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The relativistic dynamics of an electron submitted to the three-dimensional field of a focused, ultrahigh-
intensity laser pulse are studied numerically. The diffracting field in vacuum is modeled by the paraxial
propagator and exactly satisfies the Lorentz gauge condition everywhere. In rectangular coordinates, the elec-
tromagnetic field is Fourier transformed into transverse and longitudinal wave packets, and diffraction is
described through the different phase shifts accumulated by the various Fourier components, as constrained by
the dispersion relation. In cylindrical geometry, the radial dependence of the focusing wave is described as a
continuous spectrum of Bessel functions and can be obtained by using Hankel's integral theorem. To define the
boundary conditions for this problem, the beam profile is matched to a Gaussian-Hermite distribution at focus,
where the wave front is planar. Plane-wave dynamics are verified for fangenbers, including canonical
momentum invariance, while high-energy scattering is predicted for smaller valufeatatlativistic laser
intensities[S1063-651X98)08210-3

PACS numbe(s): 41.75.Ht, 42.25.Bs, 52.40.Nk, 42.55.

[. INTRODUCTION the CEA, low-energy electrons are accelerated by a terawatt
laser[27]. In both instances, the three-dimensional nature of
The physics of laser-electron interactidis-18 changes the focused laser pulse is an essential feature of the experi-
dramatically at relativistic intensities, where the transversenent and must be described accurately to interpret the result-
momentum of the charge, measured in electron units, exng data correctly. In addition, considerable interest has been
ceeds one. Three fundamental processes are known to ocagiven recently to the detailed properties of laser focusing,
in this regime: nonlinear ponderomoti{/&6—18 and Comp-  partly because of potential applications such as pld28@a
ton[19,2( scattering, and high-intensity Kapitza-Dirac scat-33] and vacuum-based laser acceleration schefhe4d8|.
tering[21,22. These vacuum interactions correspond to the=or example, super-Gaussian rings have been thoroughly
following geometries: collinear propagation, head-on colli-studied in an analysis34] that shares some similarities with
sion, and electron diffraction in a laser standing wave, rethe present work. More in line with our motivation, the effect
spectively. of the ponderomotive potenti§B5—37 associated with an
An accurate description of the three-dimensional focus ofultrahigh-intensity laser wave on the radial confinement of
a laser wave, in both the near-field and far-field regions, igelativistic electrons copropagating with the pulse has been
required to properly describe the interaction of the electroinvestigated by Moorg38]. This analysis indicates that
magnetic field with charged leptons. In particular, the valid-higher-order Gaussian modes can indeed confine the elec-
ity of the paraxial ray approximatiof23—25, when used to trons through the focus because of the inward radiation pres-
model problems involving relativistic electrons copropagat-sure gradient. In this particular case, an accurate three-
ing with a laser wave over many Rayleigh ranges, must belimensional field distribution, satisfying both the vacuum
firmly established. For applications involving ultrahigh- wave equation and the gauge condition, is needed to conclu-
intensity[19] and nonlineaf20] Compton scattering, such as sively demonstrate the validity of this approach.
the y-vy collider or focused x-ray sources, a detailed knowl- An important goal of this paper is to present a compre-
edge of the three-dimensional electromagnetic field distribuhensive theoretical and numerical description of the relativ-
tion in the focal region is of paramount importance since thdstic dynamics of a charged particle interacting with an ex-
axial component of the fields may play a major role in theternal electromagnetic field propagatinp vacua To
electron dynamics. An accurate field distribution is also re-accurately describe the focusing and diffraction of the drive
quired to properly model experimental results. Twolaser wave in vacuum, the paraxial propagator approach is
ultrahigh-intensity relativistic electron scattering experi- used, where the mass shell conditimacuum dispersion re-
ments are currently under way at the Stanford Linear Accellation) is approximated by a quadratic Taylor expansion in
erator Center(SLAC) and the Commissariat #Energie  the 4-wave-number{23—-23. This approach proves ex-
Atomique (CEA). In the first case, nonlinegmultiphotor)  tremely accurate for any realizable laser focus and yields
Compton backscattering is investigated using the SLAC 50analytical expressions for the fields. In addition, the gauge
GeV beam and a tightly focused terawatt-class |86}, at  condition is exactly satisfied everywhere, thus yielding a
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proper treatment of the axial electromagnetic field compowhered is the relativistically invariant phase of the traveling
nents due to wave-front curvature. The electron phase is usedave along the electron trajectory. Note that the temporal
as the independent variable, thus allowing for particle trackdependence of the wave is arbitrary. Chooskg=(w,/

ing over an arbitrarily large number of Rayleigh ranges, in-c)(1,0,0,1), with the wave propagating in théirection, we
dependent of the nonlinear slippage and relativistic Dopplehave

shift due to radiation pressure. Ultrahigh-intensity pondero-

motive scattering is studied as an example to demonstrate the d¢é

relevance of this theoretical approach and the efficiency of a7~ @0y Uy) = wok, )

the numerical algorithm developed here. The three-

dimensional dynamics are different from earlier two-which defines the light-cone variable, and the 4-
dimensional modelgl6,18,27; in particular, the angular dis- momentum transfer equations read

tribution of scattering energy no longer reflects canonical

momentum invariance, as the light-cone variable is not in- di_ i eA,(¢)
. . = wgK , (5)
variant for focusing waves. dr d¢ | mgc
This paper is organized as follows. A brief review of the
dynamics of an electron subjected to an ultrahigh-intensity duz_ dy_ d [eA (¢)
plane wave in vacuum is given in Sec. Il and the Lawson- dr dr @l dé| mec |’ 6)

