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Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus
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The relativistic dynamics of an electron submitted to the three-dimensional field of a focused, ultrahigh-
intensity laser pulse are studied numerically. The diffracting field in vacuum is modeled by the paraxial
propagator and exactly satisfies the Lorentz gauge condition everywhere. In rectangular coordinates, the elec-
tromagnetic field is Fourier transformed into transverse and longitudinal wave packets, and diffraction is
described through the different phase shifts accumulated by the various Fourier components, as constrained by
the dispersion relation. In cylindrical geometry, the radial dependence of the focusing wave is described as a
continuous spectrum of Bessel functions and can be obtained by using Hankel’s integral theorem. To define the
boundary conditions for this problem, the beam profile is matched to a Gaussian-Hermite distribution at focus,
where the wave front is planar. Plane-wave dynamics are verified for largef numbers, including canonical
momentum invariance, while high-energy scattering is predicted for smaller values off at relativistic laser
intensities.@S1063-651X~98!08210-5#

PACS number~s!: 41.75.Ht, 42.25.Bs, 52.40.Nk, 42.55.2f
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I. INTRODUCTION

The physics of laser-electron interactions@1–18# changes
dramatically at relativistic intensities, where the transve
momentum of the charge, measured in electron units,
ceeds one. Three fundamental processes are known to o
in this regime: nonlinear ponderomotive@16–18# and Comp-
ton @19,20# scattering, and high-intensity Kapitza-Dirac sca
tering @21,22#. These vacuum interactions correspond to
following geometries: collinear propagation, head-on co
sion, and electron diffraction in a laser standing wave,
spectively.

An accurate description of the three-dimensional focus
a laser wave, in both the near-field and far-field regions
required to properly describe the interaction of the elec
magnetic field with charged leptons. In particular, the val
ity of the paraxial ray approximation@23–25#, when used to
model problems involving relativistic electrons copropag
ing with a laser wave over many Rayleigh ranges, must
firmly established. For applications involving ultrahig
intensity@19# and nonlinear@20# Compton scattering, such a
the g-g collider or focused x-ray sources, a detailed know
edge of the three-dimensional electromagnetic field distri
tion in the focal region is of paramount importance since
axial component of the fields may play a major role in t
electron dynamics. An accurate field distribution is also
quired to properly model experimental results. Tw
ultrahigh-intensity relativistic electron scattering expe
ments are currently under way at the Stanford Linear Acc
erator Center~SLAC! and the Commissariat a` l’Energie
Atomique ~CEA!. In the first case, nonlinear~multiphoton!
Compton backscattering is investigated using the SLAC
GeV beam and a tightly focused terawatt-class laser@26#; at
PRE 581063-651X/98/58~4!/5001~12!/$15.00
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the CEA, low-energy electrons are accelerated by a tera
laser@27#. In both instances, the three-dimensional nature
the focused laser pulse is an essential feature of the ex
ment and must be described accurately to interpret the re
ing data correctly. In addition, considerable interest has b
given recently to the detailed properties of laser focusi
partly because of potential applications such as plasma@28–
33# and vacuum-based laser acceleration schemes@1–18#.
For example, super-Gaussian rings have been thorou
studied in an analysis@34# that shares some similarities wit
the present work. More in line with our motivation, the effe
of the ponderomotive potential@35–37# associated with an
ultrahigh-intensity laser wave on the radial confinement
relativistic electrons copropagating with the pulse has b
investigated by Moore@38#. This analysis indicates tha
higher-order Gaussian modes can indeed confine the e
trons through the focus because of the inward radiation p
sure gradient. In this particular case, an accurate th
dimensional field distribution, satisfying both the vacuu
wave equation and the gauge condition, is needed to con
sively demonstrate the validity of this approach.

An important goal of this paper is to present a comp
hensive theoretical and numerical description of the rela
istic dynamics of a charged particle interacting with an e
ternal electromagnetic field propagatingin vacuo. To
accurately describe the focusing and diffraction of the dr
laser wave in vacuum, the paraxial propagator approac
used, where the mass shell condition~vacuum dispersion re
lation! is approximated by a quadratic Taylor expansion
the 4-wave-number@23–25#. This approach proves ex
tremely accurate for any realizable laser focus and yie
analytical expressions for the fields. In addition, the gau
condition is exactly satisfied everywhere, thus yielding
5001 © 1998 The American Physical Society
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5002 PRE 58F. V. HARTEMANN et al.
proper treatment of the axial electromagnetic field com
nents due to wave-front curvature. The electron phase is u
as the independent variable, thus allowing for particle tra
ing over an arbitrarily large number of Rayleigh ranges,
dependent of the nonlinear slippage and relativistic Dopp
shift due to radiation pressure. Ultrahigh-intensity ponde
motive scattering is studied as an example to demonstrate
relevance of this theoretical approach and the efficiency
the numerical algorithm developed here. The thr
dimensional dynamics are different from earlier tw
dimensional models@16,18,27#; in particular, the angular dis
tribution of scattering energy no longer reflects canoni
momentum invariance, as the light-cone variable is not
variant for focusing waves.

