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Flocks, herds, and schools: A quantitative theory of flocking
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We present a quantitative continuum theory of ‘‘flocking’’: the collective coherent motion of large numbers
of self-propelled organisms. In agreement with everyday experience, our model predicts the existence of an
‘‘ordered phase’’ of flocks, in which all members of even an arbitrarily large flock move together with the

same mean velocitŷvW &Þ0. This coherent motion of the flock is an example of spontaneously broken sym-
metry: no preferred direction for the motion is picked outa priori in the model; rather, each flock is allowed
to, and does, spontaneously pick out some completely arbitrary direction to move in. By analyzing our model
we can make detailed, quantitative predictions for the long-distance, long-time behavior of this ‘‘broken
symmetry state.’’ The ‘‘Goldstone modes’’ associated with this ‘‘spontaneously broken rotational symmetry’’
are fluctuations in the direction of motion of a large part of the flock away from the mean direction of motion
of the flock as a whole. These ‘‘Goldstone modes’’ mix with modes associated with conservation of bird
number to produce propagating sound modes. These sound modes lead to enormous fluctuations of the density
of the flock, far larger, at long wavelengths, than those in, e.g., an equilibrium gas. Our model is similar in
many ways to the Navier-Stokes equations for a simple compressible fluid; in other ways, it resembles a
relaxational time-dependent Ginsburg-Landau theory for ann5d component isotropic ferromagnet. In spatial
dimensionsd.4, the long-distance behavior is correctly described by a linearized theory, and is equivalent to
that of an unusual but nonetheless equilibrium model for spin systems. Ford,4, nonlinear fluctuation effects
radically alter the long distance behavior, making it different from that of any known equilibrium model. In
particular, we find that ind52, where we can calculate the scaling exponentsexactly, flocks exhibit a true,
long-range ordered, spontaneously broken symmetry state, in contrast to equilibrium systems, which cannot
spontaneously break a continuous symmetry ind52 ~the ‘‘Mermin-Wagner’’ theorem!. We make detailed
predictions for various correlation functions that could be measured either in simulations, or by quantitative
imaging of real flocks. We also consider an anisotropic model, in which the birds move preferentially in an
‘‘easy’’ ~e.g., horizontal! plane, and make analogous, but quantitatively different, predictions for that model as
well. For this anisotropic model, we obtain exact scaling exponents for all spatial dimensions, including the
physically relevant cased53. @S1063-651X~98!08410-4#

PACS number~s!: 87.10.1e, 64.60.Cn, 05.60.1w
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I. INTRODUCTION

A wide variety of nonequilibrium dynamical systems wi
many degrees of freedom have recently been studied u
powerful techniques developed for equilibrium condens
matter physics~e.g., scaling, the renormalization group, etc!.
One of the most familiar examples of a many-degree-
freedom, nonequilibrium dynamical system is a large flo
of birds. Myriad other examples of the collective, cohere
motion of large numbers of self-propelled organisms oc
in biology: schools of fish, swarms of insects, slime mol
herds of wildebeest, etc.

Recently, a number of simulations of this phenomen
have been performed@1–3#. Following Reynolds@3#, we will
use the term ‘‘boid’’ and bird interchangeably for the pa
ticles in these simulations. All of these simulations have s
eral essential features in common:

~1! A large number ~a ‘‘flock’’ ! of point particles
~‘‘boids’’ ! each move over time through a space of dime
siond (52,3, . . . ), attemptingat all times to ‘‘follow’’ ~i.e.,
move in the same direction as! its neighbors.
PRE 581063-651X/98/58~4!/4828~31!/$15.00
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~2! The interactions are purely short ranged: each ‘‘boi
only responds to its neighbors, defined as those ‘‘boid
within some fixed, finite distanceR0 , which is assumed to be
much less thanL, the size of the ‘‘flock.’’

~3! The ‘‘following’’ is not perfect: the ‘‘boids’’ make
errors at all times, which are modeled as a stochastic no
This noise is assumed to have only short-ranged spatiot
poral correlations.

~4! The underlying model has complete rotational symm
try: the flock is equally likely,a priori, to move in any di-
rection.

The development of a nonzero mean center-of-mass
locity ^vW & for the flock as a whole therefore requires spon
neous breaking of a continuous symmetry~namely, rota-
tional!.

In an earlier paper@4#, we formulated a continuum mode
for such dynamics of flocking, and obtained some exact
sults for that model in spatial dimensionsd52 ~appropriate
for the description of the motion of land animals on t
Earth’s surface!. Our most surprising result@4# was that two-
dimensional moving herds with strictly short-ranged intera
4828 © 1998 The American Physical Society
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PRE 58 4829FLOCKS, HERDS, AND SCHOOLS: A QUANTITATIVE . . .
tions appear to violate the Mermin-Wagner theorem@5#, in
that they can acquire long-ranged order, by picking ou
consistent direction of motion across an arbitrarily lar
herd, despite the fact that this involves spontaneously bre
ing a continuous~rotational! symmetry.

Of course, this result does not, in fact, violate t
Mermin-Wagner theorem, since flocks are a nonequilibri
dynamical system. What is fascinating~at least to us! about
our result is that the nonequilibrium aspects of the flock
namics that make the long-distance, long-time behavio
the flock different from that of otherwise analogous equil
rium systems are fundamentally nonlinear, strong-fluctua
effects. Indeed, a ‘‘breakdown of linearized hydrodyna
ics,’’ analogous to that long known to occur in equilibriu
fluids @6# in spatial dimensionsd52, occurs in flocks for all
d,4. This breakdown of linearized hydrodynamics is ess
tial to the very existence of the ordered state ind52. Fur-
thermore, it has dramatic consequences even ford.2.

The physics of this breakdown is very simple: aboved
54, where the breakdown doesnot occur, information about
what is going on in one part of the flock can be transmitted
another part of the flock only by being passed sequenti
through the intervening neighbors via the assumed sh
ranged interactions. Belowd54, where the breakdown oc
curs, this slow, diffusive transport of information is replac
by direct, convective transport: fluctuations in the local v
locity of the flock became so large, in these lower dime
sions, that the motion of one part of the flock relative
another becomes the principal means of information tra
port, because it becomes faster than diffusion. There is a
of ‘‘negative feedback,’’ in that this improved transport a
tually suppresses the very fluctuations that give rise to
leading to long-ranged order ind52. The purpose of the
present paper is to study the properties of the ‘‘orde
state’’ of the flock, i.e., the state in which all members of t
flock are moving in the same average direction. Specifica
we will do the following:

~1! We will give the details of the derivation of the resul
of Ref. @4#, and give detailed predictions for numerous co
relation functions that can be measured in both experim
and simulations. In particular, we will show that two prop
gating sound modes exist in flocks, with unusually ani
tropic speeds, whose detailed dependence on the directio
propagation we predict, making possible extremely string
quantitative tests of our theory. We also calculate their
tenuations, which show highly anomalous, and strongly
isotropic, scaling.

~2! We will formulate and study the most complete ge
eralization of the model of Ref.@4# for spatial dimensions
d.2.

~3! We will include the effect of spatial anisotropy~e.g.,
the fact that birds prefer to fly horizontally rather than ver
cally! on flock motion.

We describe the flock with coarse-grained density a
velocity fields r(rW,t) and vW (rW,t), respectively, giving the
average number density and velocity of the birds at timt
within some coarse-graining distancel 0 of a given position
rW in space. The coarse-graining distancel 0 is chosen to be
as small as possible, consistent with being large enough
the averaging can be done sensibly~in particular,l 0 must be
a
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greater than the mean interbird distance!. Our description is
then valid for distances large compared tol 0 , and for times
t much greater than some microscopic timet0 , presumably
of order l 0 /vT , wherevT is a typical speed of a bird. Col
lective motion of the flock as a whole then requires th

^vW (rW,t)&Þ0; where the averaging can be considered an
semble average, a time average, or a spatial average. Eq
lently, long-ranged order must develop for the flock as
whole to move; i.e., the equal-time velocity autocorrelati
function:

C~RW ![^vW ~RW 1rW,t !•vW ~rW,t !& ~1.1!

must approach a nonzero constant as the separationuRW u
→`; specifically,

C~RW→`!→u^vW &u2. ~1.2!

Thus the average velocitŷvW & of the flock is precisely
analogous to the order parameter^sW& in a ferromagnetic sys-
tem, wheresW is a local spin.

Our most dramatic result is that an intrinsically noneq
librium and nonlinear feature of our model, namely, conve
tion, suppresses fluctuations of the velocityvW at long wave-
lengths, making them much smaller than the analogousW
fluctuations found in ferromagnets, for all spatial dimensio
of the flockd,4. Specifically, the connected pieceCC(RW ) of
the correlation functionC(RW ), defined as

CC~RW !5C~RW !2 lim
uRW 8u→`

C~RW 8!, ~1.3!

which is a measure of the fluctuations, decays to zero m
more rapidly, asuRW u→`, than the analogous correlatio
function in magnets. Quantitatively, for points whose se
rationRW [RW' lies perpendicular to the mean direction of m
tion of the flock,

CC~RW !}R'
2x , ~1.4!

where the universal ‘‘roughness exponent’’

x52 1
5 ~1.5!

exactly, in d52, and is,12d/2, its value in magnetic sys
tems, for alld,4. Ford.4, x512d/2 for flocks as well as
for magnets.

The physical mechanism for this suppression of fluct
tions is easy to understand: increased fluctuations in the
rection of motion of different parts of the flock actuallyen-
hancethe exchange of information between those differe
parts. This exchange, in turn, suppresses those very fluc
tions, since the interactions between birds tend to make th
all move in the same direction.

These nonequilibrium effects also lead to a spatial anis
ropy of scaling between the direction along (i) and those
orthogonal to (') the mean velocitŷvW &. The physical origin
of the anisotropy is also simple: if birds make small erro
du in their direction of motion, their random motionperpen-
dicular to the mean direction of motion̂vW & is much larger
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4830 PRE 58JOHN TONER AND YUHAI TU
than thatalong ^vW &; the former is}du, while the later is
proportional to 12cosdu;du2. As a result,any equal-time
correlation function in the system ofany combination of
fields crosses over from dependence purely onuRW'u to de-
pendence purely onRi when

Ri

l 0
'S uRW'u

l 0
D z

, ~1.6!

wherel 0 is the bird interaction range.
The universal anisotropy exponent

z5 3
5 , ~1.7!

exactlyin d52, and is,1 for all d,4.
In particular, the connected, equal-time, velocity autoc

relation functionCC(RW ) obeys the scaling law

CC~RW !5uRW'u2x f vS ~Ri /l 0!

~ uRW'u/l 0!zD , ~1.8!

where f v(x) is a universalscaling function. We have bee
unable to calculate this scaling function, even ind52 where
we know the exponents exactly. However, the scaling fo
~1.8! immediately implies that

CC~RW !}Ri
2x/z, when Ri /l 0@~RW' /l 0!z. ~1.9!

So far, our discussion has focused on velocity fluct
tions. The densityr(RW ,t) shows huge fluctuations as we
indeed, at long wavelengths, the fluctuations of the densit
y
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birds in a flock becomeinfinitely bigger than those in a fluid
or an ideal gas. This fact is obvious to the eye in a picture
a flock ~see Fig. 1!. Quantitatively, we predict that the spa
tially Fourier transformed, equal-time density-density cor
lation functionCr(qW )[^ur(qW ,t)u2& obeys the scaling law

FIG. 1. A snapshot of a simulated flock that has reached a
tistically steady state. Note the enormous fluctuations in the den

Quantitatively, the statistics of the spatial Fourier transformCr(qW )
obtained from this picture agree with our quantitative predict
equation~1.10!.
Cr~qW !5
q'

32d2z22x

q2
f rS qil 0

~q'l 0!zD Y~uqW !}H q'
12d2z22x , qi!q'

quu
22q'

32d2z22x , ~ l 0q'!z@l 0qi@q'l 0

qi
231 ~12d22x/z!q'

2 , ~q'l 0!z!qil 0 ,

~1.10!

whereY(uqW) is a finite, nonvanishing,O(1) function of the angleuqW between the wave vectorqW and the direction of mean
flock motion,quu andqW' are the wave vectors parallel and perpendicular to the broken symmetry direction, andq'5uqW'u.

In d52, z5 3
5 andx52 1

5 , so

Cr~qW !5
q'

~4/5!

q2
f rS qil 0

~q'l 0!~3/5!D Y~uqW !}H q'
2 ~6/5! , qi!q'

quu
22q'

~4/5! , ~ l 0q'!~3/5!@l 0qi@q'l 0

qi
24q'

2 , ~q'l 0!~3/5!!qil 0 .

~1.11!
ver
The most important thing to note aboutCr(qW ) is that it
diverges asuqW u→0, unlike Cr(qW ) for, say, a simple fluid or
gas, or, indeed, for any equilibrium condensed matter s
tem, which goes to a finite constant~the compressibility! as
uqW u→0.