Woodward theorenjl15] is discussed, as is the scattering

angular correlation described in referenEes, 18, 27. The  In the abovew, is the characteristic laser frequency. Equa-
general formalism used to obtain an exact three-dimensionaion (6) shows thatk is invariant: k= kg= yo(1— Bo); addi-
solution to the wave equation in vacuum is described in Sedionally, Eq. (5) is readily integrated to yield the transverse
[ll, with a special emphasis on rectangular coordinates, anthomentum invariant

the paraxial ray approximation is shown to derive from a

simple Taylor expansion in the transverse wave number. In €A (9)
addition, the axial field component required to satisfy the u (7= myC
gauge condition is analytically derived; this solution exactly

satisfies the gauge condition everywhere. For completenesand the energy and axial momentum are immediately ob-
the cylindrical wave equation in vacuuf@9] is reviewed in  tained using the fact that the 4-velocity is a unit 4-vector
the Appendix, and the corresponding vacuum eigenmode eX+?=1+ uf + uﬁ)

pansion is also presented there, as are the corresponding dis-

Y

persion relations, together with the Fourier-Bessel transform B eA ()% 1+ Bo

of the focal field distribution, which is performed by using Uz(7) = o) Bo mgC 2 ' ®

Hankel's integral theorenp40]. In Sec. IV, the relativistic

electron dynamics in the three-dimensional paraxial fields eA, ($)]? 1+ By

are studied theoretically and numerically, and relativistic YT =vo) 14| — 5 9

ponderomotive scattering is discussed within this framework. 0

Finally, conclusions are drawn in Sec. V. These results are quite general and hold as long as plane

waves are considered. An important difference between po-
[l. PLANE-WAVE DYNAMICS AND THE larization states immediately appears: The square of the vec-
LAWSON-WOODWARD THEOREM tor potential varies adiabatically as the pulse envelope for

This section is intended as a brief review of the interac_C|rcular polarization, while there is an extra modulation at

tion of a relativistic electron with an ultrahigh-intensity plane 2o for linear polarization. The transverse electron momen-
wave. Eurther details can be found in Re{?s—lgl yp tum depends linearly on the laser field, but the axial momen-
' s tum is a quadratic function of that field, as it results from the

The electron 4-velocity and 4-momentum are defined a%:oupling of the transverse velocity to the laser magnetic field

[41.42 through the ponderomotive force. This quadratic dependence
1 dx of the energy and axial momentum on the 4-vector potential,
U”ZE d—:z y(1,B8), p,=mecu,, U,u¥=-1, (D) measured in electron units, distinguishes the relativistic scat-

tering regime, whergeA | /myc|=1. In this regime, the pon-
where 7 is the proper time along the electron world line dertl)_monvel_force dom(ljnaDtes tlhe e:?ig’g dyEamlc_s, ygeldmg
x,(7). In the absence of radiative corrections, the energy!'O™n€ar Ppage and LJoppler ifts9,20. Equation(9)

momentum transfer equations are driven by the LorentflISO prol/|des a scaling fozr ihe maximum energy in a p'lane
wave, v*/yo=(eA, Imyc)<, for relativistic electrons. Fi-

f
oree nally, the electron position is given byx(¢)=(c/
du, e , o) (ko) [ Ju()dip.
ar - mec (d,A,—d,A )" ) Equation(9) also shows that there is no net energy gained

by the electron after interacting with a plane wave: We have
For plane waves, the 4-vector potential of the laser wave i§Mg.[AL (¢)]=0 and therefore lin_..[y(¢)]= 0.
given by This is essentially the generalized version of the Lawson-
Woodward theorenj15]. The fact that a charged particle
A (P)=[0A (P)], =Kk, x(7), 3 cannot exchange energy and momentum with an incident
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Incident Plane Wave Packet For focusing waves, the light-cone variable is no longer in-
variant and the relation described by Efj0) is not strictly
e valid anymore.
Ill. THREE-DIMENSIONAL FOCUSING
In vacuum, the wave equation takes the familiar form
2 1 2 _ v —
v ~ 2 d; |A,=[d,0"]1A,=0, (11
e where we have introduced the 4-gradient operaiqr
o—p — =JdloX*=[—-(1lc)3;,V] and the 4-potential A,
=(¢/c,A), which is chosen to satisfy the Lorentz gauge
condition
Plane Wave Packet and Scattered Radiation J ,U«AM =0. (12
FIG. 1. Initial and final states for the interaction of a plane waveThe electromagnetic field tensor is defined by, =d,A,
with an electron initially at rest. —d,A,.
plane wave in vacuum can also be easily understood. Con- A. Exact three-dimensional solution

sider a frame where the electron is initially at rest, as illus- |, yacuum. a general solution to the wave equation can be

trated in Fig. 1. If the electron gains energy and momentum.,nsircted as a Fourier superposition of wave packets of the
during the interaction, it is accelerated and therefore radiate

