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Equation of state of fully ionized electron-ion plasmas
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Thermodynamic quantities of Coulomb plasmas consisting of pointlike ions immersed in a compressible,
polarizable electron background are calculated for ion chargesZ51 –26 and for a wide domain of plasma
parameters ranging from the Debye-Hu¨ckel limit to the crystallization point and from the region of nondegen-
erate to fully degenerate nonrelativistic or relativistic electrons. The calculations are based on the linear-
response theory for the electron-ion interaction, including the local-field corrections in the electronic dielectric
function. The thermodynamic quantities are calculated in the framework of theN-body hypernetted-chain
equations and fitted by analytic expressions. We present also accurate analytic approximations for the free
energy of the ideal electron gas at arbitrary degeneracy and relativity and for the excess free energy of the
one-component plasma of ions derived from Monte Carlo simulations. The extension to multi-ionic mixtures is
discussed within the framework of the linear mixing rule. These formulas provide a completely analytic,
accurate description of the thermodynamic quantities of fully ionized electron-ion Coulomb plasmas, a useful
tool for various applications from liquid state theory to dense stellar matter.@S1063-651X~98!03410-2#

PACS number~s!: 52.25.Kn, 05.70.Ce
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I. INTRODUCTION

Electron-ion plasmas~EIPs! consisting of different spe
cies of pointlike ions~chargeZie, massmi5Ai amu) and
electrons (2e,me) are encountered in numerous physic
and astrophysical situations, e.g., inertially confined labo
tory plasmas, liquid metals, stellar and planetary interio
and supernova explosions@1#. Full ionization is reached ei
ther at high temperaturesT and low densitiesr ~thermal
ionization! or at high enough densitiesr ~pressure ioniza-
tion!. Even when these conditions are not satisfied, the
proximation of full ionization is useful for calculations in th
mean ion approximation, in which the mean ion charge c
responds to its partial ionization stage. On the other hand
free energy of fully ionized EIP provides the reference s
tem for models aimed at describing the thermodynamic pr
erties of partially ionized plasmas@2#. In this paper we
present a completely analytic model for the free energy
EIP, based on detailed numerical calculations for differ
ionic speciesZ over a wide range of density and temperatu
We first focus on the two-component plasma~TCP!, consist-
ing of electrons and a single species of ions. An extensio
ionic mixtures is considered in Sec. VI.

The Coulomb plasmas can be characterized by the e
tron coupling parameterGe and the density parameterr s ,

Ge5be2/ae , r s5ae /aB , ~1!

whereb5(kBT)21 is the inverse thermodynamic temper

ture, kB is the Boltzmann constant,ae5( 4
3 pne)

21/3 mea-
sures the mean interelectron distance,ne is the electron num-
ber density, andaB5\2/mee

2 is the Bohr radius. These
parameters can be evaluated asGe'(2.6933105 K/T)n24

1/3

5(23.2 eV/kBT)n24
1/3 and r s'1.172n24

21/3, where n24
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[ne/1024 cm23'(r/1.6605 g cm23)^Z&/^A&. Here and
hereinafter,̂ X&5( iniXi /( ini denotes the average over a
ions andni the number density of ions ofith species.

The ion coupling parameter of the TCP is

G i5b~Ze!2/ai5GeZ
5/3, ~2!

whereai is the mean interionic distance (ai5aeZ
1/3 due to

the electroneutrality conditionne5niZ). In multicomponent
plasmas, it may be useful to defineG i5Ge^Z

5/3&.
The degeneracy parameteru and the relativity paramete

x are defined respectively as

u5T/TF , x5pF /mec, ~3!

where TF5(mec
2/kB)@A11x221#'(5.933109

K! @A11x221# is the Fermi temperature,c is the speed of
light, and pF5\(3p2ne)

1/3 is the zero-temperature Ferm
momentum of electrons. To estimateu andx, it is useful to
note that

x5S 9p

4 D 1/3 a

r s
'

0.014

r s
'S ^Z&

^A&

r

106 g cm23D 1/3

, ~4!

u5
a2~Ger s!

