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Halo formation in three-dimensional bunches
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We have constructed, analytically and numerically, a class of self-consistent six-dimer{§ibhglhase
space stationary distributions. Stationary distributions allow us to study the halo development mechanism
without it being obscured by beam redistribution and its effect on halo formation. The beam is then mis-
matched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos
in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal
and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for
elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and
transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10% if the mismatch
in the other plane is largéS1063-651X98)05410-3

PACS numbd(s): 29.27.Bd, 41.85.Ew

I. INTRODUCTION
J va drf(H)=1. 1.3

The need for high current in a variety of new accelerator
applications has focused a great deal of attention on under- ) ) . )
standing the phenomenon of halo formation in ion beamsBY starting with the envelope equation for a breathing 2D
which can cause excessive radioactivation of the acceleratdp€am in real space, we were able to treat analytically the
Starting in about 1991, a variety of two-dimensiorfaD) ~ Parametric resonance between the breathing mode and the
simulation studie$1,2] have led to the conclusion that halos nonlinear motion of an individual ion the amplitude of which
are formed when a beam is mismatched to a focusing charis greater than the core radil]. The resulting phase space
nel, exciting some sort of collective oscillatish of the ~ CONSists of an inner separatrix containing the core and an
beam that are in resonance with the nonlinear oscillation ofuter separatrix that becomes the locus near which the halo
individual ions. particles enter and cluster. Numerical simulations starting

Most of the simulations studies start with rms matchedWith @ “breathing” KV beam confirm the analytic prediction
beams that areot stationary solutions of the Vlasov equa- Of the “peanut-shaped” 4D phase space, showing clearly the
tion (See, for example[3]). As a result, the initial beam domlnant_ behawor.of 'ghe parametric resonance. A .typ|cal
undergoes some sort of redistribution in phase space, masgx@mple is shown in Fig. 1 for a mismatératio of initial
ing the possible development of halos. Our effort has beeReam radius to matched beam radiin§0.7 and a tune de-
devoted to populating a stationary distribution in phase
space, in the hope that the halo development mechanism car ' ' ' ' i
be studied without being obscured by the “relaxation” of the
beam in phase space. We have particularly studied initial
distributions that are stationary by virtue of being a function
only of the Hamiltonian.

Our first analysig2] started with an azimuthally symmet-
ric KV [4] beam where the 4D phase space distribution func-
tion was aé function of the Hamiltonian of the form r

f(H)=NS(H—Hy). (1.0

We assume that the transverse focusing force is independen
of longitudinal position (AG forces are smoothed The
Hamiltonian is written as

2 2

r
H:7+G(I)SC(I')+ T,

0 0.5 1 15 2 215
(1.2 r

FIG. 1. Typical stroboscopic plot in the transverse phase space

where®(r) is the electrostatic space charge potential, andor 125 particles with low angular momenta for a KV bedm
whereN is a normalization constant chosen so that =0.8, u=0.7.
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pression(ratio of small amplitude ion oscillation frequency with the beam mismatch. This method proved to be very
with space charge to that without space chafe0.8[5]. efficient in previous 2D calculation—7]. To accomplish
The parametric resonance model successfully predicts thihis we have constructed, analytically and numerically, a
location of the halo, but it gives no information about thenew class of stationary 6D phase space distributions for a
rate at which the halo develops or the fraction of the ions inrspheroidal beam bunch. Our present analysis assumes
the core that enter the halo. Nevertheless, simulations prasmoothed external transverse and longitudinal restoring force
vide evidence that the fraction of the ions that enter the halgradientsk, ,k, k. In general, the distribution can be cho-
is surprisingly insensitive to the tune depression but in-sen to have an approximately ellipsoidal boundary. However,
creases strongly as the mismatch becomes more sEskre for simplicity, we treat the azimuthally symmetric cade (
In addition, the motion starts to show chaotic behavior for=k,) for which the beam bunch is approximately spheroidal.
tune depressions of 0.5 and below, a feature not addressed s is the focus of the present investigation.
the analytic model.

A further shortcoming of the analytic model is that it did ||, STATIONARY 6D PHASE SPACE DISTRIBUTION
not explain how ions were able to leave the core. This, how- o )
ever, was subsequently explained by an analytic treatment of A. Distribution and charge density

the stability of a breathing KV bearf6], which accurately We take for the azimuthally symmetric 6D phase space
predicted the regions in the mismatch—tune depression spaggstribution

where oscillation modes were unstable. Simulations starting

with a breathing KV beam confirmed that these instabilities f(x,p)=N(Ho—H) "2 (2.9