In the final state, the laser wave has been attenuated, which

implies that there exists a permanent destructive interference 1 _

between the laser wave and the wave radiated by the elec- A, (x,)= —— ffff AM(kV)exmka")d“kk, (13
tron. This is the classical equivalent of photon annihilation in (2m)

QED. However, the electron radiates waves that decay IIk(\a/vhere the notationl*k, represents the differential 4-volume

72 1 -
r- and _therefore no stapl_e mterf(_eren(_:e pattern can be thdkhzdkodkldkzd@ and the 4-wave-numberk
tained with a plane wave; in fact, in this case, any interfer-_ e . . : ®
=(wl/c,k) satisfies the vacuum dispersion relation

ence also decays like 2. This shows that, in the absence of

radiative correctiongelectron recoj, no net energy-momen- w2
tum can be transferred from a plane wave to an electron in —- k2=kﬂkﬂ=0, (14)
vacuum, in agreement with the generalized Lawson- c

Woodward theorem. S . .
Finally, it also interesting to note that for plane waves, theWhlch is also the mass shell condition for the photon field:

electric and magnetic fields obey the relatigm (k/wq) fi“(k,k*)=0. In Cartesian coordinates, this translates into

X E=2zX(E/c), which results in the invariance of the light- 1 _
cone variable. This in turn implies that there is a strict cor- AL(Xy,z,t)= > ffff A, (K, o)
relation between the electron trajectory anglé (2m)

=arctaju, /u,| and its energyy. Indeed, we have extfi(wt—k-x)]d% do. (15)
uut=-1 & y?=1+ul+u’ In the case where the laser pulse characteristics are defined at
focus z=0), we can obtain the electromagnetic field distri-
and bution in any giverz plane by performing the integraéi.e.,
by applying the propagation operakor

y—U,=k;

AM(x,y,z,t)=(27T;)3/2ffthﬂ(kl,w,z=0)

combining these two equations, we obtain the simple result
(16,18

X exp{ i ( ot—Kkx—kyy

o(y)=arctam\| ———5——— 5
- w
Y +K0 2‘}/K0 A /?_ ku) dszdw. (16)
2 4
1+p 7__ 1 This solution is easily interpreted: The temporal evolution of
=arcta LA . (100 each wave packet is described by the frequency spectrum,

Y= vo(1=Bo) while the transverse profile of the laser wave is expressed as
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an integral over a continuous spectrum of transverse vacuum 1
eigenmodes. The dispersion relation indicates how each
transverse component of the wave packet propagates, thus 44 | Wo ki)
yielding wave-front curvature and transverse spreaditiig ex”[’(—) }
fraction of the wave packet. It should also be noted that the
axial wave number can become purely imaginary, in which 96 I
case the corresponding waves become evanescent modes. In
Eq. (16) we have introduced the frequency and transverse g4 |-
wave-number spectral distributions at focus, which are deter-
mined by Fourier transforming the local field distribution
according to

~ 1 0 : .
AM(ki,w,z:O)z(ZT)wfffAM(x,y,z=O,t) -1 05 0 0.5 1
1 —= S &:1_1(ﬂ\2
X ex —i(wt—kx—kyy)]dx dy dt CHEALY
17 08 \\\Paraxial

The next consideration is the gauge condition, which can
be chosen to reduce to the Coulomb gadgeA=0 in a
frame where the scalar potential is set to zero. Such a
divergence-free vector potential can be generated by a vector 04
field G, defined such thatA=VXxXG. As the curl and
d’Alembertian operators commute, it is clear thaGifsatis-
fies the propagation equation, the vector potential will also
satisfy it. For an electromagnetic wave propagating along the

ke _ ,1_(k_ﬂ2
Ko \ko/

Exact

z axis and linearly polarized in thedirection, the generating 0 ] 0‘5 o 0'5 1
vector field reduces t@(xﬂ)=§/Gy(x#). For a Gaussian- ) - - .
elliptical focus, the generating field takes the form Normalized Transverse Wave Number ;. -

2 y FIG. 2. Normalized transverse wave-number spectfimp and

2
VW) }h(t)’ (18) the exact and paraxial phageottom). The beam waist to wave-
y length ratio iswgy/\ o= 10/7.

G —op)= ok
y(X,y,z2= ,t)—k—oex -

Wox

wherewy, refers to the beam waist along thexis andwg,
refers to the beam waist along thexis, A, is the amplitude B. Paraxial propagator

of the vector potential at focuso=wo/c=2m/\y corre- The three-dimensional behavior of the laser electromag-

sponds to the central laser wavelength, &t is the tem-  petic field is now described within the context of the paraxial

poral variation of the laser wave, which can be arbitrary. Theyropagator formalism. Here the photon mass shell condition
corresponding focal spectral density is is approximated by a quadratic Taylor expansion, namely,
Eq. (20) is replaced by

~ A ~
Gy(k, ,0,z=0)= 2k, WoxWoyh(w)

