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Equation of state of fully ionized electron-ion plasmas
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Thermodynamic quantities of Coulomb plasmas consisting of pointlike ions immersed in a compressible,
polarizable electron background are calculated for ion charge$—26 and for a wide domain of plasma
parameters ranging from the Debyedtel limit to the crystallization point and from the region of nondegen-
erate to fully degenerate nonrelativistic or relativistic electrons. The calculations are based on the linear-
response theory for the electron-ion interaction, including the local-field corrections in the electronic dielectric
function. The thermodynamic quantities are calculated in the framework oNthedy hypernetted-chain
equations and fitted by analytic expressions. We present also accurate analytic approximations for the free
energy of the ideal electron gas at arbitrary degeneracy and relativity and for the excess free energy of the
one-component plasma of ions derived from Monte Carlo simulations. The extension to multi-ionic mixtures is
discussed within the framework of the linear mixing rule. These formulas provide a completely analytic,
accurate description of the thermodynamic quantities of fully ionized electron-ion Coulomb plasmas, a useful
tool for various applications from liquid state theory to dense stellar m§8&063-651X98)03410-2

PACS numbd(s): 52.25.Kn, 05.70.Ce

l. INTRODUCTION =ng/10°* cm 3~(p/1.6605 g cm3)(Z)/(A). Here and
hereinafter(X)=X;n;X; /=;n; denotes the average over all
Electron-ion plasmas$EIPs consisting of different spe- ions andn; the number density of ions ath species.

cies of pointlike ions(chargez;e, massm,=A; amu) and The ion coupling parameter of the TCP is
electrons (-e,m,;) are encountered in numerous physical ) 53
and astrophysical situations, e.g., inertially confined labora- I'i=pB(Ze)*la;=TZ>", @

tory plasmas, liquid metals, stellar and planetary interiors
and supernova explosiofns]. Full ionization is reached ei-
ther at high temperature§ and low densitiesp (thermal ; g 5/
ionization or at high enough densitigs (pressure ioniza- pla_?rr?ea(sjéltenr]]?r/age u;?;%é?e(rfg:jﬁ?r:eréétizf arameter
tion). Even when these conditions are not satisfied, the ap- 9 yp yp

L oo . . X ar fined r ivel
proximation of full ionization is useful for calculations in the are defined respectively as

herea; is the mean interionic distanceE a.Z' due to
the electroneutrality condition,=n;Z). In multicomponent

mean ion approximation, in which the mean ion charge cor- 0=TITe, X=pg/meC, 3
responds to its partial ionization stage. On the other hand, the
free energy of fully ionized EIP provides the reference syswhere Te=(Mc?kg)[V1+x2—1]~(5.93x 10°

tem for models aimed at describing the thermodynamic prop) [ \1+x?—1] is the Fermi temperature, is the speed of
erties of partially ionized plasmafZ]. In this paper we |ight, and pe=7(37?n.)'? is the zero-temperature Fermi

present a completely analytic model for the free energy ofnomentum of electrons. To estimafieandx, it is useful to
EIP, based on detailed numerical calculations for differenfyote that

ionic specie over a wide range of density and temperature.

We first focus on the two-component plasff&P), consist- 9amr\Ba  0.014 (Z) p 13
ing of electrons and a single species of ions. An extension to X= 2 .7 W ﬁ (4)
ionic mixtures is considered in Sec. VI. s s 10° gcm
The Coulomb plasmas can be characterized by the elec-
tron coupling parametdr, and the density parametey a?(Terg) ™ r's
€ ' 6= W, 9”0.5431_,— at x<1, (5)
I'.=pBe’la,, re=alag, (1) X €

h (ko)L is the i th d ic t wherea=1/137.036 is the fine-structure constant.
where 5= (kgT) "~ is the inverse thermodynamic tempera- Various asymptotic expansions, interpolation formulas,

ture, kg is the Boltzmann constang.=(5mne) " mea-  and large tables have been derived in the past for the ther-
sures the mean interelectron distantegis the electron num-  modynamic functions of free fermionsee Refs[3,4] and

ber density, andag=%2/mee? is the Bohr radius. These references thereinin this paper, first, we present analytic
parameters can be evaluatedI3s=(2.693<10° K/T)n}?  expressions for the thermodynamic quantities of free fermi-
=(23.2 eVkgT)ni? and re~1.17h,"%, where n,, ons for arbitrary degeneracy and relativityandx. Second,
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we propose simple and accurate analytic approximations for 4m(Ze)?
the nonidealinternal and free energies of the classical one- Vefi(k) = 5 , 9)
component plasméOCP), which take into account the most k=e(k)

