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Halo formation in three-dimensional bunches
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We have constructed, analytically and numerically, a class of self-consistent six-dimensional~6D! phase
space stationary distributions. Stationary distributions allow us to study the halo development mechanism
without it being obscured by beam redistribution and its effect on halo formation. The beam is then mis-
matched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos
in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal
and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for
elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and
transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10% if the mismatch
in the other plane is large.@S1063-651X~98!05410-5#

PACS number~s!: 29.27.Bd, 41.85.Ew
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I. INTRODUCTION

The need for high current in a variety of new accelera
applications has focused a great deal of attention on un
standing the phenomenon of halo formation in ion bea
which can cause excessive radioactivation of the acceler
Starting in about 1991, a variety of two-dimensional~2D!
simulation studies@1,2# have led to the conclusion that halo
are formed when a beam is mismatched to a focusing ch
nel, exciting some sort of collective oscillation~s! of the
beam that are in resonance with the nonlinear oscillation
individual ions.

Most of the simulations studies start with rms match
beams that arenot stationary solutions of the Vlasov equ
tion ~See, for example,@3#!. As a result, the initial beam
undergoes some sort of redistribution in phase space, m
ing the possible development of halos. Our effort has b
devoted to populating a stationary distribution in pha
space, in the hope that the halo development mechanism
be studied without being obscured by the ‘‘relaxation’’ of t
beam in phase space. We have particularly studied in
distributions that are stationary by virtue of being a functi
only of the Hamiltonian.

Our first analysis@2# started with an azimuthally symme
ric KV @4# beam where the 4D phase space distribution fu
tion was ad function of the Hamiltonian of the form

f ~H !5Nd~H2H0!. ~1.1!

We assume that the transverse focusing force is indepen
of longitudinal position ~AG forces are smoothed!. The
Hamiltonian is written as

H5
kr2

2
1eFsc~r !1

mv2

2
, ~1.2!

whereFsc(r ) is the electrostatic space charge potential, a
whereN is a normalization constant chosen so that
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E dvE dr f ~H !51. ~1.3!

By starting with the envelope equation for a breathing
beam in real space, we were able to treat analytically
parametric resonance between the breathing mode and
nonlinear motion of an individual ion the amplitude of whic
is greater than the core radius@2#. The resulting phase spac
consists of an inner separatrix containing the core and
outer separatrix that becomes the locus near which the
particles enter and cluster. Numerical simulations start
with a ‘‘breathing’’ KV beam confirm the analytic predictio
of the ‘‘peanut-shaped’’ 4D phase space, showing clearly
dominant behavior of the parametric resonance. A typi
example is shown in Fig. 1 for a mismatch~ratio of initial
beam radius to matched beam radius! of 0.7 and a tune de-

FIG. 1. Typical stroboscopic plot in the transverse phase sp
for 125 particles with low angular momenta for a KV beam~h
50.8, m50.7!.
4977 © 1998 The American Physical Society
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pression~ratio of small amplitude ion oscillation frequenc
with space charge to that without space charge! of 0.8 @5#.

The parametric resonance model successfully predicts
location of the halo, but it gives no information about t
rate at which the halo develops or the fraction of the ions
the core that enter the halo. Nevertheless, simulations
vide evidence that the fraction of the ions that enter the h
is surprisingly insensitive to the tune depression but
creases strongly as the mismatch becomes more sever@5#.
In addition, the motion starts to show chaotic behavior
tune depressions of 0.5 and below, a feature not addresse
the analytic model.

A further shortcoming of the analytic model is that it d
not explain how ions were able to leave the core. This, ho
ever, was subsequently explained by an analytic treatmen
the stability of a breathing KV beam@6#, which accurately
predicted the regions in the mismatch–tune depression s
where oscillation modes were unstable. Simulations star
with a breathing KV beam confirmed that these instabilit
led to oscillation amplitude growth, with ions often enterin
the outer separatrix region, corresponding to halo format
for sufficiently large mismatch@5,6#.

Finally we considered other 4D stationary distributions
the form

f ~H !5H N~H02H !n21, H<H0

0, H>H0,
~1.4!

with n51 ~water bag! and n52 @7#. We were unable to
explore the effect of the parametric resonance analytica
but numerical simulations showed the development of ha
very similar to those for the KV distribution. Specifically
phase space again consisted of a ‘‘peanut diagram,’’ w
parameters close to those for the KV distribution. As with
KV beam, it became clear that instabilities in the ‘‘breathi
mode’’ allowed ions to enter a region where the parame
resonance enabled them to move across the inner separ
The only significant change from the KV simulations w
that comparable halo formation required more severe m
matches than before.