1 ~
kx|2 [kyy)2 Gy(x’y'z’t):(zT)S/Zf f f Gy(k, ,z=0,0)
<o -5 (%) | o

L xexp{i ot—kXx—kyy
The propagation integral then takes the form
o K
! e - ———L)z]dzk d 21
GY(X'y’Z,t):(Zw)azfffGy(kL’zzo’w) (C 2kg LE@ (21)

exact and Taylor expanded axial phases differ only for large
5 values of the transverse wave number, where the spectral
w
2
N
lustrated in Fig. 2. The Gaussian transverse wave-number
which is an exact solution to the three-dimensional wavespectrum is shown fowyko=20, whereko=2m/\y. Eva-

where the square root factor has been Taylor expanded to
xexg i| ot—kx—kyy second order arouné=w, andk, =0. It is clear that the
2 density is vanishingly small.
dk, do, 20 The physical content of the paraxial approximation is il-
equation in vacuum. The corresponding vector potential imescent modes correspond ko /ko>1. The axial wave
obtained by taking the curl of the generating fi€d number is also shown both for the exact dispersion relation
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and in the paraxial approximation. It is clear that for physi-
cally realizable foci, where the beam waist is significantly
larger than the wavelength, the region of transverse wave- ™
number space where the paraxial phase differs significantly 2
from the exact value corresponds to very small spectral am- {
plitudes. For larger values of thenumber, the transverse ¥
wave-number spectrum is narrower and the approximation is 2
even better.

Inserting the Gaussian spectral density from @§) into
Eq. (21), we see that the integration overis a simple Fou-
rier transform ofh(w) and yieldsh(t—z/c)=h(¢/wg). The
integrals over the transverse momentum are also readily ob-
tained, as they correspond to exponentials of quadratic com-
plex polynomialq43]:

-10 -05 00 05

e
S
AL d) 7 )2 —-1/4 ~ o
Gy(x,y,z,t)=—h| —||1+| — 2
y(Xy ko oo Zox E;
7z \2]-14 X 9
x| 1+ —) Ry
Zoy 2
2 2 S
X
conf [ o]
wy(2) Wy(2)

{11z ot
Xexp iy = arctan —
2 Zox

FIG. 3. Transverse and axial vector potential components, in the

1 z 7 x |2 plane of polarization, at three different times. The pulses are six
+ = arctar(— - — (—) cycles long and =3.
2 Zoy)  Zox \WK(2)
_i( y)ZH (22) Amgr ”62+ tr(z)
Zoy \Wy(Z ’ = = | arctan — | +arctan —
o y( ) 2 Zox ZOy
kozX2  Kozy?

wherew,(,y(z)=w0x,y\/1+(z/zox'y)2 are the waist sizes and -5 >

Zox.y= 5KoW5, , Tepresent the Rayleigh ranges for edch 275 27t 7y

number, which are defined by the relatiomg,

=\o/m arctan(1/2, ) [23-25. o

Finally, taking the real part of the curl of the generating Which includes the Guoy pha$23-25.

vector, we derive the vector potentia| The vector potential of the focusing wave is shown in Fig.
3. The fields are then derived from this vector potential. We
note that in the plane of polarizatioy€0), only E,, E,,

A(x,,) A[ ko dg . and B, are nonzero; as a result, electrons seedey=ad,
=X

: (24)

with no momentum component in thedirection, will re-

—+
REGy(x,)] 9(#) d¢  2(22+23,) main in this plane.
) We have thus derived a general solution to the wave equa-
%|1— (%) n z tion in vacuum, which reduces to the paraxial approximation
Wy 2(2%+ Z(Z)y) in the limit of small transverse wave numbers. In addition,
the derivation of an analytical expression of the axial field
2y\? d component in the case of linear polarization, within this ap-
X|1-= (w_ +tanA) —— proximation, will prove quite useful to study the relativistic
Y dynamics of electrons in ultrahigh-intensity laser fields. In
KXz 2% particular, this derivation can be extended to higher-order
- 0 . . . .
7l ———tanA)— — |, (23 Gaussian modes, which are thought to yield the particle con-
(2%+ ZSX) W)ZJ finement[38] required for vacuum laser acceleration appli-

cations[1-18§.
We also note that the extension of the above consider-
where we have written the temporal laser pulse in terms of ations to circular polarization can be achieved in a very

slowly varying envelopeh(¢)=g(¢)e'®. In Eq. (23) the  straightforward manner: The generating field simply takes
total phase is given by the form
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A, x |2 y |2 1.00 - ———
G(x, ,z=0,t)=—exr{—( ) —(—) T A2(r.z=0
y Ko Wox Woy 1.00x107} \\\\ o
X g(t)[X si t)+y cog wpt)]. ~
g(t)[X Sin(wot) +§ cogwot)] | N
(25) s N
) ] ) ) 1.00x10™°
Here againg(t) can be an arbitrary function of time.
Finally, Eq. (22) takes a more familiar form for a cylin- 1.00x10° 7L
drical focus
9
C 1.00x107°}
A | exp‘ " w2 ] 1.00x10™1" : : :
- —hl — 0 5 10 15 20
Gy(X,y,z1) ke h(wo) - Radius (um)
1+ — 1.00x103 —
% 1.00x10'4-/ \ A% (8 =0,2=0)
z 10-51/
X exr{ i [ arctarﬁ — 100 0_6?
Zy 1.00x107°}
7
7 Y 1.00x10 8-
— =] — , 26 ) -8l
2wz (26) 100x10-9
1.00x107-
where we recognize the Rayleigh range, Guoy phase, and {gox10'd \
wave-front curvaturg23—25. 1.00x10-M \
This formalism can also be studied in cylindrical coordi- ’

nates, where the radial dependence of the focusing wave is 1-°°X1°'120 . " )

described as a continuous spectrum of Bessel functions, and Radius (um) 1 20

can be obtained by using Hankel's integral theorem. To de-

fine the boundary conditions for this problem, the beam pro- FIG. 4. Transvers¢top) and axial(bottom 4-potential compo-
file is matched to a Gaussian-Hermite distribution at focusnents(amplitude squargdat focus, as functions of radius fov,
where the wave front is planar. This derivation is presented™5 «m andi,=1um, on a logarithmic scale.