This correlation function should be extremely easy
measure in simulations, and in experiments on real herd
flocks, in which, say, video tape allows one to measure
positionsrW i(t) of all the birds~labeled byi ) in the flock at a
variety of timest. The recipe is simple:
s-

or
e

~1! Calculate the complex numbers

r~qW ,t !5(
i

eiqW •rW i ~ t ! ~1.12!

for a variety ofqW ’s.
~2! Average the squared magnitude of this number o

time. The result isCr(qW ).
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Time-dependent correlation functions ofr andvW in flocks
also show interesting anomalous scaling behavior. Howe
it is not so simple to summarize as the equal-time correla
functions. Indeed, time-dependent correlation functions~or,
equivalently, their spatiotemporal Fourier transforms! do not
have a simple scaling form. This is because the collec
normal modes of the flock consist of propagating, damp
longitudinal ‘‘sound’’ modes~i.e., density waves!, as well as,
in d.2, shear modes. The sound modes exhibit two differ
types of scaling: the periodT of a wave is proportional to its
wavelengthl ~the constant of proportionality being the in
verse sound speed!; while the lifetime t of the mode is pro-
portional tolz, with z being another universal exponent.
most systems~e.g., fluids, crystals! exhibiting sound modes
z52, corresponding to conventional diffusive or visco
damping@6#. In flocks, however, we find

z5 6
5 , d52, ~1.13!

andz,2 for all d,4, for sound modes propagating orthog
nal to the mean direction of flock motion. That is, sou
modes are much more heavily damped at long wavelen
in flocks than in most@7# equilibrium condensed matter sy
tems.

The full dispersion relation for the sound modes is

v65c6~uqW !q2 iq'
z f 6S qil 0

~q'l 0!zD , ~1.14!

whereuqW is the angle betweenqW and^vW &, and the direction-
dependent sound speedsc6(uqW) are given by Eq.~4.11! of
Sec. IV, with g and s1 flock-dependent parameters andr0
the mean number density of ‘‘birds’’ in the flock. A pola
plot of these sound speeds is given in Fig. 2. The exponez
is the universal anisotropy exponent described earlier,
f 6(x) are universal scaling functions that we have been
able to calculate. However, we do know some of their lim

f 6~x→0!→const.0; f 6~x→`!}xz/z. ~1.15!

FIG. 2. Polar plot of the direction-dependent sound spe
c6(uqW), with the horizontal axis along the direction of mean flo
motion.
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Note that this last result implies that the lifetimet of the
wave is }qi

2z/z for qil 0@(q'l 0)z and uqW u→0; this only
happens for directions of propagation very nearly paralle
^vW &. Note also that ind52 wherez5 6

5 and z5 3
5 , z/z52

and the damping isconventionalfor sound modes propaga
ing parallel to the mean motion of the flock. For allother
directions of propagation, however, it is unconventional, a
characterized byz5 6

5 .
This behavior of the damping~i.e., Imv), is summarized

in Fig. 3. For d.2, the ‘‘hydrodynamic’’ mode structure
also includesd22 ‘‘hyperdiffusive’’ shear modes, with
identical dispersion relations

vs5gqi2 iq'
z f sS qil 0

~q'l 0!zD . ~1.16!

The dispersion relations forv6 and vs can be directly
probed by measuring the spatiotemporally Fourier tra
formed density-density and velocity-velocity autocorrelati
functions

Cr~qW ,v![^ur~qW ,v!u2&,

Ci j ~qW ,v![^v i~qW ,v!v j~2qW ,2v!&, ~1.17!

respectively. Experimentally, or in simulations,Cr(qW ,v) can
be calculated by temporally Fourier transforming the s
tially Fourier transformed density~1.12!:

rn~qW ,v!5 (
t5nt

~n11!t

rn~qW ,t !e2 ivt, n50,1,2, . . .

~1.18!

over a set of long ‘‘bins’’ of time intervals of lengtht@t0
~the ‘‘microscopic’’ time step!, and then averaging the
squared magnitudeur(qW ,v)u2 over bins:

s

FIG. 3. Plot of the damping Imv vs qx[uqW'u whereqW' is the

projection of wave vectorqW perpendicularto the direction of the

mean flock velocitŷ vW & for fixed projectionqy of qW parallel to ^vW &.
Note that, for smalluqW u, the crossover between Imv}qx

z and

Im v}qy
z/z occurs only for directions of propagationq̂ very nearly

parallel to the mean flock velocitŷvW &, sincez,1.
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Cr~qW ,v![ (
n50

nmax ur~qW ,v!u2

nmax
. ~1.19!

Closed form expressions for these correlation function
terms of the scaling functionsf L and f s are given in Sec. V.
Although these expressions look quite complicated,
behavior they predict is really quite simple, as illustrat
in Fig. 4, where Cr is plotted as a function ofv for
fixed q. As shown there,Cr has two sharp peaks a
v5c6(uqW)q, of width }q'

z f L@qil 0/(q'l 0)z# and height
}q'

2(2x1z13z1d23)g@qil 0 /(q'l 0)z#. Thus,c6(uqW) can be
simply extracted from the position of the peaks, while t
exponentsx, z, andz can be determined by comparing the
widths and heights for differentqW ’s.

The scaling properties of the flock are completely summ
rized by the universal exponentsz, z, andx. In d52, our
predictions for these exponents are

z5 6
5 , z5 3

5 , x52 1
5 . ~1.20!

These results areexactand universal for all flocks with the
simple symmetries we discussed at the outset.

For dÞ2, the situation is less clear. We have performe
one-loop, 42e expansion to attempt to calculate these ex
nents, and find that, to this order, the model appears to h
a fixedline with continuously varying exponentsz, z, andx.
Whether this is an artifact of our one-loop calculation,
actually happens, is unclear. A two-loop calculation mig
clarify matters, but would be extremely long and tedio
~One loop was hard enough.!

The origin of this complication is an additional convecti
nonlinearity @8# not discussed in Ref.@4#. This new term
~whose coefficient is a parameter we calll2) is unrenormal-
ized at one loop order, leading to the apparent fixed line
that order. In two dimensions, this extra term can be writ
as a total derivative, and can be absorbed into the nonlin
term considered in Ref.@4#. Hence, ind52, the results of@4#
are sound. Ind.2, however, this new term has a differe
structure, and could, if it does not renormalize to ze

FIG. 4. Plot of the spatiotemporally Fourier-transformed dens

correlation functionCr(qW ,v) vs v for fixed qW . It shows two sharp
asymmetrical peaks atv5c6(uqW)q associated with the soun
modes of the flock, wherec6(uqW) are the sound mode speeds. T
widths of those peaks are the second mode dampings Imv6(uqW)
}q'

z f 6@qil 0/(q'l 0)z#.
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change the exponentsx, z, andz. Sincel2 doesnot renor-
malize at one-loop order, all we can say at this point is t
there are three possibilities:

~1! At higher order,l2 renormalizes to zero.If this is the
case, we can show that

z5
2~d11!

5
, z5

d11

5
, x5

322d

5
, ~1.21!

exactly, for alld in the range 2<d<4. Note that these re
sults linearly interpolate between the equilibrium resultsz
52, z51, and x512d/2 in d54, and our 2d resultsz
5 6

5 , z5 3
5 , andx52 1

5 in d52.
~2! At higher order,l2 grows upon renormalization an

reaches a nonzero fixed point valuel2* at some new fixed
point that differs from thel250 fixed point we have studied
previously, at which Eq.~1.21! holds. The exponentsx, z,
and z would still be universal~i.e., depend only on the di
mension of spaced) for all flocks in this case, but thos
universal values would be different from Eq.~1.21!.

~3! l2 is unrenormalized to all orders. Should this happ
l2 would parametrize a fixedline, with continuously varying
values of the exponentsz, x, andz.

We reiterate: we do not know which of the above pos
bilities holds ford.2. However, whichever holds isuniver-
sal; that is, onlyoneof the three possibilities above applie
to all flocks. We do not, however, know which one that is

We also study an anisotropic model for flocking, whic
incorporates the possibility that birds are averse to flying
certain directions~e.g., straight up or straight down!. In par-
ticular, we consider the case in which, for arbitrary spa
dimensionsd>2, there is an easyplane for motion ~i.e., a
de52 dimensional subspace of the fulld-dimensional
space!. In this case, the relevant pieces of thel2 vertex be-
come a total derivative, and can be absorbed into the non
ear term considered in Ref.@4#, for all spatial dimensionsd,
not justd52 as in the isotropic model. Hence, we are able
obtain exact exponents for this problem forall spatial dimen-
sionsd, not just d52.

We again find anisotropic, anomalous scaling ford,4.
The anisotropy of scaling is between the direction in the e
plane~call it x) perpendicular to the mean direction of m

FIG. 5. Geometry of the anisotropic model. Birds prefer to fly
the ‘‘easy’’ x-y plane. We take their~spontaneously chosen! direc-
tion of motion within that plane to bey. The in-plane direction
perpendicular to that isx. In generald, there ared22 ‘‘hard’’

directionsrWH perpendicular to this easy plane. The anisotropy

scaling is betweenx and the otherd21 directionsy,rWH .

y
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tion ~call it y; which, of course, also lies in the easy plan!,
and alld21 other directions,including y ~see Fig. 5!. That
is, the equal time, velocity-velocity autocorrelation functi
obeys the scaling law

Cv~RW !5x2x f vS ~y/l 0!

~x/l 0!z
,

urWHu/l 0

~x/l 0!zD , ~1.22!

whererWH denotes thed22 components ofrW in the ‘‘hard’’
directions orthogonal to the easy plane, with the scaling
ponentsx andz given by

x5
12d

72d
, ~1.23!

z5
3

72d
~1.24!

exactly, for all spatial dimensionsd in the range 2<d<4.
For d.4, x512d/2 and z51, as in the isotropic case
n

o
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rd

sit
s
e

r

In
e

x-

while in d52, where the model becomes identical to t
isotropic model~the easy plane of motion being the enti
space in that case!, we again recover the isotropic results,z
5 3

5 , andx52 1
5 . For the physical cased53, we have

x~d53!52 1
2 , z~d53!5 3

4 . ~1.25!

The Fourier-transformed, equal-time density (r2r) correla-
tion functionCr(qW ) also obeys a scaling law

Cr~qW !5qx
122x2~d21!z~qx

21qy
2!21

3 f r
AS qyl 0

~qxl 0!z ,
uqW Hul 0

~qxl 0!zD Ya~uxy!, ~1.26!

where Ya(uxy) is a finite, nonzero,O(1) function of the
angle uxy5tan21(qx /qy), and the scaling functionf r

A fol-
lows
f r
AS qyl 0

~qxl 0!z ,
uqW Hul 0

~qxl 0!zD }H const, l 0
2~qy

21nuqW Hu2!!~ l 0qx!
z

S qx
2z

qy
21nuqW Hu2D @112x1~d21!z#/2z

, l 0
2~qy

21nuqW Hu2!@~ l 0qx!
z,

~1.27!
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wherel 0 is a ‘‘microscopic’’ length~of the order the inter-
bird distance! and n a dimensionless nonuniversal consta
of order unity.

Finally, the hydrodynamic mode structure of this anis
tropic flock consists of a pair of propagating longitudin
sound modes, with dispersion relation given, in the coo
nate system of Fig.~5!, by

v5c6~uqW ,fqW !q2 iqx
zf AS qyl 0

~qxl 0!z ,
uqW Hul 0

~qxl 0!zD ,

~1.28!

wheref A is a universal scaling function,c6(uqW ,fqW) is given
by Eq. ~6.22! of Sec. 6 and the dynamical exponent

z52z5
6

72d
5

3

2
, ~1.29!

where the last equality holds ind53. Note that this value of
z again reduces to that of the isotropic model ind52, and
d54.

The spatiotemporally Fourier-transformed density-den
correlation function^ur(qW ,v)u2& has the same structure a
that illustrated for the isotropic problem in Fig. 4, with th
modification thatq' is replaced byqx , and the scaling func-
tion f L is replaced by f A . The detailed expression fo

^ur(qW ,v)u2& is given by Eq.~6.31! of Sec. VI.
The remainder of this paper is organized as follows:

Sec. II, we formulate the isotropic model. In Sec. III, w
t

-
l
i-

y

specialize this model to the ‘‘broken symmetry’’ state,
which the flock is moving with a nonzero mean speed^vW &. In
Sec. IV, we linearize the broken symmetry state model, a
calculate the correlation functions and scaling laws in t
linear approximation. In Sec. V, we study the anharmo
corrections in the broken symmetry state, show that th
diverge in spatial dimensionsd,4, derive the new scaling
laws that result in that case, calculate the exact exponen
d52, and discuss the difficulties that prevent us from obta
ing these exponents for 2,d,4. In Sec. VI, we repeat all of
the above for the anisotropic model. In Sec. VII, we descr
in some detail how our predictions might be tested exp
mentally, both by observations of real flocks of living orga
isms, and in simulations. And, finally, in Sec. VIII, we dis
cuss some of the open questions remaining in this probl
and suggest some possible directions for future research

II. THE ISOTROPIC MODEL

In this section, we formulate our model for isotrop
flocks. As discussed in the Introduction, the system we w
to model is any collection of a large numberN of organisms
~hereafter referred to as ‘‘birds’’! in a d-dimensional space
with each organism seeking to move in the same direction
its immediate neighbors.

We further assume that each organism has no ‘‘co
pass;’’ i.e., no intrinsically preferred direction in which
wishes to move. Rather, it is equally happy to move in a
direction picked by its neighbors. However, the navigation
each organism is not perfect; it makes some errors in
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tempting to follow its neighbors. We consider the case
which these errors have zero mean; e.g., in two dimensi
a given bird is no more likely to err to the right than to th
left of the direction picked by its neighbors. We also assu
that these errors have no long temporal correlations; e.g
bird that has erred to the right at timet is equally likely to err
either left or right at a timet8 much later thant.