This paper is organized as follows. A brief review of th
dynamics of an electron subjected to an ultrahigh-inten
plane wave in vacuum is given in Sec. II and the Lawso
Woodward theorem@15# is discussed, as is the scatterin
angular correlation described in references@16, 18, 27#. The
general formalism used to obtain an exact three-dimensi
solution to the wave equation in vacuum is described in S
III, with a special emphasis on rectangular coordinates,
the paraxial ray approximation is shown to derive from
simple Taylor expansion in the transverse wave number
addition, the axial field component required to satisfy t
gauge condition is analytically derived; this solution exac
satisfies the gauge condition everywhere. For completen
the cylindrical wave equation in vacuum@39# is reviewed in
the Appendix, and the corresponding vacuum eigenmode
pansion is also presented there, as are the corresponding
persion relations, together with the Fourier-Bessel transfo
of the focal field distribution, which is performed by usin
Hankel’s integral theorem@40#. In Sec. IV, the relativistic
electron dynamics in the three-dimensional paraxial fie
are studied theoretically and numerically, and relativis
ponderomotive scattering is discussed within this framewo
Finally, conclusions are drawn in Sec. V.

II. PLANE-WAVE DYNAMICS AND THE
LAWSON-WOODWARD THEOREM

This section is intended as a brief review of the inter
tion of a relativistic electron with an ultrahigh-intensity plan
wave. Further details can be found in Refs.@1–18#.

The electron 4-velocity and 4-momentum are defined
@41,42#

um5
1

c

dxm

dt
[g~1,b!, pm5m0cum , umum521, ~1!

where t is the proper time along the electron world lin
xm(t). In the absence of radiative corrections, the ener
momentum transfer equations are driven by the Lore
force

dum

dt
52

e

m0c
~]mAn2]nAm!un. ~2!

For plane waves, the 4-vector potential of the laser wav
given by

Am~f!5@0,A'~f!#, f5kmxm~t!, ~3!
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wheref is the relativistically invariant phase of the travelin
wave along the electron trajectory. Note that the tempo
dependence of the wave is arbitrary. Choosingkm[(v0 /
c)(1,0,0,1), with the wave propagating in thez direction, we
have

df

dt
5v0~g2uz!5v0k, ~4!

which defines the light-cone variablek, and the 4-
momentum transfer equations read

du'

dt
5v0k

d

df FeA'~f!

m0c G , ~5!

duz

dt
5

dg

dt
5v0u'•

d

df FeA'~f!

m0c G . ~6!

In the above,v0 is the characteristic laser frequency. Equ
tion ~6! shows thatk is invariant:k5k05g0(12b0); addi-
tionally, Eq. ~5! is readily integrated to yield the transvers
momentum invariant

u'~t!5
eA'~f!

m0c
~7!

and the energy and axial momentum are immediately
tained using the fact that the 4-velocity is a unit 4-vec
(g2511u'

2 1uz
2)

uz~t!5g0H b01FeA'~f!

m0c G2S 11b0

2 D J , ~8!

g~t!5g0H 11FeA'~f!

m0c G2S 11b0

2 D J . ~9!

These results are quite general and hold as long as p
waves are considered. An important difference between
larization states immediately appears: The square of the
tor potential varies adiabatically as the pulse envelope
circular polarization, while there is an extra modulation
2v0 for linear polarization. The transverse electron mome
tum depends linearly on the laser field, but the axial mom
tum is a quadratic function of that field, as it results from t
coupling of the transverse velocity to the laser magnetic fi
through the ponderomotive force. This quadratic depende
of the energy and axial momentum on the 4-vector poten
measured in electron units, distinguishes the relativistic s
tering regime, whereueA' /m0cu>1. In this regime, the pon-
deromotive force dominates the electron dynamics, yield
nonlinear slippage and Doppler shifts@19,20#. Equation~9!
also provides a scaling for the maximum energy in a pla
wave, g* /g0>(eA' /m0c)2, for relativistic electrons. Fi-
nally, the electron position is given byx(f)5(c/
v0)(1/k0)*0

fu(c)dc.
Equation~9! also shows that there is no net energy gain

by the electron after interacting with a plane wave: We ha
limf→`@A'(f)#50 and therefore limf→`@g(f)#5g0 .
This is essentially the generalized version of the Laws
Woodward theorem@15#. The fact that a charged particl
cannot exchange energy and momentum with an incid
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plane wave in vacuum can also be easily understood. C
sider a frame where the electron is initially at rest, as illu
trated in Fig. 1. If the electron gains energy and moment
during the interaction, it is accelerated and therefore radia
In the final state, the laser wave has been attenuated, w
implies that there exists a permanent destructive interfere
between the laser wave and the wave radiated by the e
tron. This is the classical equivalent of photon annihilation
QED. However, the electron radiates waves that decay
r 22 and therefore no stable interference pattern can be
tained with a plane wave; in fact, in this case, any interf
ence also decays liker 22. This shows that, in the absence
radiative corrections~electron recoil!, no net energy-momen
tum can be transferred from a plane wave to an electro
vacuum, in agreement with the generalized Laws
Woodward theorem.

