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Theory of multidimensional parametric band-gap simultons

H. He* and P. D. Drummond
Department of Physics, The University of Queensland, St. Lucia Q4072, Australia

~Received 22 December 1997!

Multidimensional spatiotemporal parametric ‘‘simultons’’~simultaneous solitary waves! are possible in a
nonlinear x (2) medium with a Bragg grating structure, where large effective dispersion occurs near two
resonant band gaps for the carrier and second-harmonic field, respectively. The enhanced dispersion allows
much reduced interaction lengths, as compared to bulk medium parametric simultons. The nonlinear parametric
band-gap medium permits higher-dimensional stationary waves to form. In addition, solitons can occur with
lower input powers than conventional nonlinear Schro¨dinger equation gap solitons. In this paper, the equations
for electromagnetic propagation in a grating structure with a parametric nonlinearity are derived from Max-
well’s equation using a coupled mode Hamiltonian analysis in one, two, and three spatial dimensions. Simul-
taneous solitary wave solutions are proved to exist by reducing the equations to the coupled equations describ-
ing a nonlinear parametric waveguide, using the effective-mass approximation~EMA!. Exact one-dimensional
numerical solutions in agreement with the EMA solutions are also given. Direct numerical simulations show
that the solutions have similar types of stability properties to the bulk case, providing the carrier waves are
tuned to the two Bragg resonances, and the pulses have a width in frequency space less than the band gap. In
summary, these equations describe a physically accessible localized nonlinear wave that is stable in up to 311
dimensions. Possible applications include photonic logic and switching devices.@S1063-651X~98!06109-1#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

Parametric ‘‘simultons’’ @1–19# ~simultaneous solitary
waves! have been experimentally observed inx (2) media in
continuous wave propagation@20#, but time-dependent si
multons have yet to be generated experimentally. This is
to a number of material requirements, especially that
group-velocity matching, and the necessity of having disp
sions of identical sign in both the signal and its harmo
@21#. In addition, nonlinear crystals have a relatively sm
dispersion. This results in long formation distances, that
easily achieved only in optical fibers~which normally have a
x (3) rather than ax (2) nonlinearity!. Despite this, there are
clear advantages to the parametric medium for soliton
mation. The nonlinear phase shift is much larger at low
tensities for parametric nonlinear materials, since it scale
E2, not E3. Furthermore, temporalx (2) solitary waves are
known to exist in more than one spatial dimensions~pro-
vided the dispersion is anomalous at both wavelengths! @21#.
The bright nonlinear Schro¨dinger equation~NLS! solitons of
a x (3) medium are always unstable in higher dimensions

Bragg grating optical materials have a strong dispers
when the input laser wavelength is nearly equal to twice
refractive index modulation period. Such a strong dispers
has been confirmed experimentally@22#. This makes Bragg
gratings an ideal candidate for the formation ofx (2) simul-
tons with short interaction distances. Using a Bragg grat
also helps to solve other problems that occur with conv
tional parametric solitons. Group-velocity matching is
longer necessary with band gaps: solitons can form eve

*Present address: Department of Theoretical Physics, Scho
Physics A28, The University of Sydney, Sydney 2006, Australi
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low or zero velocity in the laboratory frame. In addition, w
will show that it is always possible to choose branches of
dispersion relation that give anomalous dispersion at b
wavelengths, thus allowing higher-dimensional solitons
form. By comparison, while gap solitons ofx (3) media are
known to occur both experimentally and theoretica
@23,24#, the formation of these single-wavelength solito
requires very large powers.

We therefore consider combining ax (2) nonlinearity with
the large dispersion of a band gap, thus creating an id
spatiotemporal soliton environment@25#. This leads to simul-
tons with a short formation distance and good stability
higher dimensions. The band-gap material can be simp
x (2) waveguide with its refractive index periodically modu
lated, in the case of one-dimensional propagation. High
dimensional cases are of the form of planar gratings or l
ered structures, in two and three spatial dimensio
respectively. In our previous letter@25#, we used a Hamil-
tonian approach to obtain band-gap simultons in one-
two-dimensional cases. In this paper, we give more detail
this method, extending it to include treatment of differe
group velocities, three-dimensional band-gap simultons,
numerical band-gap simulton solutions. The stability of t
band-gap simultons is also studied by direct numerical sim
lations. Band-gap simultons in the one-dimensional c
have also recently been considered in two related pap
using numerical techniques@26# and a multiscaling method
@27#.

II. PARAMETRIC GAP EQUATION

In this section, a one-dimensional parametric gap equa
is derived from the Maxwell equations. We assume that
medium is isotropic. A more comprehensive tensor the
would include the treatment of birefringent crystals, whi
of
5025 © 1998 The American Physical Society
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5026 PRE 58H. HE AND P. D. DRUMMOND
can allow phase matching between the fundamental and
second harmonic, even in the presence of material dis
sion. We omit this effect in the interest of simplicity. Th
one-dimensional equation can also be generalized to hig
dimensional equations including diffraction. We will tre
this important case in Sec. III, which gives a rigorous tre
ment of the three-dimensional problem including the effe
of wave-guiding structures.

One-dimensional Maxwell equations

The one-dimensional Maxwell equation describing t
propagation of a linear polarized electric fieldE and dis-
placement fieldD can be written as

]2E

]z2
5m0

]2D

]t2
, ~2.1!

wherem0 is the vacuum permeability, andD andE are per-
pendicular to the propagation directionz. The displacemen
field D is

D5e0E1PL1PNL , ~2.2!

where the linear polarization is given by a causal respo
function

PL5e0E
2`

`

x~1!~z,t2t!E~z,t!dt, ~2.3!

and the nonlinear polarization is given in the Bloemberg
expansion by

PNL'e0x~2!:EE1•••. ~2.4!

The first order susceptibilityx (1) is a second-rank tenso
and the quadratic susceptibilityx (2) is a third-rank tensor in
general. However, we will not treat this general situation
detail. For simplicity, we suppose thatx (1) is rotationally
symmetric, which means that we will consider only its sca
form. In this paper, we consider second order nonlinear
and therefore include only up to second order susceptib
in the nonlinear polarization. We also assume thatx (2) dis-
persion is small enough to be neglected here.

For a quasimonochromatic electric field in a secon
harmonic generation process, we can write the solution
the Maxwell’s equation for frequencies nearv1 ,v2 as

E5 (
j 51,2

(
6

ejAj 6~z,t !e6 i j k̄ z2 iv j t1c.c., ~2.5!

whereej are the polarizations,v252v1 , the signp56 rep-
resents right or left propagation, andj k̄ is the effective wave
vector of the corresponding carrier field. It is important
note that the actual wave number of the propagating fie
can differ from j k̄, since the envelope function can vary
space; thusk̄ is simply chosen as close to the relevant wa
numbers. In this paper, it actually corresponds to
refractive-index modulation wave number.

We therefore can writePL as
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PL5e0(
j

(
6

E
2`

`

x~1!~z,t!ejAj 6

3~z,t2t!e6 i j k̄ z2 iv j ~ t2t!dt1c.c. ~2.6!

TransformingAj 6 into frequency space and defining

x̃~1!~z,v1v j !5E
2`

`

x~1!~z,t!ei ~v1v j !tdt, ~2.7!

we have

PL5e0(
j

(
6

E
2`

`

ej x̃
~1!

3~z,v1v j !Aj 6~z,v!e6 i j k̄ z2 i ~v1v j !tdv1c.c.

~2.8!

Expandingx̃ (1)(v1v j ) aroundv j into a power series up
to first order inv, we find that

D5(
j

(
6

ej S e j~z!Aj 6~z,t !1 i e j8~z!
]Aj 6~z,t !

]t D
3e6 i j k̄ z2 iv j t1PNL1c.c., ~2.9!

wheree j (z)5e0@11x̃ (1)(z,v j )# and e j8(z)5e0]x̃ (1)(z,v)/
]vuv j are the permittivities and their derivatives at the fu
damental and second-harmonic frequencies.

The spatial variation ofx (1) is chosen to correspond to
Bragg grating structure withe j (z)5 ē j@11D j (z)#, whereē j
is the spatial average ofe j (z), andj 51 and 2. In general, we
will consider D j (z) to be a small parameter here, and t
results will be expanded in terms of a small parameterD
.D j (z). This notation also allows us to distinguish the sp
tial modulation present at frequencyv1 from the ~generally
different! spatial modulation present at frequencyv2 . Each
carrier wave at these distinct frequencies will experienc
rather complex modulated refractive index. However,
resonant properties of Bragg gratings means that each
only interact strongly with a Fourier component having h
the respective carrier wavelength. Here the permittivitye j (z)
is a periodic function with periodd. We can expande j (z) in
a Fourier series, with

D j~z!5(
l

D j l exp~2i l k̄ z!1c.c., ~2.10!

given that D j l are complex coefficients, andk̄5p/d
52pn̄1 /l1 , wherel1 is the free-space wavelength of th
fundamental field. The refractive index at the first carr

frequency is given byn̄15Aē1 /e0. More general types of
grating can be treated, but this is sufficient to treat the g
soliton. For reference purposes later, we note that ifD j l is
real and positive, the refractive index has a cos(2lk̄z) modu-
lation, with a maximum in the refractive index occurring
the origin.

The conceptually simplest grating is that the modulat
of refractive index is the superposition of two sinusoid
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PRE 58 5027THEORY OF MULTIDIMENSIONAL PARAMETRIC . . .
waves—only terms withD j 1 andD j 2 in Eq. ~2.10! exist. It is
possible that the two coefficients are of opposite signs,
the two modulations are then out of phase. It is highly de
able that band gaps occur at both the carrier wavelength
order to optimize the nonlinear coupling between the wav
This is because the resonant modes of the linear Max
equations near a band gap are quasistanding waves—
these will only couple strongly to other standing waves.

A more practical modulation of the refractive index is of
nearly square-wave shape. One can fabricate this gratin
using laser interference patterns in a saturated photosens
material, thus giving rise to higher order harmonics. T
type of grating is also capable of supporting band gaps
higher harmonics of the optical carrier frequency. Thus i
possible in principle to have strongly coupled simultons
more complex types, by considering appropriately en
neered Bragg gratings with several distinct spatial frequ
cies. An obvious example of this would be a nondegene
parametric simulton requiring three distinct spatial frequ
cies defined so thatk11k25k3 .

We definekj5k(v j )5Am0ē jv j as the linear wave num
ber, dkj5kj2 j k̄! j k̄, and substitute Eqs.~2.9! and ~2.10!
into the Maxwell equation~2.1!. Neglecting terms with third
order differentiation, we arrive at

(
j 51

2

ej H F2i j k̄
]Aj 1

]z
1

]2Aj 1

]z2
1m0ē jD j j v j

2Aj 2

1@m0ē jv j
22~kj2dkj !

2#Aj 11 i
2kj

v j

]Aj 1

]t

2~e j12v je j8!
]2Aj 1

]t2 Ge2 i j ~v1t2k1!z

1F22i j k̄
]Aj 2

]z
1

]2Aj 2

]z2
1m0ē jD j j j

2v1
2Aj 1

1@m0ē jv j
22~kj2dkj !