21

A11x221
, u'0.543

r s

Ge
at x!1, ~5!

wherea51/137.036 is the fine-structure constant.
Various asymptotic expansions, interpolation formul

and large tables have been derived in the past for the t
modynamic functions of free fermions~see Refs.@3,4# and
references therein!. In this paper, first, we present analyt
expressions for the thermodynamic quantities of free fer
ons for arbitrary degeneracy and relativity,u andx. Second,
4941 © 1998 The American Physical Society
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4942 PRE 58GILLES CHABRIER AND ALEXANDER Y. POTEKHIN
we propose simple and accurate analytic approximations
the nonideal internal and free energies of the classical on
component plasma~OCP!, which take into account the mos
recent hypernetted-chain~HNC! and Monte Carlo~MC! cal-
culations by DeWitt, Slattery, and Chabrier@5# ~DWSC! in
the strong-coupling regime. Third, we consider the elect
screeningeffects on the thermodynamic properties of t
TCP. We employ a computational HNC scheme based on
linear screening theory with local-field corrections, taki
into account the electron finite-temperature~finite-u) effects.
The numerical calculations have been performed over a w
range ofZ, G i , andr s and interpolated by a simple analyt
formula, which recovers the Debye-Hu¨ckel ~DH! limit for
the TCP atG i!1 and the Thomas-Fermi limit at largeG i and
Z.

II. SUMMARY OF THE MODEL

Consider the Helmholtz free energyF, internal energyU,
and pressureP of a TCP ofNi ions andNe electrons in the
volume V. The total free energyF tot can be written as the
sum of three terms

F tot5F id
~ i !1F id

~e!1Fex, ~6!

whereF id
( i ,e) denote the ideal free energy of ions and ele

trons, respectively, andFex is theexcessfree energy arising
from interactions.

In this paper we restrict ourselves to conditions where
ions behave classically, which is the case in most astroph
cal situations. Quantum corrections for ions that can be
portant in the ultradense matter of white dwarf interiors, n
tron stars, and supernova cores have been considered, e
Refs. @6,7#. Thus F id

( i ) is given by the Maxwell-Boltzmann
expression. ForF id

(e) we use the well-known expressions
the thermodynamic functions of the perfect gas of fermio
~which may be degenerate and relativistic! through the gen-
eralized Fermi-Dirac integrals.

To calculateFex, we follow the model developed b
Chabrier @8# for fully ionized EIPs. As long as the ion
electron interaction is weak compared to the kinetic ene
of the electrons,Ze2/ae!kBTF , this interaction can be
treated within the linear screening theory. Under these c
ditions, the exact Hamiltonian of the TCP can be separa
out exactly into a Hamiltonian for the electron-screen
ionic fluid and a Hamiltonian for arigid electron back-
ground, the so-called jellium HamiltonianHe @9,10#:

H5Heff1He , ~7!

with

Heff5Ki1
1

2V(
kÞ0

4p~Ze!2

k2 Frkrk*

e~k!
2Ni G , ~8!

whereKi is the ionic kinetic~translational! term, rk is the
Fourier component of the ionic microscopic density, a
e(k) is the static screening function of the electron fluid
be discussed below. The HamiltonianHeff characterizes the
electron-screened ion fluid with the interparticle poten
whose Fourier transform is
or
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Veff~k!5
4p~Ze!2

k2e~k!
, ~9!

which is the sum of the bare ionic potential and the induc
polarization potential.

The ion-ion (i i ) and the ion-electron (ie) Coulomb inter-
actions can thus be separated from the exchange-correl
contribution in the electron fluid (ee). The excess part of the
free energy~6! can then be written asFex5Fee1Fii 1Fie ;
the quantities labeledie will be referred to aselectron-
screeningquantities. It is convenient to consider dimensio
less quantitiesf ee[bFee/Ne and f i i ,ie[bFii ,ie /Ni . Then

f ex5xef ee1xi~ f i i 1 f ie!, ~10!

wherexi ,e[Ni ,e /N denote the number fraction of ions an
electrons, respectively, andN5Ni1Ne is the total number
of particles. In the same way we defineuee[bUee/Ne and
uii ,ie[bUii ,ie /Ni . The excess free energy can be obtain
from the internal energy by integration:

f ex~G,r s!5E
0

G uex~G8,r s!

G8
dG8. ~11!

For f ee, we have adopted the interpolation formula of Ich
maru, Iyetomi, and Tanaka@11# ~IIT !, consistent with nu-
merical results obtained by different authors. Forf i i , which
corresponds to the well-known OCP model, that implies
rigid electron background (e(k)51), we present an analytic
interpolation between the MC results@5# at G i>1 and the
DH limit and Abe correction atG i&0.1.

The ion-electron interactions are calculated numerica
as in Ref.@8#. In this approach, the bare Coulomb potent
in the expression for the electrostatic energy is replaced
the potential statistically screened by the electrons~9! and
the HNC approximation is used to calculate the thermo
namic functions of the system. This model, originally a
plied to nonrelativistic hydrogen plasmas, is now extended
the case of arbitraryZ and x. In the nonrelativistic case (x
!1), the dielectric functione(k) is the finite-temperature
Lindhard function modified with the local-field correctio
arising from electron correlation effects.