To summarize, we believe, from the analytic treatment
the breathing KV beam and the simulations of the KV a
other stationary distributions, that instabilities in the brea
ing beam allow particles to repopulate the 4D phase spac
a way that allows the parametric resonance to generate h

Finally, it is clear that a realistic treatment of halo form
tion must take into account 3D beam bunches and 6D ph
space distributions. Recently, Barnard and Lund@8# per-
formed numerical studies with a 3D beam bunch using
particle-core model, drawing attention to the existence
importance of a longitudinal halo for a spheroidal bunc
However, all studies based on the particle-core model do
address the question of whether halo formation is influen
by the density redistribution that follows for a nonstationa
beam, even if it is rms matched@3#. In fact, halo formation in
2D due to the redistribution process in rms matched be
was shown, for example, by Okamoto@9# and Jameson@10#.
We therefore continue our effort to study the halo devel
ment mechanism in 3D beam bunches in the absence o
redistribution process. Such an approach allows us to s
the fundamental mechanism of halo formation associa
he
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with the beam mismatch. This method proved to be v
efficient in previous 2D calculations@5–7#. To accomplish
this we have constructed, analytically and numerically
new class of stationary 6D phase space distributions fo
spheroidal beam bunch. Our present analysis assu
smoothed external transverse and longitudinal restoring fo
gradients,kz ,ky ,kx . In general, the distribution can be cho
sen to have an approximately ellipsoidal boundary. Howev
for simplicity, we treat the azimuthally symmetric case (kx
5ky) for which the beam bunch is approximately spheroid
This is the focus of the present investigation.

II. STATIONARY 6D PHASE SPACE DISTRIBUTION

A. Distribution and charge density

We take for the azimuthally symmetric 6D phase spa
distribution

f ~x,p!5N~H02H !21/2, ~2.1!

where

H5kxr
2/21kzz

2/21eFsc~x!1mv2/2. ~2.2!

Herep5mv, r 25x21y2, andkx ,kz are the smoothed trans
verse and longitudinal restoring force gradients. The quan
Fsc(x) is the electrostatic potential due to the space cha
of the bunch. The distribution is normalized such that

E dxE dpf ~x,p!51. ~2.3!

The charge distribution corresponding to Eq.~2.1! is

r~x!5QE dpf ~x,p!5NQm3E dvFG~x!2
mv2

2 G21/2

,

~2.4!

where

G~x![H02
kxr

2

2
2

kzz
2

2
2eFsc~x!. ~2.5!

Performing the integral overdv[v2dv dVv in Eq. ~2.4!
leads to

r~x!5QG~x!Y E dxG~x!, ~2.6!

where the normalization constant satisfies

2&p2Nm3/2E dxG~x!51. ~2.7!

From Eq.~2.5! and Poisson’s equation, we write

¹2G~x!52ks2e¹2Fsc52ks1~e/e0!r~x!, ~2.8!

where

ks52kx1kz . ~2.9!

Using Eq. ~2.6!, we obtain the partial differential equatio
for G(x),



l
ic

s

ge

f
id

the

PRE 58 4979HALO FORMATION IN THREE-DIMENSIONAL BUNCHES
¹2G~x!52ks1k2G~x!, ~2.10!

where

k25~eQ/e0!Y E dxG~x!. ~2.11!

The solution of Eq.~2.10! for an axisymmetric, spheroida
shaped bunch can most easily be written in the spher
coordinatesR,u for which

z5R cosu, r 5R sin u, ~2.12!

as

G~x!5~ks /k2!g~x!, ~2.13!

where

g~x!511 (
l 50

`

a l P2l ~cosu!i 2l ~kR!. ~2.14!

HereP2l (cosu) are the even~fore-aft symmetric! Legendre
polynomials andi 2l (kR) are the spherical Bessel function
~regular atkR50! of the imaginary argument.

Sinceg(x) is proportional to the charge density, the ed
of the bunch is defined as the borderg(x)50, closest to the
origin. We therefore choose thea l ’s so that the surface o
the bunch reproduces, as closely as possible, the ellipso
surface

FIG. 2. Contoursg(x)5const forc/a53, hx50.65, hz50.49.

FIG. 3. (12hx
2)/hx

2 vs k2a2 for different c/a.
al

al

r 2

a2 1
z2

c2 51, R25S sin2u

a2 1
cos2u

c2 D 21

. ~2.15!

B. rms tune depressions and normalized emittance

The equations of motion for an individual ion are

mẍ52kxx1eEx~x! ~2.16!

and

mz̈52kzz1eEz~x!, ~2.17!

where

E~x!52“Fsc~x!. ~2.18!

Since the phase space distribution is a function only of
HamiltonianH, it is stationary and satisfies

(
i 51

3

ẋi

] f

]xi
1(

i 51

3

ẍi

] f

] ẋi

50. ~2.19!

Multiplying Eq. ~2.19! by mxj ẋj and integrating overdx dẋ
leads, after integration by parts, to

m^ẋ j
2&1^mẍjxj&50, ~2.20!