2#Aj 21 i
2kj

v j

]Aj 2

]t

2m0~e j12v je j8!
]2Aj 2

]t2 G J e2 i j ~v1t1k1!z

5m0

]2PNL

]t2
, ~2.11!

wherev j5dv/dkuv j5v j /@kj„11v je j8/(2e j )…#.
Assuming thatAj are slowly evolving, we neglect grou

velocity dispersion terms involving]2/]t2 and ]2/]z2.
Terms involvingdkj

2 or first order differentiation anddkj are
also neglected, for they are much smaller than these te
involving only dkj or first order differentiation, which we
call first order terms. Retaining only the first order pha
matched terms of the above equation, we have

i F 1

v1

]

]t
1

]

]zGA111dk1A111k1A121xEA11* A2150,
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i F 1

v1

]

]t
2

]

]zGA121dk1A121k1*A111xEA12* A2250,

i F 1

v2

]

]t
1

]

]zGA211dk2A211k2A221xEA11
2 50,

i F 1

v2

]

]t
2

]

]zGA221dk2A221k2*A211xEA12
2 50,

~2.12!

where

xE5v1
2x̃~2!/~ k̄c2!,

x̃~2!5e1* •x~2!
•e1* e25e2* •x~2!

•e1e1 , andk j5 j k̄D j j /2.

To simplify the equations, we can always choose the pha
of ej so thatxE is real. We neglect the group-velocity dis
persion of the medium, as this is usually much smaller th
the gap dispersion. However, we have included the diff
ence in group velocity between the two carriers, as this is
always negligible.

III. BAND GAP IN ONE DIMENSION

Without the grating structure, the dispersion relation~fre-
quencyv versus wave numberk) would be a continuous
straight line in the vicinity of the gap frequency. Introducin
a grating structure opens a gap at the edge of the Brillo
zone for each of the carrier frequencies. Inside each g
light is completely Bragg reflected, resulting in strong d
persion near the critical gap frequencies. The eigenmode
the Maxwell equations in the vicinity of the gap are al
modified. Instead of the usual plane waves, the eigenmo
become modulated quasistanding waves, with a pure st
ing wave being achieved exactly at the wave number
resonance. In this case there are two possible standing w
solutions with different spatial phases@i.e., sin(k̄z) and
cos(k̄z) solutions#. These are familiar in electronic band-ga
theory, and have the usual property that one has an eige
quency above, and the other below, the gap center freque
Propagation of a free field with a frequency in the gap reg
is, of course, prohibited. However, in the presence of
nonlinear medium, it is possible that propagation can oc
due to nonlinear phase shifts.

One-dimensional dispersion relation

The dispersion relation of the one-dimensional Maxw
equations in the slowly-varying envelope approximation c
be obtained by studying the linear part of the gap parame
equations~2.12!. Neglecting the nonlinear terms, we hav
the linear coupled equations

i F 1

v j

]

]t
1

]

]zGAj 11dkjAj 11k jAj 250,
~3.1!

i F 1

v j

]

]t
2

]

]zGAj 21dkjAj 21k j*Aj 150.
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5028 PRE 58H. HE AND P. D. DRUMMOND
Following standard techniques@24#, we introduce a vector
for the right and left propagating fields:

AW j~z,t !5FAj 1

Aj 2G . ~3.2!

Inserting the ansatz

AW j~z,t !5 fW j~Q!ei ~Qz2V j t !, j 51,2, ~3.3!

into the linear equation~3.1!, one obtains the algebraic equ
tion

FV j /v j2Q1dkj k j

k j* V j /v j1Q1dkjGF f j 1

f j 2G50. ~3.4!

Solving the above equation forQ, we have two eigenval-
ues corresponding tos561,

V j
~s!~Q!5v j~sAQ21uk j

2u2dkj !, j 51,2. ~3.5!

If dkj50, this equation becomes the dispersion relations
found in conventionalx (3) band-gap systems@24#. The width
of each band gap in the dispersion relation is then given

DV j5V j
1~0!2V j

2~0!52v j uk j u. ~3.6!

Substituting the above solutions@Eq. ~3.5!# into the linear
equation, we obtain two sets of normalized eigenvect
corresponding to linear propagation above and below
band gap:

fW j
~s!~Q!5

@k j ,Q2sAuk j
2u1Q2#T

A2~ uk j
2u1Q22sQAuk j

2u1Q2!

, ~3.7!

where the signs521 corresponds to the lower branch, a
s51 to the upper branch.

The physical meaning of thes parameter is clearest in th
case ofQ50, which is in the center of the band gap ink
space. Suppose, for simplicity, that thej th refractive index
has a local maximum atz50. This corresponds to a
cos(2k̄jz) modulation of the refractive index, so thatk j.0.
In general, we can always choose the origin so that thi
true for at least one of the carrier frequencies, althoug
might not be true for both. In this case the lower branchs

521) also has a symmetric form, with a cos(k̄jz) modula-
tion. The upper branch has an antisymmetric sin(k̄jz) mode
function. We can understand this physically if we argue t
a lower energy—and hence a lower frequency—is obtai
when the maximum field intensity in space corresponds
the maximum refractive index in space, which means
maximum dielectric polarization. In Sec. IV, we see that t
is justified by the Hamiltonian theory of the dielectric plu
radiation system.

The dispersion relation@Eq. ~3.5!# is depicted in Fig. 1 for
one of the band gaps. Because of the gap, linear propag
is not allowed if the frequency shift from the gap center
small, i.e.,uVu,v j uk j u. This results in strong dispersion, s
that
ip
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e
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d2V js

dQ2
5

sv j uk j
2u

~Q21uk j
2u!3/2

. ~3.8!

The dispersion (v95d2v/dk2) of typical nonlinear opti-
cal media is of the order of 1021 m2/s at a wavelength of
1 mm. In the case of lithium niobate, the correspondi
refractive index isn̄.2.5. Assuming 0.2% refractive inde
modulation, so thatD j j 50.002, we find thatk j is of the
order of 104 m21. This indicates a maximum band-gap di
persion of v j /uk j u.104 m2/s. Such a strong dispersio
gives an advantage in reducing soliton formation length s
nificantly, and has been recently confirmed experimenta
@22#. The large gap-induced dispersion provides a justifi
tion for our neglect of material group-velocity dispersion e
fects in these equations.

IV. HAMILTONIAN METHOD

Traditionally, there are two approaches to solving solit
equations. The first is the inverse scattering method, wh
gives a complete exact analytic solutions for NLS-type eq
tions. This method has not yet been applied to parame
equations. In fact, these equations appear to be generi
nonintegrable. Another approach is the virtual partic
method, which treats soliton formation as equivalent to
equation of motion of a virtual particle in a nonlinear fie
@28,16#. A soliton solution in this picture corresponds to
path that connects two critical points~topological soliton! or
an enclosed path that passes one critical point~nontopologi-
cal soliton!, where a critical point is a point at which th
virtual particle experiences no ‘‘force’’ from the nonlinea
field. This picture gives a clear physical understanding
soliton equations. Based on the topological nature of
nonlinear field, we can thus classify soliton solutions. T
difficulty of this method is to find the soliton paths—whic
may not be represented analytically, but can be expres
numerically. Such a task is relatively easy if the nonline
field has a low dimension.

This topological method has been applied successfully
the parametric equations including dispersion@16#. Without

FIG. 1. Dispersion relation for light with wave numbers arou
kj5 j p/d, whered is the period of the grating. The width of th
gap is given asDV5V12V252v j uk j u. For simplicity,V is plot-
ted with a unit ofv jk j , while Q is plotted with a unit ofk j .
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PRE 58 5029THEORY OF MULTIDIMENSIONAL PARAMETRIC . . .
actually solving the equations, the method treats them a
pair of Newtonian equations describing the motion of a v
tual particle in a two-dimensional acceleration field. The e
istence and parameter ranges can be obtained by studyin
topological structure of the acceleration field. Based on
information from these analyses, numerical solutions
then be obtained easily. The nonlinear field of the parame
gap equation is at least four dimensional~in phase space!,
and identifying a soliton path involves at least three fr
parameters. In applying this method to the parametric
equations, it is simpler to reduce them into two nonline
coupled second order equations. In order to achieve this
plification, we next turn to approximate Hamiltonian tec
niques for analyzing the gap soliton. In a later section,
physical insight obtained from this approach will allow us
find a large family of solutions to the full set of equation
using acceleration field arguments—together with numer
solutions of the virtual particle equations.

A. Hamiltonian

We will show that by using a Hamiltonian method fo
propagation near the center of the band gap, an approxim
pair of coupled second order equations can be derived.
allows a topological classification of the grating solitons, u
ing previously known techniques. The Hamiltonian theo
also permits us to describe waveguide mode structures
very simple way. We note that the Hamiltonian for a nonl
ear medium is most readily written using the displacem
field as a canonical variable, as pointed out by Hillery a
Mlodinow @29#. When using the displacement field as t
canonical variable, it is most natural to expand the elec
field in a formal power series in the displacement field, us
inverse permittivity tensors as expansion coefficients. Th
in the absence of dispersion

Ei~ t,x!5(
jn

h i ,i 1 . . . i jn

~n! ~x!Di1~ t,x! . . . Di jn
~ t,x!.

~4.1!

Extending the above expansion to include linear dispers
the complete Hamiltonian@30,31# can be written as

H5H01H int , ~4.2!

where the linear and nonlinear terms are, respectively,

H05E (
j

S 1

m0
uBW j u21h~x,v j !

2
]

]v j
F v j

h~x,v j !
GDW j*DW j Dd3x,

H int5
1
3 E D•h~2!:DD d3x. ~4.3!

Herex5(r ,z), while r5(x,y) are the transverse coordinat
andz is the longitudinal coordinate. We have introduced
inverse permittivity,h(x,v)51/@e(x,v)# for convenience.
Similar to e, we assumeh to be rotational symmetric an
only consider its scalar form here. We also defi
h (2)52e0x (2)/(e1

2e2) @29#, D5( j 51,2(DW j1DW j* ), and B
5( j 51,2(BW j1BW j* ). In Sec. III, the electric field is expresse
as a pair of antipropagating waves based on the cou
a
-
-
the
e
n
ic

e
p
r

-

e

,
al

te
is
-

a
-
t

d

ic
g
s,

n,

n

ed

mode theory. Here we start from the most general form
these fields in a three-dimensional medium.

We emphasize that this approach is capable of genera
the full Maxwell’s equations in four dimensions. The Ham
tonian clearly separates into a linear part and a nonlin
part. We first start with the linear part. This will allow us t
identify mode structures, which leads to some useful
proximations later.

B. Linear part of the Hamiltonian and mode expansion

Our objective in this section is to calculate the line
mode expansion of the wave equation in a three-dimensio
medium that includes a weak refractive index modulation
the z direction. We also consider cases in which there i
transverse variation of the refractive index, causing eithe
one- or two-dimensional waveguide to occur. The calcu
tion of the mode structure will be carried out to first order
the refractive index modulation. In all cases we are prima
interested in volume gratings that extend throughout the
gion of interest; that is, the grating is quasihomogeneous
is also possible to fabricate inhomogeneous gratings—for
ample, by surface modulation of a two-dimensional wav
guide. We do not consider this case here, and our results
not applicable to surface gratings.

Although we only intend to obtain classical equations
is convenient to follow the normalization of the standa
quantization procedure@30,32,33#. We introduce the dual po
tential L @29#, defined so thatDW 5¹3L and BW 5m] tL,
which is useful for obtaining a nonlinear Hamiltonian theor
We expressL in terms of mode functionsLjn normalized
over a lengthL. Periodic boundary conditions are imposed
xi50,xi5L, wherexi5x,y,z, and we later takeL→`. The
mode expansion is taken to be

L~ t,x!5
1

AL
(
j n

aj n~ t !Ljn~x!. ~4.4!