led to oscillation amplitude growth, with ions often entering

the outer separatrix region, corresponding to halo formationVhere
for sufficiently large mismatchs,6]. k122 kZ2f D+ M2
Finally we considered other 4D stationary distributions of H=Kar /24 kez' 12+ eDso(x) +mu /2. 2.2
the form Herep=mv, r’=x?+y?, andk,,k, are the smoothed trans-
N1 verse and longitudinal restoring force gradients. The quantity
f(H)= N(Ho—H)"%, H=H, (1.4) d.(x) is the electrostatic potential due to the space charge
0, H=H,, ' of the bunch. The distribution is normalized such that
with n=1 (water bag and n=2 [7]. We were unable to f dxf dpf(x,p)=1. 2.3
explore the effect of the parametric resonance analytically, '

but numerical simulations showed the development of halos
very similar to those for the KV distribution. Specifically,
phase space again consisted of a “peanut diagram,” with
parameters close to those for the KV distribution. As with a p(x)fo dpf(x,p)= |\|Qm3f dv
KV beam, it became clear that instabilities in the “breathing
mode” allowed ions to enter a region where the parametric
resonance enabled them to move across the inner separatrigare
The only significant change from the KV simulations was
that comparable halo formation required more severe mis- ko2 k,z2
matches than before. G(X)=Ho— —5—— - —edy(x). (2.9

To summarize, we believe, from the analytic treatment of
the breathing KV beam and the simulations of the KV andperforming the integral ovedv=v2dv dQ, in Eq. (2.4
other stationary distributions, that instabilities in the breath4gads to
ing beam allow particles to repopulate the 4D phase space in
a way that allows the parametric resonance to generate halos.

Finally, it is clear that a realistic treatment of halo forma- P(X):QG(X)/ f dxG(x), (2.9
tion must take into account 3D beam bunches and 6D phase
space distributions. Recently, Barnard and LUBd per- where the normalization constant satisfies
formed numerical studies with a 3D beam bunch using the
particle-core model, drawing attention to the existence and
importance of a longitudinal halo for a spheroidal bunch.
However, all studies based on the particle-core model do not ) ) ]
address the question of whether halo formation is influenced From Eq.(2.5) and Poisson’s equation, we write
by the density redistribution that follows for a nonstationary 2 _ P
beam, even if it is rms matché@]. In fact, halo formation in VEG(x)= —ks—eV™Pyc= —ks+ (e/eg)p(x), (2.8
2D due to the redistribution process in rms matched beamgpqre
was shown, for example, by Okamdi®| and JamesofL0].
We therefore continue our effort to study the halo develop- ke= 2k, +K,. (2.9
ment mechanism in 3D beam bunches in the absence of the
redistribution process. Such an approach allows us to studysing Eq.(2.6), we obtain the partial differential equation
the fundamental mechanism of halo formation associatefbor G(x),

The charge distribution corresponding to E2.1) is

G(x)—

2]-172
(2.9

2ﬁw2Nm3’2f dxG(x)=1. (2.7
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K2=(eQ/eO)/ f dXG(x). 2.19) FIG. 4. Transverse tune depressigpvs bunch charge.
r2 72 , [sirf  cose|™?
The solution of Eq.(2.10 for an axisymmetric, spheroidal 2te=l R=l/J (= - (2.19

shaped bunch can most easily be written in the spherical

coordinateR, # for which
B. rms tune depressions and normalized emittance

z=Rcos¢, r=Rsind, (2.12 The equations of motion for an individual ion are
as mx=— k. x+eE,(X) (2.1
G(X)z(ks/’(z)g(x)a (2.13 and
where mz=—k,z+eE,(x), (2.19)

o

9X)=1+ 3 aPo (cosOip (kR). (214 where
- E(x)=— V& (x). (219

HereP,, (cosé) are the evertfore-aft symmetrig Legendre _ o _
polynomials and,,(«R) are the spherical Bessel functions Since the phase space distribution is a function only of the

Sinceg(x) is proportional to the charge density, the edge 3 3
of the bunch is defined as the bordgx) =0, closest to the S ﬂ+ . 69_f_0 2.19
origin. We therefore choose the,'s so that the surface of = Xi X = Xi ax; e :
the bunch reproduces, as closely as possible, the ellipsoidal
surface Multiplying Eqg. (2.19 by mxx; and integrating ovedx dx
ofact leads, after integration by parts, to
m(x?) +(mxx;) =0, (2.20
6 - 1.0~
. cla=2 — cla=1 to 2
£ 084 % e c/a=3
&4 - 3 --- cla=4
& c/a=3
- 0.6
2 c/a=4
0.4
T T T T T T 0.2 ! ' J T
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q

2.2
Xa

FIG. 3. (1- 72/ 72 vs «?a? for differentc/a. FIG. 5. Longitudinal tune depressiap, vs bunch charge.
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TABLE |. “Transverse breathing” oscillations.