FIG. 4. Transverse tune depressionhx vs bunch charge.

FIG. 5. Longitudinal tune depressionhz vs bunch charge.
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where ^ & stands for the average over the 6D phase sp
distribution. Using Eqs.~2.16! and ~2.17! leads to

kx^x
2&2e^xEx&5m^ ẋ2&, ~2.21!

kz^z
2&2e^zEz&5m^ż2&. ~2.22!

We note that the normalized emittance@11# has the form

ex
25^ẋ2&^x2&/c0

2 , ez
25^ż2&^z2&/c0

2 , ~2.23!

in the absence of directional correlations betweenx and ẋ,
wherec0 is the velocity of light. Equations~2.21! and~2.22!
play the role of rms envelope equations, allowing us to
fine the rms tune depression as

hx,rms
2 [

m^ẋ2&
kx^x

2&
, hz,rms

2 [
m^ż2&
kz^z

2&
, ~2.24!

12hx,rms
2 5

e^xEx&
kx^x

2&
, 12hz,rms

2 5
e^zEz&
kz^z

2&
, ~2.25!

or

12hx
2

hx
2 5

e^xEx&

m^ẋ2&
,

12hz
2

hz
2 5

e^zEz&

m^ż2&
. ~2.26!

We also note thatm^ẋ2&5m^ ẏ2&5m^ż2&5m^v2&/3 be-
causeH depends only onv2 and x. Thus our choice of a
stationary distribution of the formf (H) automaticallycorre-
sponds to equipartition~equal average kinetic energy in th
three spatial directions!. We findm^v2& by writing

^mv2&5
*dx*dvmv2@G~x!2mv2/2#21/2

*dx*dv@G~x!2mv2/2#21/2 . ~2.27!

Using

mv2/2[sG~x!, mvdv5dsG~x!, ~2.28!

TABLE I. ‘‘Transverse breathing’’ oscillations.

c/a
Swmax

umax
D
analytic

S wmax

umax
D
numerical

2 0.20 0.2060.04
3 0.14 0.1560.03
4 0.11 0.1760.02
5 0.08 0.1760.02

TABLE II. ‘‘Longitudinal breathing’’ oscillations.

c/a
Sumax

wmax
D
analytic

S umax

wmax
D
numerical

2 20.10 20.1060.03
3 20.07 20.0560.01
4 20.05 20.0360.01
5 20.04 20.0360.01
ce

-

we have

^mv2&5
2*dxG2~x!*0

1dss3/2~12s!21/2

*dxG~x!*0
1dss1/2~12s!21/2 , ~2.29!

or

^mẋ2&5^mż2&5
ks

2k2

g2

g1
, ~2.30!

where

gn[
1

a3 E dxgn~x!, ~2.31!

with g(x) defined by Eq.~2.13!. We usea, the transverse
beam radius atz50, as the unit of length.

C. Dimensionless parametrization

The definition of the dimensionless functiong(x) in Eq.
~2.14! and the fitting to the ellipsoid of Eq.~2.15! implies
that the dimensionless parametersg1 and g2 are functions
only of ka andc/a. Since the charge density in Eq.~2.7! can
be written as

r~x!5~Q/a3!@g~x!/g1#, ~2.32!

a Poisson-type code can be used to obtain the potential
fields from the distribution of charge. From a dimensionle
perspective, this leads to

^xEx&5~Q/ae0!fx , ^zEz&5~Q/ae0!fz , ~2.33!

wherefx and fz are functions only ofka and c/a, deter-
mined numerically. Using Eqs.~2.11! and ~2.13!, we find
that

e^xEx&5ksg1fxa
2, e^zEz&5ksg1fza

2. ~2.34!

From Eq.~2.26!, we obtain for the rms tune depressions

12hx
2

hx
2 5

2k2a2g1
2fx

g2
,

12hz
2

hz
2 5

2k2a2g1
2fz

g2
,

~2.35!

noting thathx
2 andhz

2 are also functions only ofka andc/a.
Equation~2.24! also makes it clear thatkx /kz is also a func-
tion only of ka andc/a.

Finally, we put Eq.~2.11! into the dimensionless form

Q/e5~e0 /e2!ksa
3g1 . ~2.36!

Using Eq.~2.3!, we can write Eq.~2.23! as

ex
25

ksa
2

mc0
2

g2

g1

^x2&
2k2a2 , ez

25
ksa

2

2mc0
2

g2

g1

^z2&
2k2a2 , ~2.37!

so that the number of ions in a bunch can be written as

Q

e
5

2k2a2g1
2

g2

a2

^x2&

ex
2

4pr pa
5

2k2a2g1
2

g2

a2

^z2&

ez
2

4pr pa
,

~2.38!
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where

r p[e2/~4pe0mc0
2! ~2.39!

is the classical radius of the proton. Since^x2&/a2 is also a
dimensionless parameter depending only onka andc/a, we
write

Q/e5q~ka,c/a!~ex
2/4pr pa!, ~2.40!

where

q~ka,c/a!5
2k2a2g1

2

g2

a2

^x2&
5

12hx
2

hx
2

a2

fx^x
2&

~2.41!

is a dimensionless parameter proportional to the bu
charge.