Although the continuum model we propose here will d
scribe the long-distance behavior ofany flock satisfying the
symmetry conditions we shall specify in a moment, it is
structive to first consider an explicit example: the automa
studied by Vicseket al. @1#. In this discrete time model, a
number of boids labeled byi in a two-dimensional plane
with positions $rW i(t)% at integer timet, each chooses th
direction it will move on the next time step~taken to be of
durationDt51) by averaging the directions of motion of a
of those birds within a circle of radiusR0 ~in the most con-
venient units of lengthR051) on the previous time ste
~updating is simultaneous!. The distanceR0 is assumed to be
!L, the size of the flock. The direction the bird actua
moves on the next time step differs from the above descri
direction by a random angleh i(t), with zero mean and stan
dard deviationD. The distribution ofh i(t) is identical for all
birds, time independent,and uncorrelated between differen
birds and different time steps. Each bird then, on the n
time step, moves in the direction so chosen a distancev0Dt,
where the speedv0 is the same for all birds.

To summarize, the rule for bird motion is

u i~ t11!5^u j~ t !&1h i~ t !, ~2.1!

rW i~ t11!5rW i~ t !1v0@cosu~ t11!,sinu~ t11!#, ~2.2!

^h i~ t !&50, ~2.3!

^h i~ t !h j~ t8!&5Dd i j d tt8 , ~2.4!

where the average in Eq.~2.1! is over all birdsj satisfying

urW j~ t !2rW i~ t !u,R0 ~2.5!

and u i(t) is the angle of the direction of motion of thei th
bird ~relative to some fixed reference axis! on the time step
that ends att. The flock evolves through the iteration of th
rule. Note that the ‘‘neighbors’’ of a given bird may chang
on each time step, since birds do not, in general, move
exactly the same direction as their neighbors.

This model, though simple to simulate, is quite difficult
treat analytically. Our goal in our previous work@4# and this
paper is to capture the essential physics of this model
continuum, ‘‘hydrodynamic’’ description of the flock
Clearly, some short-ranged details must be lost in suc
description. However, as in hydrodynamic descriptions
equilibrium systems@6#, as well as many recent treatmen
@9# of nonequilibrium systems, our hope is that our co
tinuum approach can correctly reproduce the long-distan
long-time properties of the class of systems we wish
study. This hope is justified by the notion of universality:
‘‘microscopic models’’~in our case, different specification
for the exact laws of motion for an individual bird! that have
the same symmetries and conservation laws should have
n
s,

e
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same long-distance behavior. This belief can be justified
our renormalization-group treatment of the continuu
model.

So, given this lengthy preamble, whatare the symmetries
and conservation laws of flocks?

The only symmetry of the model is rotation invarianc
since the ‘‘birds’’ lack a compass, all directions of space a
equivalent. Thus, the ‘‘hydrodynamic’’ equations of motio
we write down cannot have built into them any special
rection picked ‘‘a priori’’; all directions must be spontane
ously picked out by the motion and spatial structure of
flock. As we shall see, this symmetryseverelyrestricts the
allowed terms in the equation of motion.

Note that the model doesnot have Galilean invariance
changing the velocities of all the birds by some const

boostvW b doesnot leave the model invariant. Indeed, such
boost is impossiblein a model that strictly obeys Vicsek’
rules, since thespeedsof all the birds will not remain equa
to v0 after the boost. One could image relaxing this co
straint on the speed, and allowing birds to occasionally sp
up or slow down, while tending on average to move at sp
v0 . Then the boost just described would be possible,
clearly would change the subsequent evolution of the flo

Another way to say this is that birds move through
resistive medium, which provides a special Galilean ref
ence frame, in which the dynamics are particularly simp
and different from those in other reference frames. Since
organisms in flocks always move through such a medi
~birds through the air, fish through the sea, wildebe
through the arid dust of the Serengeti!, this is a very realistic
feature of the model.

As we shall see shortly, thislack of Galilean invariance
allows terms in the hydrodynamic equations of birds that a
not present in, e.g., the Navier-Stokes equations for a sim
fluid, whichmustbe Galilean invariant, due to the absence
a luminiferous ether.

The sole conservation law for flocks is conservation
birds: we do not allow birds to be born or die ‘‘on th
wing.’’

In contrast to the Navier-Stokes equation, there is no c
servation of momentum. This is, ultimately, a conseque
of the absence of Galilean invariance.

Having established the symmetries and conservation l
constraining our model, we need now to identify the hyd
dynamic variables. They are the coarse-grained bird velo
field vW (rW,t) and the coarse-grained bird densityr(rW,t). The
field vW (rW,t), which is defined for allrW, is a suitable weighted
average of the velocities of the individual birds in some v
ume centered onrW. This volume is big enough to contai
enough birds to make the average well behaved, but sh
have a spatial linear extent of no more than a few ‘‘micr
scopic’’ lengths~i.e., the interbird distance, or by a few time
the interaction rangeR0). By suitable weighting, we seek t
makevW (rW,t) fairly smoothly varying in space.

The densityr(rW,t) is similarly defined, being just the
number of particles in a coarse-graining volume, divided
that volume.

The exact prescription for the coarse graining should
unimportant, as long asr(rW,t) is normalized so as to obe



n

ou
e
o
n

r-
-

-

m
he
-
e

at
e

til
n
an

n

he
-

n

s:

ve
b

ik

n
te

s
a-
ling

sian

s.
cal

-
e

ffi-

se,
try
of

r-

n

’’

c

PRE 58 4835FLOCKS, HERDS, AND SCHOOLS: A QUANTITATIVE . . .
the ‘‘sum rule’’ that its integral over anymacroscopicvol-
ume ~i.e., any volume large compared with the aforeme
tioned microscopic lengths! be the total number of birds in
that volume. Indeed, the coarse-graining description just
lined is the way that one imagines, in principle, going ov
from a description of a simple fluid in terms of equations
motion for the individual constituent molecules to the co
tinuum description of the Navier-Stokes equation.

We will also follow the historical precedent of the Navie
Stokes @6# equation by deriving our continuum, long
wavelength description of the flocknot by explicitly coarse
graining the microscopic dynamics~a very difficult proce-
dure in practice!, but, rather, by writing down the most gen
eral continuum equations of motion forvW and r consistent
with the symmetries and conservation laws of the proble
This approach allows us to bury our ignorance in a few p
nomenological parameters~e.g., the viscosity in the Navier
Stokes equation! whose numerical values will depend on th
detailed microscopic rules of individual bird motion. Wh
terms can be present in the EOM’s, however, should dep
only on symmetries and conservation laws, andnot on the
microscopic rules.

To reduce the complexity of our equations of motion s
further, we will perform a spatial-temporal gradient expa
sion, and keep only the lowest-order terms in gradients
time derivatives ofvW andr. This is motivated and justified
by our desire to consideronly the long-distance, long-time
properties of the flock. Higher-order terms in the gradie
expansion are ‘‘irrelevant’’: they can lead tofinite ‘‘renor-
malization’’ of the phenomenological parameters of t
long-wavelength theory, butcannotchange the type of scal
ing of the allowed terms.

With this lengthy preamble in mind, we now write dow
the equations of motion:

] tvW 1l1~vW •¹W !vW 1l2~¹W •vW !vW 1l3¹W ~ uvW u2!

5avW 2buvW u2vW 2¹W P1DB¹W ~¹W •vW !

1DT¹2vW 1D2~vW •¹W !2vW 1 fW , ~2.6!

P5P~r!5 (
n51

`

sn~r2r0!n, ~2.7!

]r

]t
1¹•~vW r!50, ~2.8!

whereb, DB , D2 , andDT are all positive, anda,0 in the
disordered phase anda.0 in the ordered state~in mean-
field theory!. The origin of the various terms is as follow
thel terms on the left-hand side of Eq.~2.6! are the analogs
of the usual convective derivative of the coarse-grained
locity field vW in the Navier-Stokes equation. Here the a
sence of Galilean invariance allows allthreecombinations of
one spatial gradient and two velocities that transform l
vectors; if Galilean invariancedid hold, it would forcel2
5l350 andl151. However, Galilean invariance doesnot
hold, and so all three coefficients are nonzero phenome
logical parameters whose nonuniversal values are de
mined by the microscopic rules. Thea andb terms simply
-
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make the localvW have a nonzero magnitude (5Aa/b) in the
ordered phase, wherea.0. DL,1,2 are the diffusion constant
~or viscosities! reflecting the tendency of a localized fluctu
tion in the velocities to spread out because of the coup
between neighboring ‘‘birds.’’ ThefW term is a random driv-
ing force representing the noise. We assume it is Gaus
with white noise correlations:

^ f i~rW,t ! f j~r 8W ,t8!&5Dd i j d
d~rW2r 8W !d~ t2t8!, ~2.9!

whereD is a constant, andi , j denote Cartesian component
Finally, P is the pressure, which tends to maintain the lo
number densityr(rW) at its mean valuer0 , and dr5r
2r0 .

The final equation~2.8! is just conservation of bird num
ber ~we do not allow our birds to reproduce or die ‘‘on th
wing’’ !.

Symmetry allows any of the phenomenological coe
cientsl i , a, sn , b, Di in Eqs. ~2.6! and ~2.7! to be func-
tions of the squared magnitudeuvW u2 of the velocity, and of
the densityr as well.

III. THE BROKEN SYMMETRY STATE

We are mainly interested in the symmetry broken pha
specifically in whether fluctuations around the symme
broken ground state destroy it~as in the analogous phase
the 2DXY model!. For a.0, we can write the velocity field
as vW 5v0x̂i1dvW , wherev0x̂i5^vW & is the spontaneous ave
age value ofvW in the ordered phase. We will choosev0

5Aa/b ~which should be thought of as an implicit conditio
on v0 , sincea andb can, in general, depend onuvW u2); with
this choice, the equation of motion for the fluctuationdv i of
v i is

] tdv i52s1] idr22adv i1 irrelevant terms. ~3.1!

Note now that if we are interested in ‘‘hydrodynamic
modes, by which we mean modes for which frequencyv
→0 as wave vectorq→0, we can, in the hydrodynami
(v,q→0) limit, neglect] tdv i relative toadv i in Eq. ~3.1!.
The resultant equation can trivially be solved fordv i :

dv i52Dr] idr, ~3.2!

where we have defined another diffusion constantDr

[s1 /2a. Inserting Eq.~3.2! in the equations of motion for

vW' anddr, we obtain, neglecting ‘‘irrelevant’’ terms:

] tvW'1g] ivW'1l1~vW'•¹W '!vW'1l2~¹W '•vW'!vW'

52¹W 'P1DB¹W '~¹W '•vW'!1DT¹'
2 vW'1D i] i

2vW'1 fW' ,

~3.3!

]dr

]t
1ro¹W '•vW'1¹W '•~vW'dr!1v0] idr5Dr] uu

2dr,

~3.4!

whereDr , DB , DT , andD i[DT1D2v0
2 are the diffusion

constants, and we have defined
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g[l1v0 . ~3.5!

The pressureP continues to be given, as it always will, b
Eq. ~2.7!.

From this point forward, we will treat the phenomenolog
cal parametersl i , g, and Di appearing in Eqs.~3.3! and
~3.4! as constants, since they depend, in our original mo
~2.6!, only on the scalar quantitiesuvW u2 and r(rW), whose
fluctuations in the broken symmetry state away from th
mean valuesv0

2 andr0 are small. Furthermore, these fluctu
tions lead only to ‘‘irrelevant’’ terms in the equations o
motion.

It should be emphasized here that, once nonlinear fluc
tion effects are included, thev0 in Eq. ~3.4! will not be given
by the ‘‘mean’’ velocity of the birds, in the sense of

^v&[
u( ivW i u

N
, ~3.6!

whereN is the number of birds. This is because, in our co
tinuum language,

^v&5
u^ Er~rW,t !vW ~rW,t !ddr &u

^ Er~rW,t !ddr &
5

u^rvW &u
^r&

~3.7!

while v0 in Eq. ~3.5! is

v05u^vW ~rW,t !&u. ~3.8!

Oncer fluctuates, so thatr5^r&1dr, the ‘‘mean’’ velocity
of the birds

^v&5U^rvW &

^r&
U5U^r&^vW &

^r&
1

^drvW &

^r&
U, ~3.9!

which only 5v0[u^vW &u if the correlation function^drvW &
50, which it will not, in general. For instance, one cou
easily imagine that denser regions of the flock might mo
faster, in which casêdrvW & would be positive alonĝvW &.
Thus,^vW & measured in a simulation by simply averaging t
speed of all birds, as in Eq.~3.6!, will not be equal tov0 in
Eq. ~3.5!. Indeed, we can think of no simple way to measu
v0 , and so chose instead to think of it as an additional p
nomenological parameter in the broken symmetry state e
tions of motion~3.3!. It should, in simulations and exper
ments, be determined by fitting the correlation functions
will calculate in the next section. One shouldnot expect it to
be given by^v& as defined in Eq.~3.7!.

Similar considerations apply tog: it should also be
thought of as an independent, phenomenological param
not necessarily determined by the mean velocity and non
ear parameterl1 through Eq.~3.5!.

IV. LINEARIZED THEORY OF THE BROKEN
SYMMETRY STATE

As a first step towards understanding the implications
these equations of motion, we linearize them invW' and dr
[r2r0 . Doing this, and Fourier transforming in space a
time, we obtain the linear equations
el

ir

a-

-

e

-
a-

e

er,
-

f

@2 i ~v2gqi!1GT~qW !#vW T~qW ,v!5 fWT~qW ,v!, ~4.1!

@2 i ~v2gqi!1GL~qW !#vL1 is1q'dr5 f L~qW ,v!,
~4.2!

@2 i ~v2v0qi!1Gr~qW !#dr1 ir0q'vL50, ~4.3!

where

vL~qW ,v![
qW'•vW'~qW ,v!

q'

~4.4!

and

vW T~qW ,v!5vW'~qW ,v!2
qW'vL

q'

~4.5!

are the longitudinal and transverse~to qW') pieces of the ve-
locity, fWT(qW ,v) and f L(qW ,v) are the analogous pieces of th
Fourier-transformed random forcefW(qW ,v), and we have de-
fined wave-vector-dependent transverse, longitudinal, anr
dampingsGL,T,r :

GL~qW ![DLq'
2 1D iqi

2 , ~4.6!