(Wmax (Wmax)

cla Umax analytic Umax numerical
2 0.20 0.2:0.04

3 0.14 0.150.03

4 0.11 0.1720.02

5 0.08 0.170.02

GLUCKSTERN, FEDOTOV, KURENNOY, AND RYNE

where () stands for the average over the 6D phase space

distribution. Using Eqs(2.16) and(2.17) leads to

ke(X?) — &(XE,) =m(x?), (2.21)

kAZ%)—e(zE)y=m(Z?). (2.22

We note that the normalized emittandel] has the form
=) (x0)ch,  e=(2*)(2)Icg,

(2.23

in the absence of directional correlations betweeand x,
wherec, is the velocity of light. Equation&.21) and(2.22

play the role of rms envelope equations, allowing us to de-

fine the rms tune depression as

m(x?) m(z%)
77>2<,rmsE Wr 77§,rmsE kz<22> ) (2.249
e(xEy) e(zE,)
1- ﬂi,rmsZWX%v - ng,rms:TZZZ)! (2.29
or
1_7]§:e<XEx> 1_7732 e<ZEZ> (2.26
7 om(x®d ' m mzB) '

We also note tham(x?)=m(y?)=m(z?)=m(v?)/3 be-
causeH depends only on? andx. Thus our choice of a
stationary distribution of the formh(H) automaticallycorre-

sponds to equipartitiofequal average kinetic energy in the

three spatial directionsWe findm(v?2) by writing

Jdxf domu’[G(x) —mu?/2] M2

2\
my<)= — 2.2
(Mo = X T du[ G (x) —mo2/2] T2 2.27
Using
muv?/2=sG(x), mvdv=dsG(x), (2.28
TABLE II. “Longitudinal breathing” oscillations.
E-
cla Wm analytic Wma numerical
2 -0.10 —0.10+0.03
3 -0.07 —0.05+0.01
4 —0.05 —0.03£0.01
5 —0.04 —0.03+0.01
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we have
5 2/dxG2(x)f5dsA(1—s) 1
~ [dxG(x)[sdss(1—s)" (2.29
or
- . ks 02
(mx2>=<mzz):ﬁa, 230
where
1
gnE ; f dxgn(x), (231)

with g(x) defined by Eq.(2.13. We usea, the transverse
beam radius at=0, as the unit of length.

C. Dimensionless parametrization

The definition of the dimensionless functigfx) in Eq.
(2.14 and the fitting to the ellipsoid of Eq2.15 implies
that the dimensionless parameteys and g, are functions
only of ka andc/a. Since the charge density in EQ.7) can
be written as

p(x)=(Q/a*)[g(x)/g1], (2.32

a Poisson-type code can be used to obtain the potential and
fields from the distribution of charge. From a dimensionless
perspective, this leads to

(XEQ=(Qlae) ¢y, (zE,)=(Qlaey)¢,, (2.33

where ¢, and ¢, are functions only ofka andc/a, deter-
mined numerically. Using Eq92.11) and (2.13, we find
that

e<XEX> = kSgld)Xazi e<z EZ> = kSgl¢Za2' (234)
From Eq.(2.26), we obtain for the rms tune depressions
1-7;  2x*a’gigy

7]>2< 92

1-7; 2x°a’gig,
773 92 ’

(2.35

noting thatz2 and »> are also functions only ofa andc/a.
Equation(2.24) also makes it clear that, /k, is also a func-
tion only of ka andc/a.

Finally, we put Eq.(2.1]) into the dimensionless form

Qle=(ey/e*)ksa’g;. (2.3
Using Eq.(2.3), we can write Eq(2.23 as
kea? NG kea® z
62_ sa” g2 < > 2 S 92 < > (237)

“md g; 2672 ¢ amd g, 2K%a

so that the number of ions in a bunch can be written as

Q_2K2azgi a2 € _2K2azg§ a? €
e gy (X)4mr,a g, (Z°)4mrpa’

(2.38
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FIG. 6. Maximumx and z as a function of time in arbitrary FIG. 8. Maximumx andz as a function of time in arbitrary units
units. In this figure one longitudinal breathing oscillation takesfor a primarily transverse mode/a=3, 7,=0.65, 7,=0.49, u,
about 8.3 such unitsc/a=3, 7,=0.65, 7,=0.49, w,=1.4, u, =15, u,=1.029.
=0.949.
where force gradients, and specifies the number of ions that are

contained within the bunch as a multiple of the dimension-

rpEeZ/(4TreomC§)) (2.39 less quantitye§/47-rrpa. What remains is to explore thea,

c/a space numerically for the current carrying capacity and
is the classical radius of the proton. Sinp&)/a? is also a  for the likelihood, extent, and rate of halo production.
dimensionless parameter depending onlyxanandc/a, we
write