recent hypernetted-chai{iriINC) and Monte CarldMC) cal-
culations by DeWitt, Slattery, and Chabrigg] (DWSQ) in
the strong-coupling regime. Third, we consider the electro
screeningeffects on the thermodynamic properties of the
TCP. We employ a computational HNC scheme based on th
linear screening theory with local-field corrections, taking
into account the electron finite-temperatdfiaite-6) effects.
The numerical calculations have been performed over a Widscreeningquantities It is convenient to consider dimension
range ofZ, I';, andrg and interpolated by a simple analytic " : )
forrgula, which recovers the Igebye'ibkgl (DH) FI)imit fory less quantities¢=BFce/Ne andf; jo=pBFii ie/N;. Then

tzhe TCP af’;<1 and the Thomas-Fermi limit at largg and fo=Xef ot Xi(Fii + fio), (10)

which is the sum of the bare ionic potential and the induced
rpolarization potential.

The ion-ion (i) and the ion-electroni¢) Coulomb inter-
gctions can thus be separated from the exchange-correlation
contribution in the electron fluidge). The excess part of the
free energy(6) can then be written aBg=F et Fii + Fie;
gwe quantities labelede will be referred to aselectron-

wherex; .=N; o/N denote the number fraction of ions and
Il. SUMMARY OF THE MODEL electrons, respectively, afld=N;+ N, is the total humber
of particles. In the same way we defing.=BU../N, and
Ui ie=BUj; ie/N;j. The excess free energy can be obtained
from the internal energy by integration:

fegrmsyzjzﬂﬂﬁg;iﬁidr". (11)

Consider the Helmholtz free enery internal energyJ,
and pressur® of a TCP ofN; ions andN, electrons in the
volume V. The total free energy,; can be written as the
sum of three terms

Fior=Fig + Fid'+ Fex, (6)
i . . For f.., we have adopted the interpolation formula of Ichi-
where Fig® d(_enote the 'd‘?a' free energy of ions an_d_elec'maru?elyetomi, and Tanakfll] (IIT), consistent with nu-
trons, respectively, anBley is the excesdree energy arising  merica| results obtained by different authors. Egr which

from interactions. corresponds to the well-known OCP model, that implies the

. In this paper we restrict gurselves to copditions where th‘?igid electron backgrounde(k) =1), we present an analytic
ions behave classically, which is the case in most aStrOphysl'nterpoIation between the MC resul§] at I';=1 and the
cal situations. Quantum corrections for ions that can be imp 1 |imit and Abe correction af: <0.1 '

i=0.1.

portant in the ultradense matter of white dwarf interiors, NeU-  The ion-electron interactions are calculated numerically

tron stars, and supg)rn_ova_ cores have been considered, .9.,1i, Ref[g]. In this approach, the bare Coulomb potential
Refs.[6,7]. ThusFjj is given by the Maxwell-Boltzmann i, the expression for the electrostatic energy is replaced by
expression. FOF(§ we use the well-known expressions of the potential statistically screened by the electré®sand
the thermodynamic functions of the perfect gas of fermionqhe HNC approximation is used to calculate the thermody-
(which may be degenerate and relativistisrough the gen-  namic functions of the system. This model, originally ap-
eralized Fermi-Dirac integrals. plied to nonrelativistic hydrogen plasmas, is now extended to

To calculateF,, we follow the model developed by the case of arbitrarg andx. In the nonrelativistic casex(
Chabrier[8] for fully ionized EIPs. As long as the ion- «<1), the dielectric functione(k) is the finite-temperature
electron interaction is weak compared to the kinetic energy indhard function modified with the local-field correction
of the eIectrons,ZeZ/ae<kBT,:, this interaction can be arising from electron correlation effects.
treated within the linear screening theory. Under these con- At very high densityx=1, the electrons become relativ-
ditions, the exact Hamiltonian of the TCP can be separatefktic. At such densities, the electron correlation effects are
out exactly into a Hamiltonian for the electron-screenedcompletely negligible. The finite-temperature effectg (
ionic fluid and a Hamiltonian for a’lgld electron back- ;&0) may give an appreciab|e contribution to the Screening
ground, the so-called jellium Hamiltonigt, [9,10]: part of the free energy;. only at extremely high tempera-
tures, where the nonideality of the gas has no significance.
Thus we use the Jancovifl2] zero-temperature dielectric
function in the relativistic regime.

