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Theory of multidimensional parametric band-gap simultons
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Multidimensional spatiotemporal parametric “simultongSimultaneous solitary wavesire possible in a
nonlinear x? medium with a Bragg grating structure, where large effective dispersion occurs near two
resonant band gaps for the carrier and second-harmonic field, respectively. The enhanced dispersion allows
much reduced interaction lengths, as compared to bulk medium parametric simultons. The nonlinear parametric
band-gap medium permits higher-dimensional stationary waves to form. In addition, solitons can occur with
lower input powers than conventional nonlinear Sclimger equation gap solitons. In this paper, the equations
for electromagnetic propagation in a grating structure with a parametric nonlinearity are derived from Max-
well's equation using a coupled mode Hamiltonian analysis in one, two, and three spatial dimensions. Simul-
taneous solitary wave solutions are proved to exist by reducing the equations to the coupled equations describ-
ing a nonlinear parametric waveguide, using the effective-mass approxinigtibf). Exact one-dimensional
numerical solutions in agreement with the EMA solutions are also given. Direct numerical simulations show
that the solutions have similar types of stability properties to the bulk case, providing the carrier waves are
tuned to the two Bragg resonances, and the pulses have a width in frequency space less than the band gap. In
summary, these equations describe a physically accessible localized nonlinear wave that is stable #nlup to 3
dimensions. Possible applications include photonic logic and switching dej/&E363-651X%98)06109-1

PACS numbeps): 42.65.Tg

[. INTRODUCTION low or zero velocity in the laboratory frame. In addition, we
will show that it is always possible to choose branches of the
Parametric “simultons” [1-19 (simultaneous solitary dispersion relation that give anomalous dispersion at both
waves have been experimentally observedyiff) media in ~ wavelengths, thus allowing higher-dimensional solitons to
continuous wave propagatidi20], but time-dependent si- form. By comparison, while gap solitons gf*) media are
multons have yet to be generated experimentally. This is duknown to occur both experimentally and theoretically
to a number of material requirements, especially that of23.24, the formation of these single-wavelength solitons
group-velocity matching, and the necessity of having disperf€duires very large powers. ) S
sions of identical sign in both the signal and its harmonic Ve therefore consider combining” nonlinearity with
[21]. In addition, nonlinear crystals have a relatively smallthe large dispersion of a band gap, thus creating an ideal
dispersion. This results in long formation distances, that argPatiotemporal soliton environmefits]. This leads to simul-

- : : : s : tons with a short formation distance and good stability in
easily achieved only in optical fibeferhich normally have a : . ) X
@ rather than a® nonlinearity. Despite this, there are higher dimensions. The band-gap material can be simply a

clear advantages to the parametric medium for soliton for—X(Z) waveguide with its refractive index periodically modu-
9 P . lated, in the case of one-dimensional propagation. Higher-

mation. The nonlmea.r phasg shift is mgch Ia_rger_at low Ndimensional cases are of the form of planar gratings or lay-
tensities for parametric nonlinear materials, since it scales 84 structures. in two and three spatial dimensions

E?, not E°. Furthermore, temporat? solitary waves are  yegpectively. In our previous lett¢25], we used a Hamil-
known to exist in more than one spatial dimensi@peo-  tonjan approach to obtain band-gap simultons in one- and
vided the dispersion is anomalous at both wavelend®.  two-dimensional cases. In this paper, we give more details of
The bright nonlinear Schdinger equatiofNLS) solitons of  this method, extending it to include treatment of different
a x‘® medium are always unstable in higher dimensions. group velocities, three-dimensional band-gap simultons, and
Bragg grating optical materials have a strong dispersiomumerical band-gap simulton solutions. The stability of the
when the input laser wavelength is nearly equal to twice thdand-gap simultons is also studied by direct numerical simu-
refractive index modulation period. Such a strong dispersiomations. Band-gap simultons in the one-dimensional case
has been confirmed experimentalB2]. This makes Bragg have also recently been considered in two related papers,
gratings an ideal candidate for the formationydf) simul-  using numerical techniqug26] and a multiscaling method
tons with short interaction distances. Using a Bragg grating27].
also helps to solve other problems that occur with conven-
tional parametric sqlltons. Group—velpcny matching is no Il. PARAMETRIC GAP EQUATION
longer necessary with band gaps: solitons can form even at
In this section, a one-dimensional parametric gap equation
is derived from the Maxwell equations. We assume that the
*Present address: Department of Theoretical Physics, School shedium is isotropic. A more comprehensive tensor theory
Physics A28, The University of Sydney, Sydney 2006, Australia. would include the treatment of birefringent crystals, which

1063-651X/98/581)/502522)/$15.00 PRE 58 5025 © 1998 The American Physical Society



5026 H. HE AND P. D. DRUMMOND PRE 58

can allow phase matching between the fundamental and the =

second harmonic, even in the presence of material disper- PLZGOE Z J_ xY(z, 7)g A+

sion. We omit this effect in the interest of simplicity. The b=

one-dimensional equation can also be generalized to higher- X (z,t— r)etiikzioft=ng 4 ¢ . 2.6)

dimensional equations including diffraction. We will treat

this important case in Sec. lll, which gives a rigorous treat- Transforming.A; . into frequency space and defining

ment of the three-dimensional problem including the effects B

of wave-guiding structures. ~ o0 .
X<1>(z,w+wj):f xP(z,r)eereldsr,  (2.7)

One-dimensional Maxwell equations

The one-dimensional Maxwell equation describing the'Ve have

propagation of a linear polarized electric fieltl and dis-

placement field can be written as P = Eo; Z f, ej}(l)
I’E 9°D +ijkz—i(w+wit
E:MOF’ (2.9 X(z,w+ wj)Aj+(z,w)e” Mdw+c.c.

(2.9

where uq is the vacuum permeability, arid andE are per- L~ _ _
pendicular to the propagation directian The displacement Expandingy'™'(w+ ;) aroundw; into a power series up

field D is to first order inw, we find that

- dA;+(z,1)

D= €oE+PL+Py, (2.2 D=; 2 & q@ Az i@

where the linear polarization is given by a causal response —
function xe*ikzmlofty p 4 cc., (2.9

° where €(2) = eo[ 1+ x™M(z,0;)] and €/ (2) = egdx™M(z, w)/

= D(zt— ] AT I =0
PL= GOJ,O@X (zt=7E(z,d7, 2.3 Jwl,; are the permittivities and their derivatives at the fun-

damental and second-harmonic frequencies.

and the nonlinear polarization is given in the Bloembergen The spatial variation ok" is chosen to correspond to a
expansion by Bragg grating structure witla;(z) = ¢; [1+AJ(z)] whereel
is the spatial average ef(z), andj 1 and 2. In general, we
Py~ eox ?:EE+ - - -. (2.4 will consider Aj(z) to be a small parameter here, and the
results will be expanded in terms of a small parameter
The first order susceptibility(*) is a second-rank tensor, >Aj(2). This notation also allows us to distinguish the spa-
and the quadratic susceptibiligt?) is a third-rank tensor in tial modulation present at frequenay, from the (generally
general. However, we will not treat this general situation indifferend spatial modulation present at frequensy. Each
detail. For simplicity, we suppose that) is rotationally ~ carrier wave at these distinct frequencies will experience a
symmetric, which means that we will consider only its scalarrather complex modulated refractive index. However, the
form. In this paper, we consider second order nonlinearityresonant properties of Bragg gratings means that each will
and therefore include only up to second order susceptibilitynly interact strongly with a Fourier component having half
in the nonlinear polarization. We also assume th&t dis-  the respective carrier wavelength. Here the permittivj(z)
persion is small enough to be neglected here. is a periodic function with period. We can expand;(z) in
For a quasimonochromatic electric field in a second-a Fourier series, with
harmonic generation process, we can write the solutions to
the Maxwell's equation for frequencies neay,w, as Aj(Z)_E Ajexp(2ilkz)+c.c., (2.10

E= e AL (zt)esikeiot o g 2. . . —
1:21,22 4j=(2,0) J @9 given that A, are complex coefficients, and=n/d

o ' =277F1/)\1, where\, is the free-space wavelength of the
whereeg, are the polarlzatI0n892=20£, the signp==* rep-  fundamental field. The refractive index at the first carrier

resents right or left propagation, a[id IS the ef_fec_tive wave frequency is given byTl: \/61/60. More genera| types of
vector of the corresponding carrier field. It is important to grating can be treated, but this is sufficient to treat the gap
note that the actual wave number of the propagating fieldgoliton. For reference purposes later, we note that;ifis

can differ fromjk since the enVElOpe function can vary in real and posmve the refractive index has a CMZ’nodu-

space; thuk is simply chosen as close to the relevant wavelation, with a maximum in the refractive index occurring at

numbers. In this paper, it actually corresponds to thehe origin.

refractive-index modulation wave number. The conceptually simplest grating is that the modulation
We therefore can writ®_ as of refractive index is the superposition of two sinusoidal
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waves—only terms withhj; andA;, in Eq. (2.10 exist. Itis 19 9 . .
possible that the two coefficients are of opposite signs, andi| — - = -~ | A1—+ oKy Ay + k] Ay + xe AT Ap- =0,
the two modulations are then out of phase. It is highly desir- !
able that band gaps occur at both the carrier wavelengths, in 19 o
order to optimize the nonlinear coupling between the waves. | — _ +- A2+ + 0Ky gy + kg Ay + xe A2, =0,
This is because the resonant modes of the linear Maxwell vy dt
equations near a band gap are quasistanding waves—and
these will only couple strongly to other standing waves. 19
A more practical modulation of the refractive index is of a v, t dz Agt ko Ay + K5 A+ xe AL =
nearly square-wave shape. One can fabricate this grating by (2_12)

using laser interference patterns in a saturated photosensitive
material, thus giving rise to higher order harmonics. Thiswhere
type of grating is also capable of supporting band gaps at

higher harmonics of the optical carrier frequency. Thus it is

possible in principle to have strongly coupled simultons of

more complex types, by considering appropriately engi- ~2)_
neered Bragg gratings with several distinct spatial frequen- X =€1 "X
cies. An obvious example of this would be a hondegenerate

parametric simulton requiring three distinct spatial frequen-T0 simplify the equations, we can always choose the phases
cies defined so that; + k,=ks. of g so thatye is real. We neglect the group-velocity dis-

Al N o ; _ persion of the medium, as this is usually much smaller than
be:N;defILnekjlfjj(ng)and lézﬁgz;tlizt;;;‘;ra\ﬁzvé T(J))m the gap dispersion. However, we have included the differ-
P O = IR TR, : :

) : - ) 7 ence in group velocity between the two carriers, as this is not
into the Maxwell equatiori2.1). Neglecting terms with third

. - ; always negligible.
order differentiation, we arrive at

xe=wix?/(kc?),

@.ere,=e5-x? e, andx;=jkA;/2.