Here aj n}e2 iv j nt, and n refers to all mode indices. We
chooseLj n to be transverse.

Hence we can write

DW 5
1

AL
(
j n

¹3Lj naj n ,

BW 5
2 i

AL
(
j n

m0v j nLj naj n . ~4.5!

With this definition, the positive frequency part of th
electric field (EW) can be written asEW(x,v)5h(x,v)DW (x,v)
2PW NL(x,v)/e0 . However, for evaluating mode functions
we temporarily consider just the linear Maxwell equation
Substituting the above expansion into the Maxwell equat
¹3EW52] tBW gives a wave equation, and hence an eig
value equation for mode functionsLj n with eigenvaluesv j n ,
as follows:

¹3@h~x,v j n!¹3Lj n#5mv j n
2 Ljn . ~4.6!
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5030 PRE 58H. HE AND P. D. DRUMMOND
ExpandingDW and BW in terms of modes that satisfy th
above equation in the linear part of the Hamiltonian gives
result

HL5(
j n

\v j naj n* aj n . ~4.7!

In order to use this result, we need to develop appro
mate expressions for the mode eigenvalues and eigenf
tions, in the typical case of weakly guided waves in one a
two dimensions, as well as a full three-dimensional b
crystal layered structure. In a weakly guided waveguide,
assume that that the permittivity factorizes into longitu
nally and transversely varying parts, so that

e~x,v!5 ẽ~z,v!e r~r !51/h~x,v!, ~4.8!

where, in the vicinity of thej th carrier frequency,e r(r )51
1D j r (r )51/h r(r ), ẽ(z,v)5 ē(v)@11D j (z)#51/h̃(z,v),
and h̄(v)51/ē(v). Both D j r (r ) andD j (z) are small quan-
tities. The inverse permittivity is given to first order by

h~x,v!'h̄~v!@12D j r ~r !2D j~z!#. ~4.9!

We also assume that the transverse permittivity va
much slower than the longitudinal permittivity, as is usua
the case for weakly guided waves with a modal dimens
much greater than a wavelength. This means that we h
¹h'¹h̃.

Next, suppose thatn5(m,n), and each spatial mode i
approximately factorizable into the form

Lj n5Lj n~r ,z!5uj m~r !L jn~z!, ~4.10!

where the direction of theLjn(x,z) totally depends on
uj m(r ), and ¹L jn•uj m'0. Since ¹•L50, we have
¹•(L jnuj m)50, which gives¹•uj m'0.

Substituting the above two expressions into the eig
value equation~4.6!, we obtain

¹h3@¹3~L jnuj m!#1h¹3@¹3~L jnuj m!#

5m0v j n
2 L jnuj m . ~4.11!

To simplify the above equation, we work out the followin
relationships, with the permittivities are all evaluated at
eigenfrequencyv j n :

¹3@¹3~L jnuj m!#'2
]2L jn

]z2
uj m2L jn¹r

2uj m ,

¹h3@¹3~L jnuj m!#'2h r

]h̃

]z

]L jn

]z
uj m , ~4.12!

where ¹r
25]2/]x21]2/]y2, and the conditions¹•uj m50

and¹D j r '0 have been used, together with the relation t
¹L jn3(¹3ujm)50.

Dividing both sides of the equation byh, and retaining
terms up to first order inD j r andD j we arrive at
e

i-
c-
d
k
e
-

s

n
ve

-

e

t

S ]D j

]z

]L jn

]z
2

]2L jn

]z2 D uj m2¹r
2uj mL jn5

m0v j n
2

h~x,v j n!
L jnuj m .

~4.13!

To simplify the right-hand side of the above equation, w
now expand the eigenfrequencies near thej th carrier fre-
quency of interest, asv j n5v j1Dv j m1V jn , whereDv j m
and V jn are small quantities when compared withv j . We
next expand the permittivity aroundv j to first order, thus
including group-velocity effects in the material dispersio
This gives

m0

v j n
2

h~x,v j n!
'kj

2@11D j~z!1D j r ~r !#

12@Dv j m1V jn#kj /v j . ~4.14!

Introducing ṽ jn5v j@11V jn /(kjv j )#, the eigenvalue
equation hence becomes separable, with group-velocity
fects included. There is one transverse mode equation,
one longitudinal mode equation forujn andL jn , to first or-
der in D:

@¹r
21kj

2D j r ~r !#uj m~r !522~kj /v j !Dv j muj m~r !,
~4.15!

F h̃ j~z!
]2

]z2 1
]h̃ j~z!

]z

]

]z
GL jn~z!52m0ṽ jn

2 L jn~z!.

Here h̃ j (z)5h̃(z,v j ) is just the longitudinally varying par
of the inverse permittivity, evaluated at thej th carrier fre-
quency.

C. Transverse modes

It is possible to solve the equation foruj m if D j r is given,
using the standard techniques for weakly guided waves a
j th carrier frequency. The modesuj m can also be normalized
so that

E uj m•uj m8d
2r5dm,m8 . ~4.16!

These modes take different forms, depending on the spe
type of waveguide.

~i! One dimension:In the one-dimensional case~for ex-
ample, in a single mode fiber!, higher order modes are usu
ally neglected. We can writeujm simply as

uj05uj~r !,

whereuj is the zeroth order transverse mode, and the eig
valueDv jm is Dv j 0 .

Two dimensions:In a planar waveguide case~two dimen-
sional!, ujm can be written in the form

ujm5uj~y!eik jmx/AL

~assuming the waveguide is confined along they direction,
andL is the transverse normalization distance!, whereuj is
the zeroth order transverse mode andkjm is a scalar. Thus
Dv j m5Dv j 01v j kjm

2 /(2kj ), whereDv j 0 is the eigenvalue
of the zeroth eigenmode.
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Three dimensions:In a bulk crystal~three dimensional!,
ujm can be written in the form

ujm5uje
ikjm•r/L.

Here uj is the polarization direction, Dv j m
5v j ukjmu2/(2kj ), and L2 is the transverse normalizatio
area.

D. Longitudinal modes

We next consider the longitudinal mode equation. We
sume a waveguide which is longitudinally modulated in
similar manner as discussed in Sec. III, which definese j .
For frequencies in the neighborhood of thej th carrier fre-
quencyv j , the transversely averaged permittivity is defin
as in the one-dimensional case:

D j~z!5 ẽ~z,v j !/ ē~v j !215(
l

D j l e
2i l k̄ z1c.c.

~4.17!

The effective wave numberk̄ is the same as defined in Se
III.

ExpandingL jn into a Fourier series, we look for mode
that are described by a momentum factorQn such that

L jn~z!5l jn(
l

Cjn~knl!exp~ iknlz!, ~4.18!

whereknl5Qn1 l k̄ and l is an integer.
Substituting the above equation into Eq.~4.15! and col-

lecting coefficients of terms with same wave numbers,
have the equation for the coefficientsCjn(k):

~2knl
2 h̄ j1m0ṽ jn

2 !Cjn~knl!

5knl(
j l 8

@~knl12l 8k̄!h̄ jD j l 8
* Cjn~knl12l 8k̄!

1~knl22l 8k̄!h̄ jD j l 8Cjn~knl22l 8k̄!#. ~4.19!

Solving the above equation yields the exact values ofCjn

and the dispersion relationship betweenṽ jn and Qn . Fur-
thermore, for any two longitudinal modes, they must a
satisfy the general orthonormality requirement@30,32,33#
-

e

o

E S L jn* L jn82
1

2m0v jn

]h̃

]v jn
]zL jn* ]zL jn8D dz5

L\dnn8
2m0v jn

,

~4.20!

which determines the value ofl jn , neglecting small terms
corresponding to combined dispersive and transverse m
corrections. It is difficult to obtain the explicit form ofL jn ,
for it consists of an infinite series of terms whose coefficie
are to be determined by infinite number of central equati
@Eq. ~4.19!#.

We are interested in waves near the Bragg condition,
if the wave vector is too far away from the Bragg conditio
the medium acts just like a homogeneous medium. We th
fore assumeQn! k̄ andh̄ k̄ j

2'm0ṽ jn
2 . To treat these approxi

mations, we will assume the solution can be expanded
power series in the expansion parameterD, with Qn / k̄,D.
This allows us to group terms of the same order together,
neglect higher order terms in a consistent approach. To
order in this approximation, we retain only those equatio
that contain both coefficientsCjn( k̄1Qn) and Cjn(2 k̄
1Qn) since they dominate the other coefficients, which c
then be neglected. This implies that we only retain terms
the expansion ofL jn with l 56 j .

At this point, we notice, in the Fourier series forL2 , that
the second-harmonic field interacts with Bragg gratings b
with a resonant condition (D22), and with a period of twice
the resonant condition (D21). In Eq. ~4.19!, we see that this
subharmonic grating can only coupleCjn(2k̄) to Cjn(0) and
Cjn(4k̄). The corresponding coupling coefficient is zero f
the coupling toCjn(0), due to themomentum factors, and
therefore this nonresonant lattice does not result in Br
reflections in the case of a volume Bragg grating. Howev
for surface Bragg gratings~not considered here! it is known
that coupling to a subharmonic grating can cause large
fraction losses@34#, due to scattering in orthogonal direc
tions. This case of surface corrugations is therefore
treated here, as previously mentioned.

Equation Eq.~4.19! hence becomes~in the case of thej th
carrier!

@~ j k̄1Qn!2h̄ j2m0ṽ jn
2 #Cjn~ j k̄1Qn!

1~Qn
22 j 2k̄2!h̄ jD j j Cjn~2 j k̄1Qn!50,

~Qn
22 j 2k̄2!h̄ jD j j Cjn~ j k̄1Qn!

1@~2 j k̄1Qn!2h̄2m0ṽ jn
2 #Cjn~2 j k̄1Qn!50. ~4.21!

Solving the above equation forṽ jn
2 , and including the

explicit frequency dependence of the permittivityh̄(v), we
have
m0ṽ jn
2 5~ j 2k̄21Qn

2!h̄ j1sA~ j 2k̄22Qn
2!2uh̄ jD j j u214 j 2k̄2Qn

2h̄ j
2' j 2k̄2h̄ j1sAk̄4uh̄ jD j j u214 j 2k̄2Qn

2h̄ j
2 ~4.22!
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where the signs521 corresponds to lower branch ands
51, upper branch.

This result agrees with a similar expression obtained
solving the linear Maxwell equation of the electric field a
the permittivity @35#. The difference is of the order of th
square of the expansion parameter~i.e., D2), which can be
neglected because both approaches only keep up to firs
der in D.

Taking the square root of both sides, and retaining te
to first order inD as before, we obtain

ṽ jn'vp~v j !~ j k̄1sAuk j u21Qn
2!, ~4.23!

wherevp(v j )51/Am0ē(v j ), andk j is defined as in the one
dimensional case, sincek j5 j k̄D j j /2. We have used in this
first order approximation, that the Bragg scattering term
nearly frequency independent within each band, i
k(ṽ jn)'k(v j )'k j .

If we substituteṽ jn5v j1vp(v j )V jn /v j into the above
equation, we obtain the same dispersion relationship
tained in Eq.~3.5!, so that

V jn5V j
~s!~Qn!5v j~sAuk j u21Qn

22dkj !, ~4.24!

wheredkj5k(v j )2 j k̄ as before.
The longitudinal eigenvalueV j n is a function ofQn , j

and s, as areL jn and Cjn . The total eigenvalue can b
written as

v j n5v j m
~s!~Qn!5v j1Dv j m1V j

~s!~Qn!, ~4.25!

and we can writeL jn andCjn as
y

or-

s

s
.,

b-

L jn~z!5L j
~s!~Qn ,z!5l j

~s!~Qn!uj L
~s!~Qn ,z!eiQnz,

Cjn~6 k̄1Qn!5Cj 6
~s!~Qn!, ~4.26!

where the rapidly varying part of the Bragg grating mo
function is given by

uj L[D]
~s! ~Q,z!5Cj 1

~s!~Q!ei jk̄ z1@2#Cj 2
~s!~Q!e2 i j k̄ z.