Finally, it also interesting to note that for plane waves,
electric and magnetic fields obey the relationB5(k/v0)
3E5 ẑ3(E/c), which results in the invariance of the ligh
cone variable. This in turn implies that there is a strict c
relation between the electron trajectory angleu
5arctanuu' /uzu and its energyg. Indeed, we have

umum521 ⇔ g2511u'
2 1uz

2

and

g2uz5k;

combining these two equations, we obtain the simple re
@16,18#

u~g!5arctanA212k0
212gk0

g21k0
222gk0

5arctanFAS 2

11b0
D S g

g0
21D

g2g0~12b0!
G . ~10!

FIG. 1. Initial and final states for the interaction of a plane wa
with an electron initially at rest.
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For focusing waves, the light-cone variable is no longer
variant and the relation described by Eq.~10! is not strictly
valid anymore.

III. THREE-DIMENSIONAL FOCUSING

In vacuum, the wave equation takes the familiar form

F¹22
1

c2
] t

2GAm5@]n]n#Am50, ~11!

where we have introduced the 4-gradient operator]m
[]/]Xm[@2(1/c)] t ,“# and the 4-potential Am
[(w/c,A), which is chosen to satisfy the Lorentz gau
condition

]mAm50. ~12!

The electromagnetic field tensor is defined byFmn5]mAn

2]nAm .

A. Exact three-dimensional solution

In vacuum, a general solution to the wave equation can
constructed as a Fourier superposition of wave packets o
form

Am~xn!5
1

~2p!2
EEEE Ãm~kn!exp~ iknxn!d4kl , ~13!

where the notationd4kl represents the differential 4-volum
Pldkl5dk0dk1dk2dk3 and the 4-wave-number km
[(v/c,k) satisfies the vacuum dispersion relation

v2

c2
2k25kmkm50, ~14!

which is also the mass shell condition for the photon fie
\2(kmkm)50. In Cartesian coordinates, this translates int

Am~x,y,z,t !5
1

~2p!2
EEEE Ãm~k,v!

3exp@ i ~vt2k•x!#d3k dv. ~15!

In the case where the laser pulse characteristics are defin
focus (z50), we can obtain the electromagnetic field dist
bution in any givenz plane by performing the integral~i.e.,
by applying the propagation operator!

Am~x,y,z,t !5
1

~2p!3/2 E E E Ãm~k' ,v,z50!

3expF i S vt2kxx2kyy

2Av2

c2
2k'

2 zD Gd2k'dv. ~16!

This solution is easily interpreted: The temporal evolution
each wave packet is described by the frequency spectr
while the transverse profile of the laser wave is expresse
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5004 PRE 58F. V. HARTEMANN et al.
an integral over a continuous spectrum of transverse vac
eigenmodes. The dispersion relation indicates how e
transverse component of the wave packet propagates,
yielding wave-front curvature and transverse spreading~dif-
fraction! of the wave packet. It should also be noted that
axial wave number can become purely imaginary, in wh
case the corresponding waves become evanescent mod
Eq. ~16! we have introduced the frequency and transve
wave-number spectral distributions at focus, which are de
mined by Fourier transforming the local field distributio
according to

Ãm~k' ,v,z50!5
1

~2p!3/2 E E E Am~x,y,z50,t !

3exp@2 i ~vt2kxx2kyy!#dx dy dt.

~17!

The next consideration is the gauge condition, which c
be chosen to reduce to the Coulomb gauge“•A50 in a
frame where the scalar potential is set to zero. Suc
divergence-free vector potential can be generated by a ve
field G, defined such thatA5“3G. As the curl and
d’Alembertian operators commute, it is clear that ifG satis-
fies the propagation equation, the vector potential will a
satisfy it. For an electromagnetic wave propagating along
z axis and linearly polarized in thex direction, the generating
vector field reduces toG(xm)5 ŷGy(xm). For a Gaussian-
elliptical focus, the generating field takes the form

Gy~x,y,z50,t !5
A'

k0
expF2S x

w0x
D 2

2S y

w0y
D 2Gh~ t !, ~18!

wherew0x refers to the beam waist along thex axis andw0y
refers to the beam waist along they axis,A' is the amplitude
of the vector potential at focus,k05v0 /c52p/l0 corre-
sponds to the central laser wavelength, andh(t) is the tem-
poral variation of the laser wave, which can be arbitrary. T
corresponding focal spectral density is

G̃y~k' ,v,z50!5
A'

2k0
w0xw0yh̃~v!

3expF2S kxx

2 D 2

2S kyy

2 D 2G . ~19!

The propagation integral then takes the form

Gy~x,y,z,t !5
1

~2p!3/2 E E E G̃y~k' ,z50,v!

3expF i S vt2kxx2kyy

2Av2

c2
2k'

2 zD Gd2k'dv, ~20!

which is an exact solution to the three-dimensional wa
equation in vacuum. The corresponding vector potentia
obtained by taking the curl of the generating fieldG.
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B. Paraxial propagator

The three-dimensional behavior of the laser electrom
netic field is now described within the context of the parax
propagator formalism. Here the photon mass shell condi
is approximated by a quadratic Taylor expansion, nam
Eq. ~20! is replaced by

Gy~x,y,z,t !5
1

~2p!3/2 E E E G̃y~k' ,z50,v!