At very high density,x*1, the electrons become relativ
istic. At such densities, the electron correlation effects
completely negligible. The finite-temperature effectsu
Þ0) may give an appreciable contribution to the screen
part of the free energyf ie only at extremely high tempera
tures, where the nonideality of the gas has no significan
Thus we use the Jancovici@12# zero-temperature dielectri
function in the relativistic regime.

The correlation functions and thermodynamic quantit
for the electron-screened ionic fluid are obtained within
framework of the HNC equations. The validity of the HN
theory for the Coulomb systems has been assessed by se
authors by comparison with lengthy MC simulations. T
HNC approximation consists of neglecting the contributi
of the so-called bridge diagrams, which involves an infin
series of multiple integrals, in theN-body general diagram
matic resummations@13#. The long-range part of the direc
correlation functionc(r ) calculated within the HNC approxi
mation is exactly canceled by2V(r )/kT, so that the pair
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TABLE I. Parameters of Eqs.~18! and ~19!. The powers of 10 are given in square brackets.

i 1 2 3 4 5

ci
(0) 0.37045057 0.41258437 9.777982@22# 5.3734153@23# 3.8746281@25#

ci
(1) 0.39603109 0.69468795 0.22322760 1.5262934@22# 1.3081939@24#

ci
(2) 0.76934619 1.7891437 0.70754974 5.6755672@22# 5.5571480@24#

x i
(0) 0.43139881 1.7597537 4.1044654 7.7467038 13.457678

x i
(1) 0.81763176 2.4723339 5.1160061 9.0441465 15.049882

x i
(2) 1.2558461 3.2070406 6.1239082 10.316126 16.597079

xi 7.265351@22# 0.2694608 0.533122 0.7868801 0.9569313
j i 0.26356032 1.4134031 3.5964258 7.0858100 12.640801
hi 3.818735@22# 0.1256732 0.1986308 0.1976334 0.1065420
v i 0.29505869 0.32064856 7.3915570@22# 3.6087389@23# 2.3369894@25#
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correlation functiong(r ) is of much shorter range than th
Coulomb potentialV(r ) @13#. This is a required condition fo
Coulomb systems because of the perfect screening condi
This property of the HNC theory makes it particularly su
able for such long-range systems. The differences of the
energy, the internal energy, and the pressure are at mo
the order of 1%~see, e.g., Refs.@5,8#!. The difference is due
to the lack of bridge functions in the HNC theory.

III. IDEAL PART OF THE FREE ENERGY

The ideal free energy of nonrelativistic classical ions, n
glecting their spin statistics, reads@14#

F id
~ i !5NikBT@ ln~nil i

3!21#, ~12!

wherel i5(2pb\2/mi)
1/2 is the thermal wavelength of ions

For electrons, we use the identity@14#

F id
~e!5Nem id

~e!2Pid
~e!V. ~13!

Here m id
(e) is the chemical potential~in which we do not

include the rest energymec
2) andPid

(e) is the pressure of the
ideal Fermi gas. The pressure and number density, in t
are functions ofm andT:

Pid
~e!5

~2me!
3/2

3p2\3b5/2S I 3/2~x,t!1
t

2
I 5/2~x,t! D , ~14!

ne5
A2 ~me /b!3/2

p2\3
„I 1/2~x,t!1tI 3/2~x,t!…, ~15!

wheret5(bmec
2)215T/5.933109 K, x5bm id

(e) , and

I n~x,t![E
0

` xn A11tx/2

exp~x2x!11
dx ~16!

is the generalized Fermi-Dirac integral.
In the limit t→0, the Fermi-Dirac integrals reduce to th

usual nonrelativistic Fermi integralsI n(x), which can be cal-
culated using the highly accurate Pade´ approximations pre-
sented by Antia@15#. The chemical potential is obtaine
from the relationship

x5X1/2~2u23/2/3!, ~17!
n.

ee
of

-

n,

whereXn is the inverse Fermi integral, also fitted with hig
accuracy by Antia@15#.

The accuracy of the nonrelativistic formulas decrea
rapidly at T.107 K. Blinnikov et al. @3# have presented a
number of approximations and asymptotic expansions of
relativistic thermodynamic functions of the ideal electr
gas. We have selected those of their fitting formulas that
most accurate at low and moderatex and supplemented them
with asymptotic expansions at highx to obtain an approxi-
mation that is accurate at anyne for each of the Fermi inte-
grals I n(x,t) with n5 1

2 , 3
2 , and 5

2 :

I k11/2~x,t!5(
i 51

5

ci
~k!

