes
particular, and the oscillator theorem in general, has b
rigorously proven. However, this is not the case forx (2) and
x (2)1x (3) systems, and not even for coupled NLS equatio
where the corresponding operators all become matrix op
tors.

In particular, the necessary properties of the shift opera
have not been proven, such as uniqueness of the ne
mode and existence of only one negative eigenvalue. T
means that the VK stability criteriondP/dl.0, derived here
for x (2)1x (3) systems, and in Refs.@22–24# for pure x (2)

systems, is only a necessary condition. To illustrate this
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5066 PRE 58BANG, KIVSHAR, BURYAK, De ROSSI, AND TRILLO
have given a specific example in which the VK stabil
theorem fails and predicts stability of solutions that nume
cal simulations show are unstable.

However, all of the numerical work on bright solitar
waves presented so far for purex (2) systems@22–24# sup-
ports the hypothesis thatdP/dl.0 is indeed both a neces
sary and sufficient criterion for stability of ground-state so
ton solutions. In other words, the numerical results supp
the assumption of the shift-operator of thex (2) system hav-
ing a unique neutral mode and only one negative eigenva

Furthermore, in the limit of a large phase mismatch,
pure x (2) system reduces to the NLS equation, whereas
x (2)1x (3) system reduced to two NLS equations coup
through cross-phase modulation. This strongly suggest
the shift operator of at least the purex (2) system has the
same properties as the shift-operator in the NLS equat
i.e., a unique neutral mode and only one negative eigenva

A mathematically rigorous proof of the necessary prop
ties of thex (2) and x (2)1x (3) shift operator, and thus th
stability criterion, is still an open problem, and it would b
an important issue for future studies.
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APPENDIX A: DERIVATION OF VK CRITERION
AND STABILITY THEORY

We consider square- orL2-integrable functions~finite
power orL2 norm! in a Hilbert space the inner product o
which is theL2 norm

$aW ,bW %[E ~aW †
•bW !drW, ~A1!

whereaW † denotes the Hermitian conjugate of the vector fun
tion aW . Given the inner product, the power can be written
P5$QCW ,QCW %, where CW 5@w,v#T and Q5diag(1,2) is a
diagonal 232 matrix.

The stationary Eqs.~14! have a one parameter family o
soliton solutionsCW 5cW (0)(r ;l)5@w0(r ;l),v0(r ;l)#T. We
assume that a certain perturbation leads to a slow and a
batic evolution of the solitons, determined only by the prop
gation constantl5l(Z), which now depends on the slow
evolution coordinateZ5ez, wheree!1. Thus we expand
the solution as

CW ~rW,l!5expF iQE
0

z

l~z!dzG (
n50

`

encW ~n!~rW,l!, ~A2!

where cW (0) is real, but the higher-order corrections can
complex. Substituting the expansion~A2! into the dynamical
-
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Eqs. ~4! and ~5! we obtain at the lowest order (e0) the sta-
tionary problem~14!. At order e1 we obtain the inhomoge
neous linear problem

L̂0 Im$cW ~1!%5l̇]lwW 0[EW1 , ~A3!

L̂1Re$cW ~1!%50, ~A4!

wherewW 05QcW (0) and dot means derivative with respect
Z. ThusEW1 is an even function. The linear 232 matrix op-
eratorsL̂n are given by

L̂n[FFn An

An Gn
G , ~A5!

with the real components

Fn5l2¹21v02s~w0
21rv0

2!22n~v01sw0
2!,

Gn5b14l2¹22s~hv0
21rw0

2!22nshv0
2 ,

An52w022nsrw0v0 .

The operatorsL̂n are real and symmetric, and thus se
adjoint with only real eigenvalues. Furthermore, they a
even inrW ~henceforth, just even!, i.e., they transform an eve
function FW (rW)5FW (2rW) into an even function L̂nFW (rW)
5L̂nFW (2rW).

The homogeneous equation,L̂nwW 50, has four linearly in-
dependent solutions, which are also eigenfunctions ofL̂n
with eigenvalue zero~the so-called neutral modes!. The
right-hand side~rhs! of Eqs.~A3! and~A4! must be orthogo-
nal to all those homogeneous solutions, which are in
Hilbert space of localized functions that we consider, sin

$wW ,L̂nuW %50, regardless of the functionuW .
For the phase operatorL̂0 the real, localized, and eve

function wW 0 is a homogeneous solution. Let us prove t
uniqueness of this neutral mode. For any localized funct
uW 5@u1 ,u2#T in the Hilbert space, it is straightforward t
show that

$uW ,L̂0uW %5E @w0
2u¹~u1 /w0!u21v0

2u¹~u2 /v0!u2

1~2v0u12w0u2!2/~2v0!#drW>0, ~A6!

provided thatcW (0) is the ground-state solution, for whic
w0Þ0 andv0Þ0 for all r and l(Z). For the ground-state
solution we can further make the transformation (u1 ,u2)
5(w0ũ1,2v0ũ2), since there is a one-to-one corresponden
betweenun and ũn . From $uW ,L̂0uW %50 we then obtain the
relation

E @w0
2u¹ũ1u21v0

2u¹ũ2u212w0
2v0~ ũ12ũ2!2#drW50.