3expH i Fvt2kxx2kyy

2S v

c
2

k'
2

2k0
D zG J d2k'dv, ~21!

where the square root factor has been Taylor expande
second order aroundv5v0 and k'50. It is clear that the
exact and Taylor expanded axial phases differ only for la
values of the transverse wave number, where the spe
density is vanishingly small.

The physical content of the paraxial approximation is
lustrated in Fig. 2. The Gaussian transverse wave-num
spectrum is shown forw0k0520, wherek052p/l0 . Eva-
nescent modes correspond tok' /k0.1. The axial wave
number is also shown both for the exact dispersion rela

FIG. 2. Normalized transverse wave-number spectrum~top! and
the exact and paraxial phase~bottom!. The beam waist to wave
length ratio isw0 /l0510/p.
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and in the paraxial approximation. It is clear that for phy
cally realizable foci, where the beam waist is significan
larger than the wavelength, the region of transverse wa
number space where the paraxial phase differs significa
from the exact value corresponds to very small spectral
plitudes. For larger values of thef number, the transvers
wave-number spectrum is narrower and the approximatio
even better.

Inserting the Gaussian spectral density from Eq.~19! into
Eq. ~21!, we see that the integration overv is a simple Fou-
rier transform ofh̃(v) and yieldsh(t2z/c)5h(f/v0). The
integrals over the transverse momentum are also readily
tained, as they correspond to exponentials of quadratic c
plex polynomials@43#:

Gy~x,y,z,t !5
A'

k0
hS f

v0
D F11S z

z0x
D 2G21/4

3F11S z

z0y
D 2G21/4

3expH 2F x

wx~z!G
2

2F y

wy~z!G
2J

3expF i H 1

2
arctanS z

z0x
D

1
1

2
arctanS z

z0y
D2

z

z0x
S x

wx~z! D
2

2
z

z0y
S y

wy~z! D
2J G , ~22!

wherewx,y(z)5w0x,yA11(z/z0x,y)
2 are the waist sizes an

z0x,y5 1
2 k0w0x,y

2 represent the Rayleigh ranges for eachf
number, which are defined by the relationw0x,y
5l0 /p arctan(1/2f x,y) @23–25#.

Finally, taking the real part of the curl of the generati
vector, we derive the vector potential

A~xm!

Re@Gy~xm!#
5 x̂H k0

g~f!

dg

df
1

z

2~z21z0x
2 !

3F12S 2x

wx
D 2G1

z

2~z21z0y
2 !

3F12S 2y

wy
D 2G1tan~L!

]L

]z J
1 ẑF k0xz

~z21z0x
2 !

tan~L!2
2x

wx
2G , ~23!

where we have written the temporal laser pulse in terms
slowly varying envelopeh(f)5g(f)eif. In Eq. ~23! the
total phase is given by
-

e-
tly

-

is

b-
-

a

L5f1
1

2 FarctanS z

z0x
D1arctanS z

z0y
D

2
k0zx2

z21z0x
2

2
k0zy2

z21z0y
2 G , ~24!

which includes the Guoy phase@23–25#.
The vector potential of the focusing wave is shown in F

3. The fields are then derived from this vector potential. W
note that in the plane of polarization (y50), only Ex , Ez ,
and By are nonzero; as a result, electrons seeded aty50,
with no momentum component in they direction, will re-
main in this plane.

We have thus derived a general solution to the wave eq
tion in vacuum, which reduces to the paraxial approximat
in the limit of small transverse wave numbers. In additio
the derivation of an analytical expression of the axial fie
component in the case of linear polarization, within this a
proximation, will prove quite useful to study the relativist
dynamics of electrons in ultrahigh-intensity laser fields.
particular, this derivation can be extended to higher-or
Gaussian modes, which are thought to yield the particle c
finement@38# required for vacuum laser acceleration app
cations@1–18#.

We also note that the extension of the above consid
ations to circular polarization can be achieved in a ve
straightforward manner: The generating field simply tak
the form

FIG. 3. Transverse and axial vector potential components, in
plane of polarization, at three different times. The pulses are
cycles long andf 53.
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5006 PRE 58F. V. HARTEMANN et al.
G~x,y,z50,t !5
A'

k0
expF2S x

w0x
D 2

2S y

w0y
D 2G

3g~ t !@ x̂ sin~v0t !1 ŷ cos~v0t !#.

~25!

Here againg(t) can be an arbitrary function of time.
Finally, Eq. ~22! takes a more familiar form for a cylin

drical focus

Gy~x,y,z,t !5
A'

k0
hS f

v0
D expH 2F r

w~z!
G2J

A11S z

z0
D 2

3expF i H arctanS z

z0
D

2S z

z0
D S r

w~z!
D 2J G , ~26!

where we recognize the Rayleigh range, Guoy phase,
wave-front curvature@23–25#.