~4.27!

Hereuj L is the dual potential mode function, whileujD is the
displacement~or electric! field mode function in a slowly
varying envelope approximation. From now on, we sh
omit the longitudinal mode index onQn , since these mode
become infinitely closely spaced in the limit of large quan
zation volume, whereL is large.

The ratio betweenCj 1
(s) (Q) and Cj 2

(s) (Q) is determined
from Eq. ~4.21!. The coefficientsCj 1

(s) (Q) and Cj 2
(s) (Q) are

normalized such that„Cj 1
(s) (Q)…21„Cj 2

(s) (Q)…251. Using
these conditions, we derive the explicit forms in the fi
order approximation,

Cj 6
~s!~Q!56 f j 6

~s!~Q!, ~4.28!

where fW j5( f j 1 , f j 2) is the the same as in Eq.~3.7!, in the
section on the one-dimensional equation. There is an a
tional sign correction in the above equation, since the exp
sion given here is for the dual potentialL, rather than in
terms of the electric or displacement field. Once this is tak
into account, the general symmetry properties of the long
dinal modes correspond exactly to those in the o
dimensional case.

The value ofl j
(s)(Q) can now be obtained from substitu

ing L j
(s)(Q,z) into the normalization condition@30,32,33#,
1

LE F ~L j
~s!!* L j

~s!2
h̃8„z,v j m

~s!~Q!…]z~L j
~s!!* ]zL j

~s!

2m0v j m
~s!~Q!

Gdz5
\

2m0v j m
~s!~Q!

, ~4.29!

whereh̃8(z,v)5]h̃/]z.
Substituting Eq.~4.26! into the above equation, we find

„l j
~s!~Q!…2F „Cj 1

~s!~Q!…2S 12
1

2m0v j m
~s!~Q!

h̄8„v j m
~s!~Q!…~ j k̄1Q!2D

1„Cj 2
~s!~Q!…2S 12

1

2m0v j m
~s!~Q!

h̄8„v j m
~s!~Q!…~2 j k̄1Q!2D G5

\

2m0v j m
~s!~Q!

, ~4.30!
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where we have used the approximation]h̃(z,v)/]v

']h̄(v)/]v. We have assumed thatD j is dispersionless
within its own frequency band. The dispersionh̃8 is nor-
mally small, and we suppose it is at most of orderD in
dimensionless units, i.e., we suppose that the product t
h̃8k̄Q/(2m0v j ) is of the order ofD2 and hence can be ne
glected. Using this approximation and solving Eq.~4.30! for
l j

(s)(Q) gives

l j
~s!~Q!'A \

2m0v j m
~s!~Q!2h̄8„v j m

~s!~Q!…j 2k̄2
.

~4.31!

For later use, we need an approximate expression suit
for evaluating nonlinear interaction terms in the Ham
tonian. We therefore also evaluate this expansion coeffic
at the gap center, giving the result

l j
~s!~0!'l j5A\v j ē j

2kj
@11O~D!#. ~4.32!

In order to understand the physical properties of th
solutions, we recall that these longitudinal mode functio
are essentially identical in symmetry to those obtained in
one-dimensional case. Thus, ifk j is real and positive, the
lower energy displacement field solution forQ50 ~which is
labeled ass521) has a cos(k̄jz) spatial dependence, and
therefore completely symmetric aboutz50. This can be un-
derstood physically by noticing that the linear Hamiltoni
~ignoring all dispersion for simplicity!, is given by

H05E (
j

S 1

m0
uBW j u21h~x!uDW j u2Dd3x. ~4.33!

In the case thatk j is real and positive, the inverse dielectr
permittivity has a negative cos(2k̄jz) modulation term, which
reduces the energy of the symmetric cos(k̄jz) field mode,
with s521, while increasing the energy of the antisymm
ric mode withs51.

These energy changes agree precisely with the freque
changes of the mode frequencies worked out from the s
tions to the one-dimensional Maxwell equations. While t
is as expected, it provides an additional confirmation of
correctness of the Hillery-Mlodinow form of the dielectric
radiation Hamiltonian that is used here. This difference
energy is, of course, the physical origin of the band gap
the dispersion relations.

V. EFFECTIVE-MASS APPROXIMATION

In the above analysis, we have assumed that bothQ/ k̄ and
D j j are first order in a dimensionless expansion parameteD.
We are now interested in photon properties near the cente
the band-gap region in momentum space, whereQ is small,
so we further assume here thatQ/k!1. This is a different
expansion parameter toD, and in practical terms can b
much larger thanD in many cases. We emphasize that t
expansion is not essential to the problem—we can still w
down the Hamiltonian without it—but it greatly simplifie
m
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n
n
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e

the final equations that are obtained. We first expa
v (s)(Q) around the carrier frequencyv j . This gives the dis-
persion relationship@Eq. ~3.5!#, which was obtained from the
coupled mode theory. We then expand the resulting exp
sion in a Taylor series up to second order inQ/uk j u:

V j
~s!~Q!5V j

~s!~0!1
s\Q2

2mj
, ~5.1!

where the effective mass of thej th carrier is

mj5\uk j u/v j , ~5.2!

andv j is the group velocity. The frequency at the band-g
edge is

V j
~s!~0!5~suk j u2dkj !v j . ~5.3!

This is, in fact, the well-known effective-mass approx
mation ~EMA! in solid state physics—although more pr
cisely smj is called the effective mass, with opposite sig
below and above the band gap. It should be noticed here
the main effect of material group-velocity terms is to sligh
change the curvature of the effective-mass parabola. T
term is therefore much less significant for modes near
band center, whose effective group velocities in essence
due to the Bragg grating itself.

It can be shown that the remainder term of the abo
expansion is

R~3!~Q!5
2\suk j u2v jQ

4

2~ uk j u21Q2!5/2
. ~5.4!

The condition that the EMA is valid is then

uR~3!~Q!u!U\2Q2

2mj
U. ~5.5!

The above condition can be easily satisfied ifQ,uk j u.
The value of the remainder term is significant compared w
the value of the second term only ifQ anduk j u are of similar
magnitudes.

The total eigenvalue,v j n , of the mode equation is the
sum of the longitudinal eigenvaluev j1V jn , and the trans-
verse eigenvalue,Dv j m . From this relationship we have
~near thej th carrier!

v j n5v j m
~s!~Qn!5v j m

~s!1
s\Qn

2

2mj
, ~5.6!

where the eigenvalue at the band-gap edge is

v j m
~s!5v j1V j

~s!~0!1Dv j m . ~5.7!

It is convenient to work in the coordinate representation
we want to compare theoretical results to those of exp
ments. The Hamiltonian can therefore be expressed in te
of these field operators. We introduce an effective dim
sionalityD51,2, and 3. As usual, we first consider the line
part of the Hamiltonian describing waveguides with confin
ment in two transverse dimensions (D51) and in one trans-
verse dimension (D52), as well as bulk crystals (D53)
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which have no transverse confinement~except boundary con
ditions!. To simplify the analysis, we assume that whe
there are discrete transverse modes—as in a fiber—only
lowest order mode@m5(0,0)# needs to be considered. I
this case, we definev j

(s)5v j 0
(s) . The restriction to single dis

crete transverse modes is not always possible, and dep
on the mode level spacing.

We introduce an envelope for the excitation in t
dielectric—which physically is really the polariton densi
field—in D dimension~s!, defined as

C j
~s!~x!5L2D/2(

k
aj k

~s!eik•x, ~5.8!

where k5(0,0,Q) in one dimension,k5(kjm,0,Q) in two
dimensions, andk5(k jm ,Q) in three dimensions.

The inverse Fourier transform of the above expression

aj k
~s!5L2D/2E dDxC j

~s!~x!e2 ik•x, ~5.9!

wherex5(r ,z) as before.
Substituting the above expression together with Eq.~5.7!

into the linear part of the Hamiltonian, we have

H0'(
j ,s

\E S s\

2mj
u]zC j

~s!u21
\

2mj'
u¹D'C j

~s!u2

1v j
~s!uC j

~s!u2DdDx, ~5.10!
of
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where¹D' is the transverse part of the operator inD dimen-
sions, so that¹3'5(]/]x,]/]y), and mj'5\kj /v j is the
effective transverse mass. We notice that typically,m2'

.2m1' to a good approximation, although this is not a r
quirement in the theory. The longitudinal and transverse
fective masses often can have quite different values, e
cially if the Bragg dispersion is large~i.e., uk j u is small!.
Thus, given the parameters quoted in Sec. III, the effec
masses have the following orders of magnitude:mj
;10238 kg andmj';10235 kg.

Nonlinear part of the Hamiltonian

For solitons, the nonlinear part of the Hamiltonian
about the same order as the ‘‘dispersive terms’’~terms in-
volving ]2/]z2), since the cancellation of nonlinearity an
dispersion is the requirement for soliton formation. This
dicates that we only need to keep the leading terms, when
use the EMA to expandD in a series ofQ/uk j u for the
nonlinear part of the Hamiltonian. Assuming thatujm is
slowly varying, we therefore have, approximately,

DW 5
1

AL
(
j n

~¹L j n3ujm1L j n¹3ujm !aj n ,

'
1

AL
(
j n

¹L j n3ujm . ~5.11!

Substituting Eq.~4.26! into the above equation, we hav
DW j' iL 2D/2ẑ3uj~r !(
s,k

l j
~s!~Q!@~ j k̄1Q!Cj 1

~s!~Q!ei jk̄ z1~Q2 j k̄ !Cj 2
~s!~Q!e2 i j k̄ z#aj k

~s!eik•x. ~5.12!
nly

hat
-
are

r

r-
two
li-
For simplicity, we take the above equation to the limit
Q50, thus eliminating cross coupling terms involvingQ
~which are smaller than the zeroth order terms!:

DW j' iej~r !(
s

l j j k̄ujD
~s!~0,z!C j

~s!~x!1O~Q/k j !

' i
A\kj ē jv j

2 (
s

@sgn~k j !e
i jk̄ z2se2 i j k̄ z#C j

~s!~x!ej~r !,

~5.13!

where ej (r )5 ẑ3uj (r ) is the transverse mode polarizatio
vector @in a three-dimensional case,ej (r ) becomes indepen
dent of r ], and sgn(x)5x/uxu is a complex function tha
becomes the sign function ifx is real.

We next proceed to the nonlinear part of the Hamiltoni
Substituting the above expression into the nonlinear par
the Hamiltonian results in

H int'2
\

2 (
sW
E x~sW !~C2

~s2!
!* C1

~s1!
C

1
~s18!

dDx1H.c.,

~5.14!
.
of

where the nonlinear coupling is:

x~sW !5
i e0k1v1

4ē1
A\k2v2

ē2

@sgn~k2!* sgn~k1!sgn~k18!

2s1s18s2#E e2* ~r !•x~2!:e1~r !e1~r !d~32D !r .

~5.15!