A11x i
~k!t/2

exp~2x i
~k!!1exp~2x!

~x<0.6!

~18!

5(
i 51

5 Fhixi
k xk13/2A11xxit/2

11exp~xxi2x!

1v i~j i1x!k11/2A11~j i1x!t/2G
~0.6,x,14! ~19!

5Fk~x,t!1
p2

6
xk

k11/21~k11!xt/2

R

~x>14!, ~20!

whereR[Ax(11xt/2),

F0~x,t!5~x1t21!R/22~2t!23/2ln~11tx1A2t R!,
~21!

F1~x,t!5@2R3/32F0~x,t!#/t, ~22!

F2~x,t!5@2xR325F1~x,t!#/4t. ~23!

If xt!1, the functionsFk(x,t) should be replaced by thei
nonrelativistic limits xk13/2/(k13/2). The constantsci

(k) ,
x i

(k) , xi , j i , hi , andv i are adopted from Ref.@3# and are
listed in Table I. The relative error of the approximatio
~18!–~20! does not exceed 0.2% att<102 ~any x), being
typically a few parts in 104.
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The chemical potentialm id
(e) can be obtained numericall

from Eq. ~15!, using Eqs.~18!–~20!. We have constructed
also an analytic fit tox:

x5xnonrel2
3

2
lnF11S t

11t/2u D11q1At1q2q3t

11q2t G .
~24!

Herexnonrel is given by the nonrelativistic formula~17! and
the coefficientsqi are functions ofu:

q15 3
2 ~eu21!21,

q251218u23/2,

q35
2

p1/3
2

e2u11.612eu

6.192u0.0944e2u15.535u0.698eu
.

The relative errordx/x becomes infinite atx50. However,
since thermodynamic quantities are expressed throughx by
virtue of thermal averaging of type of Eq.~16!, a natural
measure of the error isdx/max(uxu,1)5dm/max(umu,kBT).
The error thus lies within 0.4% fort.1 and is smaller than
0.2% if t,1 ~anyu). Another measure of the accuracy is t
relative difference between the densitiesne calculated with
the exact and fitted values ofm. This difference lies within
0.4% for t>1 and within 0.1% fort,1.

This accuracy may not be sufficient for calculation
temperature derivatives of the electron-gas equation of s
~EOS! ~heat capacity, temperature exponent, etc.! in the re-
gime of strong degeneracy (x@1). In this case, however
Sommerfeld asymptotic expansions for these quantities
be used~see, e.g., Ref.@16#!. In this paper we do not conside
the positrons, which are efficiently created att*1 ~see Ref.
@3# for a description of the equilibrium electron-positro
plasma!.

IV. OCP LIQUID OF CLASSICAL IONS

Liquid and solid phases of the OCP have been stud
extensively by various numerical methods, MC simulatio
or N-body semianalytic theories such as the HNC theory~see
Refs. @17,11# for detailed reviews!. All the thermodynamic
functions of the OCP of classical ions in a uniform~rigid!
electron background can be expressed as functions of
only parameterG i . The melting point of the OCP corre
sponds toG i'172, above which it forms a Coulomb cryst
@18#. The most accurate MC and HNC results for the inter
and free energies of the liquid OCP for 1<G i<160 have
been obtained recently by DWSC@5# ~see references therei
for earlier results!. The high precision of the calculation
allowed the authors to investigate the tiny effects of non
ditivity of the excess energy of binary ionic mixtures, as w
be discussed in Sec. VI.

DWSC have also derived a highly accurate analytic fit
the MC simulations of the internal energy of the OCP in t
aforementionedG range:

uii 5aG i1bG i
s1c, ~25!
te

ay

d
,

he

l

-

with a520.899 126,b50.607 12, c520.279 98, ands
50.321 308. The maximum relative difference between c
culated and fitted values reaches 17 parts in 105 at G i
53.1748.

Equation ~25!, however, does not apply to the wea
coupling regionG i,1. At very smallG i , the internal energy
of the OCP must recover the well-known DH expressi
uii 52(A3/2)G i

3/2, whereas at moderately smallG i this limit
must include the Abe correction@19#

uii 52
A3

2
G i

3/223G i
3 F3

8
ln~3G i !1

g

2
2

1

3G , ~26!

whereg50.577 21 . . . isEuler’s constant.
We represent the internal energy of the ionic fluid (G i

&170) by a simplified version of the fitting formula pro
posed by Hansen@20,21#,

uii 5G i
3/2F A1

AA21G i

1
A3

11G i
G , ~27!

where A1 and A2 are fitting parameters andA352A3/2
2A1 /AA2. We have found that the minimum relative diffe
ence between Eq.~27! and the MC results of DWSC@5#,
smaller than 6 parts in 104, is obtained withA1520.9052
and A250.6322. This accuracy is sufficient for our prese
study since it is much better than the available numer
accuracy of the complementary contribution to the inter
energyuie . As mentioned in Sec. II, the HNC calculations
the sum uii 1uie ensure an accuracy of the order of 1%.