GT~qW !5DTq'
2 1D iqi

2 , ~4.7!

Gr~qW !5Drqi
2 , ~4.8!

where we have definedDL[DT1DB , q'5uqW'u.
Note that in d52, the transverse velocityvW T does not

exist: no vector can be perpendicular toboth the xi axis and

qW' in two dimensions. This leads to many important simp
fications ind52, as we will see later; these simplification
make it ~barely! possible to getexactexponents ind52 for
the full, nonlinear problem.

The normal modes of these equations ared22 purely
diffusive transverse modes associated withvW T , all of which
have the same eigenfrequency

vT5gqi2 iGT~qW !5gqi2 i ~DTq'
2 1D iqi

2!, ~4.9!

and a pair of damped, propagating sound modes with c
plex ~in both senses of the word! eigenfrequencies

v65c6~uqW !q2 iGLF v6~uqW !

2c2~uqW !
G2 iGrF v7~uqW !

2c2~uqW !
G

5c6~uqW !q2 i ~DLqi
21D'q'

2 !F v6~uqW !

2c2~uqW !
G

2 iD rqi
2F v7~uqW !

2c2~uqW !
G , ~4.10!

whereuqW is the angle betweenqW and the direction of flock
motion ~i.e., thexi axis!,
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c6~uqW !5
g1v0

2
cos~uqW !6c2~uqW !, ~4.11!

v6~uqW !56
g2v0

2
cos~uqW !1c2~uqW !, ~4.12!

c2~uqW ![A1

4
~g2v0!2cos2~uqW !1c0

2 sin2~uqW !,

~4.13!

and c0[As1r0. A polar plot of this highly anisotropic
sound speed is given in Fig. 2. We remind the reader
here and hereafter, we only keep the leading-order term
the long-wavelength limit, i.e., for smallqi andq' .
at
in

The linear equations~4.1!–~4.3! are easily solved for the
fields dr, vW T , andvL in terms of the random forces:

vW T~qW ,v!5GTT~qW ,v! fWT~qW ,v!, ~4.14!

vL~qW ,v!5GLL~qW ,v! f L~qW ,v!1GLr~qW ,v! f r~qW ,v!,
~4.15!

dr~qW ,v!5GrL~qW ,v! f L~qW ,v!1Grr~qW ,v! f r~qW ,v!,
~4.16!

where the propagators are
e

GTT5
1

2 i ~v2gqi!1GT~qW !
, ~4.17!

GLL5
i ~v2v0qi!2Gr~qW !

@v2c1~uqW !q#@v2c2~uqW !q#1 iv@GL~qW !1Gr~qW !#2 iq i@v0GL~qW !1gGr~qW !#
, ~4.18!

GLr5
is1q'

@v2c1~uqW !q#@v2c2~uqW !q#1 iv@GL~qW !1Gr~qW !#2 iq i@v0GL~qW !1gGr~qW !#
, ~4.19!

GrL5
ir0q'

@v2c1~uqW !q#@v2c2~uqW !q#1 iv@GL~qW !1Gr~qW !#2 iq i@v0GL~qW !1gGr~qW !#
, ~4.20!

Grr5
i ~v2gqi!2GL~qW !

@v2c1~uqW !q#@v2c2~uqW !q#1 iv@GL~qW !1Gr~qW !#2 iq i@v0GL~qW !1gGr~qW !#
. ~4.21!

In writing the definitions of the propagators~4.14!–~4.16!, we have introduced a fictitious forcef r in the r equation of
motion ~4.3!. Of course, this force is, in fact, zero; but the propagatorsGrr and GLr nonetheless prove useful in th
perturbative treatment of the nonlinear corrections to this linear theory, so we have includedf r here.

Given the expressions~4.14!–~4.21! for the velocity and density in terms of the random forcefW , and the autocorrelation
~2.9! of that random force, it is straightforward to calculate the correlations of the densities and velocities. We find

Ci j ~qW ,v![^v i
'~2qW ,2v!v j

'~qW ,v!&

5GTT~qW ,v!GTT~2qW ,2v!^ f Ti
~qW ,v! f Tj

~2qW ,2v!&1GLL~qW ,v!GLL~2qW ,2v!
qi

'qj
'

q'
2 ^ f L~qW ,v! f L~2qW ,2v!&

[CTT~qW ,v!Pi j
'~qW !1CLL~qW ,v!Li j

'~qW !, ~4.22!

where

Li j
'~qW ![

qi
'qj

'

q'
2 , ~4.23!

Pi j
'~qW ![d i j

'2Li j
'~qW ! ~4.24!

are longitudinal and transverse projection operators that project any vector perpendicular toboth the flock motionand qW' ,

CTT~qW ,v!5
D

~v2gqi!
21GT

2~qW !
~4.25!
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and

CLL~qW ,v!5
D~v2v0qi!

2

@v2c1~uqW !q#2@v2c2~uqW !q#21$v@GL~qW !1Gr~qW !#2qi@v0GL~qW !1gGr~qW !#%2
. ~4.26!

The transverse and longitudinal correlation functions Eqs.~4.25! and~4.26! are plotted as functions ofv for fixed qW in Fig.
6. Note that they have weight in entirely different regions of frequency:CTT is peaked atv5gqi , while CLL has two peaks,
at v5c6(uqW)q. Since all three peaks have widths of orderq2, there is little overlap between the transverse and the long
dinal peaks asuqW u→0.

The density-density correlation function

Crr5
Dr0

2q'
2

@v2c1~uqW !q#2@v2c2~uqW !q#21$v@GL~qW !1Gr~qW !#2qi@v0GL~qW !1gGr~qW !#%2
~4.27!
s

f

,
c
a
n

a

n-
r
w

are

for
looks almost identical toCLL , especially when one note
that near the frequenciesv5c6(uqW)q where both peak, the
numerator of Eq.~4.26! $5@c6(uqW)q2v0qi#

2%, differs from
that of Eq. ~4.27! only by a uqW u-independent factor o
@c6(uqW)q2v0qi#

2/r0s1q'
2 .

Given these Fourier-transformed correlation functions
is straightforward, and instructive, to Fourier transform ba
to real time. In particular, it is simple to calculate the sp
tially Fourier-transformed equal-time velocity correlatio
function:

^v i~qW ,t !v j~2qW ,t !&5Pi j
'~qW !E

2`

` dv

2p
CTT~qW ,v!

1Li j
'~qW !E

2`

` dv

2p
CLL~qW ,v!

5
D

2F Pi j
'~qW !

GT~qW !
1f~ q̂!

Li j
'~qW !

GL~qW !
G}

1

q2 ,

~4.28!

where the second integral over frequency has been evalu
in the limit of uqW u→0, so thatc(uqW)q@GL}q2, and the fac-
tor f(q̂) dependsonly on the directionq̂ of qW , not its mag-
nitude, and is given by the sadly complicated expression

f~ q̂![
1

c2~uqW !q
F @c1~uqW !q2v0qi#

2

c1~uqW !q2v0qi1@c1~uqW !q2gqi#Gr /GL

1
@c2~uqW !q2v0qi#

2

c2~uqW !q2v0qi1@c2~uqW !q2gqi#Gr /GL
G

[
1

F~qW ,k,g!
F A1

2 ~qW ,k,g!

A1~qW ,k,g!2A2~qW ,k,g!Gr~qW !/GL~qW !

1
A2

2 ~qW ,k,g!

A2~qW ,k,g!2A1~qW ,k,g!Gr~qW !/GL~qW !
G , ~4.29!

where we have defined
it
k
-

ted

F~qW ;k,g![AS g2v0

2v0
D 2

k2S qi

q'
D 2

11, ~4.30!

A6~qW ;k,g![6F~qW ;k,g!1S g2v0

2v0
Dk

qi

q'

, ~4.31!

and

k[
v0

As1r0

. ~4.32!

The second equality in Eq.~4.29! is obtained from the first
simply by canceling common factors ofs1r0q'

2 out of the
numerator and denominator of various terms.

Note, and this will prove to be crucial later, thatf(q̂)
dependsonly on q̂, diffusion constants, and the dimensio
less ratios k and g/v0 . This last fact is essential for ou
renormalization-group scaling analysis, as we will sho
later.

The 1/q2 divergence of Eq.~4.28! as uqW u→0 reflects the
enormous long-wavelength fluctuations in this system.

These fluctuations predicted by the linearized theory
strong enough to destroy long-ranged order ind<2. To see
this, calculate the mean-squared fluctuations invW'(rW,t) at a
given pointrW, and timet. This is simply the integral of the
trace of Eq.~4.28! over all qW :

^uvW'~rW,t !u2&5E ddq

~2p!d ^v i~qW ,t !v i~2qW ,2t !&

5
D

2F E ddq

~2p!dS ~d22!

DTq'
2 1D iqi

2

1
f~ q̂!

DLq'
2 1D iqi

2D G . ~4.33!

The last integral clearly diverges in the infrared (uqW u→0) for
d<2. The divergence in the ultraviolet (uqW u→`) for d>2 is
not a concern, since we do not expect our theory to apply
uqW u larger than the inverse of a microscopic length~such as
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the interaction rangel 0). Presumably, at larger wave num
bers, the correlation function falls off fast enough that t
wave-vector integral in Eq.~4.33! converges in the ultravio
let.

Indeed, we will in subsequent calculations mimic the
fect of this putative more rapid decay of correlations asuqW u
→` with a sharp ultraviolet cutoff. We will restrict integral
over wave vectors to hypercylindrical shell with long~very
long! axis along the direction of flock motionxi :

uqW'u,L, 2`<qi<` ~4.34!

with the ultraviolet cutoffL of order the inverse of a micro
scopic length~e. g.,l 0).

Obviously, this is quite an arbitrary choice of ultraviol
cutoff, and any result that depends on the precise form of
cutoff will not be accurately calculated by this prescriptio
However,universal, long-wavelength properties of the floc
should be unaffected by the precise choice of cutoff, and
on those properties that we will focus our attention.

The infrared divergence in Eq.~4.33! for d<2 cannot be
dismissed so easily, since our hydrodynamic theory sho
get better asuqW u→0. Indeed, in the absence of nonlinear e
fects, this divergence is real, and signifies the destructio
long-ranged order in the linearized model by fluctuatio
even for arbitrarily small noiseD, in spatial dimensionsd
<2, and in particularin d52, where the integral in Eq
~4.28! diverges logarithmically in the infrared. This is s
since, if ^uvW'u2& is arbitrarily large even for arbitrarily sma
D, our original assumption thatvW can be written as a mea
value ^vW & plus a small fluctuation vW' is clearly mistaken;
indeed, the divergence ofvW' suggests that the velocity ca
swing throughall possible directions, implying that^vW &50
for d<2.

In d52, this result is very reminiscent of the familia
Mermin-Wagner-Hohenberg~MWH! theorem @5#, which
states that in equilibrium, a spontaneously broken continu
symmetry is impossible ind52 spatial dimensions, pre
cisely because of the type of logarithmic divergence of fl
tuations that we have just found here.

FIG. 6. Plot ofCLL(qW ,v) andCTT(qW ,v) vs v for identical fixed

qW . Note the smallness of the overlap between the transverse
longitudinal peaks.
e

-

is
.

is

ld

of
,

us

-

In the next section, we will show that this prediction
invalidated by nonlinear effects, and, in fact, much of t
scaling of correlation functions and propagators is chan
from that predicted by the linearized theory in spatial dime
sionsd<4.

V. NONLINEAR EFFECTS AND BREAKDOWN OF
LINEAR HYDRODYNAMICS IN THE BROKEN

SYMMETRY STATE

A. Scaling analysis

In this section we analyze the effect of the nonlinearit
in Eqs.~3.3! and ~3.4! on the long length and time behavio
of the system, for spatial dimensionsd,4. We will rescale
lengths, time, and the fieldsvW' anddr according to

xW'→bxW' , xi→bzxi , t→bzt,

vW'→bxvW' , dr→bxrdr,
~5.1!

choosing the scaling exponents to keep the diffusion c
stantsDB,T,r,i , and the strengthD of the noise fixed. The
reason for choosing to keep these particular parameters fi
rather than, e.g.,s1 , is that these parameters completely d
termine the size of the equal time fluctuations in the line
ized theory, as can be seen from Eq.~4.33!. Under the res-
calings ~5.1!, the diffusion constants rescale according
DB,T→bz22DB,T andDr,i→bz22zDr,i ; hence, to keep them
fixed, we must choosez52 andz51. The rescaling of the
random forcefW can then be obtained from the form of thef -f
correlations Eq.~2.9! and is, for this choice ofz andz,

fW→b212d/2fW . ~5.2!

To maintain the balance betweenfW and the linear terms invW'

in Eq. ~3.3!, we must rescale the velocity field according

vW'→bxvW' ~5.3!

with

x512d/2, ~5.4!

which is the roughness exponent for the linearized mod
That is, we expectvW' fluctuations on length scaleL to scale
like Lx. Therefore, the linearized hydrodynamic equatio
neglecting the nonlinear convective term and the nonline
ties in the pressure, imply thatvW' fluctuations grow without
bound~like Lx) asL→` for d<2, where the above expres
sion forx becomes positive. Thus, this linearized theory p
dicts the loss of long-range order ind<2, as we saw in Sec
IV by explicitly evaluating the real space fluctuations.