To summarize, we choose the shape of the sphero
bunch (c/a) and increaseka until the tune depressionshx
and/or hz become excessive. This determines the requ

FIG. 6. Maximumx and z as a function of time in arbitrary
units. In this figure one longitudinal breathing oscillation tak
about 8.3 such units.~c/a53, hx50.65, hz50.49, mz51.4, mx

50.94!.

FIG. 7. Phase space diagram of a longitudinal halo~c/a53,
hx50.65, hz50.49, mz51.4, mx50.94!.
h

al

d

force gradients, and specifies the number of ions that
contained within the bunch as a multiple of the dimensio
less quantityex

2/4pr pa. What remains is to explore theka,
c/a space numerically for the current carrying capacity a
for the likelihood, extent, and rate of halo production.

III. NUMERICAL INVESTIGATION OF PARAMETERS

A. Bunch parameters

We obtain the desired values ofa l in Eq. ~2.14! for dif-
ferentc/a and values ofka in the range of interest@12#, by
minimizing rdsg2(x) along the elliptical boundary of Eq
~2.15!. We show a contour plot ofg(x) in Fig. 2 for the
typical casec/a53, ka53.0. This range of parameters co
responds to the proposed bunches for the Accelerator
duction of Tritium ~APT! project @12#. In Fig. 3 we plot (1
2hx

2)/hx
2 vs k2a2 for each value ofc/a and find the universa

fit

FIG. 8. Maximumx andz as a function of time in arbitrary units
for a primarily transverse mode~c/a53, hx50.65, hz50.49, mx

51.5, mz51.027!.

FIG. 9. Maximumx and z as a function of time for initially
matched beamm51.0 ~c/a53, hx50.33, hz50.25!.
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12hx
2

hx
2 5S ka

2.82D
2S c

aD 0.20

,

hx5@11~ka/2.82!2~c/a!0.20#21/2, ~3.1!

wherehx is accurate to a few percent for the range ofka of
interest in halo formation.

Similarly, we find a linear dependence of (12hz
2)/hz

2 on
k2a2 and construct the universal fit:

12hz
2

hz
2 5S ka

2.82D
2S c

aD 0.91

,

hz5@11~ka/2.82!2#~c/a!0.91] 21/2, ~3.2!

wherehz is again accurate to a few percent for the range
ka of interest.

Finally we computeq(ka,c/a) using Eq. ~2.41! and
again find the universal fit

q~ka,c/a!>44k2ac. ~3.3!

In Figs. 4 and 5, we plothx versusq and hz versusq for
different c/a, respectively.

FIG. 10. Phase space diagrams att5900 of initially matched
beamm51.0 for severe tune depressions~c/a53, hx50.33, hz

50.25!.

FIG. 11. Density profiles for the modest and severe tune dep
sions forc/a52. ~a! rx vs x (hx50.94). ~b! rx vs x (hx50.29).
~c! rz vs z (hz50.90). ~d! rz vs z (hz50.22).
f

B. Implications

The surprising simplicity of Eqs.~3.1!–~3.3! makes it
easy to explore the parameter space. It is clear from E
~3.1! and ~3.2! that, for c/a.1, hz will always be less than
hx . Thus we can expect that the longitudinal tune depress
will be more severe than the transverse tune depression
that a longitudinal halo is more likely to form first. This turn
out to be the case, as we shall see in the actual simulati
Furthermore, if halo formation~for a given mismatch! is
controlled by the extent of the longitudinal tune depressi
according to Fig. 5, we can accelerate slightly larger curre
for higherc/a if the longitudinal halo is of primary concern
Similarly, Fig. 4 shows that we can accelerate significan
more current for higherc/a if the transverse halo is of pri
mary concern, which may be the case for a primarily tra
verse mismatch.

IV. NORMAL MODES

A. Analytic model

If we confine our attention to axisymmetric bea
bunches, it is clear that there are two independent breath
like mismatch parameters, associated with the transverse
longitudinal deviations in shape from the matched beam
termined by Eqs.~2.14! and~2.15!. Unfortunately an analytic
treatment of the mismatch oscillations is not available for o
distribution. We will therefore assume, for this purpose on
that the spheroidal bunch has uniform charge density,
comes from a self-consistent treatment for which the en
lope equations are

m
d2a

dt2
1kxa5Kasx1

ex
2

a3 , ~4.1!

m
d2c

dt2
1kzc5Kcsz1

ez
2

c3 , ~4.2!

whereK53eQ/8pe0 . Here

sx5E
0

` ds

~a21s!2~c21s!1/2[l10, ~4.3!

sz5E
0

` ds

~a21s!~c21s!3/2[l01, ~4.4!

where

lpq5E
0

` ds

~a21s!p11~c21s!q11/2. ~4.5!