This formalism can also be studied in cylindrical coord
nates, where the radial dependence of the focusing wav
described as a continuous spectrum of Bessel functions,
can be obtained by using Hankel’s integral theorem. To
fine the boundary conditions for this problem, the beam p
file is matched to a Gaussian-Hermite distribution at foc
where the wave front is planar. This derivation is presen
in the Appendix and its equivalence to the Cartesian coo
nate approach is established.

IV. NUMERICAL SIMULATIONS AND PONDEROMOTIVE
SCATTERING

In this section we first present numerical calculations p
taining to the comparison between the paraxial ray appr
mation and the exact mathematical procedures introduce
Sec. III. We are primarily concerned with linearly polarize
waves that have a Gaussian radial intensity distribution
focus. The numerical methods presented here can easi
extended to more complex focal distributions. In additio
we first consider monochromatic waves, so that the temp
Fourier transform is not necessary. Again, the generaliza
to broadband, ultrashort laser pulses is readily achieved
means of a Fourier integral over the laser frequency sp
trum, as discussed in Sec. III B.

In our numerical simulations, Eq.~16! is evaluated nu-
merically for the case of a monochromatic, linearly polariz
pulse having a Gaussian radial intensity distribution at foc
with a relative accuracy in the 1028 range@44#. The conver-
gence of the code is verified by first considering the foc
where the code performs the exact integral, which is th
compared to the input focal distribution. For typical para
eters, such as those shown in Fig. 4, the convergence to
input Gaussian is excellent over 10–11 orders of magnitu

The axial field component is evaluated in the followin
manner: For the paraxial ray approximation, we use the
pression derived in Eq.~23! and takew0x5w0y5w0 , while
nd

is
nd
-
-
,
d
i-

r-
i-
in

at
be
,
al
n

by
c-

d
s,

,
n
-
the
e.

x-

the exact expression is given by Eq.~16!. The agreement
between both expressions at focus confirms the accurac
the code. In addition, this level of agreement is maintain
over a wide range of focal beam waists~from 1.5 mm to 1
mm!. As expected, the axial field component vanishes
axis (r 50) and in thex50 plane. It is also interesting to
note that the axial component is much smaller than the tra
verse component because of the modest wave-front cu
ture. For reference, the intensity distributions are also sho
in linear scale in Fig. 5 for the same parameters (w0
55 mm andl051 mm).

In Fig. 6 the wave has propagated over ten Rayle
ranges, and the diffraction is compared for the exact a
paraxial solutions to the wave equation. Again, good agr
ment is obtained over more than six orders of magnitude
expected because of the weak wave-front curvature. S
numerical noise is visible at large radii~.150 mm!.

Using the code, a wide region of parameter space~f num-
ber and distance from focus! was mapped rather extensivel
showing the robust validity of the paraxial ray approxim
tion. In fact, the only systematic deviations between the c
and the paraxial approximation were obtained for tight fo
~1.5-mm beam waist at 1-mm wavelength! and far away from
the focal region. An example is shown in Fig. 7, whe
z/z05100 ~100 Rayleigh ranges away from focus!. For both
the transverse and axial field components, the exact solu
is seen to diffract faster than the Gaussian spherical wa
corresponding to the paraxial wave equation. However,
effect is significant only at large radii. Therefore, the parax

FIG. 4. Transverse~top! and axial~bottom! 4-potential compo-
nents~amplitude squared! at focus, as functions of radius forw0

55 mm andl051 mm, on a logarithmic scale.
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ray approximation is extremely well suited for studying no
linear electron-laser interactions that are confined withi
reasonably large radius from the propagation axis. In a
experimental situation, imperfect laser spatial filtering,
well as prepulses and other noisy phenomena, is expecte
dominate over any deviations associated with the para
approximation.

Having obtained analytic expressions for the 4-potent
the Lorentz force equation may now be numerically in
grated to yield the dynamics of a charge interacting with
three-dimensional laser fields. The algorithm developed
this purpose employs the second-order Runge-Kutta me
and utilizes the axial electron phase as the variable of i
gration in order to handle both the nonlinear slippage and
large relativistic Doppler shift. The normalized equations
motion are

du

df
52

1

k
~ge1u3b!, ~27!

dg

df
52

1

k
u•e, ~28!

where we have introduced the normalized fieldse
5eE/v0m0c and b5eB/v0m0 . The inverse of the light-
cone variable is evaluated using the expression 1/k5(g
1uz)/(11u'

2 ) to avoid divergences. In addition, the evol
tion equation for the light-cone variable

FIG. 5. Transverse~top! and axial~bottom! 4-potential compo-
nents~amplitude squared! at focus, as functions of radius forw0

55 mm andl051 mm, on a linear scale.
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dk

df
52

1

k
~u•e2gez2uxby1uybx!, ~29!

is used to randomize the numerical noise and minimize
growth of numerical instabilities by introducing the averag
quantities

^k&5
1

2 F E
0

f dk

dc
dc1

11u'
2

g1uz
G ,

^g&5
1

2 F E
0

f dg

dc
dc1A11u2G .