Ill. BAND GAP IN ONE DIMENSION

2 A, aZAJ
2 € 2llk +Mo€J jj @j A - Without the grating structure, the dispersion relatjfye-
=1 quency w versus wave numbek) would be a continuous
[ OA;, straight line in the vicinity of the gap frequency. Introducing

a grating structure opens a gap at the edge of the Brillouin
zone for each of the carrier frequencies. Inside each gap,
light is completely Bragg reflected, resulting in strong dis-
e li(o1t—kqy)z persion near the critical gap frequencies. The eigenmodes of
the Maxwell equations in the vicinity of the gap are also
modified. Instead of the usual plane waves, the eigenmodes
become modulated quasistanding waves, with a pure stand-
ing wave being achieved exactly at the wave number for
resonance. In this case there are two possible standing wave

solutions with different spatial phasds.e., sin(z) and

coskz) solutiond. These are familiar in electronic band-gap
theory, and have the usual property that one has an eigenfre-

+[,LLOGJ (k oK; )2]Al++|v—jT

A
—(€j+2wj¢€))

2"?07“4" A
1] _192 + 5

_ 2 2
+/.L0€]A“] wlAj+

ki d.A; -

+[ oejw?— (kj— 8K 214 +i f -

Uj

2
— ol €+ 20, EJ{)(? 2* e ii(ogt+ky)z quency a_bove, and the_ other_ below, the gap center freque_ncy.
ot Propagation of a free field with a frequency in the gap region
is, of course, prohibited. However, in the presence of the
2p nonlinear medium, it is possible that propagation can occur
_ 9P 21 due to nonlinear phase shifts.
Mo 5 (2.13)
ot
One-dimensional dispersion relation
wherev;=dw/dk|,j= o; /[k;(1+ 0j€//(2€)))]. The dispersion relation of the one-dimensional Maxwell
Assuming that4; are slowly evolvng we negleczzt group equations in the slowly-varying envelope approximation can
velocity dlsper3|on terms involving#?/at> and 9%/9z°.  pe obtained by studying the linear part of the gap parametric

Terms mvolvmg&k] or first order differentiation andk; are  equations(2.12. Neglecting the nonlinear terms, we have
also neglected, for they are much smaller than these termbe linear coupled equations
involving only &k; or first order differentiation, which we

call first order terms. Retaining only the first order phase- 1 (9 J
matched terms of the above equation, we have ' v, at AI*JF KAy + 1 A (3.)
19 1 4 .
i v_lﬁjL A1++5k1A1++K1A1 +XEA1+A2+ I U_JE—EAJ,+5KJA],+KJ A]'Jr:O.
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Following standard techniqu§4], we introduce a vector ' ' '
for the right and left propagating fields:

; Ay
Ai(z,t)= A (3.2
Inserting the ansatz
Ai(z,)=f;(Qe Q=M j=12, (3.3

into the linear equatiofB.1), one obtains the algebraic equa-
tion

QJ/UJ_Q+5k] K]'

ki Qjlvj+Q+ 8k

i
f,_|=0. (3.4)

FIG. 1. Dispersion relation for light with wave numbers around
kj=jm/d, whered is the period of the grating. The width of the
gap is given ad 0 =0" -0~ =2y;|«;|. For simplicity,{) is plot-
ted with a unit ofv;x; , while Q is plotted with a unit ofx; .

Solving the above equation f, we have two eigenval-
ues corresponding te=*+ 1,

QP (Q=v,(sVQ7+ [ ok),  j=12. (35

d?Q;s SUJ'|KJ-2
If 5k;j=0, this equation becomes the dispersion relationship dQ? = (Q2+|K-2|)3/2-
found in conventiona}® band-gap systenjg4]. The width j
of each band gap in the dispersion relation is then given by Tphe dispersion ¢” = d?w/dk?) of typical nonlinear opti-
At O A cal media is of the order of 16 m%s at a wavelength of
AQ;=07 (0~ Q) (0)=2vj[x|. @8 4 pm. In the case of lithium niobate, the corresponding
Substituting the above solutiofiEq. (3.5)] into the linear ~ refractive index isn=2.5. Assuming 0.2% refractive index

equation, we obtain two sets of normalized eigenvectorsnodulation, so 1thaﬂ.jj.=0-_002, we find thatx; is of the
corresponding to linear propagation above and below the@rder of 10 m~*. This indicates a maximum band-gap dis-

(3.8

band gap: persion of v;/|«;|=10" m?/s. Such a strong dispersion
gives an advantage in reducing soliton formation length sig-
) [« ,Q_s‘/|K12|+Q2]T nificantly, and has been recently confirmed experimentally
fi9(Q)= . (3.7 [22]. The large gap-induced dispersion provides a justifica-

\/2(| K1'2| +Q2—sQn /|KI_2| +Q?) tion for our neglect of material group-velocity dispersion ef-

fects in these equations.
where the sigrs= —1 corresponds to the lower branch, and
s=1 to the upper branch. IV. HAMILTONIAN METHOD
The physical meaning of treparameter is clearest in the
case ofQ=0, which is in the center of the band gap kn
space. Suppose, for simplicity, that theéh refractive index

Traditionally, there are two approaches to solving soliton
equations. The first is the inverse scattering method, which
has a local maximum az=0. This corresponds to a gives a cpmplete exact analytic solutions for NLS-type equa-

— . o tions. This method has not yet been applied to parametric
cos(&jz) modulation of the refractive mde_x,_so thap>0. . .equations. In fact, these equations appear to be generically
In general, we can always choqse the ongin so that this '.ﬁonintegrable. Another approach is the virtual particle
true for at least one of the carrier frequencies, although 'Fnethod, which treats soliton formation as equivalent to the
might not be true for both. In this case the lower bransh ( gqation of motion of a virtual particle in a nonlinear field
=—1) also has a symmetric form, with a ckig] modula-  [28,16. A soliton solution in this picture corresponds to a
tion. The upper branch has an antisymmetriclgi)(mode  path that connects two critical poin®pological soliton or
function. We can understand this physically if we argue tha@n enclosed path that passes one critical p@iohtopologi-

a lower energy—and hence a lower frequency—is obtainedal solitor), where a critical point is a point at which the
when the maximum field intensity in space corresponds twirtual particle experiences no “force” from the nonlinear
the maximum refractive index in space, which means thdield. This picture gives a clear physical understanding of
maximum dielectric polarization. In Sec. IV, we see that thissoliton equations. Based on the topological nature of the
is justified by the Hamiltonian theory of the dielectric plus nonlinear field, we can thus classify soliton solutions. The
radiation system. difficulty of this method is to find the soliton paths—which

The dispersion relatiofEq. (3.5)] is depicted in Fig. 1 for may not be represented analytically, but can be expressed
one of the band gaps. Because of the gap, linear propagatiarumerically. Such a task is relatively easy if the nonlinear
is not allowed if the frequency shift from the gap center isfield has a low dimension.
small, i.e.,|Q|<vj|;|. This results in strong dispersion, so  This topological method has been applied successfully to
that the parametric equations including dispersjd6]. Without
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actually solving the equations, the method treats them as mode theory. Here we start from the most general form of
pair of Newtonian equations describing the motion of a vir-these fields in a three-dimensional medium.
tual particle in a two-dimensional acceleration field. The ex- We emphasize that this approach is capable of generating
istence and parameter ranges can be obtained by studying ttiee full Maxwell's equations in four dimensions. The Hamil-
topological structure of the acceleration field. Based on théonian clearly separates into a linear part and a nonlinear
information from these analyses, numerical solutions camart. We first start with the linear part. This will allow us to
then be obtained easily. The nonlinear field of the parametricdentify mode structures, which leads to some useful ap-
gap equation is at least four dimensiorel phase spage  proximations later.
and identifying a soliton path involves at least three free
parameters_. I_n aPp'ying this method to t_he parametri_c 9ap  B. Linear part of the Hamiltonian and mode expansion
equations, it is simpler to reduce them into two nonlinear o . o ]
coupled second order equations. In order to achieve this sim- Our objective in this section is to calculate the linear
plification, we next turn to approximate Hamiltonian tech- Mode expansion of the wave equation in a three-dimensional
niques for analyzing the gap soliton. In a later section, thénedium that includes a weak refractive index modulation in
physical insight obtained from this approach will allow us to the  direction. We also consider cases in which there is a
find a large family of solutions to the full set of equations, fransverse variation of the refractive index, causing either a
using acceleration field arguments—together with numericaPne- or two-dimensional waveguide to occur. The calcula-
solutions of the virtual particle equations. tion of the mode structure will be carried out to first order in
the refractive index modulation. In all cases we are primarily
interested in volume gratings that extend throughout the re-
gion of interest; that is, the grating is quasihomogeneous. It
We will show that by using a Hamiltonian method for is also possible to fabricate inhomogeneous gratings—for ex-
propagation near the center of the band gap, an approximatgnple, by surface modulation of a two-dimensional wave-
pair of coupled second order equations can be derived. Thiguide. We do not consider this case here, and our results are
allows a topological classification of the grating solitons, us-not applicable to surface gratings.
ing previously known techniques. The Hamiltonian theory  Although we only intend to obtain classical equations, it
also permits us to describe waveguide mode structures inig convenient to follow the normalization of the standard
very simple way. We note that the Hamiltonian for a nonlin- quantization procedurig0,32,33. We introduce the dual po-
ear medium is most rez_id|ly Wr|tten_u5|ng the d|3|o_lacemen§entia| A [29], defined so thatD=VX A and B= LA,
field as a canonical variable, as pointed out by Hillery andyhich is useful for obtaining a nonlinear Hamiltonian theory.
Mlodinow [29]. When using the displacement field as theyyq expressA in terms of mode functions\;, normalized

canonical variable, it is most natural to expand the electri, e 5 length_. Periodic boundary conditions are imposed at
_fleld ina form_al_ power series in the dlsplacemer_lt_fleld, “S'”Q(i=0,xi:L, wherex,=x,y,z, and we later také& —o. The
inverse permittivity tensors as expansion coefficients. Thusyoge expansion is taken to be

in the absence of dispersion

A. Hamiltonian

1
Ei(t)= 77 (0Da(tX) ... Dy (). ACX) =2 8ol D) (). .49
n n n

4. .
Here ajnoce*""Jnt, and n refers to all mode indices. We

Extending the above expansion to include linear dispersiorghooseA|, to be transverse.

the complete Hamiltoniaf30,31] can be written as Hence we can write
H:H0+Him, (42) 1
D= —E VXAJnajn,

where the linear and nonlinear terms are, respectively, JLw
1 . J Wi ol .
Ho= — B2+ n(x, o 2——‘D*D-)d3x, s |