Making the rescalings as described in Eqs.~5.1!, the equa-
tion of motion ~3.3! becomes

] tvW'1bgvg] ivW'1bgl@l1~vW'•¹W '!vW'1l2~¹W '•vW'!vW'#

52¹W 'S (
n51

`

bgnsn~dr!nD 1DB¹W '~¹W '•vW'!

1DT¹'
2 vW'1D uu] uu

2vW'1 fW' ~5.5!

nd
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with

gl5x11522d/2, ~5.6!

gv5z2z51, ~5.7!

and

gn5z2x1nx215n1~12n!
d

2
. ~5.8!

The scaling exponentxr for dr is given byxr5x, since the
density fluctuationsdr are comparable in magnitude to th

vW' fluctuations. To see this, note that the eigenmode of
linearized equations of motion that involvesdr is a sound
mode, with dispersion relationv5c6(uqW)q. Inserting this
into the Fourier transform of the continuity equation~3.4!,
we see thatdr;qW'•vW' /q' . The magnitude ofqW' drops out
of the right-hand side of this expression; hencedr scales like
uvW'u at long distances. Therefore, we will choosexr5x5
12d/2.

The first two of these scaling exponents for the nonl
earities to become positive as the spatial dimensiond is de-
creased aregl and g2 , which both become positive ford
,4, indicating that thel1(vW'•¹W )vW' ,l2(¹W '•vW')vW' , and
s2¹W '(dr2) nonlinearities are all relevant perturbations f
d,4. So, ford,4, the linearized hydrodynamics will brea
down.

What can we say about the behavior of Eqs.~3.3! and
~3.4! for d,4, when the linearized hydrodynamics no long
holds? The standard approach for such problems is the
namical renormalization group. In most cases, this appro
is only practical near the upper critical dimension~in our
casedc54), and yields the anomalous exponents in an
pansion ine5dc2d. This approach will obviously not be o
much use in our problem ind52, where the ostensibly sma
parameter in this expansione52. We will nonetheless un
dertake this approach in Sec. V B, and show that, for un
tunate technical reasons, we learn little even neard54. For-
tunately, as we show in Sec. V C, because of the vari
symmetries in Eq.~3.3!, we can obtain theexact scaling
exponents ind52.

B. Renormalization-group analysis,d<4

In this subsection, we analyze the effect of the relev
nonlinearitiesl1 ,l2 , ands2 on the broken symmetry stat
in spatial dimensionsd,4.

Our tool is the dynamical renormalization group~for de-
tails, see, e.g., the excellent description in Forster, Nels
and Stephen@6#!. We will summarize the essential featur
of this procedure here; readers interested in details are
ferred to@6#.

We proceed through the iteration of the following 3 ste
~1! We separate the fieldsvW' and dr, and the random

forcesfW into short and long wavelength components, acco
ing to
e

-

r
y-
ch

-

r-

s

t

n,

re-

:

-

vW'.~rW,t !5E
.

ddqdv

~2p!d vW'~qW ,v!ei ~qW •rW2vt !, ~5.9!

vW',~rW,t !5E
,

ddqdv

~2p!d vW'~qW ,v!ei ~qW •rW2vt !, ~5.10!

where*. denotes a wave-vector integral restricted to a h
percylindrical shellb21L,uqW'u,L, whereL is an ultravio-
let cutoff, and*, likewise denotes an integral over the int
rior of this shell: uqW'u,b21L. dr and fW' are likewise
separated.

~2! Average the EOM over the short wavelength fiel

vW'. , dr. , and fW. to get new, effective EOM for the long
wavelength fieldsvW', anddr, , with ‘‘intermediate’’ renor-
malized parametersD'

I , etc. This average is performed pe
turbatively in the nonlinearities in the EOM. Th
perturbation theory can be represented graphically; the in
ested reader is referred to the previously mentioned@6# for
further details on the mechanics of this.

~3! We now rescale the time, space, and the fields in
EOM according to Eq.~5.1! in order to restore the origina
ultraviolet cutoffL of the problem. We will choose rescalin
exponentsz, z, andx to produce fixed points.

Of course, the exponents are, in fact, completely arbitra
We need not choose them to produce fixed points. Howe
it is very convenient to do so, since, as we will show in mo
detail later, the values ofz, z, andx that do produce fixed
points are exactly the values of the physical observable ti
anisotropy, and roughness exponents that characterize
scaling properties of various correlation functions.

Performing this RG procedure, we find the following r
cursion relations:

dDB,T

dl
5@z221GB,T

D ~g!#DB,T , ~5.11!

dDi ,r

dl
5@z22z1Gi ,r~$gi%!#D i ,r , ~5.12!

dsn

dl
5@z1~n21!x211Gn

s~$gi%!#sn , ~5.13!

dr0

dl
5~z21!r0 , ~5.14!

dl1,2,r

dl
5@x211z1G1,2,r

l ~$gi%!#l1,2,r , ~5.15!

dD

dl
5@z2z22x112d1GD~$gi%!#D, ~5.16!

dv0

dl
5~z2z!v0 , ~5.17!

dg

dl
5~z2z!g, ~5.18!
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where we have takenb511dl , dl !1, to obtain differen-
tial recursion relations, theG’s represent graphical~i.e., per-
turbative! corrections, and the$gi% ’s are a set of dimension
less coupling constants involving ratios of powers of t
dynamical parameters. We have also dropped ‘‘irreleva
terms in these recursion relations. The coupling constanlr

is the coefficient of the¹W '•(vW'dr) nonlinearity in ther
equation of motion. This coupling constant is equal to 1, a
must, up to trivial rescaling corrections, remain equal to
upon renormalization. This is a simple consequence of
fact that mass conservation isexact; that is, the equation o
motion for r must remain the simple continuity equatio
] tr1¹W •(rvW )50, except for the trivial changes introduce
by rescaling. This implies thatGr

l($gi%)50, exactly, for all
$gi%. We will later use this fact to obtain exact values for t
scaling exponentsx, z, andz in d52. It is worth noting that
g is treated as an independent variable here, only its b
value is related to the bare values ofl1 andv0 through Eq.
~3.5!.

Although there is nosymmetry argument forbidding
renormalization ofv0 andg, simple power counting show
that there are norelevantgraphical corrections to them; thi
is why no graphical corrections appear in Eqs.~5.17!, ~5.18!.

As mentioned earlier, the rescaling exponentsx, z, andz
are arbitrary. We chose them to produce fixed points only
computational convenience. However, there isno choice of
rescaling exponents that will keepall the parameters fixed
For instance, to keepDB,T and D i ,r fixed, we will have to
choosez.1. However, with this choice ofz, the relations
~5.13! and ~5.14! show thats1 andr0 flow to infinity.

Which of the parameters, then, should we choose to k
fixed? That is, which is mostconvenientto keep fixed? The
answer to this question is provided by the renormalizat
group matching formalism. This approach enables one to
the renormalization group to relate correlation functions
the original, unrenormalized model at long distances a
large times to the same correlation functions in the renorm
ized system at shorter distances and times. The advanta
this approach is that long distance, large time correlat
functions are hard to calculate ind,4, since, as we showe
from our earlier scaling arguments@and can also verify from
the renormalization-group recursion relations~5.11!–~5.12!#,
these arenot accurately calculable from the harmonic theo
developed in Sec. IV, since the nonlinearitiesl1,2, lr , and
s2 have very large effects at long distances. By mapp
these correlation functions onto those atshort distances in
the renormalized equations of motion, we circumvent t
problem. Clearly, there is a caveat here: even at short
tances, the correlation functions in the renormalized mo
can only be calculated accurately in the harmonic theoryif
the nonlinear couplings in that renormalized model are
too big. This suggests that theconvenientchoice of the res-
caling exponentsx, z, andz is that which keeps the nonlin
earitiesl1,2, lr , ands2 fixed.

Let us illustrate these considerations explicitly for o
very important correlation function: the equal time spatia
Fourier-transformed velocity-velocity autocorrelation fun
tion:

Ci j ~qW ![^v i~qW ,t !v j~2qW ,t !&. ~5.19!
’’

d
1
e

re

r

p

n
se

d
l-
of

n

g

s
s-
el

t

This particular correlation function is important because
gives us our best measure of the size of the velocity fluct
tions, and will ultimately determine whether or not the
fluctuations destroy the long-ranged orientational order
the flock ~thereby driving its mean velocity to zero!.

Ci j (qW ) is, of course, a function of the flock dynamic
parametersDB,T , D i ,r , D, etc., as well as ofqW . Further-
more, at smallqW , it is difficult to calculate in spatial dimen
sion d,4 due to the nonlinear terms, for the reasons d
cussed above. So let us follow this renormalization-gro
matching procedure to relateCi j (qW ;$Bi

0%) where $Bi
0% de-

notes the set of dynamical parametersDB,T
0 , D i

0 , D0 , etc. in
the unrenormalized model, to the same correlation funct
in the renormalized model, a renormalization group timel
later:

Ci j ~qW' ,qi ;$Bi
0%!

5e~2x1z1d21!l Ci j @el qW' ,ezl qi ;$Bi~ l !%#,

~5.20!

where the$Bi(l )% denote the renormalized parameters.
In the discussion that follows, we will first consider th

case (qi /L)!(q' /L)z. At the conclusion of the discussio
of this special case, we will briefly indicate how the gene
case can be treated to obtain the scaling laws quoted in
Introduction. For the case (qi /L)!(q' /L)z, we will
choosel 5l * (qW')5 ln(L/q'), whereL is the ultraviolet
cutoff, on the right-hand side, and obtain

Ci j ~qW' ,qi ;$Bi
0%!

5S L

q'
D 2x1z1d21

Ci j S L,
qi

~q' /L!z
;$Bi@ l * ~qW'!#% D .

~5.21!

Now, if the originalq' was small (!L) andwe have chosen
the rescaling exponentsx, z, andz so that the nonlinearities
l1(l ), l2(l ), lr(l ), ands2(l ) on the right-hand side o
Eq. ~5.21! flow, as l →`, to O(1) fixed point values
(l1,2,r* ,s2* ), then l1(l * ), l2(l * ), lr(l * ), and s2(l * )
can be replaced by those fixed point values, sincel * will be
large. Because those fixed point values are, by assump
O(1), then, up toO(1) correction factors coming from thes
nonlinearities, the right-hand side of Eq.~5.21! can be evalu-
ated in the harmonic approximation Eqs.~4.22!, ~4.25!, and
~4.26!. @The correction factors are only ofO(1)—i.e., not
divergent—because the right-hand side of Eq.~5.21! is
evaluated at largeqW (uqW'u5L), where the infrared diver-
gences associated with the strong relevance of the nonlin
ties do not matter. It is preciselybecauseof those infrared
divergences that we couldnot evaluate the left-hand side o
~5.21! directly, but rather were forced to go through th
seemingly circuitousRG matching formalism.# Making that
harmonic approximation on the right-hand side, we obt
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Ci j S L,
qi

~q' /L!z
;$G~ l * !% D

5
D*

DT* L21D i* @qi /~q' /L!z#2
Pi j

'~ q̂'!

1
D*

DL* L21D i* @qi /~q' /L!z#2

3fS L,
qi

~q' /L!z
;$Bi~ l * !% D Li j

'~ q̂'!,

~5.22!

where we have used the fact that we have chosen the sc
exponents to makeD and all the diffusion coefficients$Di%
flow to fixed pointsD* , $Di* %. We wish to show that this

expression depends onqW only through the scaling ratiou
[qi /(q' /L)z. The first ~transverse! term in Eq.~5.22! ex-
plicitly has this property. The second~longitudinal term!
would also, except for thef factor, to which we now turn.
From Eq.~4.29! for f, we see that to calculate this factor w
must calculate

FS L,
qi

~q' /L!z
;$Bi~ l * !% D

5AS g~ l * !2v0~ l * !

2v0~ l * ! D 2

k2~ l * !S qi

L~q' /L!zD 2

11,

~5.23!

A6S L,
qi

~q' /L!z
;$Bi~ l * !% D

56FS L,
qi

~q'/L!z;$Bi~ l * !% D
2

@g~ l * !2v0~ l * !#

2v0~ l * !
k~ l * !S qi

L~q'/L!zD
~5.24!

and

B6S L,
qi

~q' /L!z
;$Bi~ l * !% D

56FS L,
qi

~q' /L!z
;$Bi~ l * !% D

1
@g~ l * !2v0~ l * !#

2v0~ l * !
k~ l * !S qi

L~q' /L!zD ,

~5.25!

all of which are clearly dependentonly on the fixed point
value of the ratiog(l * )/v0(l * ) „which is just a number of
O(1) sinceg(l * ) and v0(l * ) have the same dependen
ing

on l * :exp@(z2z)l * #, as can be seen from their recursio
relations…, and the combination

k~ l * !
qi

~q' /L!zL
. ~5.26!

By combining the recursion relations~5.17!, ~5.13!, and
~5.14! into a recursion relation fork:

d

dl
~ ln k!5

d ln v0

dl
2

1

2

d

dl
~ ln s11 ln r0!512z

~5.27!

we find

k~ l !5e~12z!l k0 , ~5.28!

which implies that

k~ l * !5k0~el
* !12z5k0S L

q'
D 12z

. ~5.29!

Using this in Eq.~5.26!, we see that the combination

k~ l * !
qi

L~q' /L!z
5k0

qi

q'

~5.30!

takes onpreciselythe value it would take on using theun-

renormalizedparameters and theunrescaledwave vectorqW .
Hence, the same is true ofF, A6 , andB6 . And, therefore,
the same is true off(q̂).