The correlation functions and thermodynamic quantities

H=H®"+H,, 7

with

) . for the electron-screened ionic fluid are obtained within the
Heff— K.+ 1S 4n(Ze7 ppic } (8 framework of the HNC equations. The validity of the HNC
2ViE k2 ek ') theory for the Coulomb systems has been assessed by several

authors by comparison with lengthy MC simulations. The
whereK; is the ionic kinetic(translational term, p, is the ~ HNC approximation consists of neglecting the contribution
Fourier component of the ionic microscopic density, andof the so-called bridge diagrams, which involves an infinite
€(k) is the static screening function of the electron fluid toseries of multiple integrals, in th-body general diagram-
be discussed below. The Hamiltoniatf™ characterizes the matic resummationg13]. The long-range part of the direct
electron-screened ion fluid with the interparticle potentialcorrelation functiorc(r) calculated within the HNC approxi-
whose Fourier transform is mation is exactly canceled by V(r)/kT, so that the pair
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TABLE |. Parameters of Eqg18) and(19). The powers of 10 are given in square brackets.

i 1 2 3 4 5
c®  0.37045057 0.41258437  9.7779822] 5.3734153 — 3] 3.8746281 5]
c®  0.39603109 0.69468795  0.22322760 1.5262932] 1.3081939 — 4]
c®  0.76934619 1.7891437  0.70754974 5.6755672] 5.557148Q — 4]
x@ 043139881 1.7597537 4.1044654 7.7467038 13.457678
xM 081763176 24723339  5.1160061 9.0441465 15.049882
x®  1.2558461 3.2070406  6.1239082 10.316126 16.597079
X; 7.265351—-2]  0.2694608  0.533122 0.7868801 0.9569313
& 0.26356032 1.4134031  3.5964258 7.0858100 12.640801
h; 3.81873§-2]  0.1256732  0.1986308 0.1976334 0.1065420
vi 0.29505869 0.32064856  7.39155702] 3.6087389 — 3] 2.3369894 — 5]

correlation functiong(r) is of much shorter range than the whereX, is the inverse Fermi integral, also fitted with high
Coulomb potentiaV/(r) [13]. This is a required condition for accuracy by Antigd15].

Coulomb systems because of the perfect screening condition. The accuracy of the nonrelativistic formulas decreases
This property of the HNC theory makes it particularly suit- rapidly at T>10" K. Blinnikov et al. [3] have presented a
able for such long-range systems. The differences of the freeumber of approximations and asymptotic expansions of the
energy, the internal energy, and the pressure are at most oflativistic thermodynamic functions of the ideal electron
the order of 1%see, e.g., Ref$5,8]). The difference is due gas. We have selected those of their fitting formulas that are

to the lack of bridge functions in the HNC theory. most accurate at low and modergtand supplemented them
with asymptotic expansions at highto obtain an approxi-
IIl. IDEAL PART OF THE FREE ENERGY mation that is accurate at amy, for each of the Fermi inte-

gralsl,(x,7) with v=3%, 3, and3:
The ideal free energy of nonrelativistic classical ions, ne-

glecting their spin statistics, reafit4] 5 /1+X<k /2
i . ey, m) =2, cf (x=<0.6)
Fi)=NikgT[In(nj\3)—1], (12) =1 eXp(—xi ) +exp(— x) 8
where\ ;= (27 8%2/m;)¥?is the thermal wavelength of ions.
For electrons, we use the identity4] i XTI xxi7/2
= hyx 1+exp xx—
Fe' = Nepuld) — PIV. (13 PO~ x)
Here () is the chemical potentialin which we do not +ui(&+ )TV 1+ (&+ x) T2
include the rest energy.c?) and P,(e) is the pressure of the
ideal Fermi gas. The pressure and number density, in turn,
are functions ofu andT: (0.6<x<14) (19
2
Pf?—zﬁ—iﬁw 3,2<x,r>+ ls2x.7) |, (19 =R+ 5 x R
=14 2
2 (me/[f)”(I e, (15 (x=14), (20
n —_—
T 23 X T)+ Tl X T whereR=\x(1+ x7/2),
wherer=(8mc?) *=T/5.93x10° K, xy=Bul?, and Folx,7)=(x+7 HR2—(27)"¥An(1+ 7y + 27 R),
(21)
[ XV N1+ 7x/2
h(x 7')=J’0 exp(x—)()—i-ldx (16) Fi(x,")=[2R%3—Fq(x,7) ]/ (22
Fa(x,7) =[2xR®~5F1(x,7)]/4r. (23

is the generalized Fermi-Dirac integral.