° f 2 (Mol il mxo)) dwj| n(X,wj) | ) B:ﬁ 2 Ho@jnAjndin - (4.5
Him:%f D- ?:DD dx. 4.3 With this definition, the positive frequency part of the

electric field €) can be written ag(x, ) = 7(X, ») D(X, w)
Herex=(r,z), whiler=(x,y) are the transverse coordinates — Pn.(X,@)/€&. However, for evaluating mode functions,
andz is the longitudinal coordinate. We have introduced anwe tempprarlly consider just the I!near Maxwell equations.
inverse permittivity, 7(x,w) =1/ e(x,w)] for convenience. Substituting the above expansion into the Maxwell equation
Similar to €, we assumey to be rotational symmetric and VX &= —g,B gives a wave equation, and hence an eigen-
only consider its scalar form here. We also definevalue equation for mode functiors, with eigenvaluesy;,,
7= —eox@I(2e,) [29], D:Ej=1,2(Dj+ﬁr)7 and B as follows:
=3,_1AB;+BF). In Sec. Ill, the electric field is expressed ,
as a pair of antipropagating waves based on the coupled VX[ 7(X,0j0) VX Ajp] = poj, Ay, . (4.9
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2
Mo®@ijn

77(X! Wj n)

AjnUjm .-
(4.13

_ ok To simplify the right-hand side of the above equation, we
HL % hwjn@jndn- @D now expand the eigenfrequencies near iltte carrier fre-
quency of interest, ae;,= w;+Awjn+Q;,, whereAwjn,

In order to use this result, we need to develop approxiand(};, are small quantities when compared with. We
mate expressions for the mode eigenvalues and eigenfunpext expand the permittivity around; to first order, thus
tions, in the typical case of weakly guided waves in one andncluding group-velocity effects in the material dispersion.
two dimensions, as well as a full three-dimensional bulkThis gives
crystal layered structure. In a weakly guided waveguide, we
assume that that the permittivity factorizes into longitudi-

ExpandingD and B in terms of modes that satisfy the OA; Ay PA,
above equation in the linear part of the Hamiltonian gives the =

2 A =
) i _Vr uj jn
result

dz Jdz 972

2

in__ 2
nally and transversely varying parts, so that Mo (X, jn) ~kil1+A5(z)+ 45 (r)]
e(x,w)=€(z,0)€(r)=1n(x,0), 4.9 +2[Awjm+ Qi ]k vy (4.14
where, in the vicinity of theth carrier frequency, (r)=1 Introducing wj,=w;[1+Q;n/(kjvj)], the eigenvalue

_ . ~ B _ o equation hence becomes separable, with group-velocity ef-
+A”_(r)—1/77L(r), €(z,0)= e(w)[1+4(2)]=1/5(z,0), fects included. There is one transverse mode equation, and
and 7(w) = 1/e(w). Both A5 (r) andA;(2) are small quan-  one ongitudinal mode equation fog, and A, , to first or-

tities. The inverse permittivity is given to first order by derinA-
n(x,0)~n(w)[1-A; (N —A(2)]. (4.9 [VZ4+ KA (N]ujm(r) = = 2(K; /UJ-)ijmujm(r),(4 19
We also assume that the transverse permittivity varies - 52 (977](2) 9 -~
much slower than the longitudinal permittivity, as is usually 7j(2) 2+ oo | Ain(2) = ~ mowjnAjn(2).

the case for weakly guided waves with a modal dimension

much greater than a wavelength. This means that we hawqere’;?j(z):';?(zle) is just the longitudinally varying part

Vn=~V7. _ ~ of the inverse permittivity, evaluated at thith carrier fre-
Next, suppose that=(m,n), and each spatial mode is quency.
approximately factorizable into the form
C. Transverse modes
Ajn:Ajn(r,Z):Ujm(r)Al‘n(Z), (410) . ) . . . .

It is possible to solve the equation foy, if Aj, is given,
where the direction of theA;,(x,z) totally depends on using the standard techniques for weakly guided waves at the
Uim(r), and VAj,-uj,~0. Since V-A=0, we have jth carrier frequency. The modes;,, can also be normalized
V- (AjnUjm) =0, which givesV- u;,~0. so that

Substituting the above two expressions into the eigen-
value equatior(4.6), we obtain f Ujm- ujm,er: S’ - (4.16

VX LVX (AjaUjm) ]+ VX LVX (A joUjm) These modes take different forms, depending on the specific
=Mow12n/\jnujm- (4.1)  type of waveguide. _ _
(i) One dimensionin the one-dimensional caséor ex-
To simplify the above equation, we work out the following @mple, in a single mode fibgrhigher order modes are usu-
relationships, with the permittivities are all evaluated at thedlly neglected. We can write;,, simply as
eigenfrequency;,: U=, (1),
2

I“Ajn 5
VX[VX(A]ntm)]%— ?ujm—AmV, ujm!

wherey; is the zeroth order transverse mode, and the eigen-
value Awjy, is Awjg.

Two dimensionstn a planar waveguide casgvo dimen-
siona), u;, can be written in the form

Ujm = U; (y) € im/ L

where V2= 9%/ 9x?+ 3%/dy?, and the conditionsV-u;,,=0  (assuming the waveguide is confined along yheirection,
and VA, ~0 have been used, together with the relation thagndL is the transverse normalization distahoshereu; is
VAjn X (VXUjy,) =0. the zeroth order transverse mode dqg is a scalar. Thus

Dividing both sides of the equation by, and retaining Awjn=Awjo+ vjkam/(ij), where Aw, is the eigenvalue
terms up to first order ik ;, andA; we arrive at of the zeroth eigenmode.

an I\
VX [VX (Ajnljm) 1~ = 7 — = Ujm, (4.12



PRE 58 THEORY OF MULTIDIMENSIONAL PARAMETRIC ... 5031

Three dimensionsin a bulk crystal(three dimensiona| 1 {9;} Lt 8,
Ui, can be written in the form - — ¥ )
im J (A AJn 2IL’vO")jn awjna A]né’ A]n dz= 2M0wjn,
(4.20

—11.0iKim®

Ujm = u;€"im /L.
which determines the value ofj,, neglecting small terms
corresponding to combined dispersive and transverse mode

Here u; is the polarization direction, Aw;,  corrections. Itis difficult to obtain the explicit form of;,,

v,|k,m| 1(2k;), and L2 is the transverse normalization for it consists of an infinite series of terms whose coefficients

area. are to be determined by infinite number of central equations

[Eq. (4.19].

We are interested in waves near the Bragg condition, for
if the wave vector is too far away from the Bragg condition,
the medium acts just like a homogeneous medium. We there-

We next consider the longitudinal mode equation. We asfore assum&,<k and 77k ~,u0w . To treat these approxi-

D. Longitudinal modes

sume a waveguide which is longitudinally modulated in amations, we will assume the solution can be expanded in a

similar manner as discussed in Sec. lll, which defiags

power series in the expansion parameferwith Qn/k<A

For frequencies in the neighborhood of tjth carrier fre-  This allows us to group terms of the same order together, and
quenctyw;, the transversely averaged permittivity is dennecjneglect higher order terms in a consistent approach. To first
as in the one-dimensional case: order in this approximation, we retain only those equations

The effective wave numbde is the same as defined in Sec.

that contain both coefficient<C,(k+Q,) and C;,(—k
+Q,) since they dominate the other coefficients, which can
~ — il then be neglected. This implies that we only retain terms in
Aj(Z):G(Z,wj)/G(wj)—lzZ Ajet™+c.c. the expansion of\ j, with | ==j.
4.17 At this point, we notice, in the Fourier series fay, that
the second-harmonic field interacts with Bragg gratings both
with a resonant conditionA,,), and with a period of twice
the resonant conditionA(7). In Eqg. (4.19, we see that this

subharmonic grating can only couglg,(2k) to C;,(0) and
ExpandlngA _into a Fourier series, we look for modes Cjn(4K). The corresponding coupling coefficient is zero for

that are described by a momentum fad@y such that the coupling toC,(0), due to themomentum factors, and

wherekn|=Qn+Ik_andI is an integer.

lecting coefficients of terms with same wave numbers, we

therefore this nonresonant lattice does not result in Bragg
reflections in the case of a volume Bragg grating. However,
. for surface Bragg grating@ot considered heyet is known
Ajn(z):)\jnZ Cin(kni)expliknz), (418 that coupling to a subharmonic grating can cause large dif-
fraction losseq34], due to scattering in orthogonal direc-
tions. This case of surface corrugations is therefore not
treated here, as previously mentioned.
Equation Eq(4.19 hence becomei@n the case of thgth

Substituting the above equation into E4.15 and col- carrien

have the equation for the coefficier@s, (k):

(_

[(k+Qn)27— mow’1Cin(ik+Qyp)

K317+ 10®’) Cin(Kn)) i2k2) - ik -
ni 77 jn/>~jnitn +(an—jzkz)njAijjn(_Jk"'Qn):O

=kni 2 [(Knit21'K) 7527, Cin(kny+21'K) _ _
i (Qn?=j?k?) 7;A;;Cin(jik+Qp)
+(Kni—21'K) A1 Cin (ki — 21 'K) 1. (4.19 ., _
+[(—jk+Qp) 77_,"L0(J’)J'n]cjn(_JI(‘|'Qn)=O- (4.21

Solving the above equation yields the exact value€gf

and the dispersion relationship betweey, and Q,. Fur- Solving the above equation fan},, and including the
thermore, for any two longitudinal modes, they must alsoexplicit frequency dependence of the permittiviffw), we
satisfy the general orthonormality requiremgs®,32,33 have

Mo"’,n (12k2+Qn2)7]J+5\/ j2k2— Qn 2|7IJAJ]|2+4]2k2Qn2_2~J 7/J+S\/—4|771A“|2+412k2Qn Ul (4.22
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where the sigrs=—1 corresponds to lower branch asd Ajn(Z)=A}s)(Qn,Z)=>\J(S)(Qn)U,(sA)(Qn,Z)eiQ”Z'
=1, upper branch.
This result agrees with a similar expression obtained by .
solving the linear Maxwell equation of the electric field and Cin(xk+ Qn):C}Si)(Qn), (4.26
the permittivity [35]. The difference is of the order of the

square of the expansion parametiee., A%), which can be , , .
neglected because both approaches only keep up to first dfthere the rapidly varying part of the Bragg grating mode

der inA. function is given by
Taking the square root of both sides, and retaining terms - -
to first order inA as before, we obtain UJ(?\)[D](Q,Z):CJ(i)(Q)eiikz_,_[_]Cj(i)(Q)e*ijkz_

(4.27
0in~vp(w))(jk+sv[k[>+Qy2), (4.23

Hereu;, is the dual potential mode function, whilg; is the

_ displacement(or electrig field mode function in a slowly
wherev ,(w;) = 1/V poe(w;), andx; is defined as in the one- varying envelope approximation. From now on, we shall
dimensional case, sincg=jkA;;/2. We have used in this omit the !Opg_'tuld'n?| mlode mde(;( OQF] Sl'm(':e tfhlese modes
first order approximation, that the Bragg scattering term i2€come infinitely closely spaced in the limit of large quanti-

nearly frequency independent within each band, i.e.Zation volume, wheré is large. _ _
k(@) ~ K@)~ K The ratio betweercj(i)(Q) and C]-(S,)(Q) is determined
in j i i (s) (s)