Figure 1 presents a comparison of our interpolation f

FIG. 1. Comparison of the fit~solid line! given by Eq.~27! for
the OCP internal energy with the DH and Abe asymptotic exp
sions at smallG i ~dot-dashed lines! and with the DWSC results@5#
at 1<G i<160 ~dots and circles!. The dashed curve represents t
interpolation of SB@22#.
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mula~27! with the DH-Abe formulas, the MC results and th
fit ~25! of DWSC @5#, and the interpolation proposed b
Stolzmann and Blo¨cker @22# ~SB! following Ebeling @23#.
Unlike SB, our Eq.~27! accurately reproduces Eq.~26! in the
rangeG i;0.0120.1 and provides a smoother transition b
tween the strong- (G i.1) and weak- (G i!1) coupling re-
gimes.

Using Eqs.~27! and ~11!, we obtain the Helmholtz free
energy~cf. Ref. @20#!

f i i ~G i !5A1@AG i~A21G i !2A2ln~AG i /A21A11G i /A2!#

12A3@AG i2arctan~AG i !#. ~28!

At G i>1, this formula givesf i i , which differs from the
HNC calculations and the fit of DWSC@5# by no more than
0.8%. This difference approximately coincides with that b
tween the MC and HNC results foruii ; therefore, it should
be attributed to the lack of the bridge functions in the HN
approximation~see Sec. II!. On the other hand, Eq.~28! re-
covers the DH-Abe free energy with an error smaller th
0.6% atG i,0.1.

V. ELECTRON FLUID

The exchange and correlation effects in electron fl
were studied by many authors. For instance, Tanakaet al.
@24# calculated the interaction energy of the electron fluid
finite temperature in the Singwi-Tosi-Land-Sjo¨lander @25#
approximation and presented a fitting formula that rep
duces their results as well as various exact limits with digr
sions less than 1%~in particular, their formula incorporate
the parametrization of the exchange energy by Perrot
Dharma-wardana@26#!. We adopt a modification of this for
mula given by IIT@11#.

The exchange-correlation free energyf ee is obtained by
integration from Eq.~11!. It is important to note that Tanak
et al. @24# give a fit to theinteractionenergy of the electron
fluid but not to the thermodynamicinternal energy ~the
quantities differ at finiteu). This enabled Tanakaet al. to
obtain f ee by integration of their fitting formula overGe at
constantu ~the integration of the internal energy would ha
to be performed at constantr s). Note also that the results o
IIT are nonrelativistic.

More recently, SB@22# proposed other parametrization
of the exchange and correlation free energies. At mode
r s , a comparison of the formulas given by SB and IIT r
veals only small differences, which do not exceed the unc
tainty in the various numerical results found in the literatu
@26,27#. Unlike IIT, SB evaluated the exchange energy au
,1 in the relativistic case. On the other hand, the SB
reaches the classical OCP limit at larger s and moderateGe
with digressions up to 4.4%, while the parametrization of
is several times more accurate in this limit. We shall use
IIT’s formula hereafter.

VI. ELECTRON SCREENING

A. Numerical calculations

In order to calculate the screening contribution, we ha
employed the model of Ref.@8#, outlined in Sec. II. The
HNC equations were solved numerically for the effecti
-

-

n

d

t

-
-

nd

te
-
r-

t

e

e

screened interionic potential~9! to obtain f i i 1 f ie , uii 1uie

and Pii 1Pie and for the bare Coulomb potential to obta
f i i , uii , and Pii . The difference represents the screeni
( ie) contribution to the thermodynamic quantities.

The previous numerical results@8# have been obtained fo
the hydrogen plasma (Z51). We extend the calculations t
different values ofZ and a larger set ofr s . Figure 2 shows
the effective potentialsVeff for Z56 andZ526 at several
values ofr s , compared with the bare Coulomb potential a
with Veff in the zero-temperature (u50) random-phase ap
proximation ~RPA! ~no local-field correction!. One can see
that the latter approximation works well at the small value
r s50.0256~lower panels!, while it breaks down completely
at r s51 ~upper panels!.