in the Appendix and its equivalence to the Cartesian coordi-

nate approach is established. the exact expression is given by E{.6). The agreement
between both expressions at focus confirms the accuracy of

the code. In addition, this level of agreement is maintained
over a wide range of focal beam waigtsom 1.5 um to 1
mm). As expected, the axial field component vanishes on

In this section we first present numerical calculations peraxis (r=0) and in thex=0 plane. It is also interesting to
taining to the comparison between the paraxial ray approxinote that the axial component is much smaller than the trans-
mation and the exact mathematical procedures introduced iverse component because of the modest wave-front curva-
Sec. lll. We are primarily concerned with linearly polarized ture. For reference, the intensity distributions are also shown
waves that have a Gaussian radial intensity distribution ain linear scale in Fig. 5 for the same parametevs, (
focus. The numerical methods presented here can easily be5 um and\y=1 xm).
extended to more complex focal distributions. In addition, In Fig. 6 the wave has propagated over ten Rayleigh
we first consider monochromatic waves, so that the temporabnges, and the diffraction is compared for the exact and
Fourier transform is not necessary. Again, the generalizatioparaxial solutions to the wave equation. Again, good agree-
to broadband, ultrashort laser pulses is readily achieved bgent is obtained over more than six orders of magnitude, as
means of a Fourier integral over the laser frequency spe@xpected because of the weak wave-front curvature. Some
trum, as discussed in Sec. Il B. numerical noise is visible at large radi>150 um).

In our numerical simulations, Eq16) is evaluated nu- Using the code, a wide region of parameter spéceim-
merically for the case of a monochromatic, linearly polarizedber and distance from focuwas mapped rather extensively,
pulse having a Gaussian radial intensity distribution at focusshowing the robust validity of the paraxial ray approxima-
with a relative accuracy in the 16 range[44]. The conver- tion. In fact, the only systematic deviations between the code
gence of the code is verified by first considering the focusand the paraxial approximation were obtained for tight foci
where the code performs the exact integral, which is therfl.5-um beam waist at tm wavelengthand far away from
compared to the input focal distribution. For typical param-the focal region. An example is shown in Fig. 7, where
eters, such as those shown in Fig. 4, the convergence to tl#éz,= 100 (100 Rayleigh ranges away from fogu&or both
input Gaussian is excellent over 10—11 orders of magnitudehe transverse and axial field components, the exact solution

The axial field component is evaluated in the following is seen to diffract faster than the Gaussian spherical waves
manner: For the paraxial ray approximation, we use the exeorresponding to the paraxial wave equation. However, this
pression derived in Eq23) and takew,,=wo,=Wq, While  effect is significant only at large radii. Therefore, the paraxial

IV. NUMERICAL SIMULATIONS AND PONDEROMOTIVE
SCATTERING
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1 1.00x1072
AZ(rnz=0)
08 | 1.00x10°4}
06 |- 1.00x10°8}
04 1.00x1078L
02 1.00x100L
0 s - 5 1.00x102 ' : ‘
0 5 0 50 100 150 200
Radius (um) Radius (um)
0.0008 1.00x10™4
2 - —
0.0007 | A7 (r0=0.z=0) A2 (1.0 =0, £ = 10)
-6

0.0006 |- 1.00x10
0.0005 - 5

1.00x10
0.0004 -
0.0003 | 1.00x1070L
0.0002 F

1.00x10°124
0.0001

0 : " 5 1.00x10™ ' ' :
0 5 0 50 100 150 200
Radius (um) Radius (um)

FIG. 5. Transversétop) and axial(bottom 4-potential compo-
nents(amplitude squaredat focus, as functions of radius fov,
=5um andAy=1 um, on a linear scale.

FIG. 6. Transversétop) and axial(bottom 4-potential compo-
nents (amplitude squaredat z/z,=10, as functions of radius for
Wo=5 um andAy=1 um, on a logarithmic scale.

ray approximation is extremely well suited for studying non-
linear electron-laser interactions that are confined within a =
reasonably large radius from the propagation axis. In a real d¢o

experimental situation, imperfect laser spatial filtering, as ) . . o
well as prepulses and other noisy phenomena, is expected & Used to randomize the numerical noise and minimize the
dominate over any deviations associated with the paraxiddrowth of numerical instabilities by introducing the averaged

dk 1
e (u-e—ye,—uby,+uyb,), (29

approximation. quantities
Having obtained analytic expressions for the 4-potential,
i i i 1] (o dk 1+u?
the Lorentz force equation may now be numerically inte- (K)=1> J' 2 dyr 1l
grated to yield the dynamics of a charge interacting with the 2| Jo dy v+u, |

three-dimensional laser fields. The algorithm developed for

this purpose employs the second-order Runge-Kutta method 1[ (o dy

and utilizes the axial electron phase as the variable of inte- (y)== [f — dy+ 1+ 12
gration in order to handle both the nonlinear slippage and the 2| Jo dy

large relativistic Doppler shift. The normalized equations of

motion are Note that for very largé numbers, Eq(29) tends to zero and
we recover the fact that the light-cone variable is an invariant
du 1 for plane waves. The electron position is now given by
6 = (yetuXb), (27)  x(p)=(clwo) [&(ul k) ()dy.