If we substitutew,= w; +vy(w;)Q;,/v; into the above from Eg. (4.21). The coefflmentsCH(QS) and C;2(Q) are

: A Ty e SN -~ .~ normalized such that(C{?(Q))?+(C{¥(Q))?=1. Using

equation, we obtain the same dispersion relationship ob- . I+ 1= y ,
tained in Eq.(3.5), so that these conditions, we derive the explicit forms in the first

' order approximation,

Qjn=0"(Qn) =v(s\[xj|*+Qy? = 5k)), (4.29 Cl(Q)=+f2(Q), (4.28

where dk;=k(w;) — jk as before. wheref;=(f;, ,f;_) is the the same as in E¢8.7), in the
The longitudinal eigenvalu€);, is a function ofQ,, j section on the one-dimensional equation. There is an addi-
ands, as areAj, and Cj,. The total eigenvalue can be tional sign correction in the above equation, since the expan-
written as sion given here is for the dual potential, rather than in
terms of the electric or displacement field. Once this is taken
(9 B (s) in_to account, the general symmetry properties o_f the longitu-
®jn= 0jn(Qn) =@+ Awin+Q;7(Qn), (425  dinal modes correspond exactly to those in the one-
dimensional case.
The value of\{%(Q) can now be obtained from substitut-
and we can write\ j, andC;, as ing A{¥(Q,2) into the normalization conditiof80,32,33,

1 7' (2, 0{n(Q) A A[Y)* 3,A[Y
- A% A(S) m ! | = , 4.2
] 2100(Q) 200 (Q) 429
where?’ (z,w)=d75ldz.
Substituting Eq(4.26) into the above equation, we find

(s) 2 C(s) 21— T (o (S) k— 2

APQ)? ( ,+(Q))< zﬂowﬁg(@n(w,m@))u +Q)
+<c}i>(Q>)2<1——?’(w}ﬁ3(Q>)(—jk_+Q>2 S (4.30

2100{m(Q) 2p00{m(Q)
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where we have used the approximatiohy(z,w)/do  the final equations that are obtained. We first expand
— oA - ) d the carrier frequenay; . This gives the dis-

~dn(w)ldw. We have assumed that; is dispersionless ¢ (_Q) around the S !

within its own frequency band. The oJIispersiSﬁ s nor. | Persion relationshipEg. (3.5)], which was obtained from the

. . coupled mode theory. We then expand the resulting expres-
mally small, and we suppose it is at most of orderin b y b g exp

. ) N sion in a Taylor series up to second ordeiQh «;|:
dimensionless units, i.e., we suppose that the product term y P Q|

7'kQ/(2uow;) is of the order ofA? and hence can be ne- © © shQ?
glected. Using this approximation and solving E4.30 for Q7(Q)=0Q;7(0)+ om (5.9
M(Q) gives .
where the effective mass of théh carrier is
h
AL ~\/ — —. mi=1|x|lv;, 5.2
N o @~ 7 @ QR = Hlrlfo o2
(4.3)) andv; is the group velocity. The frequency at the band-gap
] ] . edgeis
For later use, we need an approximate expression suitable
for evaluating nonlinear interaction terms in the Hamil- QJ(S>(0):(5|KJ.|_5|<].)UI._ (5.3
tonian. We therefore also evaluate this expansion coefficient
at the gap center, giving the result This is, in fact, the well-known effective-mass approxi-

mation (EMA) in solid state physics—although more pre-

s Vi€ cisely smy is called the effective mass, with opposite signs
AT(0)=Nj=\ 5, 11+0(4)]. (432  pelow and above the band gap. It should be noticed here that

! the main effect of material group-velocity terms is to slightly

In Order to understand the physica| properties Of thes@hang.e the curvature Of the eﬁective'mass parabola. ThIS
solutions, we recall that these longitudinal mode functionderm is therefore much less significant for modes near the
are essentially identical in symmetry to those obtained in théand center, whose effective group velocities in essence are
one-dimensional case. Thus, 4 is real and positive, the dué to the Bragg grating itself.
lower energy displacement field solution f@r=0 (which is It can be shown that the remainder term of the above

labeled ass=—1) has a cosi?ﬂz) spatial dependence, and is expansion 1
therefore completely symmetric abaut 0. This can be un- sl k|20, Q%
derstood physically by noticing that the linear Hamiltonian R®)(Q)= — il Di% (5.4)
(ignoring all dispersion for simplicity is given by 2(|kj|>+Q?)572
1., = o) s The condition that the EMA is valid is then
H(,:f > | =B+ n(0|D|?|d3x. (4.3

] Mo ﬁZQZ

. N . _— IROQ)<| 5. (5.5
In the case thak; is real and positive, the inverse dielectric m;

permittivity has a negative cos(z) modulation term, which The above condition can be easily satisfiedi |x;|.

reduces the energy of the symmetric éqy( field mode,  The value of the remainder term is significant compared with
with s=—1, while increasing the energy of the antisymmet-the value of the second term onlyQf and|x;| are of similar
ric mode withs=1. magnitudes.

These energy changes agree precisely with the frequency The total eigenvalue;,, of the mode equation is the
changes of the mode frequencies worked out from the solusum of the longitudinal eigenvalue;+Q;,, and the trans-
F|0ns to the One"d|men.s|0na| MaXWe” equathns. Wh"e thlSVerse eigenva'ueijm_ From th|s re'ationship we have
is as expected, it provides an additional confirmation of thenear thejth carrie)
correctness of the Hillery-Mlodinow form of the dielectric-
radiation Hamiltonian that is used here. This difference in shQp
energy is, of course, the physical origin of the band gap in ®jn=0{m(Qn) = wim+ Sm (5.6)
the dispersion relations. J

where the eigenvalue at the band-gap edge is

V. EFFECTIVE-MASS APPROXIMATION
_ w}fg=wj+ﬂj(s)(0)+ijm. (5.7
In the above analysis, we have assumed that Qdthand
Aj; are first order in a dimensionless expansion paramieter It is convenient to work in the coordinate representation if
We are now interested in photon properties near the center @fe want to compare theoretical results to those of experi-
the band-gap region in momentum space, wi@ris small, ments. The Hamiltonian can therefore be expressed in terms
so we further assume here tHatk<1. This is a different of these field operators. We introduce an effective dimen-
expansion parameter td, and in practical terms can be sionalityD=1,2, and 3. As usual, we first consider the linear
much larger tham\ in many cases. We emphasize that thepart of the Hamiltonian describing waveguides with confine-
expansion is not essential to the problem—we can still writement in two transverse dimensior3 € 1) and in one trans-
down the Hamiltonian without it—but it greatly simplifies verse dimension=2), as well as bulk crystalsD(=3)
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which have no transverse confineméstcept boundary con- whereVp, is the transverse part of the operatoDirdimen-
ditions). To simplify the analysis, we assume that wheresions, so thatV;, =(d/dx,d/dy), and m;, =%k;/v; is the
there are discrete transverse modes—as in a fiber—only theffective transverse mass. We notice that typicatly,
lowest order mod¢ m=(0,0)] needs to be considered. In =2m,, to a good approximation, although this is not a re-
this case, we define{® = w(§ . The restriction to single dis- quirement in the theory. The longitudinal and transverse ef-
crete transverse modes is not always possible, and depenftgstive masses often can have quite different values, espe-
on the mode level spacing. cially if the Bragg dispersion is largé.e., |;<J-| is smal).

We introduce an envelope for the excitation in theThus, given the parameters quoted in Sec. lll, the effective
dielectric—which physically is really the polariton density masses have the following orders of magnitude;
field—in D dimensiorts), defined as ~103® kg andm;, ~10~% kg.

\I’J(S)(X)Z L—D/22 a}ﬁ)eik'x, (5.8) Nonlinear part of the Hamiltonian
3

For solitons, the nonlinear part of the Hamiltonian is
where k=(0,0Q) in one dimensionk= (kj,,,0Q) in two abOL_Jt the2 sagne qrder as the “disp_ersive ternﬁ_térm; in-
dimensions, an&t=(k;n,Q) in three dimensions. v_olvmg_a /z?Z ), smce_the cancellathn of nonlmearlty.ar?d

The inverse Fourier transform of the above expression idliSPersion is the requirement for soliton formation. This in-
dicates that we only need to keep the leading terms, when we
(8t 02 [ Dot (8)r o —ikox use the EMA to expand in a series ofQ/|«| for the
aj =L fd x¥i(x)e ; (5.9 nonlinear part of the Hamiltonian. Assuming thayf, is
slowly varying, we therefore have, approximately,
wherex=(r,z) as before.

Substituting the above expression together with Gd7) -1
into the linear part of the Hamiltonian, we have D= _L% (VAjnX Ujm + A jnVX Ujm ) @i,
sh h
~ _ ()2 (9)]2 1
in
+w}3>|\lfj(s)|2)d'3x, (5.10 Substituting Eq(4.26) into the above equation, we have
|
Dy~iL P22y 2, M (QLIK+Q)CIL(Q)e?+(Q-[k)C{¥ (Q)e K alpel (5.12

For simplicity, we take the above equation to the limit of where the nonlinear coupling is:
Q=0, thus eliminating cross coupling terms involvirgg

(which are smaller than the zeroth order terms L iegkwy  [fikouy . ’
x(s)= = [Sgn(x2)* sgr(k1)sgn(«1)
2

L — 4e;
Djwlej(r)z \jikulR(02) W9 (x) +O(Q/ k)

_ —s;S;s ]f & (r)-x?:e(r)e(r)d®Pr,
Vikj€v; ijkz —ijkz1(S) o S
%'Tg [sgr(;)e*—se k21w () (x)e (1), (5.19

(5.13  The nonlinear part of the Hamiltonid&q. (5.14)], vanishes
N if the total coupling between gaps is antisymmetric. We only
where g(r)=zxuj(r) is the transverse mode polarization consider cases with nonvanishing coupling, ané s;, al-
vector[in a three-dimensional case(r) becomes indepen- though, in a three-wave mixing process, it is possible that
dent of r], and sgnk)=x/|x| is a complex function that g +s! This condition limits the number of possible cou-
becomes the sign function i is real. _ plings. Therefore, these possible couplings between gaps are
We next proceed to the nonlinear part of the Hamlltoman.%l) coupling between lower branche®) coupling between
Substituting the above expression into the nonlinear part %fipper branches, an@) coupling between upper and lower

the Hamiltonian results in branches, as illustrated in Fig. 2. We can always asskme
5 to be real and positive, by shifting the location of the coor-
Hip~ — _2 f X(g)(‘l’(zsz))*‘I’(lsl)‘l’(lsl)dDX+H-C-a dlnqte origin, since only the re!atlve phasg be_tween the two
24 gratings is important. The nonlinear coupling is now simpli-