Note that for very largef numbers, Eq.~29! tends to zero and
we recover the fact that the light-cone variable is an invari
for plane waves. The electron position is now given
x(f)5(c/v0)*0

f(u/k)(c)dc.
For a laser focus with extremely largef numbers, which

should closely approximate a plane wave, excellent ag
ment is found between the corresponding numerical res
and the theoretical analytic expressions obtained for pla
wave dynamics, as shown in Fig. 8~top!. For smaller values
of f, scattering is obtained, as shown in Fig. 8~bottom!. In
each case, the relative numerical error is in the 10212– 10216

range. It is interesting to note that for the parameters sho
in Fig. 8 ~bottom!, the scattering energy is smaller than t
maximum energy predicted by plane-wave theory. This

FIG. 6. Transverse~top! and axial~bottom! 4-potential compo-
nents~amplitude squared! at z/z0510, as functions of radius for
w055 mm andl051 mm, on a logarithmic scale.
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5008 PRE 58F. V. HARTEMANN et al.
due to the fact that to obtain optimum scattering the elect
phase must reach the temporal maximum of the drive p
precisely at focus in order to experience the peak field of
laser. In general, the electron scatters from a spatiotemp
location other than this optimum point, at lower energi
The temporal pulse envelope is modeled by the funct
g(f)5sin2@p(f/v0Dt)# in order to integrate the equations
motion over afinite phase interval. The full width at hal
maximum~FWHM! of such a pulse isDt/2.

To study this phenomenon systematically, we have ex
ined the influence of the focus ellipticity and size. The resu
are shown in Fig. 9. Note that to obtain efficient scatteri
the electron must be seeded far from focus, so that by
time it has slipped into the nonlinear temporal phase of
pulse, the focus is reached and the electron interacts with
spatiotemporal maximum of the laser wave. We observe
high-energy scattering occurs for intermediate values of tf
numbers: For low values, the focus is too tight and the e
tron scatters away with minimal energy gain; for very lar
values, we recover the plane-wave interaction, with no
ergy gain. The fact that, for higher initial injection energie
efficient scattering~close to the plane-wave scaling! requires
larger values of thef number is not surprising since the tran
verse electron excursion scales like 1/k>1/k05g0(1
1b0). The largest scattering energies are achieved fof x
. f y , which is directly related to the linear polarization
the drive laser. The high degree of symmetry of the surf
with respect tof x and f y , however, indicates that the ele
tron phasing, which is strongly influenced by the wave-fro

FIG. 7. Transverse~top! and axial~bottom! 4-potential compo-
nents~amplitude squared! at z/z05100, as functions of radius fo
w051.5mm andl051 mm, on a logarithmic scale.
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curvature, is of paramount importance. It also shows t
cylindrical foci can be used for high-energy scattering.

To assess the feasibility of laser acceleration based on
scattering process, the total energy in the laser pulse is
tained by integrating the Poynting vector flux over the foc
spot and the pulse duration to obtain

W

m0c2
5

3p

32
A'

2 w0x

l0

w0y

l0

cDt

r 0
, ~30!

FIG. 8. Top, plane-wave interaction (f x51020 and f y51020);
bottom, scattering (f x 55, f y 55). The other parameters areA'

510,l051 mm, a FWHM of 20 fs, no initial energy, andxi5yi

50; the initial axial position is at focus.

FIG. 9. Scan of f x and f y . The other parameters areA'

510,l051 mm, a FWHM of 20 fs, an initial energy of 10 MeV
xi5yi50, and an initial axial position of23 mm.
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where r 05e2/4p«0m0c252.817 85310215 m is the classi-
cal electron radius. We then study a cylindrical focus (w0x
5w0y5w0), and maintain the pulse FWHM at 20 fs and t
productA'w0 at 250mm ~constant energy of 20 J!, while
varying A' between 1 and 20 and varying the injection p
sition between220 mm and focus. The results are shown
Fig. 10, and clearly indicate the existence of an optim
combination off number and laser intensity for high-energ
scattering, approximately obtained for a normalized vec
potential of 17.5 andf 523. Here, there is a sharply define
acceptance range in the initial position and the scatte
energy reaches 0.25 GeV. The acceleration process oc
over a distance of 3 mm, yielding a gradient of 85 GeV/
The laser parameters presented here should correspond
next generation of chirped pulse laser amplifiers@46,47#.

V. CONCLUSIONS

Exact solutions to the wave equation in vacuum ha
been studied for a three-dimensional laser focus for b
rectangular and cylindrical geometries. Furthermore, it
been shown that the paraxial ray approximation correspo
to the quadratic Taylor expansion of the phase in the tra
verse wave number. Within this framework, in addition
the standard paraxial approximation of the transverse fi
component, an expression for the axial field component
quired to satisfy the gauge condition for linear polarizati
has been obtained, as well as the paraxial gauge cond
itself. To our knowledge, these results represent an exten
of the paraxial ray model of Gaussian spherical waves. W
these results were obtained for linearly polarized waves
Gaussian foci, the formalism presented here can be gen
ized to describe circularly polarized and Gaussian-Herm
modes. Furthermore, the paraxial approximation has b
extensively compared to the aforementioned exact solu
and found to be in excellent agreement in most cases,
justifying the general use of Gaussian spherical waves
model focusing waves in vacuum. The paraxial wave a
gauge equations, and their solution for linear polarizati
including the axial field component, are thus important
sults needed to model the nonlinear dynamics of relativi
electrons in the focus of an ultrahigh-intensity laser.