The bulk of the calculations has been performed in
nonrelativistic approximation, for 13 ion charges fromZ
51 to Z526 listed in the first column of Table II, at te
values of the density parameterr s ranging fromr s50.0256
to r s'2, and, at eachZ andr s , for several tens of values o
the coupling parameterG i that range from the DH limit at
G i50.001 toG i;200. As an example, calculated values
the normalized screening part of the free energyf ie at Z
56 are shown by filled circles in Fig. 3. Note that it is th
account of the finite electron temperature in the dielec
function that allows us to reach the correct TCP DH limit
low values ofG i ~see Ref.@8#!.

In order to supplement the aforementioned nonrelativis
data at higher densities, we have also performed calculat
using the Jancovici@12# zero-temperature dielectric function
The results are shown in Fig. 3 forG i>1 and r s
50.0625 (x50.224), 0.0256 (x50.545), and 0.008 (x

FIG. 2. Effective ion-ion potentialsVeff at various approxima-
tions for Z56 ~left panels! andZ526 ~right panels!, for two den-
sities, r s51 ~upper panels! and 0.0256~lower panels! and three
values ofG i51, 10, and 40. Solid lines represent the finite tempe
ture Veff including the local-field correction and dashed lines sh
the zero-temperature RPA~the dashed and solid lines practical
coincide on the lower left panel!. The bare Coulomb potential is
drawn by dots for comparison.
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51.75). A comparison for the case ofr s50.0625 confirms
that the zero-temperature approximation works well at sm
r s and largeG @where u!1 due to the relation~5!#; this
conclusion is corroborated by inspection of Fig. 2.

Thus the numerical results cover all values ofr s and G
~i.e., r andT! that are relevant for liquid EIPs. Atr s*1 and
G i*1, the formation of bound states sets in. Atr s&1022

and G i&1, the temperature reaches the valu

TABLE II. Root mean square and maximum relative differenc
between the fit and the HNC calculations forf i i 1 f ie , uii 1uie , and
Pii 1Pie ; the bottom line corresponds to the OCP model.

Z (d f / f ) ~%! (du/u) ~%! (dP/P) ~%!

rms max rms max rms max

1 0.6 1.9 0.9 1.8 1.2 4.5
2 0.4 1.1 0.7 1.8 0.7 3.0
3 0.4 0.8 0.9 2.3 0.7 1.8
4 0.5 1.2 1.3 3.1 0.9 1.9
5 0.6 1.5 1.6 3.9 1.2 2.4
6 0.7 1.8 1.8 4.3 1.5 2.8
7 0.6 1.7 1.9 4.6 1.7 3.5
8 0.7 1.5 1.9 4.6 1.9 4.1
10 0.6 1.2 1.8 3.9 2.0 4.1
12 0.5 1.2 1.6 3.2 1.9 4.5
14 0.5 1.2 1.9 4.5 1.6 3.2
20 0.5 1.1 1.2 2.8 1.8 4.5
26 0.6 1.7 1.2 2.6 1.3 3.8
OCP 0.6 0.7 0.6 0.8 0.6 0.8

FIG. 3. Nonrelativistic finite-temperature~filled circles! and
relativistic zero-temperature~open triangles! calculated values of
the screening partf ie of the free energy of the TCP forZ56,
compared with the fit~29! ~solid lines!. The fit is also compared
with the approximation of YS@16# ~dashed line!, which is valid at
small r s and largeG i . TF denotes the Thomas-Fermi approxim
tion.
ll

s

T*33107Z5/3 K, where the electron screening effects a
completely unimportant. Finally, atG i*170, solidification
takes place.

B. Analytic formulas

The calculated values of the screening free energy
fitted by the following function ofr s , Ge , andZ:

f ie52Ge

cDHAGe1cTFaGe
ng1~r s!h1~x!

11@bAGe1ag2~r s!Ge
n/r s#h2~x!

. ~29!