(5.149 fied to
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. ixgvy  [hkov, fications even in this nonlinear problem. Either quantum soli-
x(s)= Z ——sgnk,)*—s,], (5.16  ton[36] or classical soliton behavior can result; the classical
€2Ac solutions would, of course, be approximately valid only at

large photon number. However, this technique does permit
us to obtain solutions of some experimental interest.

where an effective mode “areah (or “width” if D=2) is
defined forD<3, as

€ (0)-x'?:e,(0)e,(0) 5.17 VI. DIMENSIONLESS EQUATIONS
A.= . (5.1
* ey (2). (3-D) In order to obtain solutions to Eq2.12, we need to
fez(r) LIULIOL ' obtain a coupled mode equation from the Hamiltonian,

) ) which we call the Hamiltonian classical equation. This

~ We now suppose that, is also real, but can have either noyes to have a much simpler form than before, and can be
sign. This would be the case if the overall grating structurgeqyced to just two coupled dimensionless nonlinear equa-
was symmetric relative to the origin. We can investigate thgjons. The advantage is that the final equations have been
possible cases of modes having a nonzero couplin@ at eytensively analyzed in previous work. Since both ap-
=0, by simply considering wheth@sgn(x,) —s,] is zero or - proaches describe similar physics, the solutions to the Hamil-
not. Thus, it is clear that only the second harmonic mode igonjan classical equation should also be approximately the
restricted in any way, and in this case it is necessarysdhat go|utions of Eq.(2.12, apart from the simplifications intro-
has the opposite sign te,. However, as discussed earlier, quced by the EMA. Equatiofi2.12 also did not consider
this is precisely the condition for having a symmetric modaleffects introduced by transverse modes. In order to obtain
solution. In summary, while the parity of the fundamentalso|ytions identical with Eq(2.12), we could omit transverse
harmonic can have either sign, the parity of the second hagngde terms involving w; in the Hamiltonian.
monic must be symmetric. We can understand the physics of \yhen these terms are necessary, they simply correspond
this in a very straightforward way. The nonlinear couplingto 3 renormalization of the linear phase-matching and disper-
involves the square of the fundamental field, multiplied bygjon properties of the medium. This well-known phenom-
the second harmonic. The square of the fundamental fieldnon s usually termed modal dispersion, and is typically
mode is always symmetric whether the mode itself is symyather small, except near the transverse mode cutoff frequen-
metric or antisymmetric. This can only give rise to a finite gjes. The other effects introduced by the full three-
nonlinear coupling if the second-harmonic mode is also symgimensional analysiéeven for a one-dimensional waveguide
metric aboutz=0. or fiben is that the coupling is now given in general by a

The Hamiltonian approach therefore affords a physicallytransverse integral over the mode functions, and in the

intuitive understanding of the coupling processes and a morgigher-dimensional waveguides there is an additional cou-
accurate description of physics involved with transverseyling petween the different transverse modes. This corre-

coupled mode analysisNot only does the use of the gap are included, as we will see.

modes eliminate linear cross couplings, but it also introduces
a powerful symmetry principle in the limit 0Q=0; the
second harmonic that is coupled must have the same type of
symmetry as the product of the two subharmonic modes. Combining the above results, the approximate EMA
Because of this, the use of gap modes permits great simplHamiltonian is now

A. Hamiltonian classical equation

sh h 1 - '
H/ﬁ“% (z—rmlﬁz‘P}S)lva mlvmxpgs>|z+w}s>|qf}s>|2)de— = fX(s)(\Irng))*«Iffl)qffl)dDHH.c.. (6.1)
) s
|
The classicalcoherent or mean fieJdevolution can be cal- g (51) 2
. 4 | s 9 h (s0) | x(s1)
culated from the Poisson bracket =j ——2+—V2m_w D | (51
at 2m; 9z 2my, 1 1
o, + 2 i (W),
WZ{W]’H}’ (62) S1
(sp) 2
v, i S;h a_+ h v2 (52)] (52
_ _ _ _ ot 2m, 9z 2m,, Pt T2 2
where the canonical momentum field conjugate o is
iAW*, Substituting the EMA Hamiltonian into the above ix(g) (e (s])
equation, we derive classical equations for coupled waves + T‘I’ll v (6.3

with general symmetry properties: s151
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To compare these equations with previously known repologica) solitary waves ifs;= —s, (coupling between the
sults, we suppose that only a definite pair of gap modes arapper branch and the lower brancilso, bright type soli-
excited inD=1 dimensions, having symmetrieg ands,, tary waves can occur, if the dispersions have identical sign,
respectively. In this case, it is convenient to define slowlyi.e., s;=s, (coupling between upper branches lower

varying fields: g, =W {ei('=k2 and y,=w{?eiet=ka  branches From Eqgs.(6.8) it appears that this condition is
We also consider a new frame of reference movisigwly) @ISO required in order to have moving solutions that are form
at velocityv in the laboratory frame—with a new coordi- invariant with respect to the stationary ones. Clearly, only if

nate z, = z— vt—while still remaining within the effective- S1=S2 IS it possible for the group-velocity terms to vanish in
mass approximation. With this frame transformation, weth® moving-frame equations. It is also possible that there

must replacey; by d,— v, . To simplify the resulting equa- could be moving_ topological sol_itons_ with pro_pertie§ that
tions. we set v depend on velocity. However, this will not be investigated

here.
Similarly, higher-dimensional equations can be obtained.
In this case, the previous definitions are extended in the ob-

=@®+1 2%
w=w " +38Mu/h, (6.4)  Vious way, so that

S i —k-
{// _\Pllel(wt kx)’

A pair of new equations in the moving reference frame is

obtained: ¢2=\If(232)e2‘<‘”“""‘). (6.9
2

‘3_"”1:- Sih 97y +i)(*(§)df o The new frame of reference moves at velogitin the labo-

at 2m, &zi 271 ratory frame, with a new x-coordinat&;,=(r,,z,) =x—Vt.

The frequencies and wave numbers appropriate to this trans-
formation argwith v=(v, ,v,)]

P d soh 3P, x(s)
——Av——|p=i5— +1B,(S1,8) ¢+ —5— 7.
[at dz,| "% 2my 97 Bo(S1.82) Yot 1541 w=0+1s;mllhi+imy v, ¥4,
(6.5
This is of the identical form to the usual description of a B
nonlinear dispersive parametric waveguide, with effective k,=msvlt, (6.10
dispersions
w]/EFF: sjh/m;, (6.6) ky=mq, v, s /h.
an effective phase mismatch of We see immediately that there is a very simple physical
5 interpretation of the altered frequency equation dar The
B.(51,5 ):(Zw(sl)_w(sz))+mlv (s _ 2m;s, photon polaritons behave as classical particles, with an effec-
vi1r™2 1 2 At m, tive longitudinal mass of;m; and a transverse massof, .

It is therefore necessary to supply a kinetic energynof/2
=2(s1] k1| = 8k v1— (Sl 1o = Fkz)v in order to excite them into motion. This is modified from
mlvz/ 2m152) the usual classical result, since the transverse and longitudi-

7 \51 m, (6.7

and a group-velocity mismatch of
Av=v(l—2m15182/m2). (68)

These equations have been extensively analyzed previ-
ously[1-19], in the context of the propagation of simultons G
in ordinary, nonmodulated parametric material. In this earlier
situation, the roles df andz were reversed, with the analysis
taking place in a moving reference frame at close to the
material group velocity. Nevertheless, the mathematical
properties of these earlier nonlinear equations can now be
used to analyze the more complex gap parametric soliton
case. A similar transformation is possible in the NLS prob- Q
lem, where an approximate NLS equation can be used to F|G. 2. Possible nonlinear couplings between gaps. Couplings 1

treat gap solitons under certain conditions. From these preand 2 generate bright simultons, while couplings 3 and 4 generate
viously known result§16], Egs.(6.5 support darki.e., to-  dark simultons.
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nal masses can be different. In addition, the longitudinal J CSoh P,
mass below the band gap+sm;, so the “kinetic energy” is [——AV'VZ }lﬁz:' 2m, 922 '35
. . . 2 ya m

negative in this case. We note, for future reference, that be- v
low the band gap the longitudinal and transverse masses x(8)
have opposite signs, which implies that there is no coordi- +iBy(S1,S2) Yo ti Tlﬁ,
nate rescaling that can give rotationally symmetric equations.

This transformation gives new, moving frame equations (6.17
in the form

2
Vo, 2
21

where V3, =d%/92 for two dimensions, andvs, = g%/ d2
W sih Py N +%152 for three dimensions. The effective phase mismatch
i 1LV%LI/11+|X*(S)¢2¢I1 a/&yv or three dimensions. The effective phase mismatc

at - 2my gz, 2m is now

mlvg/ 2m;sp| My |, |2/ 2my,
m;

_ (s1)_  (s2) _ —
BV(S].'SZ) (2(,01 (1)2 )+ h \Sl + ﬁ \ 1 mZL

m1v2 2m152 ml |V |2 2m1
=2(51| k1| — 8K1)v1— (S| k2| — Skp) v+ 7 (Sl_ m, )+ Lhi (1— ~1, (6.12

and an effective group-velocity mismatch ofAv  Oncez is specified, the other characteristic length and time

=(Av, ,Av,), where scales can be calculated from
Av,=v,(1-2m;8;S;/my), t.=1/q|=2m 22/%=2| k1| Z2Iv 4, (6.16
Avy=v, (1=2my, /mp, ). 613 Fe=2zeymy/my, =ze\| kel /Ky
B. Transforming to dimensionless equations The parameteq=s;/t; has an important and very clear

physical significance. It represents the additional detuning of
the carrier frequency required to launch a soliton. Thus the
previous definition of the fundamental carrier frequeney

In the following sections, we consider cases withbeing
real for simplicity. We will usually deal with a “standard”

case, In Wh'Chsfl. for simplicity. Other cases can be ives a frequency which corresponds to either the upper
treated by considering more general transformations, b

may not always lead to solitons—except in one dimension s1=1) or lower (s,=—1) boundary of the band gap, to-

where the positive and necative dispersion cases are relatg ther with a correction for a finite velocity excitation. The
€ pos gal P set fregencyg is a nonlinear effect, and typically brings
by a conjugation transformation.