2 I1Il. NUMERICAL INVESTIGATION OF PARAMETERS
Qle=q(«a,cla)(el4mnra), (2.40

A. Bunch parameters

We obtain the desired values af in Eq. (2.14) for dif-
2K2azg§ a2 11— 775 a2 ferentc/a and values ofca in the range of interegtl2], by
g(ka,cla)= ——— = —>5— —— (2.4) minimizing $dsg?(x) along the elliptical boundary of Eq.
92 (X9 Ny HxX9) (2.195. We show a contour plot of(x) in Fig. 2 for the
typical casec/a= 3, ka=3.0. This range of parameters cor-
esponds to the proposed bunches for the Accelerator Pro-
acduction of Tritium (APT) project[12]. In Fig. 3 we plot (1
=) vs k?a? for each value of/a and find the universal

where

is a dimensionless parameter proportional to the bunc
charge.
To summarize, we choose the shape of the spheroid
bunch ¢/a) and increaseca until the tune depressions, ,
; . ; . &t
and/or , become excessive. This determines the require

2 T T T T T T T T T 3.5 T T T T T T T

Zmax

25F
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2 . s . s s , . . . 05 . . s s s : . .
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z t
FIG. 7. Phase space diagram of a longitudinal h@@a= 3, FIG. 9. Maximumx and z as a function of time for initially

7x=0.65, 7,=0.49, u,=1.4, u,=0.94. matched beane=1.0 (c/a=3, 7,=0.33, ,=0.25.
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FIG. 10. Phase space diagramstat900 of initially matched
beam u=1.0 for severe tune depressiof@a=3, 7,=0.33, 7,

=0.25.
ka \?
2.8

n=[1+(kal2.82?(c/a)*?% 12,

c 0.20

a

2

1- 7
2
Mx

(3.9
where 7, is accurate to a few percent for the range«af of
interest in halo formation.

Similarly, we find a linear dependence of{1;2)/ %2 on
«%a? and construct the universal fit:

ka \?
2.82

n,=[1+(xa/2.822](c/a)®9] 12

c 0.91

a

2
1-7; _
e

(3.2
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B. Implications

The surprising simplicity of Eqs(3.1)—(3.3) makes it
easy to explore the parameter space. It is clear from Egs.
(3.1) and (3.2 that, forc/a>1, », will always be less than
7y - Thus we can expect that the longitudinal tune depression
will be more severe than the transverse tune depression and
that a longitudinal halo is more likely to form first. This turns
out to be the case, as we shall see in the actual simulations.
Furthermore, if halo formatiorffor a given mismatchis
controlled by the extent of the longitudinal tune depression,
according to Fig. 5, we can accelerate slightly larger currents
for higherc/a if the longitudinal halo is of primary concern.
Similarly, Fig. 4 shows that we can accelerate significantly
more current for highec/a if the transverse halo is of pri-
mary concern, which may be the case for a primarily trans-
verse mismatch.

IV. NORMAL MODES
A. Analytic model

If we confine our attention to axisymmetric beam
bunches, it is clear that there are two independent breathing-
like mismatch parameters, associated with the transverse and
longitudinal deviations in shape from the matched beam de-
termined by Eqs(2.14 and(2.15. Unfortunately an analytic
treatment of the mismatch oscillations is not available for our
distribution. We will therefore assume, for this purpose only,
that the spheroidal bunch has uniform charge density, and
comes from a self-consistent treatment for which the enve-
lope equations are

where 7, is again accurate to a few percent for the range of

xa of interest.
Finally we computeq(xa,c/a) using Eq.(2.41) and
again find the universal fit
q(«a,c/a)=44«?ac. (3.3

In Figs. 4 and 5, we ploty, versusg and », versusq for
differentc/a, respectively.
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FIG. 11. Density profiles for the modest and severe tune depres-
sions forc/a=2. (a) py vs X (7,=0.94). (b) p, vs x (7,=0.29).

(©) p, vs z (9,=0.90). (d) p, vs z (,=0.22).

..
oy ¢ *

d%a 2
maz"Fan: Ka()'x+ gg, (41)
d’c eg
m W—FkZC:KCO’Z'F 3 (4.2
whereK=3eQ/8me,. Here
= fw ds =\ 4.3
Ox= 0 (a2+s)2(02+s)1’2= 10 (4.3
—fw ds =\ 4.4
0= 0 (a2+s)(cz+s)3’2_ 01 (4.4
where
® ds
Apg™ Jo (@1 5)P (o2t 5)a 12 4.9

We now expand around the equilibrium distribution by
replacinga andc by a+u andc+w. In the linear approxi-
mation, foru andw, this leads to the coupled equations

d?u ‘ K 36§u K doy K doy
m — +k u=Kuo,— —— + Kau— + Kaw—
dt? X IxT g8 da Jc

(4.6

and
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FIG. 12. Longitudinal halo extent for different mismatches.
d2W 36§W &(TZ (90-2 u—‘,— Vzu:—vz W
m —— +k,w=Kwo,— —3— + Kcw— +Kcu—. X Xz
dat> = 2 N ac ga )
4.7 w+ V%W: —2v§zu,
The derivatives in the coefficients can be written as where
T dange, = 4.9 2 K[ A7 g
Ja 20 ac 11 . VX—E mf)\lo‘l‘ a“Noygl,
do, Jdo; K 4772
- 2alN1;, ——=—3C\g,. 4.9 S z 2
Ja 11 Jc 02 (4.9 v, m l—ﬁnz)\Oﬁ— 3CNo2|,