The parameter

cDH5
Z

A3
@~11Z!3/2212Z3/2# ~30!

ensures transition to the DH value of the excess free ene
of the EIP, f ex

DH52Z @(11Z)/3#1/2Ge
3/2 at small Ge . The

parameter

cTF5c`Z7/3~12Z21/310.2Z21/2! ~31!

determines the screening in the limit of largeGe and small
r s . The parameterc`5(18/175)(12/p)2/350.2513 is consis-
tent with the Thomas-Fermi approximation@28#, which be-
comes exact at smallr s and very largeZ ~cf. Ref. @16#!. The
parameters

a51.11Z0.475,

b50.210.078~ ln Z!2,

n51.1610.08 lnZ

provide a low-order approximation tof ie ~with a maximum
error up to 30% at largeZ and r s*1), while the functions

g1~r s!511
0.78

211Ge~Z/r s!
3S Ge

Z D 1/2

, ~32!

g2~r s!511
Z21

9 S 11
1

0.001Z212Ge
D r s

3

116r s
2

~33!

improve the fit at relatively larger s and reduce the maximum
fractional error in f ie to 4.3% and the root-mean-squa
~rms! error to ;1.5%. The factors h1(x)5@1
1(vF /c)6Z21/3#21 ~where vF5cx/A11x2 is the electron
Fermi velocity! andh2(x)5(11x2)21/2 are relativistic cor-
rections and may be omitted atx!1.

Note thatf ie constitutes only a part of the ion excess fr
energyf i i 1 f ie . The fit to this latter quantity is given by th
sum of Eqs.~28! and~29!. The second and third columns o
Table II present the rms and maximum relative differenc
between the calculated and fitted values off i i 1 f ie at each
value of Z. The comparison has been done for the set
finite-temperature numerical results at 0.1<G i<170 and
0.0625<r s<2.074. The remaining four columns of the tab
present the rms and maximum relative differences for
( i i 1 ie) internal energy and pressure, derived from the
by the use of the thermodynamic relations

s
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u5S ] f

] ln G D
r s

, bP/n5
1

3Fu2S ] f

] ln r s
D

G
G . ~34!

The bottom row of the table is given for reference a
presents the difference between the fit~28! and numerical
HNC data in the OCP model~i.e., without theie contribu-
tion!.

The calculated and fitted values off ie are shown in Fig. 3
for Z56 and in Fig. 4 forZ51,2, and 10. For comparison
we have plotted the fit of Yakovlev and Shalybkov@16# ~YS!
to their relativistic calculations, carried out in the zer
temperature approximation~justified at smallr s and large
Ge). In Fig. 4 we have also plottedf ie given by an analytic
expression of Ebelinget al. @29# reproduced by SB@22#. For
the hydrogen plasma (Z51) it reproduces the Pade´ approxi-
mations of Ref.@30#. One can see that the fit of YS, in th
range of its validity, agrees with our results. On the contra
the approximation of Refs.@29,22# is clearly invalid in most
cases. It exhibits unphysical behavior aroundG i;0.1, pre-
dicting an enhancement of screening with decreasingr s ~e.g.,
for Z51 andG i50.1 it gives largerf ie at r s50.41 than at
r s51.464). Moreover, the extrapolation toZ.1, proposed in
Ref. @29#, severely underestimates the screening effects.

Figure 5 exhibits an analogous comparison for the exc
free energy~10! for Z51. We have also plotted the Pad´
approximation of IIT@11#. Although the digressions betwee
the fit and numerical data of Ref.@11# lie within 0.4%, there

FIG. 4. Calculated~filled circles! and fitted~solid line! f ie for
Z51, 2, and 10, for several indicated values ofr s , compared with
the approximations of DH~dot-dashed lines!, YS ~long-dashed
lines!, and SB~short-dashed lines!.
,

ss

are significant deviations between IIT’s fit and our pres
results. This discrepancy originates from the relatively sm
number of numerical calculations used by IIT~32 computed
values at 0.1<G i<10 and 0.1<u<10). Our fit, based on a
much larger set of numerical data, reproduces not only th
data but also the numerical results of IIT@11#.

The excess ionic pressurePii 1Pie is shown in Fig. 6.
Calculated data are compared with the pressure obtaine
differentiation ~34! of our fit and of SB’s fit. The DH ap-
proximation, shown for reference, is calculated as the diff
ence between the DH pressures of the electron-ion TCP
the electron OCP. The importance of the screening effec
verified by a comparison of our calculated and fitted press
with the pressure of the OCP in the rigid backgroundPii ,
also shown in the figure.

Figure 7 demonstrates the validity of the EOS deriv
from our analytic formulas. The EOS of the perfect io
electron gas is compared with the EOS that includes the n
ideality of the electron and ion fluids but neglects theie
interactions; solid lines show the complete EOS. The gap
some isotherms indicate the regions where the formation
bound states could not be neglected. The significant de
tions of the broken lines from the full lines in certain rang
of r and T demonstrate the importance of theion-electron
screening effects.