The last term gives thatũ15ũ2 and the first two give that
ũn(r ) must be a constant. This proves that the equality s
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PRE 58 5067TWO-DIMENSIONAL SOLITARY WAVES IN MEDIA . . .
in Eq. ~A6! applies only to functions that depend linearly o
wW 0 , and thuswW 0 is the only localized homogeneous solutio
to Eq. ~A3!.

To assure orthogonality for allZ betweenwW 0 and the rhs
of Eq. ~A3!, the unperturbed soliton solutionscW (0) must fulfil
the solvability condition$wW 0 ,EW1%50, which corresponds to
l̇dPs /dl50, wherePs(l)5$wW 0 ,wW 0% is the soliton power.
In generall̇Þ0 for the solutions we consider, and thus t
criterion reduces todPs /dl50, which is nothing but the VK
threshold condition.

The shift operatorL̂1 has the real and odd localized ne
tral modeswW x5]xcW

(0) andwW y5]ycW
(0), and the property tha

L̂1]lcW (0)52QwW 0 . We will assume, without a rigorou
mathematical proof, thatwW x and wW y are the only neutra
modes ofL̂1 . This means that the stability criterion we d
rive is only a necessary condition. Since Eq.~A4! is homo-
geneous equation the orthogonality condition is trivially fu
filled. The criterion dPs /dl50 is therefore the only
solvability condition for Eqs.~A3! and ~A4!.

Under the conditiondPs /dl50 we can define the vecto
QW [LW 0

21]lwW 0[@q1 ,q2#T in the subspace orthogonal towW 0 ,

in which L̂0 is invertible, and obtain the first-order correctio

cW ~1!5a1xwW x1a1ywW y1 i @a10wW 01l̇QW #, ~A7!

wherean0 , anx , andany depend on the slow scaleZ, with
n referring to the order of the correction. The homogene
part of cW (n) at all orders can be accounted for by the sim
transformation

CW ~rW,l!→CW ~rW1eDW ,l1e2V!, ~A8!

where the corrections are given by

V5ȧ101eȧ201¯ ,

DW 5~a1x ,a1y!1e~a2x ,a2y!1¯ .

It is clear that the odd homogeneous solutionswW x,y are re-
lated to translation, while the even solutionwW 0 , with the
same symmetry as the unperturbed soliton solutions, is
lated to a change in the propagation constant.

At order e2 we obtain after some algebra the inhomog
neous linear problem

L̂0Im$cW ~2!%5L̂0IW21Q~ȧ1xwW x1ȧ1ywW y!, ~A9!

L̂1Re$cW ~2!%5L̂1JW21EW2 , ~A10!

whereEW2 is even and independent of the homogeneous s
tions

EW252l̈QQW 1l̇2~RW 1ŜcW ~0!2Q]lQW !, ~A11!

with RW and Ŝ being given by

RW 5F q1q2

2q1
2/2G , Ŝ5Fs~q1

21rq2
2! 0

0 s~hq2
21rq1

2!
G .
s

e-

-

u-

The functionsIW2 and JW2 are purely a result of the homoge
neous solutions, withIW2 being odd andJW2 being even. Thus
the rhs of Eq.~A9! is odd and trivially orthogonal to the eve
neutral modewW 0 , and the rhs of Eq.~A10! is even and trivi-
ally orthogonal to the odd neutral modeswW x,y . All orthogo-
nality conditions are therefore satisfied at second order.

The contribution from the homogeneous solutions,IW2 and
JW2 , can be accounted for by the redefinition~A8!. However,
this is not the case for the corresponding contributions p
portional toȧ1x and ȧ1y , unlessa1x anda1y are constants,
i.e., excluding moving solitons to be taken into account
the straightforward manner indicated by Eq.~A8!. In fact, at
the next ordere3, there are several homogeneous contrib
tions proportional toa1x anda1y , that cannot be accounte
for by the redefinition~A8!, unless of course thata1x5a1y
50.