FIG. 10. Scan ofA' and initial z for a constant pulse energy o
20 J. l051 mm, the FWHM is 20 fs, the initial energy is 1
MeV, andxi5yi50.
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Finally, the relativistic dynamics of an electron submitt
to the three-dimensional field of a focused, ultrahig
intensity laser pulse have been studied numerically. The
fracting field in vacuum is modeled by the paraxial propag
tor and satisfies the gauge condition. Plane-wave dynam
are verified for largef numbers, including canonical momen
tum invariance. Scattering is predicted for smaller valuesf
at relativistic laser intensities and GeV electrons could
produced in vacuum using femtosecond laser pulses w
energies in the 10–100 J range.
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APPENDIX: CYLINDRICAL FOCUSING GEOMETRY

1. Cylindrical wave equation

A number of experimental situations involve laser fo
with cylindrical symmetry. It is therefore of interest to stud
the vacuum eigenmodes of this particular geometry. For
lindrical symmetry, the wave equation now reads@39#

F¹22
1

c2
] t

2GAr2
1

r 2
~Ar12]uAu!50, ~A1!

F¹22
1

c2
] t

2GAu2
1

r 2
~Au22]uAr !50, ~A2!

F¹22
1

c2
] t

2GAz50, ~A3!

F¹22
1

c2
] t

2Gf50. ~A4!

The standard procedure to find a general solution to
cylindrical wave equation is to employ the method of sep
ration of variables. The axial and temporal dependence of
4-vector potential is represented by a double Fourier tra
form, while symmetry imposes harmonic dependence on
azimuthal angle. We thus have

Am~xm!5Am~r ,u,z,t !

5
1

2p (
m

E
2`

1`E
2`

1`

Ãm~ki ,v!Rmm~r !

3exp@ i ~vt2kiz1mu!#dkidv. ~A5!
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Inserting Eq.~A5! into the cylindrical wave equation an
using the orthogonality of complex exponentials, we obt
two sets of differential equations corresponding to two fam
lies of modes: TE and TM.

The TM modes are generated by the axial and temp
components of the 4-potential. The corresponding w
equation admits solutions of the form@39,44#

Rzm~r !5RimJm~k'r !, ~A6!

Rtm~r !5Rim

kc2

v
Jm~k'r !, ~A7!

where the transverse eigenwave number is constrained b
vacuum dispersion relationv2/c25ki

21k'
2 . In Eqs.~A6! and

~A7! the constants have been adjusted for the axial and t
poral components in order to satisfy the Lorentz gauge c
dition.

On the other hand, the TE modes are generated by
radial and azimuthal components of the 4-potential. The c
responding wave equation splits into two coupled differen
equations, which admit solutions of the form@39,44#

Rrm~r !5R'm

Jm~k'r !

k'r
, ~A8!

Rum~r !5R'm

i

m
Jm8 ~k'r !, ~A9!

where the transverse eigenvalue is again constrained by
dispersion relation. Note that here the gauge condition
automatically satisfied because the differential equations
sulting from the wave equation are coupled.

In the case of a finite radial boundary atr 5a ~cylindrical
waveguide!, the transverse eigenmode spectrum is discr
and we havek'[xmn8 /a for TE modes andk'[xmn /a for
TM modes. Herexmn8 and xmn are thenth zeros ofJm8 and
Jm , respectively@39,41#. However, in our case of interes
the radial boundary extends out to infinity and the rad
eigenmode spectrum is continuous. In addition, the dist
tion between TE and TM modes breaks down since focus
waves correspond to hybrid modes.

It is interesting to note that since Bessel functions are
eigenmodes of the cylindrical wave equation in vacuu
these modes can theoretically propagate as plane waves@25#,
without diffracting. However, the dispersion relation sho
that these modes are slow waves, with a nonzero cutoff
quency, thus indicating that such mode profiles cannot
maintained in vacuum, without a waveguide boundary c
dition. In addition, in a waveguide, the energy flow is limite
by the finite radial extent of the structure, whereas
vacuum, the radial integral of a single unbounded Bes
function diverges@43–45#.

We also note that, starting from these solutions, one
construct hybrid modes where the transverse componen
the 4-potential correspond to TE-like modes and the a
component is described by a TM-like profile. However, he
the gauge condition is satisfied differently from guid
waves. For propagation in vacuum, such hybrid modes
required: e.g., in the case of a linearly polarized wave foc
ing in vacuum, a superposition of pure TE11 modes will not
n
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yield an adequate description since they are not truly linea
polarized, as shown in Fig. 11; therefore, an axial field co
ponent is required.