In the limit 7— 0, the Fermi-Dirac integrals reduce to the _ .
usual nonrelativistic Fermi integrals(y), which can be cal- If x7<1, the fuch|onik§/;(,r) should be replaced by(k'ghelr
culated using the highly accurate Paafeproximations pre- nenrelativistic limits y**=%/(k+3/2). The constantg;™,

sented by Antia[15]. The chemical potential is obtained Xi*» Xi, &, hi, andv; are adopted from Ref3] and are
from the relationship listed in Table I. The relative error of the approximation

(18)—(20) does not exceed 0.2% at<10? (any y), being
x=XyA2607323), (17)  typically a few parts in 1t
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The chemical potentigh(s) can be obtained numerically S L L
from Eq. (15), using Egs.(18)—(20). We have constructed ’ ]
also an analytic fit toy: oz b E

3 T 1+q1\/7-+ 0,037 C

— honrel_ — + i -03 - N

X=X M A T8 1 gpr : :

(24 ¥ ]

-0.4 - 7

Here y"°"®lis given by the nonrelativistic formulél7) and @ -

the coefficientsy; are functions off: Pn 05 7]

3 C 1

_3/a0_ 111 3 _aal h

qi=2(e"=1)"%, o8¢ o o o DWSC (MC) 1

Y DWSC (fit) 1

q,=12+86"372 0.7 ——_SB T

N present fit ]

2 e f+1.612° —08 ¢ E

- _ ] C ‘ A  OCP DH 3

G378 6192990911 5 535900 P T A S E

T : \-\Abe ]

The relative errotsy/ xy becomes infinite af=0. However, Y ST RN N N L]
since thermodynamic quantities are expressed throuoh -2 -1 0 1 2

virtue of thermal averaging of type of Eql6), a natural log, T}

measure of the error i$y/max(x|,1)= su/max(u|ksT).
The error thus lies within 0.4% for>1 and is smaller than
0.2% if 7<<1 (any 6). Another measure of the accuracy is the
relative difference between the densitigscalculated with
the exact and fitted values @f. This difference lies within
0.4% for =1 and within 0.1% forr<<1.

This accuracy may not be sufficient for calculation of, .., 41— _ 0 ggg 126,b=0.607 12, c=—0.279 98, ands
temperature derivatives of the electron-gas equation of state 0.321 308. The maximum relative difference between cal-

(EOS (heat capacity, temperature equnent,)eitu:.the '®" culated and fitted values reaches 17 parts il 40T,
gime of strong degeneracy¥1). In this case, however, —3.1748

Sommerfeld asymptotic expansions for these quantities may
be usedsee, e.g., Ref16]). In this paper we do not consider
the positrons, which are efficiently createdrat1 (see Ref.

[3] for a description of the equilibrium electron-positron

FIG. 1. Comparison of the fitsolid line) given by Eq.(27) for
the OCP internal energy with the DH and Abe asymptotic expan-
sions at small'; (dot-dashed linesand with the DWSC resul{&]
at 1=<T';<160 (dots and circles The dashed curve represents the
interpolation of SB[22].

Equation (25), however, does not apply to the weak-
coupling regionl’;<<1. At very smalll’; , the internal energy
of the OCP must recover the well-known DH expression
u;i = — (V3/2)I'¥2, whereas at moderately smaj this limit

plasma. must include the Abe correctidri9]
IV. OCP LIQUID OF CLASSICAL IONS 3 3 1
o _ _ uii=—£ r¥2—arg —|n(3ri)+z——}, (26)
Liquid and solid phases of the OCP have been studied 2 8 2 3

extensively by various numerical methods, MC simulations, .
or N-body semianalytic theories such as the HNC thdege ~ Wherey=0.5772 ... isEuler's constant.
Refs.[17,11 for detailed reviews All the thermodynamic We represent the internal energy of the ionic fluid; (
functions of the OCP of classical ions in a uniformgid) =<170) by a simplified version of the fitting formula pro-
electron background can be expressed as functions of tHPsed by Hansef20,21],

only parameted’;. The melting point of the OCP corre-

sponds td';~ 172, above which it forms a Coulomb crystal 32 A + Az 27)
[18]. The most accurate MC and HNC results for the internal Ui =1 A, +T;, 1+T]