Thus, we can replacef„L,qi /(q' /L)z;$Bi(l * )%… in Eq.
~5.22! with f(q̂;$Bi

0%), its unrenormalized value straigh
from the linearized theory. Doing so, and recalling that t
unrenormalizedf(q̂) wasO(1) for all directionsq̂ of qW , we
see from Eq.~5.22! that the correlation functionCi j is largest
when

qi

L
;S q'

L D z

. ~5.31!

For uqW u!L, where our theory applies, Eq.~5.31! implies that
qi@q' ~sincez,1). In that limit, f(q̂)→1; using this in
the expression~5.22! for Ci j in the renormalized system, an
using Eq.~5.22! in turn in our expression~5.21! for Ci j in the
original model, we obtain, forqi@q' , the scaling law

Ci j ~qW !5q'
2~2x1d1z21! f i j S ~qi /L!

~q' /L!zD . ~5.32!

Note that the rangequu@q' for which this scaling law
holds includes thoseqW ’s which dominate the fluctations
namely, those withquu /L*(q' /L)z.

IntegratingCi j (qW ) over all qW gives the equal-time, root
mean-squared real-space fluctuation ofvW' :
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^uvW'~rW,t !u2&5E ddq

~2p!d Cii ~qW !

5E dd21q'

~2p!d
q'

2~2x1d1z21!Edqi f i i S ~qi /L!

~q' /L!zD
5AE dd21q'

q'
2x1d21

, ~5.33!

where the final proportionality was obtained by scalingq'

out of the qi integral via the change of variablesqi
[LQi(q' /L)z and we have defined theq'-independent
constantA[*dQi f i j (Qi)L

2x1d1z. The final integral in Eq.
~5.33! clearly converges in the infrared (uqW'u→0) limit if
and only ifx,0. Furthermore, ifx is .0, and we impose an
infrared cutoff uqW'u.L'

21 in Eq. ~5.33!, where L' is the
lateral ~i.e., ' direction! spatial extent of the system, w
easily obtain

^uvW'~vW ,t !u2&5C8L'
2x . ~5.34!

Indeed, the connected real-space, equal-time, velocity
tocorrelation function discussed in the Introduction is giv
by

CC~RW ![^vW ~rW1RW ,t !•vW ~rW,t !&2u^vW ~rW,t !&u2

5^vW'~rW1RW ,t !•vW'~rW,t !&

5E ddq

~2p!d
Cii ~qW !eiqW •RW

5E ddq

~2p!d
q'

2~2x1d1z21! f i i S ~qi /L!

~q' /L!zD
3ei ~qW'•RW'1qiRi !. ~5.35!

Making the changes of variable

qW i[
QW '

uRW'u
, q'[

Qi

uRW'uz
, ~5.36!

we obtain the scaling law~1.8! for Cc(RW ) quoted in the In-
troduction, with

f v~u![E dd21Q'dQi f i i S Qi

Q'
z D

3ei ~QW '•R̂'1Qiu!Q'
2~2x1d1z21! . ~5.37!

This shows that thex we obtain from the renormalizatio
group by the prescription we have chosen—namely, mak
the specific set of parametersDB,T,i , D, l1,2,r , ands2 flow
to fixed points—is precisely the physical roughness expon
defined by the velocity fluctuations.

To summarize:if we chose the rescaling exponentsx, z,
and z so as to make the particular subset of the dynam
parametersDB,T,i ,r , D, l1,2,r , ands2 flow to nonzero fixed
points, thenthosex and z are the ones that appear in th
u-

g

nt

al

scaling law~1.8!. This directly and simply relates the RG t
physically observable correlation functions, so this is t
choice we will make.

A scaling law similar to Eq.~5.32! can be derived, by
precisely the same type of arguments, for the equal-t
density-density correlation function:

Cr~qW !5
q'

32d2z22x

q2
f rS qil 0

~q'l 0!zD Y~uqW !, ~5.38!

where, in writing this relation, we have used the fact that
‘‘roughness’’ exponent forr, xr5x, the ‘‘roughness’’ ex-
ponent forvW' .

The alert reader will have noticed that neither of the sc
ing laws ~5.32! and ~5.38! derived so far involves the time
rescaling exponentz. This is unsurprising, since we hav
considered only equal-time correlation functions up to no

To fully study the dynamics of the model, we need
consider correlations between differenttimes, as well as po-
sitions. Thesedifferent time correlation functions will in-
volve z.

It is easiest to work with the spaceand timeFourier trans-
form Ci j (qW ,v), defined by

^v i~qW ,v!v j~2qW ,v8!&[d~v1v8!Ci j ~qW ,v!. ~5.39!

We will find, as we have asserted many times already
this paper, thatCi j (qW ,v) does not have a simple scaling
form, unlike the equal-time correlations. Nonetheless we
derive an expression for it in terms of functions ofqW that do
show simple scaling behavior, namely, effective wav
vector-dependent diffusion constants that diverge asuqW u,v
→0.

We begin this derivation by separatingCi j into its trans-
verse and longitudinal parts:

Ci j ~qW ,v![Li j
'CL~qW ,v!1Pi j

'CT~qW ,v!, ~5.40!

where Li j
'[qi

'qj
'/q'

2 and Pi j
'5d i j 2Li j

'2d i ,uud j ,uu are, re-
spectively, the longitudinal and transverse projection ope
tors defined in Sec. IV. Both the transverse and longitudi
pieces CL,T(qW ,v) obey the same renormalization-grou
transformation

CL,T~qW' ,qi ,v;$Bi
0%!

5e~2x1z1z1d21!l CL,T~el qW' ,ezl qi ,ezl v;$Bi~ l !%!,

~5.41!

where we have been careful to take into account the resca
of the delta function in Eq.~5.39! in deriving the argument of
the exponential in Eq.~5.41!.

As for the equal-time correlation function, it is convenie
here to choose the rescaling factorel such thatel qW' is right
on the Brillouin zone boundary; i.e.,el uqW'u5L. Making this
choice, and takingL51, we obtain



c
c-
th

at
a-

y,

4844 PRE 58JOHN TONER AND YUHAI TU
CL,T~qW' ,qi ,v;$Bi
0%!

5q'
2~2x1z1z1d21!CL,TS q̂' ,

qi

q'
z

,
v

q'
z

;$Bi~ l * !% D ,

~5.42!

where, on the right-hand side, we have defined

l * 5 lnS 1

uqW'u
D . ~5.43!

For the moment, let us focus on the longitudinal pie
CL(qW ,v). As we argued for the equal-time correlation fun
tion, here too we can evaluate the right-hand side in
harmonic approximation, Eq.~4.26!. This gives

CL~qW' ,qi ,v;$Bi
0%!

5
D* @v2v0~ l 0* !qiq'

z2z#2q'
2~2x13z1z1d21!

D ,

~5.44!

where

D5H F v

q'
z

2v1~ l * !G 2F v

q'
z

2v2~ l * !G 2

1F S v

q'
z D @GL~ l * !1Gr~ l * !#2v0~ l * !

3S GL~ l * !1
g~ l * !

v0~ l * !
Gr~ l * ! D S qi

q'
z D G 2J ,

~5.45!

v6~ l * ![v6S q̂' ,
qi

q'
z

;g~ l * !,r0~ l * !,$Bi~ l * !% D ,

~5.46!
e

e

with the sound frequenciesv6(qW ;g,r0 ,$Bi%) obtained in the
harmonic theory:

v6~qW ;g,r0 ,$Bi%!

5
g1v0

2
q cosuqW

6AS ~g2v0!q cosuqW

2 D 2

1s1r0q2 sin2uqW

5
~g1v0!qi

2
6AS ~g2v0!qi

2 D 2

1s1r0q'
2 ,

~5.47!

GL~ l * ![DL* 1D i* S qi

q'
z D 2

, ~5.48!

Gr~ l * ![Dr* S qi

q'
z D 2

, ~5.49!

andDL* , D i* , andD* are the fixed point values ofDL , D i ,
and D, to which those parameters will have flown forl *
large, as it will be for smallq' .

The complication of this expression—that is, the fact th
stops it from having a simple scaling form—is that the p
rametersg(l * ), s1(l * ), andr0(l * ) that appear implicitly
in ~5.44! do not flow to field point values for our ‘‘canoni-
cal’’ choice of x, z, andz, as discussed earlier. Physicall
this reflects the fact that the scaling of the soundspeeds(v
}q) is different from that of their dampings~damping rate
}q2 in harmonic theory; we will show damping rate is}q'

z

here, in a moment!.
To proceed, it is first useful to reorganize Eq.~5.44!

slightly; by multiplying numerator and denominator byq'
4z,
CL~qW' ,qi ,v;$Bi
0%!

5
D* @v2v0~ l * !qiq'

z2z#2q'
~z2z22x112d!

@v2q'
z v1~ l * !#2@v2q'

z v2~ l * !#21@vq'
z @GL~ l * !1Gr~ l * !#2@v0~ l * !GL~ l * !1g~ l * !Gr~ l * !#qiq'

2z2z#2
.

~5.50!

Next, we solve the recursion relations forg(l * ), s1(l * ), andr0(l * ):

v0~ l * !5e~z2z!l
* v0~ l 50!5v0~0!q'

z2z , ~5.51!

g~ l * !5e~z2z!l
* g~ l 50!5g~0!q'

z2z , ~5.52!

s1~ l * !5e~z21!l
* s1~ l 50!5s1~0!q'

12z , ~5.53!

r0~ l * !5e~z21!l
* r0~ l 50!5r0~0!q'

12z , ~5.54!
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where in the second equality in each equation we have usedl * 5 ln(1/uqW'u). Using these results and the expressions~5.46!
and ~5.47! for v6(l * ), we see thatz andz drop out of the combinations

q'
z v6~ l * !5q'

z F1

2
@g~0!1v0~0!#

qi

q'
z

q'
z2z6AS g~0!2v0~0!

2

qi

q'
z

q'
z2zD 2

1s1~0!r0~0!q'
2~12z!G

5
1

2
~g1v0!qi6AS @g~0!2v0~0!#qi

2 D 2

1s1~0!r0~0!q'
2

5v6@qW' ,qi ;g~0!,v0~0!,s1~0!,r0~0!# ~5.55!

and therefore thepositionsof the peaks in the full correlation function~5.50! are exactly those given by the harmonic theo
using the bare parameterss1(0), v0(0), g(0), andr0(0), namely,w6@qW ;g(0),v0(0),s1(0),r0(0)#. This is a direct conse-
quence of the fact that there are no~relevant! graphical renormalizations of the parameters~g, s1 , andr0) that determine the
sound speeds@see the recursion relations~5.14!–~5.17!# and shows that the relevant nonlinearities belowd54 donot alter the
positionsof the peaks in the spatiotemporally Fourier-transformed velocity-velocity autocorrelations.

The same cannot, however, be said for their widths. Indeed, using the above result for the sound speeds and Eqs.~5.48! and
~5.49!, we see thatCL(qW ,v) can be rewritten:

CL~qW ,v!5
D* @v2v0~0!qi#

2q'
~z2z22x112d!

@v2c1~uqW !q#2@v2c2~uqW !q#21$v@GL
R~qW !1Gr

R~qW !#2qi@v0~0!GL
R~qW !1g~0!Gr

R~qW !#%2
, ~5.56!
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where the sound speeds are given by the harmonic re
equation~4.11!, and the renormalized dampings

GL
R~qW !5FD i* S qi

q'
z D 2

1DL* Gq'
z [q'

z f LS qi

q'
z D , ~5.57!

Gr
R~qW !5Dr* S qi

q'
z D 2

q'
z [q'

z f rS qi

q'
z D ~5.58!

obey simple scaling laws.
The exact form of the scaling laws that we have obtain

here„namely, e.g.,f L(qi /q'
z )5@D i* (qi /q'

z )21DL* #…, is not
correct, because our choice ofl * 5 ln(1/q') is only valid
whenq'

z @quu . In the opposite limitq'
z !quu , the fluctuations

become negligible in the renormalized problem onceD uuquu
2

becomes@DBL2 in the renormalized problem, because
this point the linearized approximation to the correlati
functions is smaller than its largest value at the Brillou
zone boundary. This means we can now stop the renorm
ization atl * such thatezl

* quu5L3DB* /D uu* , which implies
that l * 5 ln(1/quu)/z1O(1), where theO(1) factor isuni-
versal, because it depends only on the fixed point values
the diffusion constants. Performing the above calculati
with this choice ofl * , we now obtain

GL
R~qW !5FD i* 1DL* S q'

2

qi
2/zD Gqi

z/z3O~1![q'
z f LS qi

q'
z D ,

~5.59!

where we have now definedf L(qi /q'
z )[@D i* (quu /q'

z )z/z

1DL* (q'
z /qi)

22z/z#3O(1). Note that the precise form o
this scaling function is different in this regime from th
found earlier forq'

z @quu . Furthermore, its exact form is un
certain, due to our uncertainty in theO(1) factor, which, as
ult

d

t

al-

f
s

discussed earlier, cannot be determined without knowing
fixed-point valuesDi* of the diffusion constants. Howeve
regardless of their values, we still get a scaling law with t
same power ofq' and the same scalingvariable quu /q'

z as
that found earlier in the opposite limit.

In between these two limits we have to choosel * to
smoothly interpolate between the two limits. This choice w
clearly depend on the ratioquu /q'

z . Naively, one could imag-
ine simply choosingl * 5 ln@min(1/q' ,O(1)/quu

1/z)#. A sub-
tler choice would take into account theO(1) perturbative
corrections we have neglected, and would presumably l
to a smooth crossover ofl * between the two limits.

The moral of this discussion is threefold:

~1! We always get scaling laws of the form~5.57! for the
dampings.