For a laser focus with extremely largenumbers, which
q 1 should closely approximate a plane wave, excellent agree-
Y__ = u-e (28)  ment is found between the corresponding numerical results
deé K and the theoretical analytic expressions obtained for plane-
wave dynamics, as shown in Fig.(®p). For smaller values
where we have introduced the normalized fielés of f, scattering is obtained, as shown in Fig(®ttom). In
=eE/wgmgc and b=eB/wym,. The inverse of the light- each case, the relative numerical error is in the 2910 16
cone variable is evaluated using the expression=K/y  range. It is interesting to note that for the parameters shown
+u,)/(1+ uf) to avoid divergences. In addition, the evolu- in Fig. 8 (bottom), the scattering energy is smaller than the

tion equation for the light-cone variable maximum energy predicted by plane-wave theory. This is
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Radius (um) FIG. 8. Top, plane-wave interactiorf,=10?° and f,=1079;

FIG. 7. Transversétop) and axial(bottom) 4-potential compo- ~ Pottom, scattering f(, =5,f, =5). The other parameters are
nents(amplitude squaredat z/z,= 100, as functions of radius for =10,Ao=1um, a FWHM of 20 fs, no initial energy, and =y;
Wo=1.5um and\,=1 um, on a logarithmic scale. =0; the initial axial position is at focus.

due to the fact that to obtain optimum scattering the electroifurvature, is of paramount importance. It also shows that
phase must reach the temporal maximum of the drive pulsgYlindrical foci can be used for high-energy scattering.
precisely at focus in order to experience the peak field of the |0 SSess the feasibility of laser acceleration based on this
laser. In general, the electron scatters from a spatiotempor pattering process, the total energy in the laser pulse is ob-
location other than this optimum point, at lower energies. ained by integrating the.Poyntlng vector flux over the focal
The temporal pulse envelope is modeled by the functior‘f'pOt and the pulse duration to obtain
g( ) =sir{ m(¢dlwyAt)] in order to integrate the equations of
motion over afinite phase interval. The full width at half < —,
maximum(FWHM) of such a pulse iat/2. mec? 32 Mo Mo To
To study this phenomenon systematically, we have exam-
ined the influence of the focus ellipticity and size. The results
are shown in Fig. 9. Note that to obtain efficient scattering,
the electron must be seeded far from focus, so that by the
time it has slipped into the nonlinear temporal phase of the
pulse, the focus is reached and the electron interacts with th(§
spatiotemporal maximum of the laser wave. We observe thata
high-energy scattering occurs for intermediate values of the
numbers: For low values, the focus is too tight and the elec-
tron scatters away with minimal energy gain; for very large
values, we recover the plane-wave interaction, with no en-
ergy gain. The fact that, for higher initial injection energies,
efficient scatterindclose to the plane-wave scalingequires 1009
larger values of th& number is not surprising since the trans-
verse electron excursion scales like k& 1/ky= (1
+Bo). The largest scattering energies are achievedf for
>fy, which is directly related to the linear polarization of
the drive laser. The high degree of symmetry of the surface FIG. 9. Scan off, and f,. The other parameters aw,
with respect tof, andf,, however, indicates that the elec- =10,Ao=1 um, a FWHM of 20 fs, an initial energy of 10 MeV,
tron phasing, which is strongly influenced by the wave-frontx;=y;=0, and an initial axial position of-3 mm.

W 37 Wy, Wg, CAt
S\ it (30)

6000

Normalized Scattering
3000
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Finally, the relativistic dynamics of an electron submitted
to the three-dimensional field of a focused, ultrahigh-
intensity laser pulse have been studied numerically. The dif-
fracting field in vacuum is modeled by the paraxial propaga-
tor and satisfies the gauge condition. Plane-wave dynamics
are verified for largé numbers, including canonical momen-
tum invariance. Scattering is predicted for smaller valuefs of
at relativistic laser intensities and GeV electrons could be
produced in vacuum using femtosecond laser pulses with
energies in the 10-100 J range.

360

Normalized Scaitering Energy
480
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productA, w, at 250 um (constant energy of 20)Jwhile
varying A, between 1 and 20 and varying the injection po-
sition between-20 mm and focus. The results are shown in APPENDIX: CYLINDRICAL FOCUSING GEOMETRY
Fig. 10, and clearly indicate the existence of an optimum
combination off number and laser intensity for high-energy . . . .
scattering, approximately obtained for a normalized vector _A nu.mb.er of experlmentgl situations myolve laser foci
potential of 17.5 and = 23. Here, there is a sharply defined with cylmdnca_l symmetry. It |s_theref_ore of interest to study
acceptance range in the initial position and the scatterinﬁ’e vacuum eigenmodes of this particular geometry. For cy-
energy reaches 0.25 GeV. The acceleration process occ gdrical symmetry, the wave equation now redas]

over a distance of 3 mm, yielding a gradient of 85 GeV/m.