and free energies of the liquid OCP for<I';<160 have

been obtained recently by DWSGE] (see references therein \here A; and A, are fitting parameters ands= — /3/2

for earlier results The high precision of the calculations —A,/\JA,. We have found that the minimum relative differ-

allowed the authors to investigate the tiny effects of nonadg e petween Eq27) and the MC results of DWS(5],

ditivi;y of the excess energy of binary ionic mixtures, as will g\ iier than 6 parts in #0is obtained withA, = —0.9052

be discussed in Sec. VI: . ... andA,=0.6322. This accuracy is sufficient for our present
DWSC have also derived a highly accurate analytic fit t0gy,,qy “since it is much better than the available numerical

the MC simulations of the internal energy of the OCP in theaccuracy of the complementary contribution to the internal

aforementioned” range: energyu;, . As mentioned in Sec. II, the HNC calculations of

< the sum y; + u;, ensure an accuracy of the order of 1%.
u;=al’j+bI7+c, (25) Figure 1 presents a comparison of our interpolation for-



PRE 58

mula(27) with the DH-Abe formulas, the MC results and the
fit (25) of DWSC [5], and the interpolation proposed by
Stolzmann and Bicker [22] (SB) following Ebeling [23].
Unlike SB, our Eq(27) accurately reproduces E@6) in the
rangel’;~0.01-0.1 and provides a smoother transition be-
tween the strong-I{;>1) and weak- [';<<1) coupling re-
gimes.

Using Egs.(27) and (11), we obtain the Helmholtz free
energy(cf. Ref.[20])

fi(T) = A VTi(Ay+ 1) = AgIn(NT /A +V1+T/A)]
+2A5[ T, —arctari\T;)]. (28)

At I';=1, this formula givesf;;, which differs from the
HNC calculations and the fit of DWS{5] by no more than

0.8%. This difference approximately coincides with that be-

tween the MC and HNC results far; ; therefore, it should
be attributed to the lack of the bridge functions in the HNC
approximation(see Sec. )l On the other hand, E¢28) re-

covers the DH-Abe free energy with an error smaller than

0.6% atl';<0.1.

V. ELECTRON FLUID

The exchange and correlation effects in electron fluid@Y

were studied by many authors. For instance, Taretkal.

[24] calculated the interaction energy of the electron fluid at

finite temperature in the Singwi-Tosi-Land-&jnder [25]
approximation and presented a fitting formula that repro
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FIG. 2. Effective ion-ion potential&/®™ at various approxima-
tions for Z=6 (left panelg and Z=26 (right panel$, for two den-
sities,r¢=1 (upper panelsand 0.0256(lower panels and three
es ofl';=1, 10, and 40. Solid lines represent the finite tempera-
ture Ve including the local-field correction and dashed lines show
the zero-temperature RP#&he dashed and solid lines practically
coincide on the lower left panelThe bare Coulomb potential is
drawn by dots for comparison.

duces their results as well as various exact limits with digres-

sions less than 1%n particular, their formula incorporates

screened interionic potenti@®) to obtainf;; + e, Uji+ Uje

the parametrization of the exchange energy by Perrot andnd P;; + P, and for the bare Coulomb potential to obtain

Dharma-wardang26]). We adopt a modification of this for-
mula given by IIT[11].

The exchange-correlation free enerfyy, is obtained by
integration from Eq(11). It is important to note that Tanaka
et al. [24] give a fit to theinteractionenergy of the electron
fluid but not to the thermodynamimnternal energy (the
quantities differ at finited). This enabled Tanakat al. to
obtain f ., by integration of their fitting formula over, at
constantd (the integration of the internal energy would have
to be performed at constang). Note also that the results of
[IT are nonrelativistic.

More recently, SB[22] proposed other parametrizations

fi, u;i, and P;;. The difference represents the screening
(ie) contribution to the thermodynamic quantities.