The solution form of Eqs(6.5 and (6.11 is known the carrier frequency into the band-gap region, where linear

L : . . mode propagation is not possible. This controls the appropri-
E)lG’tzrgﬁsnglrlrtTcw)irr]\ ty;;oe ?I:::)r?;a?gn gifn?nossigrr]?:gs”yfgr?;a'nvfgate soliton intensity(since the effect is nonlineaand the
y 9 . A ) : . appropriate envelope sizZsince dispersion and diffraction
choose a transformation similar to that given in an earlier,

analysis of multidimensional solutions in uniform arametrichave to cancel some nonlinear phase shits well as the
Y P interaction time scale. In practical terms, the characteristic

media[21] input pulse duration is set bg., since this determines the
il —igt pulse length.
Vap.£im)=|x(S)lte o pa(x, ), (6.14 For the two modes in this Hamiltonian EMA approxima-
. gt tion, the most studied cases are for matching group veloci-
Va(p, £, 7)=x(s)stce™ “Viha(xy 1), ties. This can be achieved either at zero pulse velocity in the

) ) ) ~ laboratory frame(in all casey or else at finite pulse
Whgre V; are dmengonlgss envelope funptlons d_escr'b'ng/elocity—but with Av=0, so thatm,=2m; in the required
soliton shapes, and is defined byr=m,/m, in one dimen-  motional direction. This simply requires that material group
sion, ando=m,, /m;, =2 in higher dimensions. The coor- yelocities be matched in the transverse motion case. How-
dinate transform is defined in terms of a characteristic solitoreyer, for longitudinal motion, the requirements translate into

lengthz, and has the obvious forms restrictions on the band-gap-induced dispersion—and hence
on the modulated refractive index. That is, we must have
p=rylre, |A,)/v,=]A44|/v4 for moving solutions in the direction,
together with the requirement thaf=s,, as already men-
{=z,lz, (6.19  tioned. For simplicity, only these cases will be treated at

nonzero velocity, thus allowing us to remove the group-
T=t/t;. velocity mismatch term.
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The resulting moving-frame dimensionless equations are
=zr P TVAW(zZ,) f J (Vilo+2V3)didPYp,

(19,4 92+5,V2, —1)V;+V,Vi =0,

(6.17) (6.21)
(iocd +53§+51V2¢_7)V2+ E\/%:o_ where W(z.) gives the energy density requirement for a
given soliton length scale;, through the relation
Here we have introduced two new dimensionless param- R 82%4
etersy and 6, which characterize a family of solitons. W(zo) =hw/(Ax(S)t|?)= ~2 . 2 2
indicates a type of renormalized phase mismatch, which de- 20501 (X' P k125 01)
pends both on the characteristic length and the material prop- (6.22
erties. In analogy with previous studies, we Js® indicate
a lack of symmetry in the band-gap curvature between the VII. GAP SIMULTONS

two frequencies. The exact definitions of the dimensionless

parameters are Having reduced the original system of four coupled par-

tial differential equations to just two equations in the EMA
limit, we can now analyze the situation for solitonic behav-
(6.18 ior. This is a straightforward exercise, since the final dimen-
sionless equations correspond to a well-known traveling-
wave nonlinear wave equation, and are known to have a
variety of soliton-type solutions. Exactly which solution ex-

For a laser pulse of the order of 10 ps, we estinmte ists, and what stability properties are expected, will depend

—p,x10° ™ sis of the order of 103 m. SinceQz,~1 for on the coupling parameters and dimensionality of the equa-

a transform limited pulseQ is then of the order of 0 m™ 1 tions. Unlike the nonlinear Schdinger equation, the solu-
' tions in this case are not all self-similar—there are many

This is much smaller thami; when k; is of the order of : e ,
1 . . - different possibilities that can occur. In general, solitons
10* m™1, as estimated previously. The validity of the EMA ; . : : .
prove simplest to form in one dimension. As we will show,

is therefore well justified for these parameters. For theoreti! . ; -
. " the question of whether or not a soliton can form in higher

cal studies, the conditiol@<«;, can also be understood as dimensions depends on the structure of the Bra ratin

20/v1<<kq or k1z:>1. Provided these restrictions are met, P 999 9:

the previously known analyses of solitary wave formation
and stability for the coupled equations given above can be
used. We start by comparing the EMA equations with the origi-

In order to compare the above solutions with the classicahal one-dimensional band-gap equations. First, substitute Eq.
equations obtained from the coupled mode analysis, we neg@.14) into the equation for the electric field, regarding the
to write the electric field in terms of’; . In a first approxi-  mode vectors(r)=2x u(r) as the polarization vectors di-
mation, we only keep the leading terms in the expansida of |;yeq by VA, (i.e., & /\/Kt), whereA. is the mode confine-
in terms of D; this is justified when the refractive indeX ment are. This is Jnecessary because the coupled equation

0=0(My$;S,/my),

y=0(2-plq).

In one space dimensiol =1, we haveé= * 1.

A. One-dimensional gap simultons

modulation is relatively small, obtained from the original one-dimensional Maxwell equa-
_ tion did not consider transverse behavior. Comparing the re-
&E~nD;. (6.19  sulting equation with Eq(2.5) at z=0, we have(for non-

. » moving simultong
On the basis of the conditioR<«;, we can expand the

mode functionC](st)(Q) into a Taylor series up to first order R sgn( k1) i dv, sgn(k41)S;
aboutQ=0. Hence, the electric field can be expressed as A(lsl)m *ay| Vq| —g, T2 dz| L ,
7.1
. Tikjo, VS aul9(0,2) (
i IES 26] i U]D( Z)—Ii 97 9Q J( ) ;l(sz o y 1 iS]_SZ de 1
“Y~a,l s — = = - .
+0(Q%«?), (6.20 2 2\ 21Y21 117 2f,] dz| 1

where, as  previously, u{J(Q,2=C{(Q)e’** Here a;= \/|K1/2K2||q|ei(q*w(1$1))t/(XEv 1) and a,
~C{(Qe . ~ (€@ 4™ (yepy).

The pulse energy for a narrow-band excitation can be ob- |t has been proved that there is a family of one parameter
tained by noticing that thB-dimensional volume integral of solitary wave solutions of Eq(6.5) [16]. Provided that the
|qu2| is simply the total number of photons at angular fre-effective-mass approximation is valid, each of these known
quencyw; . This means we have to compute the pulse energgimultaneous solitary wave@imultong generates a corre-
integral sponding band-gap soliton. Depending on the sigrs; @ind
s,, these solutions can be classified as topological and non-
topological simultons. The general classification into various

— 2 2\AD
W_f (hwy[Wy]*+ iy Wo|*)dPx types of soliton is already known, and the details are pre-
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sented elsewheril6]. We note here that all the previously 3 7

described types of soliton can be obtained under different Vi(2)= —secﬁ(—), (7.2
conditions of interband coupling. In addition, new types may V2 2z,

be obtained as it is possible to have intrinsic three-wave 3

(nondegenerajesolitons by coupling both above and below V,(z)= =sech| —|.

the band gap. However, these generalizations will not be 2 2z,

considered here. . : The above solutions are particularly useful, as analytic

.A family of nontopological gap S|m_ultons to Eg6.5 forms of gap simultons can be constructed with them as the
exists for general values of when the signs of; are same. pase. These can give us an insight into the physical processes
This corresponds te;=s,=—sgn(x,), in order to have a jnyolved, and allow soliton energies to be readily estimated.
nonzero coupling. We are mostly interested in cases whergy cases withy+1, the solutions are given in numerical
s;=1, since this leads to a positive longitudinal mass, andorm. The corresponding band-gap simultons can be ob-
hence to stable higher-dimensional solitons. Clearly, thisained using the mapping relationship, Ed.1), with a nu-
would require thak,<0. However, in one dimension, con- merical differentiation for its imaginary part.

ditions are less strict, and the restriction <0 is not Coupling 1: For example, for the case,>0, s;=s,
required for soliton formation. =—1 andy=1 (coupling between lower branchethe gap
In the special case oy=1, the solutions are given in simultons are obtained by substituting the above solutions
analytic form as into Eq.(7.2),
z z _
4 +3a, H( 7 ) sgrn(x1) +SeCH 27 tan 27, [—sgr(/q)l
= sech| 5— i ,
NG 2z.)| 1 27| k4] ['
Rl |t 2 ) i
i _ —3a 2 2|1 +sec 2z, an 27, [_' -
SRR R PPN 22,/ 1) K 7.3

Coupling 2:Similarly, solutions to the case,<0, s;=s,=1 andy=1 (coupling between upper branchese given as

z z
P H( Z) sgri«y) +SECH(2—ZC ta“*(z—zc)[Sgr(n)i
= sech| —|| _ - ,
NG 2z.)| ~1 27| k4| l'
a2 z\
3, 7 1] sec Z—ZCtan 2_zc [.
2=~ sech AIE AP [—i . (7.9
|
For both cases, it is possible that sgp(=—sgn(x,), We use the typical valueg®=11.9 pm/V[42] and the

which means that both refractive index modulations are Ouéverage refractive index of the waveguid_re: 25 We as-

of phase. L . —
RS a numerical example, we will show briefly that the sume the refractive index modulation to be 0.2%ngfat

pulse energy of a one-dimensional gap simulton is possiblfach wavelength, so that;;=0.002. This gives coupling
of the order ofpJ. We consider a waveguide made of parameters of k1=0.00k=0.001X277n/\1=1.5
LiNbO; and a laser whose free-space wavelengthhjs x10* m™1, k,~2Xk,;, and yge=kx@/n?=3x10°
=1.06 um and whose pulse width is 10 ps. From EQ.\,;~1 gor a 10-ps pulse, we haw=10"1c/n=1.2 mm
(6.22, the pulse energy depends on the soliton VOIum%Nherec is the speed of light in free space. This in turn gives

through the volume factors in front of the integral, while thethe Soliton period or reshaning time-1~350 bs. The am-
exact dimensionless soliton envelope is included in the inte- P ping timeg, == pS.

gral. This depends on both the dimensionality and the factoPlitude of a simulton is therefore of the ordem/(xec)
y in the equations themselves, and usually has to be eval@1.2<10° V. m~*. Using the above values, we find that
ated numerically. We will choose the special caseyefl, W(z;)=75 J m >. SubstitutingW(z.) into Eq.(6.21), and
where the pulse envelopes have an analytic form. assumingy=1 ando=2, we find the the combined pulse
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energy is around 40 pJ for an effective waveguide area of (a)
25 um?.

This pulse energy is many orders of magnitude lower than
the usual values for the correspondig’ gap solitons. An
inspection of Eq(6.22 shows clearly that the energy density
requirements are greatly reduced «f and/or ) are in-
creased, at fixed, . Thus, further reductions in pulse energy
can be readily obtained if larger values efare used, to-
gether with shorter pulse lengths.