In addition we express all terms in Eqel.1) and (4.2) in
terms of the tune depressiong and 7,. Specifically, we

write
k KO'X K)\lo
==,
X 1-n 1—m4
and
2 2 2
3_ Mx K\ 2_
a’ 1_77)2( 100 4

k= hoL (4.10
‘ 1-17; .
2
7
KX\o1- 4.1
12 hor (411

This permits us to rewrite Eq$4.6) and (4.7) as

2 K
Vy,=—acC\q;.
X2 m 11

For a long narrow bunchcé>a), one finds that

1 1
MoZgzee M= gare T grg
and
~2 I2c 1 ~2 I2c 4
M= |yl A= |y
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FIG. 13. Longitudinal halo extent for differenta.
2 2
so that Umax _ Vxz_ i 1— 75 423
3 142 Winax 7)2: 2c 1+ 173' ’
. 3eQ + 7% (4.19
V= ’ . .
X~ Amegma’c \ 1— 9% The high-frequency mode strongly resembles the mode that
dominated the 2D analyses and simulations. The low-
3eQ 3+ 72 2¢c 4 frequency mode is new, but leads to very similar behavior in
Vgs Irem@ | T2 /nz— 12| (4.20 the longitudinal phase space, namely, a stable region
T€o 7z 7z bounded by an inner separatrix, and an outer separatrix that
forms the locus of a longitudinal halo if it develops.
2 _ 3eQ 4.21) The above analysis for small mismatch oscillations is not
Vxz= 87re0ma02' ) valid for the 3D bunch of Sec. Il in which the charge density

The solution to Eqs(4.12) and (4.13 consists of two
coupled modes. Withc>a, it is clear that the high-

frequency mode = v,) is primarily transverse witln and
w in phase and

2
> (high-frequency mode

" 4.22

while the low-frequency modey,=v,) is primarily longi-
tudinal withu andw 180° out of phase and

Wmaxzzvizzgl_n
umax_ Vi _Cl+17

is not uniform in the ellipsoid. Nevertheless, the final form of
Egs. (4.12 and (4.13 is likely to apply, with somewhat
modified forms for the parameters from those given in Egs.
(4.19—-(4.2). And the results in Eqs(4.22 and (4.23
should give the correct order of magnitude of the effect of
“coupling” for long narrow bunches.

B. Numerical implementation

As an illustrative example, we take the bunch charge ap-
propriate toka= 3.0, which corresponds tg,=0.56, 0.49,
0.46, 0.43,7,=0.66, 0.65, 0.64, 0.64 fot/a=2,3,4,5, re-
spectively. Using these values for a stationary distribution in
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FIG. 14. Dependence of halo intensity on the mismatch for F!G- 16. Halo development for comparable mismatctes
c/la=3, ,=0.65, ,=0.49 (with 32 768 particles plotted (a) u =3, 7,=0.65,7,=0.49). (@ p=1.1.(b) u=1.2.(c) u=1.3.(d)
=1.1.(b) u=1.2.(c) u=1.3.(d) u=1.4. pw=14.

space charge calculation uses area weightifdoud in

Egs. (4.22 and (4.23 that was derived for a uniformly ell”) and implements open boundary conditions with the
charged spheroidal beam, we obtain the analytic prediction piem Pe y
ockney convolution algorithrh14]. The code runs on par-

for the relative longitudinal and transverse amplitudes of th ; :
allel computers, and, in particular, the space charge calcula-

normal modes. By exploring the numerical oscillations ob-tion has been optimized for parallel platforms using the
tained in simulations with slightly mismatched StatlonaryFerreII-Bertschinger methad 5],

distribution, we obtain the corresponding numerical values. We initially populate the 6D phase space according to Eq.