The previous numerical result8] have been obtained for
the hydrogen plasmaZE=1). We extend the calculations to
different values oZ and a larger set af;. Figure 2 shows
the effective potential&/®™ for Z=6 andZ=26 at several
values ofrg, compared with the bare Coulomb potential and
with Ve in the zero-temperatured&0) random-phase ap-
proximation (RPA) (no local-field correction One can see
that the latter approximation works well at the small value of
rs=0.0256(lower panely while it breaks down completely
atr,=1 (upper panels

of the exchange and correlation free energies. At moderate The bulk of the calculations has been performed in the

rs, a comparison of the formulas given by SB and IIT re-

nonrelativistic approximation, for 13 ion charges fraf

veals only small differences, which do not exceed the uncer=1 to Z=26 listed in the first column of Table Il, at ten
tainty in the various numerical results found in the literaturevalues of the density parametey ranging fromr,=0.0256

[26,27]. Unlike IIT, SB evaluated the exchange energyat

torg~2, and, at eacl andrg, for several tens of values of

<1 in the relativistic case. On the other hand, the SB fitthe coupling parametdr; that range from the DH limit at

reaches the classical OCP limit at langeand moderatd’,
with digressions up to 4.4%, while the parametrization of IIT

I';=0.001 toI';~200. As an example, calculated values of
the normalized screening part of the free enefgyat Z

is several times more accurate in this limit. We shall use the=6 are shown by filled circles in Fig. 3. Note that it is the

IIT's formula hereafter.

VI. ELECTRON SCREENING

A. Numerical calculations

account of the finite electron temperature in the dielectric
function that allows us to reach the correct TCP DH limit at
low values ofl’; (see Ref[8]).

In order to supplement the aforementioned nonrelativistic
data at higher densities, we have also performed calculations

In order to calculate the screening contribution, we haveausing the Jancovidil2] zero-temperature dielectric function.

employed the model of Ref8], outlined in Sec. Il. The
HNC equations were solved numerically for the effective

The results are shown in Fig. 3 fof;=1 and rg
=0.0625 &=0.224), 0.0256 X=0.545), and 0.008 X
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TABLE II. Root mean square and maximum relative differencesT=3x 10’7%% K, where the electron screening effects are

between the fit and the HNC calculations fgr+ f;., u;; +Uu;e, and
P;i + P;e ; the bottom line corresponds to the OCP model.

completely unimportant. Finally, af;=170, solidification
takes place.

0, o) [0}
z (51/7) (%) (8ulu) (%) (oP/P) (%) B. Analytic formulas
rms max rms max rms max
The calculated values of the screening free energy are
1 0.6 19 0.9 18 12 4.5 fitted by the following function of, 'y, andzZ:
2 0.4 1.1 0.7 1.8 0.7 3.0
3 0.4 0.8 0.9 2.3 0.7 1.8 CDH\/F_E_I— CTFaF;gl(rs)hl(X)
4 0.5 1.2 1.3 3.1 0.9 1.9 fie= —TI'e - . (29)
5 0.6 15 16 3.9 12 2.4 1+[bTe+agy(rgIg/rslhy(x)
6 0.7 1.8 1.8 4.3 1.5 2.8 The parameter
7 0.6 1.7 1.9 4.6 1.7 3.5
8 0.7 1.5 1.9 4.6 1.9 4.1 7
10 0.6 1.2 1.8 3.9 2.0 4.1 Con=——=[(1+2)%?-1-27%2] (30)
12 0.5 1.2 1.6 3.2 1.9 4.5 \/§
;3 8'2 1? 12 g'g i'g ié ensures transition to the DH value of the excess free energy
. . . . . . DH__ 1/213/2
=— + .
o6 06 17 Lo o6 P 28 O;rt’:l]r?]eltzéf’ for=—2Z[(1+2)/3]YT? at smallT,. The
OCP 0.6 0.7 0.6 0.8 0.6 0.8 P

=1.75). A comparison for the case nf=0.0625 confirms

Cre=C.2"¥(1-2" "3+ 0.227 13 (31

determines the screening in the limit of larfg and small

that the zero-temperature approximation works well at smalf .. The parametet., = (18/175)(12#)%3=0.2513 is consis-
rs and largel’ [where #<1 due to the relatior(5)]; this

tent with the Thomas-Fermi approximati¢p®8], which be-

conclusion is corroborated by inspection of Fig. 2. comes exact at smail and very largeZ (cf. Ref.[16]). The