We now expand around the equilibrium distribution b
replacinga andc by a1u andc1w. In the linear approxi-
mation, foru andw, this leads to the coupled equations

m
d2u

dt2
1kxu5Kusx2

3ex
2u

a4 1Kau
]sx

]a
1Kaw

]sx

]c
~4.6!

and

s-
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FIG. 12. Longitudinal halo extent for different mismatches.
m
d2w

dt2
1kzw5Kwsz2

3ez
2w

c4 1Kcw
]sz

]c
1Kcu

]sz

]a
.

~4.7!

The derivatives in the coefficients can be written as

]sx

]a
524al20,

]sx

]c
52cl11, ~4.8!

]sz

]a
522al11,

]sz

]c
523cl02. ~4.9!

In addition we express all terms in Eqs.~4.1! and ~4.2! in
terms of the tune depressionshx and hz . Specifically, we
write

kx5
Ksx

12hx
2 5

Kl10

12hx
2 , kz5

Kl01

12hz
2 ~4.10!

and

ex
2

a4 5
hx

2

12hx
2 Kl10,

ez
2

c4 5
hz

2

12hz
2 Kl01. ~4.11!

This permits us to rewrite Eqs.~4.6! and ~4.7! as
ü1nx
2u52nxz

2 w, ~4.12!

ẅ1nz
2w522nxz

2 u, ~4.13!

where

nx
25

K

m F 4hx
2

12hx
2 l1014a2l20G , ~4.14!

nz
25

K

m F 4hz
2

12hz
2 l0113c2l02G , ~4.15!

nxz
2 5

K

m
acl11. ~4.16!

For a long narrow bunch (c@a), one finds that

l10>
1

a2c
, l20>

1

2a4c
, l11>

1

a2c3 ~4.17!

and

l01>
2

c3 S ln
2c

a
21D , l02>

2

c5 S ln
2c

a
2

4

3D ,

~4.18!
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FIG. 13. Longitudinal halo extent for differentc/a.
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nx
2>

3eQ

4pe0ma2c S 11hx
2

12hx
2D , ~4.19!

nz
2>

3eQ

4pe0mc3 F S 31hz
2

12hz
2D l n

2c

a
2

4

12hz
2G , ~4.20!

nxz
2 >

3eQ

8pe0mac2 . ~4.21!

The solution to Eqs.~4.12! and ~4.13! consists of two
coupled modes. Withc@a, it is clear that the high-
frequency mode (nh>nx) is primarily transverse withu and
w in phase and

wmax

umax
>

2nxz
2

nx
2 >

a

c

12hx
2

11hx
2 ~high-frequency mode!

~4.22!

while the low-frequency mode (n l >nz) is primarily longi-
tudinal with u andw 180° out of phase and
umax

wmax
>2

nxz
2

nx
2 >2

a

2c

12hx
2

11hx
2 . ~4.23!

The high-frequency mode strongly resembles the mode
dominated the 2D analyses and simulations. The lo
frequency mode is new, but leads to very similar behavio
the longitudinal phase space, namely, a stable reg
bounded by an inner separatrix, and an outer separatrix
forms the locus of a longitudinal halo if it develops.

The above analysis for small mismatch oscillations is
valid for the 3D bunch of Sec. II in which the charge dens
is not uniform in the ellipsoid. Nevertheless, the final form
Eqs. ~4.12! and ~4.13! is likely to apply, with somewhat
modified forms for the parameters from those given in E
~4.19!–~4.21!. And the results in Eqs.~4.22! and ~4.23!
should give the correct order of magnitude of the effect
‘‘coupling’’ for long narrow bunches.

B. Numerical implementation

As an illustrative example, we take the bunch charge
propriate toka53.0, which corresponds tohz50.56, 0.49,
0.46, 0.43,hx50.66, 0.65, 0.64, 0.64 forc/a52,3,4,5, re-
spectively. Using these values for a stationary distribution
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Eqs. ~4.22! and ~4.23! that was derived for a uniformly
charged spheroidal beam, we obtain the analytic predict
for the relative longitudinal and transverse amplitudes of
normal modes. By exploring the numerical oscillations o
tained in simulations with slightly mismatched stationa
distribution, we obtain the corresponding numerical valu
Results are then presented in Table I for the ‘‘transve
breathing’’ oscillations, and in Table II for the ‘‘longitudina
breathing’’ oscillations. We see that the predictions of t
analytic model of a uniformly charged spheroidal beam
the amplitudes of the normal modes are in reasonable ag
ment with simulation results for our self-consistent station
distribution.