1. Cylindrical wave equation

The laser parameters presented here should correspond to the v2_ i P2 A, — i (A +23,A,)=0, (A1)
next generation of chirped pulse laser amplifie¥s,47. I c? t_ r2
V. CONCLUSIONS 1
. . V2= = 0 |Ag— = (A= 23,A)=0,  (A2)
Exact solutions to the wave equation in vacuum have I c? | r2

been studied for a three-dimensional laser focus for both
rectangular and cylindrical geometries. Furthermore, it has

been shown that the paraxial ray approximation corresponds v2_ i 2la—=0 (A3)
to the quadratic Taylor expansion of the phase in the trans- c2 '

verse wave number. Within this framework, in addition to

the standard paraxial approximation of the transverse field

component, an expression for the axial field component re- , 1 ,

quired to satisfy the gauge condition for linear polarization Ve ? ¢ |#=0. (A4)
has been obtained, as well as the paraxial gauge condition

itself. To our knowledge, these results represent an extension
of the paraxial ray model of Gaussian spherical waves. While The standard procedure to find a general solution to the
these results were obtained for linearly polarized waves an@ylindrical wave equation is to employ the method of sepa-

Gaussian foci, the formalism presented here can be generdption of variables. The axial and temporal dependence of the
ized to describe circularly polarized and Gaussian-Hermitét-vector potential is represented by a double Fourier trans-
modes. Furthermore, the paraxial approximation has beel®rm, while symmetry imposes harmonic dependence on the
extensively compared to the aforementioned exact solutioAzimuthal angle. We thus have

and found to be in excellent agreement in most cases, thus
justifying the general use of Gaussian spherical waves to
model focusing waves in vacuum. The paraxial wave and

gauge equations, and their solution for linear polarization, 1 o (o

including the axial field component, are thus important re- “ o % f_m J_m Am(Ky, @)Rm(r)
sults needed to model the nonlinear dynamics of relativistic

electrons in the focus of an ultrahigh-intensity laser.

Au(X,)=A,(r,0,z1)

X exfi(wt—kz+mo)]dkde. (A5)
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Inserting Eq.(A5) into the cylindrical wave equation and X
using the orthogonality of complex exponentials, we obtain
two sets of differential equations corresponding to two fami-
lies of modes: TE and TM.

The TM modes are generated by the axial and temporal
components of the 4-potential. The corresponding wave
equation admits solutions of the forf89,44

Rzm(r):RHme(kLr)y (A6)

kc?
Rim(1) =Rym —= Im(k,.1), (A7)

vacuum dispersion relation?/c2=kZ+k?. In Egs.(A6) and
(A7) the constants have been adjusted for the axial and tem- ] y
poral components in order to satisfy the Lorentz gauge con- 1 { .
dition.
On the other hand, the TE modes are generated by the FIG. 11. Comparison between a fEnode and a linearly po-
radial and azimuthal components of the 4-potential. The corlarized Gaussian.
responding wave equation splits into two coupled differential

where the transverse eigenwave number is constrained by the ‘ ‘
ot ] ‘

equations, which admit solutions of the fofi39,44] yield an adequate description since they are not truly linearly
polarized, as shown in Fig. 11; therefore, an axial field com-
Jm(ky 1) onent is required.
Ren(1)=R0m 3 (ng) P |
1

2. Vacuum eigenmode expansion and Fourier-Bessel

i, transform
Rem(r):RLmEJm(kir)r (A9) . . . .
Now a general solution to the cylindrical wave equation

. . . . can be expressed as a vacuum eigenmode expansion, but the
where the transverse eigenvalue is again constrained by tQ

: ; : " Qntinuous radial eigenvalue spectrum remains to be defined
dispersion relation. Note that here the gauge condition i 9 P '

hamel e have
automatically satisfied because the differential equations re- y, W v

sulting from the wave equation are coupled. 1 -

In the case of a finite radial boundaryrat a (cylindrical Aur,0,2t)=5— > f f f Am(Kky Ky, 0)R m(k. 1)
waveguide, the transverse eigenmode spectrum is discrete, m
and we havek, =y, /a for TE modes ank, =y, /a for X exdi(wt—k,z+mo)]dk, dkdw, (AL0)