The nonlinear part of the Hamiltonian@Eq. ~5.14!#, vanishes
if the total coupling between gaps is antisymmetric. We o
consider cases with nonvanishing coupling, ands15s18 , al-
though, in a three-wave mixing process, it is possible t
s1Þs18 . This condition limits the number of possible cou
plings. Therefore, these possible couplings between gaps
~1! coupling between lower branches,~2! coupling between
upper branches, and~3! coupling between upper and lowe
branches, as illustrated in Fig. 2. We can always assumek1
to be real and positive, by shifting the location of the coo
dinate origin, since only the relative phase between the
gratings is important. The nonlinear coupling is now simp
fied to
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x~sW !5
ixEv1

4 A\k2v2

ē2Ac

@sgn~k2!* 2s2#, ~5.16!

where an effective mode ‘‘area’’Ac ~or ‘‘width’’ if D52) is
defined forD,3, as

Ac5U e2* ~0!•x~2!:e1~0!e1~0!

E e2* ~r !•x~2!:e1~r !e1~r !d~32D !rU
2

. ~5.17!

We now suppose thatk2 is also real, but can have eithe
sign. This would be the case if the overall grating struct
was symmetric relative to the origin. We can investigate
possible cases of modes having a nonzero coupling aQ
50, by simply considering whether@sgn(k2)2s2# is zero or
not. Thus, it is clear that only the second harmonic mod
restricted in any way, and in this case it is necessary thas2
has the opposite sign tok2 . However, as discussed earlie
this is precisely the condition for having a symmetric mod
solution. In summary, while the parity of the fundamen
harmonic can have either sign, the parity of the second
monic must be symmetric. We can understand the physic
this in a very straightforward way. The nonlinear coupli
involves the square of the fundamental field, multiplied
the second harmonic. The square of the fundamental fi
mode is always symmetric whether the mode itself is sy
metric or antisymmetric. This can only give rise to a fin
nonlinear coupling if the second-harmonic mode is also sy
metric aboutz50.

The Hamiltonian approach therefore affords a physica
intuitive understanding of the coupling processes and a m
accurate description of physics involved with transve
modes~which was omitted in the simplified one-dimension
coupled mode analysis!. Not only does the use of the ga
modes eliminate linear cross couplings, but it also introdu
a powerful symmetry principle in the limit ofQ50; the
second harmonic that is coupled must have the same typ
symmetry as the product of the two subharmonic mod
Because of this, the use of gap modes permits great sim
e
ve
e
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l
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fications even in this nonlinear problem. Either quantum s
ton @36# or classical soliton behavior can result; the classi
solutions would, of course, be approximately valid only
large photon number. However, this technique does pe
us to obtain solutions of some experimental interest.

VI. DIMENSIONLESS EQUATIONS

In order to obtain solutions to Eq.~2.12!, we need to
obtain a coupled mode equation from the Hamiltonia
which we call the Hamiltonian classical equation. Th
proves to have a much simpler form than before, and can
reduced to just two coupled dimensionless nonlinear eq
tions. The advantage is that the final equations have b
extensively analyzed in previous work. Since both a
proaches describe similar physics, the solutions to the Ha
tonian classical equation should also be approximately
solutions of Eq.~2.12!, apart from the simplifications intro
duced by the EMA. Equation~2.12! also did not consider
effects introduced by transverse modes. In order to ob
solutions identical with Eq.~2.12!, we could omit transverse
mode terms involvingDv j in the Hamiltonian.

When these terms are necessary, they simply corresp
to a renormalization of the linear phase-matching and disp
sion properties of the medium. This well-known pheno
enon is usually termed modal dispersion, and is typica
rather small, except near the transverse mode cutoff frequ
cies. The other effects introduced by the full thre
dimensional analysis~even for a one-dimensional waveguid
or fiber! is that the coupling is now given in general by
transverse integral over the mode functions, and in
higher-dimensional waveguides there is an additional c
pling between the different transverse modes. This co
sponds to Eq.~2.12! only when additional Laplacian term
are included, as we will see.

A. Hamiltonian classical equation

Combining the above results, the approximate EM
Hamiltonian is now
H/\'(
j ,s

E S s\

2mj
u]zC j

~s!u21
\

2mj'
u¹D'C j

~s!u21v j
~s!uC j

~s!u2DdDx2F1

2 (
sW
E x~sW !~C2

~s2!
!* C1

~s1!
C

1
~s18!

dDx1H.c.G . ~6.1!
The classical~coherent or mean field! evolution can be cal-
culated from the Poisson bracket

]C j

]t
5$C j ,H%, ~6.2!

where the canonical momentum field conjugate toC is
i\C* . Substituting the EMA Hamiltonian into the abov
equation, we derive classical equations for coupled wa
with general symmetry properties:
s

]C1
~s1!

]t
5 i F s1\

2m1

]2

]z2 1
\

2m1'

¹D'
2 2v1

~s1!GC1
~s1!

1(
s18

ix* ~sW !C2
~s2!

~C
1
~s18!

!* ,

]C2
~s2!

]t
5 i F s2\

2m2

]2

]z2 1
\

2m2'

¹D'
2 2v2

~s2!GC2
~s2!

1(
s1s18

ix~sW !

2
C1

~s1!
C

1
~s18!

. ~6.3!



re
a

l

we
-

i

a
iv

re
s

lie
is
th
ica

ito
b

pr

ign,

s
rm
if

in
ere
at
ed

ed.
ob-

ans-

cal

fec-

m
udi-

s 1
rate

5036 PRE 58H. HE AND P. D. DRUMMOND
To compare these equations with previously known
sults, we suppose that only a definite pair of gap modes
excited inD51 dimensions, having symmetriess1 ands2 ,
respectively. In this case, it is convenient to define slow
varying fields:c15C1

(s1)ei (vt2kz) and c25C2
(s2)e2i (vt2kz).

We also consider a new frame of reference moving~slowly!
at velocityv in the laboratory frame—with a newz coordi-
natezv5z2vt—while still remaining within the effective-
mass approximation. With this frame transformation,
must replace] t by ] t2v]zv

. To simplify the resulting equa
tions, we set

v5v1
~s1!

1 1
2 s1m1v2/\,

~6.4!

k5m1s1v/\.

A pair of new equations in the moving reference frame
obtained:

]c1

]t
5 i

s1\

2m1

]2c1

]zv
2 1 ix* ~sW !c2c1* ,

F ]

]t
2Dv

]

]zv
Gc25 i

s2\

2m2

]2c2

]zv
2 1 ibv~s1 ,s2!c21 i

x~sW !

2
c1

2 .

~6.5!

This is of the identical form to the usual description of
nonlinear dispersive parametric waveguide, with effect
dispersions

v j EFF9 5sj\/mj , ~6.6!

an effective phase mismatch of

bv~s1 ,s2!5~2v1
~s1!

2v2
~s2!

!1
m1v2

\ S s12
2m1s2

m2
D

52~s1uk1u2dk1!v12~s2uk2u2dk2!v2

1
m1v2

\ S s12
2m1s2

m2
D , ~6.7!

and a group-velocity mismatch of

Dv5v~122m1s1s2 /m2!. ~6.8!

These equations have been extensively analyzed p
ously @1–19#, in the context of the propagation of simulton
in ordinary, nonmodulated parametric material. In this ear
situation, the roles oft andz were reversed, with the analys
taking place in a moving reference frame at close to
material group velocity. Nevertheless, the mathemat
properties of these earlier nonlinear equations can now
used to analyze the more complex gap parametric sol
case. A similar transformation is possible in the NLS pro
lem, where an approximate NLS equation can be used
treat gap solitons under certain conditions. From these
viously known results@16#, Eqs.~6.5! support dark~i.e., to-
-
re

y

s

e

vi-
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e
l
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-
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pological! solitary waves ifs152s2 ~coupling between the
upper branch and the lower branch!. Also, bright type soli-
tary waves can occur, if the dispersions have identical s
i.e., s15s2 ~coupling between upper branchesor lower
branches!. From Eqs.~6.8! it appears that this condition i
also required in order to have moving solutions that are fo
invariant with respect to the stationary ones. Clearly, only
s15s2 is it possible for the group-velocity terms to vanish
the moving-frame equations. It is also possible that th
could be moving topological solitons with properties th
depend on velocity. However, this will not be investigat
here.

Similarly, higher-dimensional equations can be obtain
In this case, the previous definitions are extended in the
vious way, so that

c15C1
~s1!ei ~vt2k•x!,

c25C2
~s2!e2i ~vt2k•x!. ~6.9!

The new frame of reference moves at velocityv in the labo-
ratory frame, with a new x-coordinate:xv5(r v ,zv)5x2vt.
The frequencies and wave numbers appropriate to this tr
formation are@with v5(v' ,vz)]

v5v1
~s1!

1 1
2 s1m1vz

2/\1 1
2 m1'uv'u2/\,

kz5m1s1v/\, ~6.10!

k'5m1'v's1 /\.

We see immediately that there is a very simple physi
interpretation of the altered frequency equation forv. The
photon polaritons behave as classical particles, with an ef
tive longitudinal mass ofsjmj and a transverse mass ofmj' .
It is therefore necessary to supply a kinetic energy ofmv2/2
in order to excite them into motion. This is modified fro
the usual classical result, since the transverse and longit

FIG. 2. Possible nonlinear couplings between gaps. Coupling
and 2 generate bright simultons, while couplings 3 and 4 gene
dark simultons.
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nal masses can be different. In addition, the longitudi
mass below the band gap is2mj , so the ‘‘kinetic energy’’ is
negative in this case. We note, for future reference, that
low the band gap the longitudinal and transverse mas
have opposite signs, which implies that there is no coo
nate rescaling that can give rotationally symmetric equatio

This transformation gives new, moving frame equatio
in the form

]c1

]t
5 i

s1\

2m1

]2c1

]zv
2 1 i

\

2m1'

¹D'
2 c11 ix* ~sW !c2c1* ,
’
e
b
on
la

e
W
lie
ric

in

-
ito
l

e-
es
i-
s.
s

F ]

]t
2Dv•¹zvGc25 i

s2\

2m2

]2c2

]zv
2 1 i

\

2m2'

¹D'
2 c2

1 ibv~s1 ,s2!c21 i
x~sW !

2
c1

2 ,

~6.11!

where ¹2'
2 5]2/]xv

2 for two dimensions, and¹3'
2 5]2/]xv

2

1]2/]yv

2 for three dimensions. The effective phase misma

is now
bv~s1 ,s2!5~2v1
~s1!

2v2
~s2!

!1
m1vz

2

\ S s12
2m1s2

m2
D1

m1'uv'u2

\ S 12
2m1'

m2'
D

52~s1uk1u2dk1!v12~s2uk2u2dk2!v21
m1v2

\ S s12
2m1s2

m2
D1

m1'uv'u2

\ S 12
2m1'

m2'
D , ~6.12!
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and an effective group-velocity mismatch ofDv
5(Dv' ,Dvz), where

Dvz5vz~122m1s1s2 /m2!,

Dv'5v'~122m1' /m2'!. ~6.13!

B. Transforming to dimensionless equations

In the following sections, we consider cases withk j being
real for simplicity. We will usually deal with a ‘‘standard’
case, in whichs151 for simplicity. Other cases can b
treated by considering more general transformations,
may not always lead to solitons—except in one dimensi
where the positive and negative dispersion cases are re
by a conjugation transformation.

The solution form of Eqs.~6.5! and ~6.11! is known
@16,21#. Soliton-type solutions can be most readily obtain
by transforming to a standard, dimensionless form.
choose a transformation similar to that given in an ear
analysis of multidimensional solutions in uniform paramet
media@21#:

V1~r,z,t!5ux~sW !utcAse2 iqtc1~xv ,t !,
~6.14!