Results are then presented in Table | for the “transvers?2 1), and then mismatch the,y,z coordinates by factors
breathing” oscillations, and in Table Il for the “longitudinal *~" Y y X
e,ux=,uy=l+ dala, u,=1+dc/c and the corresponding

breathing” oscillations. We see that the predictions of th L . .
analytic model of a uniformly charged spheroidal beam fofmomenta by Ybx=1ipy, lu,. In Fig. 6, we start with

the amplitudes of the normal modes are in reasonable agreé9lc:o'4’ da/a=0.06(the primarily longitudinal mode for

ment with simulation results for our self-consistent stationar)):/_a_:& «xa=3), plotting the maximunx andz among the
distribution. million particles in our run as a function of tim@n the
We have developed a 3D particle-in-céRIC) code to Lorentz frame of the bunghThe development of a longitu-

test the analytic model described above, and to explore ha@inal halo is clearly visible. In Fig. 7, the longitudinal phase

formation. The single-particle equations of motion are inte-SP2C€lin phase space diagrams we plot only 32 768 particles

grated using a symplectic, split-operator technifL@l. The from one million particles used in simulationdearly shows
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FIG. 17. Dependence of the rate of halo development on tune

FIG. 15. Dependence of halo intensity on tune depression fodepressions foc/a=3, u=1.2. (&) 7,=0.79, 7,=0.65. (b) 7,
c/a=3, u=1.2. (8 1,=0.87.(b) ,=0.65. (c) ,=0.49. (d) 7, =0.65, 7,=0.49. (¢) =053, 7,=0.39. (d) 7,=0.45, 7,
=0.32. =0.32.
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FIG. 18. Transverse halo extent for different mismatches.

the typical peanut diagram for a halo. Similar results are In our current 3D calculations no such redistribution oc-

obtained for different tune depressions and for other miseurs since we start with a self-consistent stationary distribu-

matches. If we repeat the calculation f6a/a=0.5, sc/c  tion. In fact, an initially matched beam seems to be very

=0.027, for example(the primarily transverse mode for stable even for severe tune depressions. In Fig. 9 we plot the

c/a=3, ka=3), a transverse halo develops first as can bemaximumx andz among the million particles in our run as

seen in Fig. 8. a function of time for an initially matched beam, and in Fig.
10 we show the phase space diagram @®@a=3, 7,

V. ORBIT SIMULATIONS =0.33, #,=0.25. The fact that our nonlineanonlinear
space charge forcgstationary 6D phase space distribution is
stable for severe tune depressions, unlike the linear KV dis-

The analytic theory for the 2D matched KV beam sug-tribution, is not surprising since the real nonlinear distribu-
gests that the beam becomes unstable for severe tune deprtigns in the actual accelerator are expected to be more stable
sion. Both numerical studies of the unstable modes and muthan the singular linear KV beam. For completeness, in Fig.
tiparticle simulations for the 2D breathing KV beam with 11 we show the transverse and longitudinal density distribu-
zero mismatch confirmed that the beam is unstable for tuntion profiles for the modest and severe tune depressions.
depressions below;=0.4 [5]. However, no halo was ob-

A. Stability of the matched distribution

served in the corresponding 2D simulations. B. Longitudinal halo
Similar studies for other rms matched distributions that 1. Halo extent
are not stationary solutions of the Vlasov equation showed - nalo exten

the existence of a halo for a severe tune depression and zero Due to the fact that longitudinal tune depression is always
mismatch paramet¢®]. The existence of a halo for such rms less than the transverse one for elongated bunches the longi-
matched distributions was attributed to the unavoidabld@udinal halo is our primary focus. An important quantity is
plasma oscillations generated by the initial density-the ratio of the halo radius to that of the matched distribu-
redistribution process, which is clearly shown[#i. tion. We performed a systematic study for differeft and
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FIG. 19. Transverse halo extent for differeria.

mismatch factors in the range of inter¢$g], by looking at  of the halo extent on the mismatch facf@rindicates that a

the halo extent at the time when the beam comes to a roughiserious effort should be made to match the beam to the chan-
saturated state after the development of a halo. Our newel as accurately as possible.

result is the dependence of the halo extent on tune depression
shown in Figs. 12 and 13 far/a=2,3,4 and mismatch pa-
rametersu=1.2,1.3,1.4 being the same in all directions . . .
x,¥,z (for later reference note that without a subscript def?r:?é“:;lotﬂer?zg:i) ;Z?W tr:?ltl the htal_g |rlthensatpughlyh
automatically means similar mismatch in all directipr@ne -tion of particies outside the core In pnase
sees a significant increase in halo extent for severe tune dgpaCé depends primarily on the' mismatch. Figure 14 pre-
pressions. In addition, the halo extent clearly depends on th ents the phase space diagramith only 32 768 particles

. : . otted after the halos have stabilized, faf,=0.65,7,
mismatch parameter. The approximately linear dependenc% 0.49 (c/a=3) with several mismatches=1.1,1.2,1.3,1 4.