We have developed a 3D particle-in-cell~PIC! code to
test the analytic model described above, and to explore
formation. The single-particle equations of motion are in
grated using a symplectic, split-operator technique@13#. The

FIG. 14. Dependence of halo intensity on the mismatch
c/a53, hx50.65, hz50.49 ~with 32 768 particles plotted!. ~a! m
51.1. ~b! m51.2. ~c! m51.3. ~d! m51.4.

FIG. 15. Dependence of halo intensity on tune depression
c/a53, m51.2. ~a! hz50.87. ~b! hz50.65. ~c! hz50.49. ~d! hz

50.32.
ns
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space charge calculation uses area weighting~‘‘cloud in
cell’’ ! and implements open boundary conditions with t
Hockney convolution algorithm@14#. The code runs on par
allel computers, and, in particular, the space charge calc
tion has been optimized for parallel platforms using t
Ferrell-Bertschinger method@15#.

We initially populate the 6D phase space according to
~2.1!, and then mismatch thex,y,z coordinates by factors
mx5my511da/a, mz511dc/c and the corresponding
momenta by 1/mx51/my , 1/mz . In Fig. 6, we start with
dc/c50.4, da/a50.06 ~the primarily longitudinal mode for
c/a53, ka53!, plotting the maximumx and z among the
million particles in our run as a function of time~in the
Lorentz frame of the bunch!. The development of a longitu
dinal halo is clearly visible. In Fig. 7, the longitudinal pha
space~in phase space diagrams we plot only 32 768 partic
from one million particles used in simulations! clearly shows

r

r

FIG. 16. Halo development for comparable mismatches~c/a
53, hx50.65, hz50.49). ~a! m51.1. ~b! m51.2. ~c! m51.3. ~d!
m51.4.

FIG. 17. Dependence of the rate of halo development on t
depressions forc/a53, m51.2. ~a! hx50.79, hz50.65. ~b! hx

50.65, hz50.49. ~c! hx50.53, hz50.39. ~d! hx50.45, hz

50.32.
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FIG. 18. Transverse halo extent for different mismatches.
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the typical peanut diagram for a halo. Similar results
obtained for different tune depressions and for other m
matches. If we repeat the calculation forda/a50.5, dc/c
50.027, for example~the primarily transverse mode fo
c/a53, ka53!, a transverse halo develops first as can
seen in Fig. 8.

V. ORBIT SIMULATIONS

A. Stability of the matched distribution

The analytic theory for the 2D matched KV beam su
gests that the beam becomes unstable for severe tune de
sion. Both numerical studies of the unstable modes and m
tiparticle simulations for the 2D breathing KV beam wi
zero mismatch confirmed that the beam is unstable for t
depressions belowh50.4 @5#. However, no halo was ob
served in the corresponding 2D simulations.

Similar studies for other rms matched distributions th
are not stationary solutions of the Vlasov equation show
the existence of a halo for a severe tune depression and
mismatch parameter@9#. The existence of a halo for such rm
matched distributions was attributed to the unavoida
plasma oscillations generated by the initial densi
redistribution process, which is clearly shown in@9#.
e
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-
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l-

e

t
d
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e
-

In our current 3D calculations no such redistribution o
curs since we start with a self-consistent stationary distri
tion. In fact, an initially matched beam seems to be ve
stable even for severe tune depressions. In Fig. 9 we plo
maximumx andz among the million particles in our run a
a function of time for an initially matched beam, and in Fi
10 we show the phase space diagram forc/a53, hx
50.33, hz50.25. The fact that our nonlinear~nonlinear
space charge forces! stationary 6D phase space distribution
stable for severe tune depressions, unlike the linear KV
tribution, is not surprising since the real nonlinear distrib
tions in the actual accelerator are expected to be more st
than the singular linear KV beam. For completeness, in F
11 we show the transverse and longitudinal density distri
tion profiles for the modest and severe tune depressions

B. Longitudinal halo

1. Halo extent

Due to the fact that longitudinal tune depression is alwa
less than the transverse one for elongated bunches the lo
tudinal halo is our primary focus. An important quantity
the ratio of the halo radius to that of the matched distrib
tion. We performed a systematic study for differentc/a and
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FIG. 19. Transverse halo extent for differentc/a.
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mismatch factors in the range of interest@12#, by looking at
the halo extent at the time when the beam comes to a rou
saturated state after the development of a halo. Our
result is the dependence of the halo extent on tune depres
shown in Figs. 12 and 13 forc/a52,3,4 and mismatch pa
rametersm51.2,1.3,1.4 being the same in all directio
x,y,z ~for later reference note thatm without a subscript
automatically means similar mismatch in all directions!. One
sees a significant increase in halo extent for severe tune
pressions. In addition, the halo extent clearly depends on
mismatch parameter. The approximately linear depende

FIG. 20. c/a53, mx5my51.5, mz51.05. ~a! Maximum x and
z as a function of time.~b! z,pz phase space diagram.
ly
w
ion

e-
he
ce

of the halo extent on the mismatch factorm indicates that a
serious effort should be made to match the beam to the c
nel as accurately as possible.