V2~r,z,t!5x~sW !s1tce
22iqtc2~xv ,t !,

where Vj are dimensionless envelope functions describ
soliton shapes, ands is defined bys5m2 /m1 in one dimen-
sion, ands5m2' /m1'.2 in higher dimensions. The coor
dinate transform is defined in terms of a characteristic sol
lengthzc , and has the obvious forms

r5r v /r c ,

z5zv /zc , ~6.15!

t5t/tc .
ut
,

ted

d
e
r

g

n

Oncezc is specified, the other characteristic length and ti
scales can be calculated from

tc51/uqu52m1zc
2/\52uk1uzc

2/v1 , ~6.16!

r c5zcAm1 /m1'5zcAuk1u/k1.

The parameterq5s1 /tc has an important and very clea
physical significance. It represents the additional detuning
the carrier frequency required to launch a soliton. Thus
previous definition of the fundamental carrier frequencyv
gives a frequency which corresponds to either the up
(s151) or lower (s1521) boundary of the band gap, to
gether with a correction for a finite velocity excitation. Th
offset freqencyq is a nonlinear effect, and typically bring
the carrier frequency into the band-gap region, where lin
mode propagation is not possible. This controls the appro
ate soliton intensity~since the effect is nonlinear! and the
appropriate envelope size~since dispersion and diffraction
have to cancel some nonlinear phase shifts!, as well as the
interaction time scale. In practical terms, the characteri
input pulse duration is set byzc , since this determines th
pulse length.

For the two modes in this Hamiltonian EMA approxim
tion, the most studied cases are for matching group vel
ties. This can be achieved either at zero pulse velocity in
laboratory frame ~in all cases!, or else at finite pulse
velocity—but withDv50, so thatm252m1 in the required
motional direction. This simply requires that material gro
velocities be matched in the transverse motion case. H
ever, for longitudinal motion, the requirements translate i
restrictions on the band-gap-induced dispersion—and he
on the modulated refractive index. That is, we must ha
uD22u/v25uD11u/v1 for moving solutions in thez direction,
together with the requirement thats15s2 , as already men-
tioned. For simplicity, only these cases will be treated
nonzero velocity, thus allowing us to remove the grou
velocity mismatch term.
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The resulting moving-frame dimensionless equations

~ i ]t1]z
21s1¹r'

2 21!V11V2V1* 50,
~6.17!

~ is]t1d]z
21s1¹r'

2 2g!V21
1

2
V1

250.

Here we have introduced two new dimensionless par
etersg and d, which characterize a family of solitons.g
indicates a type of renormalized phase mismatch, which
pends both on the characteristic length and the material p
erties. In analogy with previous studies, we used to indicate
a lack of symmetry in the band-gap curvature between
two frequencies. The exact definitions of the dimensionl
parameters are

d5s~m1s1s2 /m2!,
~6.18!

g5s~22b/q!.

In one space dimension,D51, we haved561.
For a laser pulse of the order of 10 ps, we estimatezc

5v1310211 s is of the order of 1023 m. SinceQzc'1 for
a transform limited pulse,Q is then of the order of 103 m21.
This is much smaller thank j when k j is of the order of
104 m21, as estimated previously. The validity of the EM
is therefore well justified for these parameters. For theor
cal studies, the condition,Q!k j , can also be understood a
2q/v1!k1 or k1zc@1. Provided these restrictions are m
the previously known analyses of solitary wave formati
and stability for the coupled equations given above can
used.

In order to compare the above solutions with the class
equations obtained from the coupled mode analysis, we n
to write the electric field in terms ofC j . In a first approxi-
mation, we only keep the leading terms in the expansion oE
in terms of D; this is justified when the refractive inde
modulation is relatively small,

Ej'h̄ jDj . ~6.19!

On the basis of the conditionQ!k j , we can expand the
mode functionCj 6

(s) (Q) into a Taylor series up to first orde
aboutQ50. Hence, the electric field can be expressed a

EW j5 i(
s
A\kjv j

2e j
S C j

~s!ujD
~s!~0,z!2 i

]C j
~s!

]z

]ujD
~s!~0,z!

]Q D ej~r !

1O~Q2/k j
2!, ~6.20!

where, as previously, ujD
(s)(Q,z)5Cj 1

(s) (Q)ei jk̄ z

2Cj 2
(s) (Q)e2 i j k̄ z.

The pulse energy for a narrow-band excitation can be
tained by noticing that theD-dimensional volume integral o
uC j

2u is simply the total number of photons at angular fr
quencyv j . This means we have to compute the pulse ene
integral

W5E ~\v1uC1u21\v2uC2u2!dDx
e

-

e-
p-

e
s

i-

,

e

al
ed

-

-
y

5zcr c
~D21!AcW~zc!E E ~V1

2/s12V2
2!dzd~D21!r,

~6.21!

where W(zc) gives the energy density requirement for
given soliton length scalezc , through the relation

W~zc!5\v1 /„Acux~sW !tcu2
…5

«2k̄c4

2v2v1~ x̃~2!k1zc
2v1!2

.

~6.22!

VII. GAP SIMULTONS

Having reduced the original system of four coupled p
tial differential equations to just two equations in the EM
limit, we can now analyze the situation for solitonic beha
ior. This is a straightforward exercise, since the final dime
sionless equations correspond to a well-known traveli
wave nonlinear wave equation, and are known to hav
variety of soliton-type solutions. Exactly which solution e
ists, and what stability properties are expected, will depe
on the coupling parameters and dimensionality of the eq
tions. Unlike the nonlinear Schro¨dinger equation, the solu
tions in this case are not all self-similar—there are ma
different possibilities that can occur. In general, solito
prove simplest to form in one dimension. As we will sho
the question of whether or not a soliton can form in high
dimensions depends on the structure of the Bragg gratin

A. One-dimensional gap simultons

We start by comparing the EMA equations with the orig
nal one-dimensional band-gap equations. First, substitute
~6.14! into the equation for the electric field, regarding th
mode vectorsej (r )5 ẑ3uj (r ) as the polarization vectors di
vided byAAc ~i.e., ej /AAc), whereAc is the mode confine-
ment are. This is necessary because the coupled equ
obtained from the original one-dimensional Maxwell equ
tion did not consider transverse behavior. Comparing the
sulting equation with Eq.~2.5! at z50, we have~for non-
moving simultons!:

AW 1
~s1!

'6a1S V1F sgn~k1!

2s1 G2
i

2uk1u
dV1

dz F sgn~k1!s1

1 G D ,

~7.1!

AW 2
~s2 ,s1!

'a2S s1V2F 1

1G2
is1s2

2uk2u
dV2

dz F 1

21G D .

Here a15Auk1 /2k2uuquei (q2v
1

(s1)
)t/(xEv1) and a2

5uque2i (q2v
1

(s1)
)t/(xEv1).

It has been proved that there is a family of one parame
solitary wave solutions of Eq.~6.5! @16#. Provided that the
effective-mass approximation is valid, each of these kno
simultaneous solitary waves~simultons! generates a corre
sponding band-gap soliton. Depending on the signs ofs1 and
s2 , these solutions can be classified as topological and n
topological simultons. The general classification into vario
types of soliton is already known, and the details are p
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sented elsewhere@16#. We note here that all the previous
described types of soliton can be obtained under differ
conditions of interband coupling. In addition, new types m
be obtained as it is possible to have intrinsic three-w
~nondegenerate! solitons by coupling both above and belo
the band gap. However, these generalizations will not
considered here.

A family of nontopological gap simultons to Eq.~6.5!
exists for general values ofg when the signs ofsj are same.
This corresponds tos15s252sgn(k2), in order to have a
nonzero coupling. We are mostly interested in cases wh
s151, since this leads to a positive longitudinal mass, a
hence to stable higher-dimensional solitons. Clearly,
would require thatk2,0. However, in one dimension, con
ditions are less strict, and the restriction ofk2,0 is not
required for soliton formation.

In the special case ofg51, the solutions are given in
analytic form as
ou

e
ib
of

q
m
he
te

ct
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e

e

re
d
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V1~z!5
3

A2
sech2S z

2zc
D , ~7.2!

V2~z!5
3

2
sech2S z

2zc
D .

The above solutions are particularly useful, as analy
forms of gap simultons can be constructed with them as
base. These can give us an insight into the physical proce
involved, and allow soliton energies to be readily estimat
In cases withgÞ1, the solutions are given in numerica
form. The corresponding band-gap simultons can be
tained using the mapping relationship, Eq.~7.1!, with a nu-
merical differentiation for its imaginary part.

Coupling 1: For example, for the casek2.0, s15s2
521 andg51 ~coupling between lower branches!, the gap
simultons are obtained by substituting the above soluti
into Eq. ~7.1!,
AW 15
63a1

A2
S sech2S z

2zc
D F sgn~k1!

1 G1

sech2S z

2zc
D tanhS z

2zc
D

2zcuk1u F2sgn~k1!i

i G D ,

AW 25
23a2

2
S sech2S z

2zc
D F 1

1G1

sech2S z

2zc
D tanhS z

2zc
D

2zcuk2u F2 i

i G D . ~7.3!

Coupling 2:Similarly, solutions to the casek2,0, s15s251 andg51 ~coupling between upper branches! are given as

AW 15
63a1

A2
S sech2S z

2zc
D F sgn~k1!

21 G1

sech2S z

2zc
D tanhS z

2zc
D

2zcuk1u F sgn~k1!i

i G D ,

AW 25
3a2

2
S sech2S z

2zc
D F 1

1G1

sech2S z

2zc
D tanhS z

2zc
D

2zcuk2u F i

2 i G D . ~7.4!
es

at

e

For both cases, it is possible that sgn(k1)52sgn(k2),
which means that both refractive index modulations are
of phase.

As a numerical example, we will show briefly that th
pulse energy of a one-dimensional gap simulton is poss
of the order of pJ. We consider a waveguide made
LiNbO3 and a laser whose free-space wavelength isl1
51.06 mm and whose pulse width is 10 ps. From E
~6.22!, the pulse energy depends on the soliton volu
through the volume factors in front of the integral, while t
exact dimensionless soliton envelope is included in the in
gral. This depends on both the dimensionality and the fa
g in the equations themselves, and usually has to be ev
ated numerically. We will choose the special case ofg51,
where the pulse envelopes have an analytic form.
t

ly

.
e

-
or
lu-

We use the typical valuesx (2)511.9 pm/V@42# and the

average refractive index of the waveguide,n̄52.5. We as-

sume the refractive index modulation to be 0.2% ofn̄, at
each wavelength, so thatD j j .0.002. This gives coupling

parameters of k1.0.001k̄50.00132pn̄/l151.5

3104 m21, k2.23k1 , and xE. k̄x (2)/n̄2.331025

V21. For a 10-ps pulse, we havezc.10211c/n̄.1.2 mm,
wherec is the speed of light in free space. This in turn giv
the soliton period or reshaping time,q21.350 ps. The am-

plitude of a simulton is therefore of the orderqn̄/(xEc)
.1.23106 V m21. Using the above values, we find th
W(zc).75 J m23. SubstitutingW(zc) into Eq. ~6.21!, and
assumingg51 ands52, we find the the combined puls
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energy is around 40 pJ for an effective waveguide area
25 mm2.