B. Exact one-dimensional solutions

One way of testing the validness of the EMA approach is
to solve the classical equation directly using a numerical

method. Without knowing the basic form of the gap simulton T ' ' '
solutions, solving the parametric gap equation numerically —4 -2 0 2 4
based on the shooting method is difficult as the two bound- z

ary points are adjustable in a eight-dimensional phase space.
However, if we assume that the propagating and antipropa-
gating waves are complex conjugatd;( =Af, att=0), T T T
the searching task can be reduced to be four-dimensional.
Solutions to the parametric gap equations are written in the
form

j1 . Citat
Aj*(sz):\/;E[pj(z)ilqj(z)]e et j=1.2,
(7.9
where a=s,v,k1— k;—(q. Although this ansatz is not in
the most general form, it can still generate soliton solutions,

as we will show.
Substituting the above ansatz into Eg.12), and looking < , | ,

for stationary solutions, we have -2 0 2
A% bt pipat Z
dz 1+P17P1P2T A1, FIG. 3. Gap simultons obtained via direct numerical method
(dotted lineg and EMA analytic analysigsolid lineg. The dimen-
dp, sionless parameters used for simplicity lwerq=;§2=4, y
dz K1-01—P102+ P20z, =1, v;=v,=1, 8k;=0, andyg=1. (& z.=3, dk,=3. (0) z
1 -
= 4> 5k2—2
dg, 1 . . - .
d_:K2+p2+ E(pi_‘ﬁ)' returns to its starting critical point. Therefore, the procedure
z

of searching a soliton numerically is to place a virtual par-

ticle at point (Op4,0,p,), and adjust the values @f, andp,
%_ K _ (7.6) until it returns to (0,0,0,0). We can further reduce the above
dz  2-H27 Pl ' two-dimensional searching process into a one-dimensional

one. Noting the Hamiltoniai is a conserved quantity and
whereK;.=jalv;+dkj*kj, j=1 and 2. H=0 at (0,0,0,0, we conclude thatH=0 also at
Regardingz as the “time,” p; as general momenta, and (0,p,,0,p,). This gives a relationship betwegn andp,,
g; as general coordinates, we derive the above equations

from the Hamiltonian ] Koy 7.8
PN K, +p)P? '

H—é &24_&2_’_3( 2_ 2) + . . .
&\ 2 PiT 4| T 5(P1=A1)P27 P10102- Thus, with a correct value qf,, a virtual particle returns to

(7.7) (0,0,0,0), forming a gap simulton solution.
This numerical method gives an excellent agreement with
The above equation can be visualized as the equation dhe previous analytic analysis when the EMA approximation
motion of a virtual particle in a four-dimensional phaseis valid. An example is shown in Fig.(@. Although «;z;
space. When time— * in the four-dimensional phase =2, which is not greatly larger than 1, the difference be-
space, we haveq(,p:1,9,,p2)—(0,0,0,0). When timez  tween the numerical solution and the analytical solution is
—0, (91,P1.92,P2)—(0,p1,0,p5). According to the topo- negligible. The difference becomes noticeable only when
logical argumen{16], a soliton forms whenever the particle «jz.=1, but it is still small compared with the solution’s
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imaginary part. This is shown in Fig.(l3. Such a small Eq. (6.11) supports stable simultons in both two and three
difference is unlikely to change a solution’s stability dra- dimensiond38,39,21,3T. This indicates that the parametric
matically unless the solution is along the boundary of stabilband-gap environment is also able to support higher-
ity. dimensional solitons. Thus, it is possible to obtain parametric
Cases that involve cross couplings between the uppegap solitons in up to three spatial dimensionss,i 1, so-
branch and the lower branch of different gaps result in darltutions are cylindrically symmetric, and can be obtained ex-
simulton solutions. These are not available analytically, andctly using numerical techniqué6]. Such a condition is not
therefore must be calculated numerically—as is also necesiecessary satisfied, and nonsymmetric solutions can be ob-
sary for all nontopological cases witp 1. Obtaining a to- tained approximately via a variational methj@i].
pological gap simulton is a relatively easy task based on the An unusual property of the higher-dimensional gap para-
previous analysis. One solves the dispersive parametric equiletric solitons is that they provide an example of a nonlin-
tions numerically for topological simultons. The correspond-€2r; three-dimensional self-confined object. These can even
ing topological gap simultons can then be obtained using ERPPear stationary in the laboratory frame. Of course, this
(7.1), involving a numerical differentiation for the imaginary aises the practical qyesuon of how an object of this ty_pe
part. In conclusion, the EMA provides a reliable and accurat&©t!d be generated with external laser fields. Apart from in-
method for solving the coupled band-gap equations, eveﬁemng a gain medium into the Bragg grating, it is likely that

- . X ! -~ ~a slightly detuned, and therefore moving, soliton would be
when compared with a direct numerical method which gives e practical—since it could then be coupled through a
exact solutions.

spatial boundary of the nonlinear volume grating. Another
practical consideration is the question of losses, which are
C. Higher-dimensional solutions neglected here. These are likely to be very significant for

The dispersive parametric equations we obtain also Sups_lowly moving gap solitons, due to the long interaction times

port higher-dimensional soliton solutiof7,1§ in 2++1 and Wltgsavsgiz\?eyclgﬁ:?{aigt\j”rc;g\rri'glrj;l for the one-dimensional
3+1 dimensions. These correspond to striped or layered P y

band-gap structures, respectively. Equatigri2, the one- gap simultons, the pulse energy of higher-dimensional gap

di ional led M I i b tended tsimultons can be estimated similarly. Assuming the same
Imensional coupled Maxwell equation, can be extended g, inear material and pulse width, we find that the energy

two- or three-dimensional structures in the paraxial approxi-density scaling coefficients and/(z)=75 J m 3 as be-
mation, by adding a transverse Laplacian to each of the €afy e e also find that,=4x 10°5 m. Substituting these
lier propagation equations. The equations describing thgayes into Eq(6.21) and assuming cylindrically symmetric
propagation of higher-dimensional gap simultons are theregoytions, we find that the pulse energy is around 2 nJ for the
fore written as two-dimensional casey=1, and a width of waveguide
=5um), and around 55 nJ for the three-dimensional case

|19 4 1_, (y=3). A larger value ofy was chosen in the three-
"o, gt Tzt z_fv Ape Ky Ary + Ay dimensional case, as this gives an improved stability. Note
that exact phase matching implies that 4 [i.e., 8(s1,S,)
+xeATL Ay, =0, =0], and this is also stable. In these cases, the dimension-
less integrals were carried out numerically, using the shoot-
149 9 1 ing 'te.c':hn?que[16] to obteirj the pulse envelopes. Another
i|——=— —|A;_+ =V2A; _+ 6ky A+ ki Ap posibility is to use a variational methd@1], which allows
vyt Iz 2k the integrals to be evaluated analytically to a good approxi-
mation.
+xeA1-A;-=0, The total energy foD>1 depends strongly on the radial
parameter ., which scales ag.\/x at a fixed wavelength.
|19 4 1 This means that the aspect ratio of the pulse changes as
: U_ZEJF 9z Azt EV2A2++5KZA2++K2A2* increases, which increases the ratio of radius to length—

changing the soliton from an elongated “cigar” at small
+XEAf+ =0, to a more spheroidal shape at largeDespite this, it is still
favorable to increase, if a lower pulse energy is required at
a given pulse length, . To reduce the pulse length and pulse

19 9 1
i|— i Ay + —=V2A,_+ 0K Ay + koA, energy simultaneously, it is most favorable to fix the product
v2 z 4k of z;\'k—which determines the radius—while reducing
+xeA2 =0, (7.9 and increasinge, until the EMA limit of xz.=1 is nearly

reached. Note that a given value of the prodrafx deter-
mines both the corresponding energy density faatoi the
+ 3?9y for 3+1 dimensions. radius scale in higher dimensions; these are modified, of

Using the Hamiltonian method to obtain equations in theSourse, by the solutions to the corresponding dimensionless

EMA for this case once again results in much simpler equa_equatlons.

tions. With the mapping relationshifEqg. (7.1)], we can

transform the above equation approximately into the form of
Eq. (6.11). This equation has also been analyzed previously, The important question of the stability of the parametric
and it has been proved that an equation identical in form tdand-gap simultons is investigated here by numerically solv-

where V2= g%/9x? for 2+1 dimensions, andv?= %/dx?

VIII. STABILITY
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ing the original band-gap equation&.12, using the (a)
effective-mass approximation solution from the Hamiltonian
method as an initial condition. The numerical simulation is

based on the implicit central-differengsplit-step Fourier-

transform schem¢40]. While the simplified equations are 1 3
known to be stable, these are not exact equations for the
gap-soliton problem. Thus, there are possible additional in-
stabilities that may arise from invalidation of the EMA,
group-velocity mismatch effects, or other internal properties
of the band-gap simultons. This investigation does not ad- s
dress the issue of whether the paraxial and slowly varying
envelope approximations are themselves always applicable 94

i

1o

/ntensy

>
here. =
To provide a suitable perturbation, tiemal) imaginary -
part of the input solution was usually omitted. If the imagi- =,

nary part is included, a steady propagation of gap simultons
is observed when the simulton is stable, and even an unstable
solution can survive in a metastable fashion for a relatively
long time. By omitting this, the initial condition is observed
to either evolve toward a stable wave, or to rapidly decay.
Unless stated otherwise, the inputs used were obtained from
the simplified EMA analysis, which in most cases gives an
excellent approximate starting profile. An exception to this
was the test of stability at smal},, where we cannot expect
the EMA to be even approximately valid. In these cases, we
used the exact one-dimensional initial solutions described in
Sec. VI, with the imaginary part included.

For simplicity, Eq.(2.12) is treated as if it were a dimen-
sionless equation in all of our simulations. The nonlinear
coefficientyg is usually taken as 1, and the phase mismatch ~
of the fundamental harmonic is taken as 0. In the one-
dimensional cases when=1, the analytical formiEgs.(7.3)
or (7.4)] is used. Otherwise, numerical solutions transformed
from solutions in Ref[16] are used. The transverse lattice
size is normally 1024 for one dimension, %684 for two
dimensionsl and 4040x40 for three dimensions. The FIG. 4. Instability when the EMA is invalid. Only the funda-
propagation step size is chosen such that the local error f§éntal harmonic is showr(a) Quasistable simulton whez.r;

less than 1%, by comparing results at two different time™ 1.5. (b) Unstable simulton wher.k,= 1. The dimensionless pa-
steps. rameters used for simplicity werge=1, «;=«,=4, y=1, vy

=v,=1, andsk;=0. (a) z.=3, Sk,=2. (b) z.=3, Sk,=2.

/ntensity

\

A. EMA and stability the EMA is of course invalid. In addition to this, the corre-

The condition that the EMA is valid can be understood asspondlng solitons rapidly become unstable, even if all the

. . G e calculations are carried out without appealing to the EMA.
Zckj> 1. I_n c_>rder_ to investigate possible mstat_)llltl(_as_ WhenThus the useful region of this approximation also appears to
the EMA is invalid, we reduce the value af while fixing

the values ofx. . We find that gap simultons become un- correspond to the region of most physical interest for soliton
K- gap ) formation, which provides a justification for the use of this
stable where.«;~1. In order to verify the existence of the

instability, an exact numerical solution of the full coupled methgd. - .
e . ) ) A This does not exclude the possibility that some exotic
gap equationgincluding the imaginary part of the solutipn lutions exist when the EMA is invalid. For example, it is
\év;sseslvsvcr)]euasec.i%linstable propagation was observed for aagssible that there could be solutions which do not occur in
Two suchcgé\seé are shown in Fig. 4. Simultons appear tE[)he EMA limit, due to symmetry considerations outlined pre-
9. = 1ons app viously, but which are stable in some transition region where
be stable even wher,z.=1.5, as illustrated in Fig. (4).