In principle the solution to Eqs.~A9! and~A10! could be
written down symbolically, as forcW (1) ~whereQW was intro-
duced!, and we could proceed to the next order. This wou
give a set of equations forcW (3), similar to Eqs.~A9! and
~A10!, but both now including both even and odd comp
nents on the rhs, thus imposing a~quite complicated! solv-
ability condition.

We will instead exclude motion and consider only ev
perturbations, i.e.,anx5any50, which simplifies the calcu-
lations significantly. In the earlier work@22,23#, where this
technique was applied, all homogeneous solutions w
omitted. Equations~A9! and ~A10! now reduce to

L̂0Im$cW ~2!%50, L̂1Re$cW ~2!%5L̂1JW21EW2 , ~A12!

where JW25ȧ10]lcW (0)2a10l̇QQW 2 1
2 a10

2 QwW 0 , and at order
e3 we obtain the inhomogeneous linear problem

L̂0Im$cW ~3!%5L̂0~ IW31ä10QW !1EW3 , ~A13!

L̂1Re$cW ~3!%5L̂1JW3 , ~A14!

where the even functionEW3 is given by

EW35l̇@Q]l1T̂#cW p
~2!1l̇3ŜQW , ~A15!

with TW being defined as

T̂5F 2sw0q11q2 2srv0q12q1

2srw0q21q1 2shv0q2
G ,

andcW p
(2)5L̂1

21EW2 . The functionsIW3 andJW3 are even, and thus

the only solvability condition is$wW 0 ,EW3%50. WhereasIW3 and
JW3 can be accounted for by the redefinition~A8!, the term
proportional toä10 cannot.

Straightforward but lengthy calculations show that t
equations at ordere4 ande5 become

e4:
L̂0Im$cW ~4!%5L̂0~ IW41IW4!,

L̂1Re$cW ~4!%5L̂1~JW41JW 4!1EW4 ,
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e5:
L̂0Im$cW ~5!%5L̂0~ IW51IW5!1EW5 ,

L̂1Re$cW ~5!%5L̂1~JW51JW 5!,

where all functions are even, leaving only the one solvabi
condition$wW 0 ,EW5%50. Again IWn andJWn can be accounted fo
by the redefinition~A8!, whereasIWn andJW n cannot. Thus the
homogeneous solutions proportional toan0 and derivatives
thereof do not influence the solvability conditions.

The point of the above exercise, keeping the homo
neous contributions as long as possible, is to show that
simple redefinition~A8! cannot account for all the homoge
neous contributions. This is only true to a certain order, i
to first order for the homogeneous parts associated with
placement~anx and any!, and to second order for the pa
associated with a change in the propagation constant (an0).
Thus one cannot simply omit all homogeneous parts
assume they can be taken into account through Eq.~A8! in
the end. In particular, this means that the adiabatic pertu
tion technique does not allows to easily incorporate odd p
turbations that causes the solitons to move transversely.

Our aim is to find an ordinary differential equation for th
evolution of the propagation constantl(Z). This can be
done in two ways, either by using the combined solvabi
condition

$wW 0 ,e1EW11e3EW31e5EW51¯%50W, ~A16!

or by using the constants of motion and, e.g., inserting
expansion~A2! into the expression for the total power,P

5$QCW ,QCW %, thez derivative of which should then be zero

dP

dz
5e

d

dZ
~P01e2P21e4P41¯ !50. ~A17!

Here we have used thatPn50 for n odd. The even compo
nents are given by

P05$wW 0 ,wW 0%[Ps ,

P25$QcW ~1!,QcW ~1!%12$wW 0 ,QcW ~2!%, ~A18!

P45$QcW ~2!,QcW ~2!%12$QcW ~1!,QcW ~3!%12$wW 0 ,QcW ~4!%.

The two relations~A16! and ~A17! are identical, as also
pointed out in@25#. Thus it may easily be verified by inse
tion that 2$wW 0 ,EWn%5dPn /dZ5l̇dPn /dl.

Since we consider solutions for whichl̇Þ0 in general,
we obtain from Eq.~A17! the relation

P5Ps1e2S M l̈1
M 8

2
l̇2D1e4P41O~e6!, ~A19!

where the coefficientM (l) is given by

M ~l!52$QW ,L̂0QW %52$]lwW 0 ,L̂0
21]lwW 0%, ~A20!

and prime denotes differentiation with respect tol. From Eq.
~A6! we see thatM.0 always, sinceQW is orthogonal towW 0 .