~2! The renormalized damping functions and the no
strength are always of such a form that they dependonly on
quu for quu@q'

z , and only onq' in the opposite limit.
~3! We can only calculate the scaling function if we kno

the diffusion constants at the fixed point.

This last point will stop us from calculating the crossov
functions ind52, even though, as we will see, wecan cal-
culate the exponents there.

We see from Eq.~5.57! that the physical significance o
the exponentz is that it gives the scaling of the peak width
~in v) of CL(qW ,v) with q' , while the peakpositionscon-
tinue to obey the ‘‘z51’’ scaling v}q.

Similar, but actually far simpler, arguments show that t
transverse correlation functionCT(qW ,v) obeys

CT~qW ,v!5
f D~qi /q'

z !q'
z2z22x112d

~v2gquu!
21GT

2~qW !
, ~5.60!
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whereGT(qW ) obeys the scaling law

GT~qW !5q'
z f TS qi

q'
z D , ~5.61!

and f D is a scaling function associated withD. For general
values ofq' and quu , the same scaling functionf D should
also be present in all of the other correlation functions
well ~whereverD appears!, such as Eq.~5.56! for the longi-
tudinal correlation function.

Likewise, the propagators of the full nonlinear theory a
given, in d,4, by the harmonic expressions~4.18!–~4.21!,
exceptthatGL , Gr , andGT in those expressions are replac
by the anharmonic scaling laws~5.57!, ~5.58!, and~5.61!.

To complete the specification of the scaling laws, we ne
the asymptotic behavior of the scaling functionsf D,L,T,r(u).
From Eqs.~5.57!, ~5.58!, and the analogous result for E
~5.61!, and requiring that the second point of our tripart
moral applies, we see that

f D~u!}H const, u→0

u~z2z22x112d!/z, u→`
~5.62!

and

f L,T,r~u!}H const, u→0

uz/z, u→`,
~5.63!

which implies that

GL,T,r~qW !}H q'
z , qi!q'

z

qi
z/z , qi@q'

z .
~5.64!

The simplest summary of the scaling ofall correlation func-
tions and propagators is as follows: simply use the harmo
expressions for them,exceptthat diffusion constantsDT,B,r
should be replaced by wave-vector-dependent quantities
diverge asqW→0, according to the scaling law

DT,B,r~qW !5q'
z22f T,B,rS ~qi /L!

~q' /L!zD , ~5.65!

the bare noise strengthD should be replaced by

D~qW !5D* S q'

L D z2z22x112d

f DS ~qi /L!

~q' /L!zD ~5.66!

and the diffusion constantD i should be replaced by

D i~qW !5q'
z22z f iS ~qi /L!

~q' /L!zD ~5.67!

as can be seen by requiring that

D i~qW !qi
25D uu* S qi

q'
z D 2

q'
z ~5.68!

the right-hand side being the form of theqi-dependent term
in Eq. ~5.57!.
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We hope the reader has not been too confused by the
that we have restored the ultraviolet cutoffL;1/l 0 to the
problem by going back to dimensionful units whereLÞ1.

This completes our discussion of how the renormalizat
group, and, in particular, the exponentsz, x, andz, relate to
physically observable correlation functions and propagat
Now, we turn to the problem of actually calculating tho
exponents.

C. Exponents ind52

To do this, we must calculate the graphical corrections
Eqs. ~5.11!–~5.16!. The procedure for this, as discussed
@6# involves the harmonic correlation functions and propa
tors and vertices representing the nonlinearitiesl1,2,r and
s2 . Rather than actually calculating these corrections,
will show that, whenl250, the structure of the theory i
such that we can determine the exponentsx, z, and z ex-
actly.

Consider first thel1 nonlinearity. SeparatingvW' into
transverse and longitudinal components,

vW'[vW T1vW L ~5.69!

this can be written as

~vW'•¹W '!vW'5~vW T•¹W '!vW T1~vW L•¹W '!vW L1~vW T•¹W '!vW L

1~vW L•¹W '!vW T . ~5.70!

Now consider the graphs that can be constructed fromvW L

2vW T , the cross terms in this expression. These will alwa
mix transverse and longitude propagators and correla
functions in the internal integrals over momentum and f
quency. But, as noted earlier in our discussion of the h
monic theory, the peaks in the longitudinal propagators a
correlation functions occur at different frequencies@v

5v6(qW )# than those in the transverse propagators and
relation function, which occur atv50. Furthermore, the
overlap between these peaks is negligible, since their wid
(}q'

z with z.1) are much less than this offset in peak p
sitions. This implies that the integral over wave vectors a
frequencies of any graph that mixes transverse and long
dinal propagators and correlation functions will be much le
~by powers ofq) than any similar graph containing pure
transverse or purely longitudinal propagators and correla
functions. Hence, thevW L2vW T cross terms in Eq.~5.70! are
irrelevant compared to the purevW L andvW T terms.

Now let us consider those relevant pieces. The Fou
transform of thevW T piece at wave vectorqW can be written in
Fourier space:

FT@~vW T•¹W '!vTi
#qW5 i(

pW
vW T~pW !~qW'2pW'!vTi

~qW 2pW !

5 iq j
'(

pW
vTj

~pW !vTi
~qW 2pW !, ~5.71!

where we have used the fact thatvW T is transverse, so
pW'•vW T(pW )50. So this piece of thel1 vertex, which is a term
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in the equation for] tv i(qW ,t), is proportional to the externa
momentumqW' . So is the purely longitudinal term, as ca
easily be seen in real space. SincevW L is longitudinal, we can
write

vW L5¹W 'f ~5.72!

for some scalar fieldf. Now the second term in Eq.~5.70!
can be rewritten in terms off:

~vW L•¹W '!vLi5~] jf!~] j] if!5~] jf!~] i] jf!5 1
2 ] i~] jf] jf!,

~5.73!

which is clearly a total derivative, whose Fourier transfo
is proportional toqW' .

Hence, the tworelevantpieces of thel1 vertex are pro-
portional to the external momentumqW' . Clearly, thes2

term, being a total' derivative, is also proportional toqW' in
Fourier space. Hence, whenl250, all the remaining relevan
vertices are proportional toqW' . An immediate consequenc
of this is thatD andD i acquire no graphical renormalization
For D, this can be seen by noting that any graph that ren
malizesD ~e.g., Fig. 7! must contain two external vertices
each proportional toq' , and hence must be proportional
q'

2 . Therefore all renormalizations ofD must be propor-

tional to q'
2 , and hence negligible, asuqW u→0, relative to the

bareD. Likewise, any graph for the diffusion constants mu
be proportional to Fig. 8, which must be proportional to
least one power ofqW' . SinceD i andDr involve no powers
of qW' , theycannotbe renormalized graphically.

Thus, whenl250, D, Dr , andD i get no graphical renor
malization. That is,Gi , Gr , and GD in Eqs. ~5.12! and
~5.16! are, exactly,50. Thus, the requirement thatD, D i ,
and Dr flow to fixed points (dDi ,r /dl )505dD/dl leads

FIG. 7. Feynmann graph renormalizing the noise correlati

when l250. There is a factor of the external momentumuqW'u
[qx associated with each vertex; hence this graph does not re
malizeD, but, rather, only changesO(q2) pieces of thef 2 f cor-
relation function.

FIG. 8. Feynmann graph for diffusion constants. Whenl250,

this graph is proportional to at least one power ofuqW'u[qx , and, so,
cannot renormalizeD i or Dr .
r-

t
t

to two independentexactscaling relations between the thre
independent exponentsx, z, and z. Requiring dDi ,r /dl
50 implies

z52z, ~5.74!

while requiringdD/dl 50 leads to

z5z12x1d21. ~5.75!

We emphasize that we have only shown that these relat
~5.74! and ~5.75! hold whenl250.

We can obtain a third independent exact scaling relat
between these three exponents, and thereby determine
exactly, whenl250, by considering the renormalization o
the nonlinearitiesl1 , lr , ands2 .

We start deriving this third relation by noting that whe
l250 and l15lr[l, there can beno graphical renormal-
ization ofl1 . This is because for these parameter values
equations of motion~3.3! and~3.4! have an exact symmetr
that we call pseudo-Galilean invariance: namely, they rem
unchanged under the ‘‘boost’’ transformation:

rW'→rW'2lvW bt, ~5.76!

vW'~rW,t !→vW'~rW,t !1vW b , ~5.77!

where the ‘‘boost’’ velocityvW b is an arbitrary constant vecto
in the' plane.

This symmetry must be preserved upon renormalizat
with the samevalue ofl. Hence, there can be no graphic
renormalization ofl, when l15lr . That is,G1

l50 when
l15lr . SinceGr

l50 always, it is clear that, ifl1,lr ini-
tially, it will always remain so upon renormalization.

This implies that, for flocks that start with barel1 less
than the barelr ~which should be a finite fraction of al
possible flocks!, only two types of fixed points are possible
~I! l1* 5lr* 50 or ~II ! lr* Þ0.

The first type of fixed point~I!, however, is readily seen
to be unstable tolr , which must always be nonzero~and, in
fact, 51) initially. Hence, this fixed point is never reache
and we must flow to a fixed point of type II. To see that fix
points of type I areunstable, note that for such a fixed point
the only remaining relevant nonlinearity iss2 . But, by itself,
s2 cannotrenormalizeanyof the diffusion constantsDB and
Di . The reason for this is that any graph~e.g., Fig. 8! that
renormalizesany diffusion constant must have an extern
velocity leg emerging from the right. However, using on
the s2 vertex, whichonly involves r, we canonly make
graphs with ar leg emerging from the right. Therefore, at
fixed point of type I,GB,T50, exactly, in Eq.~5.11!. Thus, to
find a fixed point forDB,T , we must choosez52. Combin-
ing this with the previous exact scaling relations~5.74! and
~5.75!, we findz51 andx512d/2. But using these value
~which are nothing but those that we found in the harmo
theory!, we find thatlr is a relevant perturbation at any fixe
point of type I:

dlr

dl
5S 22

d

2Dlr ~5.78!
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for all spatial dimensionsd,4. Note that~5.78! is exactat
any fixed point of type I, sinceGr

l50, exactly.
So fixed points of type I are unstable, and we will alwa

flow to a fixed point of type II. Using the recursion relatio
~5.15! for lr , and the fact thatGr

l50 always, we immedi-
ately obtain thatlr* can beÞ0 if and only if a third exact
scaling relation is satisfied, namely,

x512z. ~5.79!

The three relations~5.74!, ~5.75!, and~5.79! that hold when
l250 can be solved trivially, to find the exact scaling exp
nents in alld,4 that describe flocks withl250:

z5
d11

5
, ~5.80!

z5
2~d11!

5
, ~5.81!

and

x5
322d

5
. ~5.82!

Note that these match continuously, at the upper critical
mensiond54, onto their harmonic valuesz51, z52, and
x512d/2521, as they should.

If l1
Bare.lr

Bare, then, besides the two cases that we d
cussed above, there may be a third type of fixed point:~III !
lr* 50, l1* Þ0.

For this type of fixed point to be stable, the exponentsx
andz have to satisfy

x1z,1. ~5.83!

The above inequality, together with Eq.~5.74! and Eq.
~5.75!, give Eqs.~5.80!, ~5.81!, and~5.82! with the 5 signs
replaced by,. For simplicity, we will only discuss the case
with l1

Bare,lr
Bare, where the exponents are given by Eq

~5.80!, ~5.81!, and~5.82!. However, all the qualitative result
will be valid for case III, e.g., the spontaneous symme
broken phase will be more stable in case III if it is stable
case II because of the inequality. The simplest possible
nario is that there is only one stable fixed point, regardles
whetherlr

Bare,l1
Bare or not, and that it is type II, and has th

canonical exponents~5.80!–~5.82!. We consider it highly
probable that this is, in fact, the case. Even if it is not, E
~5.80!–~5.82! do hold for some flocks~those with lr

Bare

.l1
Bare).

Our derivation of these results~5.80!–~5.82! depended
only on the assumption thatl2* 50. Note, however, that in
d52, any flock is equivalent to a flock withl250. This is
because thel1 and l2 vertices become identical ind52,
wherevW' has only one component, which we will take to b
x. That is, ind52,

l1~vW'•¹W '!vW'5l1x̂vx]xvx5 1
2 l1]x~vx

2!x̂, ~5.84!

l2~¹W '•vW'!vW'5l2x̂~]xvx!vx5 1
2 l2]x~vx

2!x̂ ~5.85!
-

i-

-

.

y

e-
of

.

so that the full vW' nonlinearity becomes1
2 (l11l2)

3]x(vx
2) x̂, which is just what we would get if we starte

with a ~primed! model with l2850 and l185l11l2 . This
later model, since it hasl2850, must have the ‘‘canonical’’
exponents~5.80!–~5.81! and, hence, so must the (l1 ,l2)
model, which includes all possibled52 models. So all mod-
els in d52 must have the canonical exponents~5.80!–
~5.82!.

Equivalently, we can derive this result by simply notin
that, in d52, the full v'2v' vertex becomes1

2 (l1

1l2)]x(vx
2), which is a totalx derivative even whenl2

Þ0. Furthermore, thed52 model now has the pseudo
Galilean invariance~5.76! and ~5.77! when l11l25lr .
These two properties (v'2v' vertex totalx derivative, and
pseudo-Galilean invariance at a special point! are all that we
used to derive the ‘‘canonical’’ exponent~5.80!–~5.82!; so
those canonical exponentsmusthold in d52. Settingd52
in Eqs.~5.80!–~5.82!, we obtain

z5 3
5 , ~5.86!

z5 6
5 , ~5.87!

x52 1
5 . ~5.88!