2. Halo intensity

Simulation results show that the halo intensity~roughly
defined as the fraction of particles outside the core in ph
space! depends primarily on the mismatch. Figure 14 p
sents the phase space diagram~with only 32 768 particles
plotted! after the halos have stabilized, forhx50.65,hz
50.49 (c/a53) with several mismatchesm51.1,1.2,1.3,1.4.

FIG. 21. c/a53, mz51.5, mx5my51.05. ~a! Maximum x and
z as a function of time.~b! x,px phase space diagram.
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Severe mismatches lead to several percent of the particle
the halo, which is clearly outside acceptable limits. In Fig.
we present the phase space diagram for different tune de
sions hz50.87,0.65,0.49,0.32 withm51.2 (c/a53) for
which the fraction of particles in the halo is about 0.5%.

No significant dependence of halo intensity on the tu
depression is seen.

However, for tune depressionhz<0.4 the clear peanu
diagram in the longitudinal phase space now has a cha
behavior.

3. Rate of halo development

One more important feature is how fast the halo develo
We first make the observation that for comparable m
matches the longitudinal halo develops much faster than
transverse halo when the mismatches and/or tune depres
are not severe. Such behavior simply occurs because

FIG. 22. c/a53, m51.1. ~a! Maximum x and z ~hx50.93,
hz50.87!. ~b! Maximum x and z ~hx50.53, hz50.39!. ~c! z,pz

phase space diagram,hx50.53, hz50.39. ~d! x,px phase space
diagram,hx50.53, hz50.39.

FIG. 23. Filamentation process att5900, c/a53, hx50.93,
hz50.87. ~a! m51.2. ~b! m51.3. ~c! m51.4. ~d! m51.6.
in
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fixed charge we havehz,hx for elongated bunches. Fo
severe mismatches and/or tune depressions both the lon
dinal and transverse halos develop very quickly. A typic
picture is shown in Fig. 16.

Of particular interest is the clear dependence on tune
pression. Specifically, for more severe tune depression
halo starts to develop earlier as can be seen in Fig. 17 w
the development of the halo is shown forc/a53, m51.2 and
different tune depressions.

4. Pure longitudinal mismatch

Another important characteristic of the longitudinal ha
is its dependence on the mismatch when there is no m
match in the radial direction. The number of particles in t
halo drops dramatically withmz . In fact, we see no halo fo
mz,1.2 ~,20% longitudinal mismatch!. Note that the situ-
ation changes when the effect of coupling is significant,
discussed in a later section.

C. Transverse halo

We now perform a systematic study of the halo extent
a transverse halo. As can be seen in Figs. 18 and 19
c/a52,3,4 andm51.2,1.3,1.4 with similar mismatches i
x,y,z, the halo extent increases slightly with increasi
space charge. In fact, the increase is similar to the one s

FIG. 24. Evaluation of filamentation forc/a53, hz50.87, m
51.6. ~a! t5250. ~b! t5350. ~c! t5450. ~d! t5550.

FIG. 25. Halo structure att580 for c/a53, hx50.65, hz

50.49, m51.4. ~a! without low density cut~b! with low density
cut.
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for nonlinear stationary distributions in 2D simulations@7#
and nonstationary rms matched distributions@9#. However,
the dependence on tune depression does not disappear
increasing mismatch as was seen in@9#, where no depen-
dence on the tune depression form>1.3 was observed. In
addition, the halo extent simply scales with the misma
parameter. As was the case for the longitudinal halo, we
that the halo intensity is governed primarily by the m
match.

We already noted that the transverse halo develops
nificantly more slowly than the longitudinal halo for comp
rable mismatches. The halo usually saturates after a few
dred breathing periods. We also note that, for a p
transverse mismatch (mz51.0), the transverse halo is ob
served even formx5my51.15.

In general the transverse halo closely duplicates all
features observed for nonlinear stationary distributions in
simulations@7#. The agreement between 2D and 3D simu
tions is very good. The only two significant differences se
are related to the rate of halo development. In the presen
simulations there is a clear dependence on the tune de
sion ~see Fig. 17!, which was not the case in the correspon
ing 2D simulations@7#. The second difference is that th
transverse halo in the 3D simulations develops significa
faster than in 2D for comparable mismatches and tune
pressions.

D. Coupling effects

Most of the previous studies were concerned with halo
long or continuous beams. In the current work we addr
the question of halo formation in a beam bunch, where
clearly now have coupling between the longitudinal a
transverse motion. Due to the coupling betweenr and z, a
transverse or longitudinal halo is observed even for a v
small mismatch~less than 10%! as long as there is a signifi
cant mismatch in the other plane. As an example, Fig.
shows a clear longitudinal halo formz51.05, mx5my51.5
~5% longitudinal mismatch!, and Fig. 21 shows a clear tran
verse halo formx5my51.05, mz51.5 ~5% transverse mis
match!.