TM modes. Herey,,, and xn are thenth zeros ofJ;, and
Jn, respectively[39,41]. However, in our case of interest, where
the radial boundary extends out to infinity and the radial

eigenmode spectrum is continuous. In addition, the distinc- Cdn(kr) i
tion between TE and TM modes breaks down since focusing Rum(KLN) =Ry 1 — ——+0— Jn(kir)| (A1l
waves correspond to hybrid modes. +
It is interesting to note that since Bessel functions are th(?or the TE-like components and
eigenmodes of the cylindrical wave equation in vacuum, P
these modes can theoretically propagate as plane Waggs 2
without diffracting. However, the dispersion relation shows R,k 1) =Rk r)|z+t k”_c} (A12)
that these modes are slow waves, with a nonzero cutoff fre- pemi frimd 2L w

guency, thus indicating that such mode profiles cannot be
maintained in vacuum, without a waveguide boundary confor the TM-like modes. The constraint between the radial
dition. In addition, in a waveguide, the energy flow is limited eigenvalue and the frequency and wave number is given by
by the finite radial extent of the structure, whereas inthe dispersion relation. This solution can easily be inter-
vacuum, the radial integral of a single unbounded Bessgbreted: The temporal evolution of the wave packet is de-
function diverge§43-415. scribed by its frequency spectrum, while the radial profile of
We also note that, starting from these solutions, one cathe laser wave is described by an integral over a continuous
construct hybrid modes where the transverse components spectrum of transverse vacuum eigenmo¢®@sssel func-
the 4-potential correspond to TE-like modes and the axiations). The dispersion relation indicates how each radial and
component is described by a TM-like profile. However, heretemporal component of the wave packet propagates, thus
the gauge condition is satisfied differently from guidedyielding wave-front curvature and diffraction of the wave
waves. For propagation in vacuum, such hybrid modes arpacket. The polarization state is describednhif the tem-
required: e.g., in the case of a linearly polarized wave focusporal and radial spectral distribution are known at a given
ing in vacuum, a superposition of pure jiEnodes will not  position along the propagation axis, as well as the polariza-
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tion state, the pulse characteristics can be obtained at arwhere we have expressed the various parameters in terms of
other axial position by following the corresponding proce-physical quantities. Performing the temporal Fourier trans-
dure outlined in Sec. Il A. form of the circularly polarized hyperbolic secant pulse

At this point, we need a mathematical procedure to deter-
mine the radial spectrum of the wave packet. The most rel-
evant cases for practical applications correspond to linearly cog wot— 6) 1 +o0 \/}
and circularly polarized wave packets, where the azimuthal Ty 2n J_ )
number|m|=1. For example, in the case of a circularly po- cos)’( —) e
larized hyperbolic secant laser pulse with a Gaussian profile At
at focus, we have

exdi(wt* 6)]

X At - dw,
r \2] cogwot— @ i
A(r,0,2=08)=A exp[—(\N—> S{w—"t) (A13) COS*{Z (0*wo)At
0
cos)‘( —)
At (A20)
. the radial component of the 4-potential can now be evaluated
r \?] sin(wet— 6) at any point along the propagation axis by performing the
Ay(r,0,z=0t)=Aexpg—|—| | —F———, (A14) .
Wy t integral
cosh 1+
whereAt is the pulse durationy is the laser frequency, and K3 exp{ _ ( wok, ) 2
1

Wy is the focal beam waist. To express the Gaussian profile Atwé +oo o
in terms of Bessel functions, one begins with Hankel's inte-Ar:1—6 J_m dwfo dk,
gral theorem, which reduces to Weber's integral in this case cosr{E (o= wO)At}
[40]. We have, for a Gaussian,

Ja(k,r [w?
» )5 exp( —b?/4a?) X 1|(( lr ) ex%i( wt— w—z— k?z+ 0” (A21)
f xe @) (bx)dx= ———— " (A15) ! c
0

2a’

o _ _ where one must sum over the plus and minus signs. The
Because of the polarization constraint, we now expdgs8  azimuthal component of the 4-vector potential is obtained

terms ofJ;, using the recurrence relati¢40,43-43 upon replacement ad;(k, r)/k,r by iJ;(k,r) in the inte-
gral. This procedure can be extended to Gaussian-Hermite
Jo(bx)=3}(bx) + J1(bx) (A16) profiles by noting that each tgrm of the serie_s.has a Bessel
bx transform given by Weber's integrfl0]. Specifically, we
have
to obtain
exp(—b?/4a?) fw 2.2 J1(bx) P2 w2\ N+l
——— = xe @ J(bx)+ dx, (A17) nexg — | — | |=|-2 f n+1
a2 . 1(bX) + =~ ( r exp{ (Wo) } 2) . KT
hich is integrated by parts, yieldin wok, |2
WhICH 1S Integ yp yielding xexp{—( °2l> Jn(k, rdk; .
ad —[ 2] ] = 202 xe @ L bx)w A22
e 5a) | =287 |xe T 5l . (A22)

(A18)  We then reduce the Bessel function order to 1, which is
achieved by means of the recurrence relatidf,43-43
. ] ) Jn_1(k, r)=n[J (k. r)/k, r]+J/ (k. r) and by integrating
The first term in square brackets vanishes and we are lefly parts. We have thus introduced a general mathematical
with the sought-after Bessel transform of a Gaussian procedure allowing for the exact description of the electro-
2 magnetic field distribution of a cylindrically symmetrical
ex;{—(L } three-dimensional focus in vacuum, both in the near-field
Wo
4 2
- e[
4 Jo 2

® J,(bx
+f 2a2x2e= 2 %) dx].
0

and in the far-field regions. The results derived here can also
K be obtained from the exact solution in rectangular coordi-
Jll(< er) dk, , (A19) ?gaes(see Sec. Il by performing a coordinate transforma-
L ion.
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