Thus the numerical results cover all valuesrgfand I

) er parameters
(i.e., p andT) that are relevant for liquid EIPs. At=1 and
I';=1, the formation of bound states sets in. At 10 2 a=1.112%475
and I';=<1, the temperature reaches the values
b=0.2+0.078In Z)?,
I I T I I
1 v=1.16+0.081InZ
- provide a low-order approximation . (with a maximum
—0s error up to 30% at larg& andr¢s=1), while the functions
1. 0.78 I'.\? 2
1 9t =% STzt Z ) (32
S zZ-1 1 3
T Uo(r)=1+ /1+ > (33
< 2 9 |7 0.001z2+2r, ) 1+6r2
& -15
improve the fit at relatively large; and reduce the maximum
L fractional error inf;e to 4.3% and the root-mean-square
- (rmg error to ~1.5%. The factors h;(x)=[1
-2 +(ve/c)®Z2 3t (wherevg=cx/\1+x? is the electron
[ non-rel. data : : _ 2N —1/2 P
rel. data (8=0) Fermi velocity andh,(x) = (1+x?) are relativistic cor-
o __Ys TF limit | rections and may be omitted a& 1.
r ——— present fit Note thatf;, constitutes only a part of the ion excess free
ESC s T energyf; + ;. The fit to this latter quantity is given by the
-2 -1 0 1 2

sum of Eqgs(28) and(29). The second and third columns of
Table Il present the rms and maximum relative differences
between the calculated and fitted valuesfpft f;. at each
value of Z. The comparison has been done for the set of
finite-temperature numerical results at €I;,<170 and
compared with the fi{29) (solid lines. The fit is also compared 0.0625<r;=<2.074. The remaining four columns of the table
with the approximation of Y$16] (dashed ling which is valid at ~ present the rms and maximum relative differences for the
smallrg and largel’;. TF denotes the Thomas-Fermi approxima- (ii +ie) internal energy and pressure, derived from the fits
tion. by the use of the thermodynamic relations

log, T,

FIG. 3. Nonrelativistic finite-temperaturéilled circles and
relativistic zero-temperaturéopen triangles calculated values of
the screening parf;, of the free energy of the TCP faZ=6,
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| FIG. 5. Calculatedfilled circles and fitted(solid lineg excess

AT T SRR Lt 3 free energyf o= X;(f;i + fie) + Xcfee fOr Z=1 for different values of

-2 -1 0 1 2 the density parameter,. The dot-dashed line is the DH formula,
log, I while the dashed and dotted lines represent the approximations of

SB[22] and IIT [11], respectively.

FIG. 4. Calculatedfilled circleg and fitted(solid line) f;. for
Z=1, 2, and 10, for several indicated valuesrgf compared with
the approximations of DHdot-dashed lings YS (long-dashed ~are significant deviations between IIT’s fit and our present
lines), and SB(short-dashed lings results. This discrepancy originates from the relatively small

number of numerical calculations used by (32 computed
values at 0.£1";<10 and 0.% 6<10). Our fit, based on a
of 1 of .
u=<—> ., BPIn= —{u—(—) } (34)  much larger set of numerical data, reproduces not only these
dInl’/, 3 alnrg/ . data but also the numerical results of [IT1].

The excess ionic pressui®; + P;. is shown in Fig. 6.
Calculated data are compared with the pressure obtained by
differentiation (34) of our fit and of SB'’s fit. The DH ap-
proximation, shown for reference, is calculated as the differ-
ence between the DH pressures of the electron-ion TCP and
the electron OCP. The importance of the screening effects is
verified by a comparison of our calculated and fitted pressure
' with the pressure of the OCP in the rigid backgroung,
also shown in the figure.

Figure 7 demonstrates the validity of the EOS derived
from our analytic formulas. The EOS of the perfect ion-
electron gas is compared with the EOS that includes the non-
ideality of the electron and ion fluids but neglects ilee
interactions; solid lines show the complete EOS. The gaps in
some isotherms indicate the regions where the formation of
bound states could not be neglected. The significant devia-
tions of the broken lines from the full lines in certain ranges
of p and T demonstrate the importance of tien-electron
screening effects.

S

The bottom row of the table is given for reference and
presents the difference between the(#8) and numerical
HNC data in the OCP modél.e., without theie contribu-
tion).

The calculated and fitted values ipf are shown in Fig. 3
for Z=6 and in Fig. 4 forz=1,2, and 10. For comparison
we have plotted the fit of Yakovlev and ShalybKdw] (YS)
to their relativistic calculations, carried out in the zero-
temperature approximatiofjustified at smallrg and large
I'e). In Fig. 4 we have also plottef], given by an analytic
expression of Ebelingt al.[29] reproduced by SB22]. For
the hydrogen plasma&(= 1) it reproduces the Padgproxi-
mations of Ref[30]. One can see that the fit of YS, in the
range of its validity, agrees with our results. On the contrary
the approximation of Ref$29,22 is clearly invalid in most
cases. It exhibits unphysical behavior arodnd-0.1, pre-
dicting an enhancement of screening with decreasing.g.,
for Z=1 andI';=0.1 it gives largerf,, atr,=0.41 than at
r<=1.464). Moreover, the extrapolationZo>1, proposed in
Ref.[29], severely underestimates the screening effects.