The effect of coupling is visible even for modest mi
matches. For example, a 20% longitudinal mismatch is
quired to develop a longitudinal halo when the transve
mismatch is zero. However, when there is a mismatch in
directions we see a halo even whenmz5mx5my51.1 ~10%
mismatch in all directions! as shown in Fig. 22. Such beha
ior clearly shows the importance of the coupling effect.

E. Halo structure

In the limit of low space charge the longitudinal pha
space diagram closely resembles the filamentation pro
described by Jameson@10#. This results in the phase spac
ellipse becoming distorted into a spiral-like structure depe
ing on the mismatch factor, as can be seen in Fig. 23
c/a53, hz50.87, hx50.93. As the particles are expelle
from the core they lead to a filamented core or produce n
tails. The new tails are continuously pushed out from
core, but always stay inside the original tail as shown in F
24.
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This phenomenon provides a rough description of the f
mation of a halo. When a significant portion of the particl
is expelled from the origin the particles inside the core se
reduced charge, which results in a new set of expelled p
ticles that follow separatrices in the phase space that
closer to the core. For higher space charge the beam un
goes more severe density redistribution and the detailed
structure becomes more diffuse. The result is a pea
shaped diagram in longitudinal phase space without an o
ous filamentation structure~Figs. 14 and 15!. The reason that
we do not observe the filamentation in this case is that m
of the plotted particles are in the core. To get better reso
tion of the halo region we perform a low density phase sp
cut. In this procedure, we choose a threshold phase s
density just above that in the halo and plot all halo particl
In the high density region we plot only the fraction of th
particles corresponding to the threshold density. The resu
seen in Fig. 25, where we show the longitudinal phase sp
diagram with and without the low density cut forc/a53,
m51.4, hx50.65, hz50.49. In this way one sees how th
spiral structure develops into the more familiar peanut d
gram.

This peanut diagram in the longitudinal phase space
very clear for relatively long bunches (c/a>3). For short
bunches the diagram is distorted by the appearance of
ticles between the core and the halo in the limit of low spa
charge. This effect is probably related to the stronger c
pling between the transverse and longitudinal motion
short bunches, and its effect on the filamentation proces

VI. SUMMARY

Most of the previous studies were concerned with halos
long beams. In the current work we address the questio
halo formation in a beam bunch that is of particular inter
for the Accelerator Production of Tritium project, whe
relatively short bunches are proposed@12#.

We have constructed, analytically and numerically, a n
class of 6D phase space stationary distributions for an
muthally symmetric beam bunch of arbitrary charge in t
shape of a prolate spheroid~see Fig. 2!, and have determined
the rms tune depressionshx ,hz as a function of the bunch
charge and eccentricity~see Figs. 4 and 5!. The stationary
distribution allows us to study the halo development mec
nism in 3D beam bunches where no phase space redist
tion takes place. Our choice of parameters automatically
sures equipartition. In our calculations the beam rema
equipartitioned through the channel. We therefore study
halo development in 3D beams that are in thermal equi
rium, without the redistribution introduced by any equipar
tion process that may take place. Such an approach give
an excellent chance to investigate the major mechanism
halo formation associated purely with the beam mismatc

We then use a PIC code with smoothed linear exter
focusing forces, in which the initial stationary distribution
mismatched in both the transverse and longitudinal dir
tions, and find that both transverse and longitudinal halos
develop, depending on the choice of tune depressions
mismatches. A new result, due to the coupling between thr
andz planes, is that a transverse or longitudinal halo is o
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served for a mismatch less than 10% if the mismatch in
other plane is large.

Our main conclusion is that the longitudinal halo is
great importance because it develops earlier than the tr
verse halo for elongated bunches with comparable longit
nal and transverse mismatches, and because it occurs
for mismatches of order 10%. In addition, the control of t
longitudinal halo could be challenging if the phase width
a beam bunch in the RF bucket cannot be made sufficie
small. The main characteristics of the longitudinal and tra
verse halo are discussed in Sec. V.

Now that we have established the parameters that lea
halo formation in 3D beam bunches for the 6D se
consistent phase space distribution in Eq.~2.1!, we plan to
explore other self-consistent distributions for which the e
ponent in Eq.~2.1! is different from21/2, such as 1/2 and
3/2. For these other exponents, the equation correspondin
Eq. ~2.10! is nonlinear inG(x), requiring a numerical solu
tion on a meshlike grid for an elongated bunch. In this w
or
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we can see the extent to which our conclusions about h
formation depend on the distribution. We then plan to e
plore distributions that are not self-consistent, to determ
the extent to which the relatively rapid redistribution of th
6D phase space contributes to the formation of halos.
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