This pulse energy is many orders of magnitude lower th
the usual values for the correspondingx (3) gap solitons. An
inspection of Eq.~6.22! shows clearly that the energy densi
requirements are greatly reduced ifk and/or x (2) are in-
creased, at fixedzc . Thus, further reductions in pulse energ
can be readily obtained if larger values ofk are used, to-
gether with shorter pulse lengths.

B. Exact one-dimensional solutions

One way of testing the validness of the EMA approach
to solve the classical equation directly using a numer
method. Without knowing the basic form of the gap simult
solutions, solving the parametric gap equation numeric
based on the shooting method is difficult as the two bou
ary points are adjustable in a eight-dimensional phase sp
However, if we assume that the propagating and antipro
gating waves are complex conjugate (Aj 25Aj 1* at t50),
the searching task can be reduced to be four-dimensio
Solutions to the parametric gap equations are written in
form

Aj 6~z,t!5A j

2

1

xE
@pj~z!6 iq j~z!#e2 i j at, j 51,2,

~7.5!

where a5s1v1k12dk12q. Although this ansatz is not in
the most general form, it can still generate soliton solutio
as we will show.

Substituting the above ansatz into Eq.~2.12!, and looking
for stationary solutions, we have

dq1

dz
5K11p11p1p21q1q2 ,

dp1

dz
52K12q12p1q21p2q1 ,

dq2

dz
5K21p21

1

2
~p1

22q1
2!,

dp2

dz
52K22q22p1q1 , ~7.6!

whereK j 65 j a/v j1dkj6k j , j 51 and 2.
Regardingz as the ‘‘time,’’ pj as general momenta, an

qj as general coordinates, we derive the above equat
from the Hamiltonian

H5(
j 51

2 S K j 1

2
pj

21
K j 2

2
qj

2D1
1

2
~p1

22q1
2!p21p1q1q2 .

~7.7!

The above equation can be visualized as the equatio
motion of a virtual particle in a four-dimensional pha
space. When timez→6` in the four-dimensional phas
space, we have (q1 ,p1 ,q2 ,p2)→(0,0,0,0). When timez
→0, (q1 ,p1 ,q2 ,p2)→(0,p1,0,p2). According to the topo-
logical argument@16#, a soliton forms whenever the partic
of
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returns to its starting critical point. Therefore, the proced
of searching a soliton numerically is to place a virtual p
ticle at point (0,p1,0,p2), and adjust the values ofp1 andp2
until it returns to (0,0,0,0). We can further reduce the abo
two-dimensional searching process into a one-dimensio
one. Noting the HamiltonianH is a conserved quantity an
H50 at ~0,0,0,0!, we conclude that H50 also at
(0,p1,0,p2). This gives a relationship betweenp1 andp2 ,

p15A 2K21

~K111p2!
p2 . ~7.8!

Thus, with a correct value ofp2 , a virtual particle returns to
(0,0,0,0), forming a gap simulton solution.

This numerical method gives an excellent agreement w
the previous analytic analysis when the EMA approximat
is valid. An example is shown in Fig. 3~a!. Although k j zc
52, which is not greatly larger than 1, the difference b
tween the numerical solution and the analytical solution
negligible. The difference becomes noticeable only wh
k j zc51, but it is still small compared with the solution’

FIG. 3. Gap simultons obtained via direct numerical meth
~dotted lines! and EMA analytic analysis~solid lines!. The dimen-
sionless parameters used for simplicity werek15k254, g
51, v15v251, dk150, andxE51. ~a! zc5

1
2 , dk25

7
2 . ~b! zc

5
1
4 , dk252.



a-
bi

p
ar
n

ce

th
qu
d
E
y
a
ve
e

u

re

x
ea
th
r

th
ua

o
sl

t

ee
ic
er-
tric

x-

ob-

ra-
in-
ven

this
pe
in-
at
be

a
er
are
for
es

nal
gap
me
rgy

c
the

ase
-
ote

ion-
ot-

er

xi-

l

as
h—

t
se
uct

, of
less

ric
lv-

PRE 58 5041THEORY OF MULTIDIMENSIONAL PARAMETRIC . . .
imaginary part. This is shown in Fig. 3~b!. Such a small
difference is unlikely to change a solution’s stability dr
matically unless the solution is along the boundary of sta
ity.

Cases that involve cross couplings between the up
branch and the lower branch of different gaps result in d
simulton solutions. These are not available analytically, a
therefore must be calculated numerically—as is also ne
sary for all nontopological cases withgÞ1. Obtaining a to-
pological gap simulton is a relatively easy task based on
previous analysis. One solves the dispersive parametric e
tions numerically for topological simultons. The correspon
ing topological gap simultons can then be obtained using
~7.1!, involving a numerical differentiation for the imaginar
part. In conclusion, the EMA provides a reliable and accur
method for solving the coupled band-gap equations, e
when compared with a direct numerical method which giv
exact solutions.

C. Higher-dimensional solutions

The dispersive parametric equations we obtain also s
port higher-dimensional soliton solutions@37,16# in 211 and
311 dimensions. These correspond to striped or laye
band-gap structures, respectively. Equation~2.12!, the one-
dimensional coupled Maxwell equation, can be extended
two- or three-dimensional structures in the paraxial appro
mation, by adding a transverse Laplacian to each of the
lier propagation equations. The equations describing
propagation of higher-dimensional gap simultons are the
fore written as

i F 1

v1

]

]t
1

]

]zGA111
1

2k̄
¹2A111dk1A111k1A12

1xEA11* A2150,

i F 1

v1

]

]t
2

]

]zGA121
1

2k̄
¹2A121dk1A121k1A11

1xEA12* A2250,

i F 1

v2

]

]t
1

]

]zGA211
1

4k̄
¹2A211dk2A211k2A22

1xEA11
2 50,

i F 1

v2

]

]t
2

]

]zGA221
1

4k̄
¹2A221dk2A221k2A21

1xEA12
2 50, ~7.9!

where ¹25]2/]x2 for 211 dimensions, and¹25]2/]x2

1]2/]y2 for 311 dimensions.
Using the Hamiltonian method to obtain equations in

EMA for this case once again results in much simpler eq
tions. With the mapping relationship@Eq. ~7.1!#, we can
transform the above equation approximately into the form
Eq. ~6.11!. This equation has also been analyzed previou
and it has been proved that an equation identical in form
l-
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Eq. ~6.11! supports stable simultons in both two and thr
dimensions@38,39,21,37#. This indicates that the parametr
band-gap environment is also able to support high
dimensional solitons. Thus, it is possible to obtain parame
gap solitons in up to three spatial dimensions. Ifs̃251, so-
lutions are cylindrically symmetric, and can be obtained e
actly using numerical technique@16#. Such a condition is not
necessary satisfied, and nonsymmetric solutions can be
tained approximately via a variational method@21#.

An unusual property of the higher-dimensional gap pa
metric solitons is that they provide an example of a nonl
ear, three-dimensional self-confined object. These can e
appear stationary in the laboratory frame. Of course,
raises the practical question of how an object of this ty
could be generated with external laser fields. Apart from
serting a gain medium into the Bragg grating, it is likely th
a slightly detuned, and therefore moving, soliton would
more practical—since it could then be coupled through
spatial boundary of the nonlinear volume grating. Anoth
practical consideration is the question of losses, which
neglected here. These are likely to be very significant
slowly moving gap solitons, due to the long interaction tim
with a possibly lossy environment.

As we have calculated previously for the one-dimensio
gap simultons, the pulse energy of higher-dimensional
simultons can be estimated similarly. Assuming the sa
nonlinear material and pulse width, we find that the ene
density scaling coefficients areW(zc).75 J m23 as be-
fore. We also find thatr c.431025 m. Substituting these
values into Eq.~6.21! and assuming cylindrically symmetri
solutions, we find that the pulse energy is around 2 nJ for
two-dimensional case (g51, and a width of waveguide
.5mm), and around 55 nJ for the three-dimensional c
(g53). A larger value ofg was chosen in the three
dimensional case, as this gives an improved stability. N
that exact phase matching implies thatg54 @i.e., b(s1 ,s2)
50], and this is also stable. In these cases, the dimens
less integrals were carried out numerically, using the sho
ing technique@16# to obtain the pulse envelopes. Anoth
posibility is to use a variational method@21#, which allows
the integrals to be evaluated analytically to a good appro
mation.

The total energy forD.1 depends strongly on the radia
parameterr c , which scales aszcAk at a fixed wavelength.
This means that the aspect ratio of the pulse changesk
increases, which increases the ratio of radius to lengt
changing the soliton from an elongated ‘‘cigar’’ at smallk,
to a more spheroidal shape at largek. Despite this, it is still
favorable to increasek, if a lower pulse energy is required a
a given pulse lengthzc . To reduce the pulse length and pul
energy simultaneously, it is most favorable to fix the prod
of zcAk—which determines the radius—while reducingzc
and increasingk, until the EMA limit of kzc.1 is nearly
reached. Note that a given value of the productzcAk deter-
mines both the corresponding energy density factorand the
radius scale in higher dimensions; these are modified
course, by the solutions to the corresponding dimension
equations.

VIII. STABILITY

The important question of the stability of the paramet
band-gap simultons is investigated here by numerically so
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5042 PRE 58H. HE AND P. D. DRUMMOND
ing the original band-gap equations~2.12!, using the
effective-mass approximation solution from the Hamiltoni
method as an initial condition. The numerical simulation
based on the implicit central-difference~split-step! Fourier-
transform scheme@40#. While the simplified equations ar
known to be stable, these are not exact equations for
gap-soliton problem. Thus, there are possible additional
stabilities that may arise from invalidation of the EMA
group-velocity mismatch effects, or other internal propert
of the band-gap simultons. This investigation does not
dress the issue of whether the paraxial and slowly vary
envelope approximations are themselves always applic
here.

To provide a suitable perturbation, the~small! imaginary
part of the input solution was usually omitted. If the imag
nary part is included, a steady propagation of gap simult
is observed when the simulton is stable, and even an uns
solution can survive in a metastable fashion for a relativ
long time. By omitting this, the initial condition is observe
to either evolve toward a stable wave, or to rapidly dec
Unless stated otherwise, the inputs used were obtained
the simplified EMA analysis, which in most cases gives
excellent approximate starting profile. An exception to t
was the test of stability at smallzc , where we cannot expec
the EMA to be even approximately valid. In these cases,
used the exact one-dimensional initial solutions describe
Sec. VII, with the imaginary part included.

For simplicity, Eq.~2.12! is treated as if it were a dimen
sionless equation in all of our simulations. The nonline
coefficientxE is usually taken as 1, and the phase misma
of the fundamental harmonic is taken as 0. In the o
dimensional cases wheng51, the analytical form@Eqs.~7.3!
or ~7.4!# is used. Otherwise, numerical solutions transform
from solutions in Ref.@16# are used. The transverse lattic
size is normally 1024 for one dimension, 64364 for two
dimensions, and 40340340 for three dimensions. Th
propagation step size is chosen such that the local erro
less than 1%, by comparing results at two different tim
steps.

A. EMA and stability

The condition that the EMA is valid can be understood
zck j@1. In order to investigate possible instabilities wh
the EMA is invalid, we reduce the value ofzc while fixing
the values ofk j . We find that gap simultons become u
stable whenzck j'1. In order to verify the existence of th
instability, an exact numerical solution of the full couple
gap equations~including the imaginary part of the solution!
was also used. Unstable propagation was observed fo
cases whenzck j,1.