2. Vacuum eigenmode expansion and Fourier-Bessel
transform

Now a general solution to the cylindrical wave equati
can be expressed as a vacuum eigenmode expansion, b
continuous radial eigenvalue spectrum remains to be defi
namely, we have

Am~r ,u,z,t !5
1

2p (
m

E E E Ãm~k' ,ki ,v!Rmm~k'r !

3exp@ i ~vt2kiz1mu!#dk'dkidv, ~A10!

where

Rmm~k'r !5R'mF r̂
Jm~k'r !

k'r
1 û

i

m
Jm8 ~k'r !G ~A11!

for the TE-like components and

Rmm~k'r !5RimJm~k'r !F ẑ1 t̂
kic2

v G ~A12!

for the TM-like modes. The constraint between the rad
eigenvalue and the frequency and wave number is given
the dispersion relation. This solution can easily be int
preted: The temporal evolution of the wave packet is
scribed by its frequency spectrum, while the radial profile
the laser wave is described by an integral over a continu
spectrum of transverse vacuum eigenmodes~Bessel func-
tions!. The dispersion relation indicates how each radial a
temporal component of the wave packet propagates,
yielding wave-front curvature and diffraction of the wav
packet. The polarization state is described bym. If the tem-
poral and radial spectral distribution are known at a giv
position along the propagation axis, as well as the polar

FIG. 11. Comparison between a TE11 mode and a linearly po-
larized Gaussian.
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tion state, the pulse characteristics can be obtained at
other axial position by following the corresponding proc
dure outlined in Sec. III A.

At this point, we need a mathematical procedure to de
mine the radial spectrum of the wave packet. The most
evant cases for practical applications correspond to line
and circularly polarized wave packets, where the azimu
numberumu51. For example, in the case of a circularly p
larized hyperbolic secant laser pulse with a Gaussian pro
at focus, we have

Ar~r ,u,z50,t !5A expF2S r

w0
D 2G cos~v0t2u!

coshS t

Dt D
, ~A13!

Au~r ,u,z50,t !5A expF2S r

w0
D 2G sin~v0t2u!

coshS t

Dt D
, ~A14!

whereDt is the pulse duration,v0 is the laser frequency, an
w0 is the focal beam waist. To express the Gaussian pro
in terms of Bessel functions, one begins with Hankel’s in
gral theorem, which reduces to Weber’s integral in this c
@40#. We have, for a Gaussian,

E
0

`

xe2a2x2
J0~bx!dx5

exp~2b2/4a2!

2a2
. ~A15!

Because of the polarization constraint, we now expressJ0 in
terms ofJ1 , using the recurrence relation@40,43–45#

J0~bx!5J18~bx!1
J1~bx!

bx
~A16!

to obtain

exp~2b2/4a2!

2a2
5E

0

`

xe2a2x2FJ18~bx!1
J1~bx!

bx Gdx, ~A17!

which is integrated by parts, yielding

expF2S b

2aD 2G52a2H Fxe2a2x2 1

b
J1~bx!G

0

`

1E
0

`

2a2x2e2a2x2 J1~bx!

b
dxJ . ~A18!

The first term in square brackets vanishes and we are
with the sought-after Bessel transform of a Gaussian

expF2S r

w0
D 2G

5
w0

4

4 E
0

`

k'
3 expF2S w0k'

2 D 2G J1~k'r !

k'r
dk' , ~A19!
ny
-

r-
l-
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le
-
e
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where we have expressed the various parameters in term
physical quantities. Performing the temporal Fourier tra
form of the circularly polarized hyperbolic secant pulse

cos~v0t2u!

coshS t

Dt D
5

1

A2p
E

2`

1`Ap

8

3Dt
exp@ i ~vt6u!#

coshFp2 ~v6v0!Dt G dv,

~A20!

the radial component of the 4-potential can now be evalua
at any point along the propagation axis by performing
integral

Ar5
Dtw0

4

16 E
2`

1`

dvE
0

`

dk'

k'
3 expF2S w0k'

2 D 2G
coshFp2 ~v6v0!Dt G

3
J1~k'r !

k'r
expF i S vt2Av2

c2
2k'

2 z6u D G , ~A21!

where one must sum over the plus and minus signs.
azimuthal component of the 4-vector potential is obtain
upon replacement ofJ1(k'r )/k'r by iJ18(k'r ) in the inte-
gral. This procedure can be extended to Gaussian-Her
profiles by noting that each term of the series has a Be
transform given by Weber’s integral@40#. Specifically, we
have

r nexpF2S r

w0
D 2G5S w0

2

2 D n11E
0

`

k'
n11

3expF2S w0k'

2 D 2GJn~k'r !dk' .

~A22!

We then reduce the Bessel function order to 1, which
achieved by means of the recurrence relation@40,43–45#
Jn21(k'r )5n@Jn(k'r )/k'r #1Jn8(k'r ) and by integrating
by parts. We have thus introduced a general mathema
procedure allowing for the exact description of the elect
magnetic field distribution of a cylindrically symmetrica
three-dimensional focus in vacuum, both in the near-fi
and in the far-field regions. The results derived here can a
be obtained from the exact solution in rectangular coor
nates~see Sec. III! by performing a coordinate transforma
tion.
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