2. Halo intensity
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FIG. 20. c/a=3, uy=pu,=1.5, u,=1.05.(a) Maximumx and
z as a function of time(b) z,p, phase space diagram.

o] 500
t

FIG. 21. c/a=3, u,=1.5, uy=pu,=1.05. () Maximumx and
z as a function of time(b) x,p, phase space diagram.
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FIG. 22. c/a=3, x=1.1. (8 Maximum x and z (7,=0.93,
7,=0.87. (b) Maximum x and z (7,=0.53, ,=0.39. (¢) z,p, FIG. 24. Evaluation of filamentation fa/a=3, 7,=0.87, u
phase space diagramy,=0.53, 7,=0.39. (d) x,p, phase space =1.6.(a) t=250. (b) t=350. (c) t=450. (d) t=550.
diagram,»,=0.53, ,=0.39.

fixed charge we havey, <, for elongated bunches. For

Severe mismatches lead to several percent of the particles §byere mismatches and/or tune depressions both the longitu-
the halo, which is clearly outside acceptable limits. In Fig. 15dinal and transverse halos develop very quickly. A typical
we present the phase space diagram for different tune depreércture is shown in Fig. 16.
sions 7,=0.87,0.65,0.49,0.32 withu=1.2 (c/a=3) for Of particular interest is the clear dependence on tune de-
which the fraction of particles in the halo is about 0.5%.  pressjon. Specifically, for more severe tune depression the

No significant dependence of halo intensity on the tuneha|o starts to develop earlier as can be seen in Fig. 17 where

depression is seen. _ the development of the halo is shown foa=3, u=1.2 and
However, for tune depression,=<0.4 the clear peanut (jfferent tune depressions.

diagram in the longitudinal phase space now has a chaotic
behavior. 4. Pure longitudinal mismatch

3. Rate of halo development ~ Another important characteristic of the longitudinal halo
) ) is its dependence on the mismatch when there is no mis-
One more important feature is how fast the halo developsyaich in the radial direction. The number of particles in the
We first make the observation that for comparable MiSy15 grops dramatically withe, . In fact, we see no halo for
matches the longitudinal halo develops much faster than th <1.2 (<20% longitudinal mismatdh Note that the situ-

transverse halo when the mismatches and/or tune depressi 5't$on changes when the effect of coupling is significant, as
are not severe. Such behavior simply occurs because f%ﬁscussed in a later section. '

C. Transverse halo

We now perform a systematic study of the halo extent for
a transverse halo. As can be seen in Figs. 18 and 19 for
c/a=2,3,4 andu=1.2,1.3,1.4 with similar mismatches in
X,y,z, the halo extent increases slightly with increasing
space charge. In fact, the increase is similar to the one seen

FIG. 25. Halo structure at=80 for c/a=3, 7,=0.65, 7,
FIG. 23. Filamentation process &t900, c/a=3, 7,=0.93, =0.49, u=1.4. (a) without low density cut(b) with low density
7,=0.87.(@ u=1.2.(b) u=1.3.(c) u=1.4.(d) u=1.6. cut.
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for nonlinear stationary distributions in 2D simulatiofig This phenomenon provides a rough description of the for-
and nonstationary rms matched distributid8$. However, mation of a halo. When a significant portion of the particles
the dependence on tune depression does not disappear withexpelled from the origin the particles inside the core see a
increasing mismatch as was seen[#}, where no depen- reduced charge, which results in a new set of expelled par-
dence on the tune depression joE 1.3 was observed. In ticles that follow separatrices in the phase space that are
addition, the halo extent simply scales with the mismatctcloser to the core. For higher space charge the beam under-
parameter. As was the case for the longitudinal halo, we findjoes more severe density redistribution and the detailed halo
that the halo intensity is governed primarily by the mis-structure becomes more diffuse. The result is a peanut-
match. shaped diagram in longitudinal phase space without an obvi-
We already noted that the transverse halo develops sigsus filamentation structurgigs. 14 and 1p The reason that
nificantly more slowly than the longitudinal halo for compa- we do not observe the filamentation in this case is that most
rable mismatches. The halo usually saturates after a few humf the plotted particles are in the core. To get better resolu-
dred breathing periods. We also note that, for a purdion of the halo region we perform a low density phase space
transverse mismatchu(,=1.0), the transverse halo is ob- cut. In this procedure, we choose a threshold phase space
served even fop,= u,=1.15. density just above that in the halo and plot all halo particles.
In general the transverse halo closely duplicates all thén the high density region we plot only the fraction of the
features observed for nonlinear stationary distributions in 20particles corresponding to the threshold density. The result is
simulations[7]. The agreement between 2D and 3D simula-seen in Fig. 25, where we show the longitudinal phase space
tions is very good. The only two significant differences seerdiagram with and without the low density cut fofa=3,
are related to the rate of halo development. In the present 3p=1.4, 5,=0.65, ,=0.49. In this way one sees how the
simulations there is a clear dependence on the tune deprespiral structure develops into the more familiar peanut dia-
sion (see Fig. 1Y, which was not the case in the correspond-gram.
ing 2D simulations[7]. The second difference is that the  This peanut diagram in the longitudinal phase space is
transverse halo in the 3D simulations develops significantlywery clear for relatively long bunches/@=3). For short
faster than in 2D for comparable mismatches and tune deébunches the diagram is distorted by the appearance of par-
pressions. ticles between the core and the halo in the limit of low space
charge. This effect is probably related to the stronger cou-
D. Coupling effects pling between the transverse and longitudinal motion for