VII. MULTI-IONIC MIXTURES

The multi-ionic mixture is a straightforward generaliz
tion of the previous single-ion model. In that case the eff
tive Hamiltonian~8! reads

FIG. 5. Calculated~filled circles! and fitted~solid lines! excess
free energyf ex5xi( f i i 1 f ie)1xef ee for Z51 for different values of
the density parameterr s . The dot-dashed line is the DH formula
while the dashed and dotted lines represent the approximation
SB @22# and IIT @11#, respectively.
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Heff5Ki1
1

2V(
kÞ0

4pe2

k2 FrZkrZk*

e~k!
2Ni^Z

2&G , ~35!

whererZk5( iZir ik are the Fourier components of the io
charge number fluctuations.

For the binary ionic mixture in a rigid electron bac
ground @e(k)51 ;k#, the excess~nonideal! free energy of
the mixture, as well as the related thermodynamic quantit
can be expressed with high accuracy by the so-called lin
mixing rule ~LMR! in terms of the free energy of the pur
phases

f ex~Z1 ,Z2 ,Ge ,x1!'x1f ex~G1 ,x151!

1~12x1! f ex~G2 ,x150!, ~36!

where G i5GeZi
5/3 and x15N1 /(N11N2). The very high

level of accuracy of the LMR~36! was demonstrated b
Hansenet al. @21# and confirmed later on by several autho
using very accurate MC calculations~see, e.g.,@5,31#!.

The validity of the LMR in the case of an ionic mixtur
immersed in aresponsivefinite-temperature electron back
ground, as described by the Hamiltonian~35!, has been ex-
amined by Hansenet al. @21# in the first-order thermody-
namic perturbation approximation and more recently
Chabrier and Ashcroft@32#, who have solved the HNC equa
tions with the effective screened potentials for arbitra
charge ratios ranging from a symmetric case (Z2 /Z1;1) to

FIG. 6. Calculated~filled circles! and fitted~solid lines! excess
pressure of ions in the compressible electron background,Pi5Pii

1Pie , in units of P0G i , whereP05nikBT. For comparison, SB’s
approximation is shown by dashed lines and the DH and OCP
proximations are shown by dot-dashed lines.
s,
ar

,

y

a highly asymmetric case (Z2 /Z1@1). These authors found
that the LMR remains valid to a high degree of accura
when the electron response is taken into account in the i
rionic potential, except possibly for highly asymmetric mi
tures in the region of weak degeneracy of the electron
~where the departure from linearity can reach a few perce!.

VIII. CONCLUSIONS

We have developed a completely analytic model for
free energy of fully ionized electron-ion Coulomb plasma
The ideal part of the free energy of electrons and ions
described by Eqs.~12!–~15! and is accurately represented b
the analytic fits given by Eqs.~18!–~24!. Note that these
formulas provide the thermodynamic quantities of a fr
electron gas foranydegeneracy and relativity. For the exce
free energy of the electron fluid at finite temperature,
adopt the analytic approximation from Ref.@11#. For the
excess free energy of the classical ionic OCP, we provid
simple interpolation~28! that accurately reproduces th
Monte Carlo results atG i>1 and the Debye-Hu¨ckel–Abe
limit for G i!1. Finally, we have taken into account the io
electron interactions by solving the hypernetted-chain eq
tions for a large set of the parametersG i , r s , and Z and
constructed an analytic fit given by Eq.~29!. Our analytic
formulas reproducef i i 1 f ie with accuracy;1 –2 % and the
derivatives of this function with respect tor s andG i give an
excess internal energy and pressure with relative errors
larger than a few percent. This analytic approximation
significantly more accurate than previous approximations
the free energy of the electron-ion plasmas.

p-

FIG. 7. Equations of state~EOSs! of fully ionized plasmas of
four elements (Z54, 8, 13, and 26! given by the present analytic
approximations. Solid lines show the pressureP vs densityr taking
into account the nonideality effects; dots represent the EOS of
perfect gas of ions and electrons; dashes display an EOS in w
the electron-ion screening effects are neglected. The gaps in s
isotherms indicate the regions where the formation of bound e
tron states can be expected.
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As mentioned in the Introduction, our calculations imp
full ionization, i.e., pointlike ions from which their boun
electrons are stripped completely. This model is realistic
various conditions at high temperatures or densities enco
tered in modern laser experiments and in various astroph
cal situations, for example, stellar, brown dwarf, and gi
planet interiors or the envelopes of neutron stars. In th
situations, complete ionization can be safely assumed.
thermore, the present model can be used as the basis of
elaborate equations of state aimed at describing the the
o-

-

er
n
n-
si-
t

se
r-
ore
o-

dynamic properties of partially ionized plasmas and ioni
tion equilibrium. Work in this direction is in progress.
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