Two such cases are shown in Fig. 4. Simultons appea
be stable even whenk1zc51.5, as illustrated in Fig. 4~a!.
Whenk1zc51, we see an unstable gap simulton@Fig. 4~b!#.
In these graphs, the value ofg was 1, and the analytica
solution, Eq.~7.3!, was used without the imaginary part.

These results show that the EMA, which was introduc
here as a useful approximation to simplify the equations, a
in a sense delineates the physical region where stable s
tions can be expected to occur. If the fields have freque
components which extend well outside the band-gap reg
he
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the EMA is of course invalid. In addition to this, the corr
sponding solitons rapidly become unstable, even if all
calculations are carried out without appealing to the EM
Thus the useful region of this approximation also appear
correspond to the region of most physical interest for soli
formation, which provides a justification for the use of th
method.

This does not exclude the possibility that some exo
solutions exist when the EMA is invalid. For example, it
possible that there could be solutions which do not occu
the EMA limit, due to symmetry considerations outlined pr
viously, but which are stable in some transition region wh
there are frequency components near the edges of the
gap. We have not investigated novel solutions of this typ

B. Material group-velocity mismatch

In a real experiment, the first harmonic and the seco
harmonic usually have different material group veloci
Does such a group-velocity mismatch introduce a new in
bility?

FIG. 4. Instability when the EMA is invalid. Only the funda
mental harmonic is shown.~a! Quasistable simulton whenzck1

51.5. ~b! Unstable simulton whenzck151. The dimensionless pa
rameters used for simplicity werexE51, k15k254, g51, v1

5v251, anddk150. ~a! zc5
3
8 , dk25

28
9 . ~b! zc5

1
4 , dk252.
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FIG. 5. Stable propagation of gap simultons with significant material group velocity mismatch. Only the fundamental harmonic is
The dimensionless parameters used weredk150, k15k254, xE51, g51, v251, and zc5

1
2 . ~a! v150.5, dk2520.25. ~b! v1

50.75, dk251.625.~c! v151.0, dk253.5 ~group velocity matched case!. ~d! v151.5, dk257.25. ~e! v152.0, dk2511.0.
in
ue
nd
o

ved
h as
he
.5.

loc-
We have performed a series of numerical simulations
one-dimensional band-gap environment to answer this q
tion. We first fixed the material group velocity of the seco
harmonic and then adjusted the material group velocity
the first harmonic so that the ratio (v1 /v2) varied from 0.5 to
a
s-

f

2 with a step size of 0.25. Stable propagation was obser
for all cases even under extreme circumstances, suc
v1 /v250.5 and 2, although oscillations did occur when t
departure of the ratio away from one was more than 0
Similar results have also been obtained on varying the ve



r-
ri-
o

ul

o

of
ha
p

.

h

d-
ri

e
d-

f

that
ty
rop-
of
t

ne-

er-
gh

cir-
ua-
ap-
e

ch-

pli-
le

s-
ov

.
gap

al-

ey
tial

a-
us

ns

ere

5044 PRE 58H. HE AND P. D. DRUMMOND
ity of the second harmonic while fixing that of the first ha
monic. This result is particularly encouraging for expe
ments, since gap simultons can form within a wide range
material group-velocity mismatch, thus avoiding the diffic
task of matching group velocities.

A set of simulations demonstrating stable propagation
band-gap simultons is shown in Fig. 5. We usedk15k2
54.0, zc50.5, andv251.0 for all cases. The value ofv1
increases from 0.5 to 2.0 by an interval of 0.25.

C. Internal stability of the band-gap simultons

The stability of conventional simultons is a function
two parameters, the ratio between dispersion and the p
mismatch@41#. Similarly, we expect that the stability of ga
simultons is also~at least partially! determined by s
5v1k2 /(v2k1) andg. Generally, a simulton solution of Eq
~6.5! becomes unstable for larges and smallg. For ex-
ample, a one-dimensional simulton becomes unstable w
g,0.1 for s51.

It is likely that a similar instability also exists in the ban
gap system. In order to test this, we have performed a se

FIG. 6. Transition of stability of gap simultons. Only the fund
mental harmonic is shown. The dimensionless parameters
were dk150, k15k254, v15v251, xE51, and zc51. ~a! De-
caying propagation:g50.05,dk253.756 25. ~b! Stable propaga-
tion: g50.2,dk253.775.
f
t

f

se

en

es

of simulations fors51. In these simulations, we vary th
value ofg so thatg50.05, 0.1, 0.2, and 0.3. Unstable ban
gap simultons have been observed forg50.05 and 0.1.

The stability transition is shown in Fig. 6. Two plots o
simulton propagation are given. Figure 6~a! depicts a band-
gap simulton decaying forg50.05 ands51.0. Figure 6~b!
is a steady propagation of a band-gap simulton withg50.2
ands51.0. These simulations demonstrate, as expected,
the simplified EMA equations and their known stabili
properties are an accurate representation of the stability p
erties of the full coupled equations under the conditions
applicability of the EMA. Most importantly, it appears tha
there are no new internal instabilities, at least in the o
dimensional cases treated here.

D. Higher-dimensional stability

Using the mapping relationship@Eq. ~7.1!#, we obtained
higher-dimensional band-gap simultons from known high
dimensional conventional parametric simultons. Althou
nonsymmetric solutions~in different spatial directions! are
possible, here we only show solutions obtained under
cumstances where the simplified dimensionless EMA eq
tions are rotationally symmetric. Under these conditions,
propriate initial conditions are obtained by solving th
simplified equations exactly via the numerical shooting te
nique @16#, based on the EMA equations.

In the case of the propagation equations that are ap
cable in the EMA limit, there is a number of results availab
on stability in two and three dimensions@38,39,21,37#. In
particular, it is known that no self-focusing collapse is po
sible. Stable propagation is expected from a Lyapun
@38,39# analysis, for all cases withd51, s52, andb,0,
which corresponds tog.4 in our dimensionless notation
Here we only consider couplings near the upper band
~i.e., s15s251). A variational and numerical treatment@21#
indicates that an even wider stability region is possible,
though not extending as far asg50 in any case.

After obtaining appropriate initial estimated solitons, th
are propagated numerically using the four coupled par

ed

FIG. 7. Stable propagation of a~211!-dimensional gap simul-
ton. Only the fundamental harmonic is shown. Initial conditio
were cylindrically symmetric in the reduced~EMA! coordinate sys-
tem. The dimensionless parameters used for simplicity w
q51/8, 2k252k158, zc51, g51, v15v251, dk150, dk2

5
3

16 andxE51.
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differential equations, as before. Our results in Fig. 7 sho
~211!-dimensional gap simulton propagation, with the co
plete set of equations. After a small initial oscillation, t
gap simulton reaches a steady state, proving the stabilit
the soliton in two dimensions, with values ofg51, d51,
and s52. Variational initial conditions@21# have been in-
vestigated elsewhere, indicating that stable propaga
should occur for~at least! g>0.7 with these values ofd and
s.

Similar results in Fig. 8 show a~311!-dimensional gap
simulton propagation, with the complete set of equatio
and parameters corresponding tog53, d51, ands52. No
assumption of radial symmetry was used in solving th
equations, which were treated on a full four-dimensio
space-time lattice. The gap simulton also reaches a ste
state after a small initial oscillation. This indicates that w
can have stable~311!-dimensional gap simultons, at lea
with g53. While the general stability in this case is poor
understood as yet, we note that the reduced propaga
equations~without a band gap! are known@38,39# to have
absolute stability for the case of perfect phase matching
above (g>4). We conjecture that there is stability for~at
least! g>3, given an appropriate initial pulse energy.

IX. CONCLUSIONS

Using a coupled mode theory, we have obtained the c
sical band-gap equations describing a nonlinear param
waveguide containing a volume Bragg grating. Without a
further physical insight, these equations are difficult to a
lyze for simultaneous solitary wave solutions or simulto
due to their high phase space dimension. We therefore
veloped a Hamiltonian theory which treats one-, two-, a
three-dimensional propagation of eigenmodes of the lin
equations, instead of plane waves. Using the effective-m
approximation, we obtained a pair of coupled equatio
which are formally identical to the coupled equations d
scribing a conventional dispersive parametric medium. T
solutions found this way are stable, multidimension
solitons—provided the pulse itself is tuned to the upper e

FIG. 8. Stable propagation of a~311!-dimensional gap simul-
ton. Only the fundamental harmonic is shown. Initial conditio
were cylindrically symmetric in the reduced~EMA! coordinate
system. The dimensionless parameters, used for simpli
were q5

1
8 , 2k252k158, zc51, g53, v15v251, dk150,

dk25
1

16, andxE51.
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of the band gap, and satisfies the restriction thatkzc.1. This
physically means just that the Fourier components of
pulse are themselves mostly within the band gap.

A mapping relationship between the solutions of the a
proximate coupled equations and the solutions of the cla
cal band-gap equations was established. This mapping
tionship helps to reduce the number of phase sp
dimensions, and makes analytical solutions possible in s
cial cases. The approximations used in obtaining the m
ping relationship are well justified, since the EMA solutio
agree with exact numerical solutions, under the stated co
tions for applicability of the approximation. Direct numeric
simulation of the complete classical band-gap equation sh
steady propagation of simultons, using the EMA solutions
the initial condition, provided the pulse bandwidth is sm
compared to the width of the band gap in frequency spa
Additional restrictions on the phase mismatch are also n
essary, although we find that group velocity matching is o
important for solitons moving in the laboratory frame.

In summary, a parametric band-gap waveguide can p
vide both large dispersion and large nonlinearity. An expe
mentally relevant point is that the solutions given already
mostly completely stationary in the laboratory frame. Th
creates an unexpected problem: how can they be introdu
into the band-gap material? In fact, this is easily solved
the gap structure is fabricated withm252m1 , there is a sym-
metry in the equations which allows for moving solutio
with an identical form to the stationary ones. Thus they c
be generated at the boundary, and then move longitudin
into the bulk medium. If there is group-velocity matching,
is also possible to have transversely moving solution
which creates yet another possible means of introducing
soliton into the band-gap medium.

We have not treated the problems of boundary inter
tions here. It should be noted that perturbations may a
which could limit the lifetime of the solitons, owing to pro
cesses omitted in the original equations. These include
terial losses~absorption!, as well as Raman scattering, fou
wave mixing, and any diffractive effects which are omitte
from the paraxial approximation. Nevertheless, it is clea
physically interesting that at least a quasistable type of s
tary wave can be generated in two or three dimensio
Most, if not all previous studies of physically relevant solito
equations were restricted to just one spatial dimension. T
restriction is clearly unnecessary, although the price tha
paid is the use of equations defined in a higher-dimensio
phase space, which do not satisfy classical integrability
quirements.

The two- and three-dimensional simultons may have
tential applications to all-optical signal processing, includi
high-speed switching@43#, frequency shifting, pulse shaping
multiplexing, demultiplexing, and signal replication. The
are possible advantages over other soliton-based op
switches, due to the short interaction distances, low po
requirements, and interesting stability properties of the g
simulton. In particular, stability in higher dimensions mea
that information can be encoded in the signal propaga
direction, which could help in distinguishing different inpu
and output signals in a logic gate. Response times are
limited by the electronic response of the nonlinear mediu
which typically occurs over femtosecond time scales. Pa

y,
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5046 PRE 58H. HE AND P. D. DRUMMOND
metric band-gap devices can be fabricated in compact s
@44#, with fast response times, and using power levels sim
to those in communication systems.

These characteristics of fast interaction times, low pu
energy, and stability in higher dimensions make the g
parametric system an ideal soliton environment for both f
damental physics and applications of solitons.
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