Most of the previous studies were concerned with halos inshort bunches, and its effect on the filamentation process.

long or continuous beams. In the current work we address
the question of halo formation in a beam bunch, where we

clearly now have coupling between the longitudinal and st of the previous studies were concerned with halos in
transverse motion. Due to the coupling betweeandz, a  |gng peams. In the current work we address the question of

tranTlver_se or Iolng|tu<rj]|nallgalo lSI observer? even fOIf a.]\c{erlﬁalo formation in a beam bunch that is of particular interest
small mismatch(less than 10%as long as there is a signifi- or the Accelerator Production of Tritium project, where

cant mismatch in the qther plane. As an example, Fig. 2 elatively short bunches are propoddd].

shows a clear longitudinal halo far,=1.05, p,= py,=1.5 We have constructed, analytically and numerically, a new

(5% longitudinal mismatch and Fig. 21 shows a clear trans- class of 6D phase spac,e staéc/ionarz distributions fo% an azi
= o= - 9 is- )

verse halo foru,=uy=1.05, ;=15 (5% transverse mis muthally symmetric beam bunch of arbitrary charge in the

match. shape of a prolate spheradisee Fig. 2, and have determined

The effect of coupling is visible even for modest mis- the rms tune depressions,,7, as a function of the bunch
0 e : oot 7y
matches. For example, a 20% longitudinal mismatch is re harge and eccentricitisee Figs. 4 and)5 The stationary

quired to develop a longitudinal halo when the transverse,. 2~ . )
mismatch is zero. However, when there is a mismatch in alfi!stnbunon allows us to study ihe halo development mecha

diections we see a halo even whai- .~y ~1.110% o B0 R U e e e eally 26
mismatch in all directionsas shown in Fig. 22. Such behav- b : P y

: . . sures equipartition. In our calculations the beam remains
lor clearly shows the importance of the coupling effect. equipartitioned through the channel. We therefore study the

halo development in 3D beams that are in thermal equilib-
rium, without the redistribution introduced by any equiparti-
In the limit of low space charge the longitudinal phasetion process that may take place. Such an approach gives us
space diagram closely resembles the filamentation process excellent chance to investigate the major mechanism of
described by Jamesdi0]. This results in the phase space halo formation associated purely with the beam mismatch.
ellipse becoming distorted into a spiral-like structure depend- We then use a PIC code with smoothed linear external
ing on the mismatch factor, as can be seen in Fig. 23 fofocusing forces, in which the initial stationary distribution is
c/a=3, n,=0.87, ,=0.93. As the particles are expelled mismatched in both the transverse and longitudinal direc-
from the core they lead to a filamented core or produce nevions, and find that both transverse and longitudinal halos can
tails. The new tails are continuously pushed out from thedevelop, depending on the choice of tune depressions and
core, but always stay inside the original tail as shown in Figmismatches. A new result, due to the coupling betweem the
24, andz planes, is that a transverse or longitudinal halo is ob-

VI. SUMMARY

E. Halo structure
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served for a mismatch less than 10% if the mismatch in theve can see the extent to which our conclusions about halo

other plane is large. formation depend on the distribution. We then plan to ex-
Our main conclusion is that the longitudinal halo is of plore distributions that are not self-consistent, to determine

great importance because it develops earlier than the tranghe extent to which the relatively rapid redistribution of the

verse halo for elongated bunches with Comparable Iongitudis[) phase space contributes to the formation of halos.
nal and transverse mismatches, and because it occurs even

for mismatches of order 10%. In addition, the control of the
longitudinal halo could be challenging if the phase width of
a beam bunch in the RF bucket cannot be made sufficiently
small. The main characteristics of the longitudinal and trans- We wish to acknowledge the support of the U.S. Depart-
verse halo are discussed in Sec. V. ment of Energy, Division of High Energy Physics, and Di-

Now that we have established the parameters that lead wsion of Mathematical, Information, and Computational Sci-
halo formation in 3D beam bunches for the 6D self-ences. For this research we used resources of the National
consistent phase space distribution in E2}1), we plan to  Energy Research Scientific Computing Center; the research
explore other self-consistent distributions for which the ex-is supported by the U.S. Department of Energy Office of
ponent in Eq.2.1) is different from—1/2, such as 1/2 and Energy Research. We thank Tom Wangler for helpful con-
3/2. For these other exponents, the equation corresponding Wersations. In addition, R.L.G. and A.V.F. wish to thank
Eq. (2.10 is nonlinear inG(x), requiring a numerical solu- Andy Jason and the LANSCE1 group for its hospitality dur-
tion on a meshlike grid for an elongated bunch. In this waying some of these studies.
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