Taking only terms of ordere2 or lower into account Eqs
~A19! can be written in the form
y

-
he

.,
s-

d

a-
r-

e

M l̈1
M 8

2
l̇21~Ps2P!50, ~A21!

which can be viewed as Hamilton’s equations of motion
an effective particle with massM (l).0, coordinatel, and
momentump5M l̇, moving in the potential

V~l!5E
l0

l

@Ps~u!2P#du, ~A22!

wherel0 is defined by the relationPs(l0)5P ~for several
crossings the one closest to the initial unperturbed sol
valuel(z50) must be chosen!. The total energy of the par
ticle ~or the effective Hamiltonian governing it’s dynamic!
is given by

H~l,p!5 1
2 M ~l!l̇21V~l!. ~A23!

Equation ~A21!, corresponding to Hamilton’s equationsṗ
5M l̈1M 8l̇252]H/]q, for the effective Hamiltonian
~A23!, thus describes the dynamics of the soliton close
threshold, whereudPs /dlu!1 ~see Sec. V!. However, it
does not provide a criterion for stability in an explicit an
lytical form.

To derive such an explicit stability criterion we mu
specify how farl is from threshold. Inspecting Eqs.~A16!–
~A19! we setl2l05e2V, and assume thatdPs /dl;e2. In
this case Eq.~A19! reduces to

P5Ps1e4MV̈1O~e6!, ~A24!

sinceP4 is proportional tol̇. Finally, expandingPs(l) and
M (l) in a Taylor series aroundl0 , we obtain to lowest
order (e4) the relation

M ~l0!V̈1Ps8~l0!V1 1
2 Ps9~l0!V250. ~A25!

As with Eq. ~A19! this relation can be viewed as the equ
tions of motion for an effective particle, now with mas

M (l0).0, coordinateV, and momentumM (l0)V̇, moving
in the potential

V0~V!5 1
2 Ps8~l0!V21 1

6 Ps9~l0!V3. ~A26!

The effective Hamiltonian is now given by

H0~V,V̇!5 1
2 M ~l0!V̇21V0~V!. ~A27!

In the linear limit Eq.~A25! permits to identifyPs8(l0).0
as a necessary condition for stability andPs8(l0),0 as a
sufficient condition for instability against radially symmetr
perturbations (anx5any50), in agreement with the VK cri-
terium.

Equation~A25! gives also a description of the dynamic
of the soliton, which is simpler than the one given by Eq
~A21!. However, its regime of validity is more restricted
that it requires the initial soliton to be closer to thresho
than is the case for Eq.~A21!. An example of this is given in
Sec. V.

We note that the VK criterion does only apply to groun
state solutions with no nodes, and not to higher-order so
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tions with one or more nodes at finite values ofr . Even
though such higher-order solutions may decay to zero
r→`, and thus have finite power, the spectral properties
both the phase and shift operators,L̂0 and L̂1 , are not
known.

APPENDIX B: VIRIAL THEORY

To obtain predictions about the dynamics we can c
struct a ‘‘virial’’ identity, in analogy with studies of collaps
in the NLS equation@26# and the purex (2) system@6#. This
consists in the second derivative with respect toz of the
virial R2(z) ~for details see@6#!:

]z
2R25

4

P F2~H2bPv!1ReH E w2v* drWJ G , ~B1!

whereR(z)5@P21*r 2(uwu214uvu2)drW#1/2 is the mean wave
radius andr 25x21y2. From Eq.~B1! we see that collapse
of the solutionsw andv, in the senseR(z)→0 at a finitez,
will take place if the right hand side is negative definite.
was rigorously proven in@6# that if both individual powers
are below a given threshold for allz,

Pw~z!,Pw
c 5

Pnls
c

11r
, Pv~z!,Pv

c5
Pnls

c

l1r
, ~B2!
um

.

-

d
et
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e-

ev

pt

-

r
f

-

t

then such a collapse can never occur. To assure that Eq.~B2!
is satisfied for allz the total power must be sufficiently low

P,Plow5min$Pw
c ,4Pv

c%. ~B3!

Furthermore, we can estimate that collapse should poss
occur if the total power is sufficiently high,

P.Phigh[Pw
c 14Pv

c , ~B4!

under the additional requirementH,0. We stress that the
limit ~B3! is a rigorous result, while Eq.~B4! is only an
estimate based on a comparison with purex (3) media@6#. In
the intermediate rangePlow,P,Phigh nothing definite can
be concluded from the virial identity.

These predictions were tested numerically forb50 and
positive values ofl and r, which verified the lower bound
~B3!, and showed that the upper bound~B4! was reliable,
except for a narrow region of the parameter space, whe
was slightly underestimated@6,12#. In the particular caseh
52r516, it was shown numerically in@12#, thatPhigh is a
reasonable estimate of the actual threshold power for m
erate values ofb, i.e., ubu<4.
t.
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