- . . there are frequency components near the edges of the band
Whenx,z.=1, we see an unstable gap simuliéng. 4(b):_|' gap. We have not investigated novel solutions of this type.
In these graphs, the value of was 1, and the analytical

solution, Eq.(7.3), was used without the imaginary part.

These results show that the EMA, which was introduced
here as a useful approximation to simplify the equations, also In a real experiment, the first harmonic and the second
in a sense delineates the physical region where stable solbarmonic usually have different material group velocity.
tions can be expected to occur. If the fields have frequencipoes such a group-velocity mismatch introduce a new insta-
components which extend well outside the band-gap regiorhility?

B. Material group-velocity mismatch
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FIG. 5. Stable propagation of gap simultons with significant material group velocity mismatch. Only the fundamental harmonic is shown.
The dimensionless parameters used wékg=0, k;=kr,=4, xe=1, y=1, v,=1, and z;=3. (@ v;=0.5, sk,=—0.25. (b) v,
=0.75, 6k,=1.625.(c) v,=1.0, 5k,=3.5(group velocity matched capdd) v,=1.5, sk,=7.25.(e) v,=2.0, 5k,=11.0.

We have performed a series of numerical simulations in & with a step size of 0.25. Stable propagation was observed
one-dimensional band-gap environment to answer this queg$er all cases even under extreme circumstances, such as
tion. We first fixed the material group velocity of the secondv,/v,=0.5 and 2, although oscillations did occur when the
harmonic and then adjusted the material group velocity ofleparture of the ratio away from one was more than 0.5.
the first harmonic so that the ratio {/v,) varied from 0.5to  Similar results have also been obtained on varying the veloc-
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FIG. 7. Stable propagation of @+ 1)-dimensional gap simul-
ton. Only the fundamental harmonic is shown. Initial conditions
were cylindrically symmetric in the reducéBMA) coordinate sys-
tem. The dimensionless parameters used for simplicity were
q:1/8,_K2:2K1:8,ZC:1, 'y=1,vl=U2=1, 5k1:0, 6k2

=< andye=1.
0.008 -
N of simulations fore=1. In these simulations, we vary the
"% 00y R value of y so thaty=0.05, 0.1, 0.2, and 0.3. Unstable band-
3 gap simultons have been observed jor 0.05 and 0.1.
g The stability transition is shown in Fig. 6. Two plots of

simulton propagation are given. Figuréafdepicts a band-
gap simulton decaying foy=0.05 ando= 1.0. Figure ©b)
is a steady propagation of a band-gap simulton with0.2
ando=1.0. These simulations demonstrate, as expected, that
the simplified EMA equations and their known stability
properties are an accurate representation of the stability prop-
erties of the full coupled equations under the conditions of
applicability of the EMA. Most importantly, it appears that
there are no new internal instabilities, at least in the one-
FIG. 6. Transition of stability of gap simultons. Only the funda- dimensional cases treated here.
mental harmonic is shown. The dimensionless parameters used
were 8k, =0, k1=ky,=4, v1=v,=1,xg=1, andz.=1. (a) De-
caying propagation:y=0.055k,=3.756 25.(b) Stable propaga-
tion: y=0.2,5k,=3.775. Using the mapping relationshifEqg. (7.1)], we obtained
higher-dimensional band-gap simultons from known higher-
ity of the second harmonic while fixing that of the first har- dimensional conventional parametric simultons. Although
monic. This result is particularly encouraging for experi- nonsymmetric solutiongin different spatial directionsare
ments, since gap simultons can form within a wide range ofqgsible, here we only show solutions obtained under cir-
material group-velocity mismatch, thus avoiding the difficult . ymstances where the simplified dimensionless EMA equa-
task of ma}tchlngl group velocities. : | . ions are rotationally symmetric. Under these conditions, ap-
bar'? d-sgép? s?rlrzrsjlljtg::gniz iirgv?/pﬁ;atl':?g Séabv\elzepzosrgjgia’:mn of)ropriate initial conditions are obtained by solving the
= " - T 2 simplified equations exactly via the numerical shooting tech-
=4.0, z.=0.5, andv,=1.0 for all cases. The value af; nique[16], based on the EMA equations
increases from 0.5 to 2.0 by an interval of 0.25. q ’ d . .
In the case of the propagation equations that are appli-
cable in the EMA limit, there is a number of results available
on stability in two and three dimensio88,39,21,37. In
The stability of conventional simultons is a function of particular, it is known that no self-focusing collapse is pos-
two parameters, the ratio between dispersion and the phaséle. Stable propagation is expected from a Lyapunov
mismatch[41]. Similarly, we expect that the stability of gap [38,39 analysis, for all cases with=1, ¢=2, and8<0,
simultons is also(at least partially determined byo  which corresponds tey>4 in our dimensionless notation.
=v41k,/(v,kq) andy. Generally, a simulton solution of Eq. Here we only consider couplings near the upper band gap
(6.5 becomes unstable for large and smally. For ex- (i.e.,s;=s,=1). A variational and numerical treatme2(l]
ample, a one-dimensional simulton becomes unstable whendicates that an even wider stability region is possible, al-
y<0.1 foro=1. though not extending as far 3&=0 in any case.
It is likely that a similar instability also exists in the band-  After obtaining appropriate initial estimated solitons, they
gap system. In order to test this, we have performed a seriege propagated numerically using the four coupled partial

D. Higher-dimensional stability

C. Internal stability of the band-gap simultons
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of the band gap, and satisfies the restriction #mt> 1. This

*3 physically means just that the Fourier components of the
N pulse are themselves mostly within the band gap.
g %2 A mapping relationship between the solutions of the ap-
3 A proximate coupled equations and the solutions of the classi-
S 0, '/'///// /// ‘\\\ cal band-gap equations was established. This mapping rela-
7 '/'//, ///////// /////////// \\\\\\\ tionship helps to reduce the number of phase space
N,/,///////// ////////// ///\\\ dimensions, and makes analytical solutions possible in spe-
°~0> Z'gf/,zl//,///////////// //////////{\\\\\ cial cases. The approximations used in obtaining the map-
= _ ""'""',g/,z{////,///////////l Q\\ ping relationship are well justified, since the EMA solutions
= ""//////// ‘ agree with exact numerical solutions, under the stated condi-

tions for applicability of the approximation. Direct numerical
simulation of the complete classical band-gap equation show
steady propagation of simultons, using the EMA solutions as
FIG. 8. Stable propagation of @+ 1)-dimensional gap simul- the initial condition, provided the pulse bandwidth is small
ton. Only the fundamental harmonic is shown. Initial conditionscompared to the width of the band gap in frequency space.
were cylindrically symmetric in the reducedEMA) coordinate  Additional restrictions on the phase mismatch are also nec-
system. The dimensionless parameters, used for simplicityessary, although we find that group velocity matching is only
were =3, —ky=2k;=8,Z;=1, y=3,v,=v,=1, 5k;=0, important for solitons moving in the laboratory frame.
Sk,= 7, andyg=1. In summary, a parametric band-gap waveguide can pro-
vide both large dispersion and large nonlinearity. An experi-
differential equations, as before. Our results in Fig. 7 show anentally relevant point is that the solutions given already are
(2+1)-dimensional gap simulton propagation, with the com-mostly completely stationary in the laboratory frame. This
plete set of equations. After a small initial oscillation, the creates an unexpected problem: how can they be introduced
gap simulton reaches a steady state, proving the stability dto the band-gap material? In fact, this is easily solved. If
the soliton in two dimensions, with values =1, §=1, the gap structure is fabricated witl,=2m,, there is a sym-
and o=2. Variational initial conditiond21] have been in- Mmetry in the equations which allows for moving solutions
vestigated elsewhere, indicating that stable propagatioWith an identical form to the stationary ones. Thus they can
should occur forat least y=0.7 with these values of and ~ be generated at the boundary, and then move longitudinally
o. into the bulk medium. If there is group-velocity matching, it
Similar results in Fig. 8 show &-+1)-dimensional gap IS also possible to have transversely moving solutions—
simulton propagation, with the complete set of equationsWhich creates yet another possible means of introducing the
and parameters correspondingyte-3, 5=1, ando=2. No  Soliton into the band-gap medium.
assumption of radial symmetry was used in solving these We have not treated the problems of boundary interac-
equations, which were treated on a full four-dimensionaftions here. It should be noted that perturbations may arise
space-time lattice. The gap simulton also reaches a steadiyhich could limit the lifetime of the solitons, owing to pro-
state after a small initial oscillation. This indicates that weceSses omitted in the original equations. These include ma-
can have stablé3+1)-dimensional gap simultons, at least terial lossegabsorption, as well as Raman scattering, four-
with y=3. While the general stability in this case is poorly Wave mixing, and any diffractive effects which are omitted
understood as yet, we note that the reduced propagatidi@m the paraxial approximation. Nevertheless, it is clearly
equations(without a band gapare known[38,39 to have  Physically interesting that at least a quasistable type of soli-
absolute stability for the case of perfect phase matching aniry wave can be generated in two or three dimensions.

above (/=4). We conjecture that there is stability feat  Most, if not all previous studies of physically relevant soliton
least y=3, given an appropriate initial pulse energy. equations were restricted to just one spatial dimension. This

restriction is clearly unnecessary, although the price that is
paid is the use of equations defined in a higher-dimensional
phase space, which do not satisfy classical integrability re-
Using a coupled mode theory, we have obtained the clagguirements.

sical band-gap equations describing a nonlinear parametric The two- and three-dimensional simultons may have po-
waveguide containing a volume Bragg grating. Without anytential applications to all-optical signal processing, including
further physical insight, these equations are difficult to anahigh-speed switchinf3], frequency shifting, pulse shaping,
lyze for simultaneous solitary wave solutions or simultons,multiplexing, demultiplexing, and signal replication. There
due to their high phase space dimension. We therefore dexe possible advantages over other soliton-based optical
veloped a Hamiltonian theory which treats one-, two-, andswitches, due to the short interaction distances, low power
three-dimensional propagation of eigenmodes of the linearequirements, and interesting stability properties of the gap
equations, instead of plane waves. Using the effective-massmulton. In particular, stability in higher dimensions means
approximation, we obtained a pair of coupled equationghat information can be encoded in the signal propagation
which are formally identical to the coupled equations de-direction, which could help in distinguishing different input
scribing a conventional dispersive parametric medium. Thend output signals in a logic gate. Response times are only
solutions found this way are stable, multidimensionallimited by the electronic response of the nonlinear medium,
solitons—provided the pulse itself is tuned to the upper edg&vhich typically occurs over femtosecond time scales. Para-

IX. CONCLUSIONS
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metric band-gap devices can be fabricated in compact sizes ACKNOWLEDGMENTS
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