Figure 5 exhibits an analogous comparison for the excess
free energy(10) for Z=1. We have also plotted the Pade The multi-ionic mixture is a straightforward generaliza-
approximation of IIT[11]. Although the digressions between tion of the previous single-ion model. In that case the effec-
the fit and numerical data of Rdfl1] lie within 0.4%, there tive Hamiltonian(8) reads

VII. MULTI-IONIC MIXTURES
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FIG. 7. Equations of stattEOSS of fully ionized plasmas of
four elements Z=4, 8, 13, and 26given by the present analytic
approximations. Solid lines show the presshres densityp taking
into account the nonideality effects; dots represent the EOS of the
perfect gas of ions and electrons; dashes display an EOS in which

FIG. 6. Calculatedfilled circles and fitted(solid lineg excess the electron-ion screening effects are neglected. The gaps in some
pressure of ions in the compressible electron backgroB P;; isotherms indicate the regions where the formation of bound elec-
+ Pje, in units of PyI';, wherePy=n;kgT. For comparison, SB’s tron states can be expected.
approximation is shown by dashed lines and the DH and OCP ap-
proximations are shown by dot-dashed lines. a highly asymmetric caseZ¢/Z,>1). These authors found

that the LMR remains valid to a high degree of accuracy

when the electron response is taken into account in the inte-
, (389  rionic potential, except possibly for highly asymmetric mix-
tures in the region of weak degeneracy of the electron gas
(where the departure from linearity can reach a few pejcent

ey 4 - 4me?
ST 2viE, k?

PZkP§k
e(k)

—Ni(Z?)

where pz=2;Z;pix are the Fourier components of the ion
charge number fluctuations.

For the binary ionic mixture in a rigid electron back- VIIl. CONCLUSIONS
ground[ e(k) =1 Vk], the excesgnonidea) free energy of
the mixture, as well as the related thermodynamic quantitie§re
can be expressed with high accuracy by the so-called Iinea1|ch
mixing rule (LMR) in terms of the free energy of the pure de
phases

We have developed a completely analytic model for the
e energy of fully ionized electron-ion Coulomb plasmas.
e ideal part of the free energy of electrons and ions is
scribed by Eqg12)—(15) and is accurately represented by
the analytic fits given by Eq918)—(24). Note that these
formulas provide the thermodynamic quantities of a free
fed(Z1,Z5,T e, X1) =X fe(T1,X1=1) electron gas foanydegeneracy and relativity. For the excess

free energy of the electron fluid at finite temperature, we

+(1=x)Texl'2,%,=0), (36)  adopt the analytic approximation from Refl1]. For the
excess free energy of the classical ionic OCP, we provide a
where T';=T'.Z>" and x;=N;/(N;+N,). The very high simple interpolation(28) that accurately reproduces the
level of accuracy of the LMR(36) was demonstrated by Monte Carlo results af';=1 and the Debye-Htkel-Abe
Hansenret al.[21] and confirmed later on by several authors, limit for I';<1. Finally, we have taken into account the ion-
using very accurate MC calculatiofsee, e.g.[5,31]). electron interactions by solving the hypernetted-chain equa-
The validity of the LMR in the case of an ionic mixture tions for a large set of the parametdrs, rg, and Z and

immersed in aresponsivefinite-temperature electron back- constructed an analytic fit given by ER9). Our analytic
ground, as described by the Hamiltonie8b), has been ex- formulas reproducé;; + f;, with accuracy~1-2 % and the
amined by Hansert al. [21] in the first-order thermody- derivatives of this function with respect tQ andI’; give an
namic perturbation approximation and more recently byexcess internal energy and pressure with relative errors not
Chabrier and Ashcroft32], who have solved the HNC equa- larger than a few percent. This analytic approximation is
tions with the effective screened potentials for arbitrarysignificantly more accurate than previous approximations of
charge ratios ranging from a symmetric cagg/Z,~1) to  the free energy of the electron-ion plasmas.
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As mentioned in the Introduction, our calculations imply dynamic properties of partially ionized plasmas and ioniza-
full ionization, i.e., pointlike ions from which their bound tion equilibrium. Work in this direction is in progress.
electrons are stripped completely. This model is realistic in
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