Note, in particular, thatx,0. This implies, as discussed ea
lier, that the flock exhibits true long-ranged order.

Using the exponents~5.86!–~5.88! in the general scaling
relations, such as Eqs.~5.31! and~5.33!, we obtain all of the
scaling results for correlation functions ind52 quoted in the
Introduction. Note also that for this set of exponentsz2z
22x112d50. Hence, from Eq.~5.66!, we see that the
noise strengthD is a constant, independent ofqW , which
makes sense sinceD is unrenormalized graphically. So, i
the d52 model, we can calculate all correlation functio
from their harmonic expressions, except that we replace
diffusion constantsDB,T,r with functions that diverge asqW
→0 according to the scaling laws

DB,T~qW !5q'
24/5f B,TS ~qi /L!

~q' /L!3/5D , ~5.89!

where we have used the exactd52 exponentsz5 6
5 and z

5 3
5 in the general scaling law~5.65!. D i ,r , on the other

hand, are, likeD, constants, sincez52z @see general equa
tion ~5.12!#, which also makes sense sinceD i ,r are unrenor-
malized graphically. Hence, the only replacement neede
turn the harmonic results into the correct results for the f
nonlinear theory ind52 is Eq.~5.89!.

D. d>2

Now we turn tod.2. Here the canonical exponents ne
not hold if l2* Þ0. The obvious thing to do, therefore, is t
determine whether a smalll2 is a relevant or irrelevant per
turbation at thel250 fixed point. We have attempted to d
this to leading~one-loop! order in a 42e expansion. This
involves calculating the perturbative correctionsG1,2

l and
Gs2

in the recursion relations~5.15!–~5.13! to one-loop or-

der, and to linear order inl2 . Once this is done, we can fin
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a fixed point with l250, and then calculate the linea
renormalization-group eigenvalue ofl2 at this fixed point.
That is, we will expand the right hand side of the recurs
relation ~5.15! for l2 to linear order inl2 , obtaining

dl2

dl
5g2l2 ~5.90!

for l15l1* , lr5lr* , s25s2* , andl2 small. If g2 is ,0,
then thel250 fixed point is~at least locally! stable, and the
canonical exponents~5.80!–~5.82! will hold for all d. Unfor-
tunately, an~extremely laborious! calculation~involving 14
different Feynmann graphs! shows, after many seemingl
miraculous and unexpected cancellations between diffe
graphs, thatG1

l , G2
l , andGs2

areexactlyzero to one loop
order. This implies that

x112z50~e2! ~5.91!

and that, to this order at least,l1,2,r ands2 can take onany
value at the fixed point. That is, to this order, there appear
be a fixed ‘‘line’’ @actually, a fixed four-dimensional sub
space (l1 ,l2 ,lr ,s2)#, instead of a single fixed point. This
unfortunately, eliminates all of our predictive power for th
exponents. For example, keepingD i fixed leads to

z22z52Gi~l1 ,l2 ,lr ,s2!. ~5.92!

Our earlier arguments show thatGi vanishes ifl2 does;
however, to this orderl2* can be anything; hence, so canGi ,
and so we getno information aboutz andz from this relation
at all. Likewise the recursion relation forD leads to

z2z22x112d52GD~l2 ,l1 ,lr ,s2! ~5.93!

with the right-hand side again vanishing ifl250, but taking
on any value you like ifl2 can be anything, as it can, to th
order.

So what actually happens for 2,d,4? Unfortunately,
from our one-loop calculation, we cannot say, but can o
enumerate the possibilities:

Possibility I: At higher order,l2 proves to be irrelevant
and flows to zero at the fixed point. In this case, the cano
cal exponents~5.80!–~5.82! will hold, for all flocks, in all d
in the range 2,d,4.

Possibility II: dl2 /dl 50 to all orders~i.e., exactly!. In
this case, there is a fixed line~or, more generally,D-
dimensional subspace withD>1) with exponents that vary
as continuous functions ofl2 , which can take on any value
Hence, the exponentsx, z, andz will be continuously vari-
able functions of the parameters in the ordered phase.
behavior is somewhat reminiscent of that of thed52 equi-
librium X2Y model, although here it is occurring for a
entire range of spatial dimension 2,d,4, and, furthermore,
is not associated in any way with the absence of true lo
ranged orientational order, since such order is actu
present in our model.

Possibility III: dl2 /dl .0 at higher order, and the or
dered phase is controlled by a new,l2* Þ0 fixed point. In
this case, the exponents will again be universal, but pres
ably, different from the canonical ones~5.80!–~5.82!. Unfor-
tunately, we have no idea what they will be.
n
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We should emphasize thatall flocks will be described by
only one of the three possibilities enumerated above~i.e.,
one cannot have different possibilities realized in differe
flocks!. Unfortunately, we have no idea which of the abo
possibilitiesis realized for 2,d,4.

VI. ANISOTROPIC MODEL

Not all flocks, of course, are equally likely to move in an
direction in the space they occupy. Flocks of birds, for
stance, although they occupy ad53 dimensional volume
~the air!, are far more likely to move horizontally than ve
tically. This is presumably because gravity breaks the ro
tional symmetry between the horizontal plane and verti
directions.

One can imagine a variety of ‘‘microscopic’’ rules, lik
the Vicsek rule described earlier, that would exhibit su
anisotropy. For example, one could apply a ‘‘Vicsek’’ rule
three dimensions, selecting thereby a vectorn̂. Instead of
moving along that vector, however, one could instead m
along a vector ‘‘compressed’’ along some~z! axis

nW 85snzẑ1nW' , ~6.1!

with s,1 andnW'5n̂2nzẑ. This will tend to promote mo-
tion in thex-y plane at the expense of motion in thez direc-
tion. Alternatively, one could project all velocities into th
x-y plane, apply a Vicsek rule to them~while still sampling
neighbors in three dimensions!, and then add to thisxy move
a random decorrelated step in thez direction @10#.

For technical reasons that will, we hope, become obvio
we will focus our attention on systems that, whatever th
spatial dimensiond, have an easyplaneof motion; i.e., two
components of velocity that areintrinsically favored over the
otherd22. We will also assume perfect isotropywithin this
plane and within the d22 dimensional ‘‘hard’’ subspace
The case of birds flying horizontally corresponds tod53.

A natural extension of our fully isotropic model~EOM! to
this case is

] tvW 1l1~vW •¹W !vW 1l2~¹W •vW !vW 1l3¹W ~ uvW u2!

52¹W P~r!1avW 2buvW u2vW 2davW H1DB¹W ~¹W •vW !

1DT
e¹e

2vW 1DT
H¹H

2 vW 1D2~vW •¹W !2vW 1 fW . ~6.2!

Mass conservation, of course, still applies:

] tr1¹W •~rvW !50 ~6.3!

and the pressureP(r) will still be given by the same expan
sion in dr5r2ro

P~r!5 (
n51

`

sn~dr!n. ~6.4!

In Eq. ~6.2!, vW H denotes thed22 ‘‘hard’’ components ofvW ,
i.e., thoseorthogonalto thed52 easy plane. Likewise,¹e

2

and ¹H
2 denote the operators( i 51

2 ]2/]xi
2 and ( i 53

d ]2/]xi
2 ,

respectively, wherei 51,2 are the ‘‘easy’’ Cartesian direc
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tions, andi 53→d the ‘‘hard’’ ones. The term2dauvW Hu2,
da.0 suppresses these components of velocity relative
those in the easy plane.

Equation~6.2! is not, of course, the most general anis
tropic model we could write down. For instance, one co
have anisotropy in the nonlinear terms: e.g., terms l
(vW e•¹W )vW e could have different coefficients than (vW H

•¹W )vW H . However, becausevW H winds up being ‘‘massive,’’
in the sense of decaying to zero too rapidly~i.e., nonhydro-
dynamically! at long wavelengths and times to nonlinea
affect the hydrodynamic~long wavelength, long time! be-
havior of the flock~in its low-temperature phase!, any addi-
tional terms in Eq.~6.2! distinguishingvW H andvW e will have
no effect on the hydrodynamic behavior in the low
‘‘temperature’’ phase. That is, Eq.~6.2! already contains
enough anisotropy to generate all possible relevant, sym
try allowed terms in the broken symmetry state. Hence,
will keep things simple and not generalize Eq.~6.2! further.

As we did for the isotropic problem, we will now brea
the symmetry of this model, i.e., look for solutions to t
form

vW ~rW,t !5^vW &1dvW ~rW,t !. ~6.5!

Now, however, the direction of the mean velocity^v̂&
@which we will choose as before, to be a static, spatia
uniform solution of the noiseless (fW50) version of~6.2!# is
not arbitrary, but must lie in the easy (1,2) plane. To see t
let us, without loss of generality, write

^vW &5v0yŷ1v0zẑ ~6.6!

with v0y andv0z constants,ŷ in the easy plane andẑ one of
the d22 ‘‘hard’’ directions. To solve Eq.~6.2! with fW50,
these must obey

av0y2b~v0y
2 1v0z

2 !v0y50 ~6.7!

and

~a2da!v0z2b~v0y
2 1v0z

2 !v0z50. ~6.8!

Subtracting v0y3 ~6.8! from v0z3 ~6.7! we obtain
dav0yv0z50, which implies that eitherv0y or v0z must be
zero. It is straightforward to show that the former solution
unstable~with two linear eigenvaluesa.0) to smallvW e fluc-
tuations, while the latter is stable~with d22 linear eigenval-
ues2da,0) to vW H fluctuations, so the solution witĥvW & in
the easy plane is the stable one. Furthermore, fluctuation
the ‘‘hard’’ directions are ‘‘massive,’’ in the sense of deca
ing rapidly to zero even at long wavelengths, and so can
neglected in the low-temperature phase~just like v i fluctua-
tions in the isotropic case!. Likewise, if we take

^vW &5v0ŷ ~6.9!

fluctuations indvy5vy2v0 , will also be massive~with lin-
ear eigenvalue22a). Eliminating the massive fieldsdvy and

vW H in favor of the pressure, as we did fordv i in the isotropic
case, gives
to

-

e

e-
e

y

s,

in

e

dvy52Dry]yr, ~6.10!

vW H52DrH¹W Hr, ~6.11!

where we have defined the diffusion constants

Dry[
s1

2a
, ~6.12!

DrH[
s1

da
~6.13!

and we have used the relation~6.4! for the pressure, and
dropped all but the leading order linear terms indr, since
higher powers ofdr in Eqs. ~6.10! and ~6.11! prove to be
irrelevant.

Using the solutions~6.10! and ~6.11!, and taking, for the
reasons just discussed,

vW ~rW !5@v01dvy~rW,t !# ŷ1vx~rW,t !x̂1vW H~rW,t ! ~6.14!

we can write a closed system of equations forvx(rW,t) and
dr(rW,t):

] tdr1v0]ydr1]x~rvx!5~Dry]y
21DrH¹H

2 !dr,
~6.15!

] tvx1g]yvx1
l

2
]x~vx

2!52s1]x~dr!2s2]x~dr!21~D i]y
2

1Dx]x
21DH¹H

2 !vx1 f x , ~6.16!

where we have definedl[l11l2 , and g5l1v0 , and
dropped irrelevant terms.

Proceeding as we did in the isotropic model, we begin
linearizing these equations, Fourier transforming them,
determining their mode structure.

The result of the first two steps is the Fourier-transform
equations of motion

@2 i ~v2v0qy!1Gr~qW !#dr~qW ,v!1 iqxr0vx~qW ,v!50,
~6.17!

@2 i ~v2gqy!1Gv~qW !#vx~qW ,v!1 is1qxdr~qW ,v!5 f x~qW ,v!,
~6.18!

where we have defined

Gr~qW ![Dryqy
21DrHqH

2 , ~6.19!

Gv~qW ![D iqy
21DHqH

2 1Dxqx
2 . ~6.20!

Again as in the isotropic model, we first determine t
eigenfrequenciesv(qW ) of these equations, finding

v6~qW !5c6~uqW ,fqW !q2 i e6~qW !, ~6.21!

where the sound speeds

c6~uqW ,fqW !5 1
2 ~g1v0!cosuqW6c2~uqW ,fqW ! ~6.22!

with
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c2~uqW ,fqW ![A1
4 ~g2v0!2cos2uqW1s1r0 sin2 uqWcos2fqW ,

~6.23!

whereuqW is the polar angle betweenqW and they axis, andfqW

is the azimuthal angle, measured relative to thex axis, i.e.,
the angle between theprojection of qW orthogonal toy, and
the x axis.

A polar plot of this sound speed versusuqW for fqW50 @i.e.,
qW in the ‘‘easy’’ ~i.e., x-y) plane# looks exactlylike that for
the isotropic model~Fig. 2!. Indeed,any slice with fixedfqW

looks qualitatively like that figure, although, asfqW→p/2
~i.e., asqW' , the projection ofqW orthogonal toy, approaches
orthogonality to thex axis!, the sound velocity profile be
comes two circles with their centers on they axis and both
circles passing through the origin.

The dampingse6(qW ) in Eq. ~6.21! are 0(q2), and given
by

e6~qW !56
c6~uqW ,fqW !

2c2~uqW ,fqW !
@Gv~qW !1Gr~qW !#

7
v0cos~uqW !

2c2~uqW ,fqW !
S Gv~qW !1

g

v0
Gr~qW ! D . ~6.24!

Note that, unlike the isotropic problem ind.2, here there
are no transverse modes inany d: we always have just two
longitudinal Goldstone modes associated withdr andvx .

We can now again parallel our treatment of the isotro
model and calculate the correlation functions and propa
tors. The calculation is so similar that we will not repeat t
details, but merely quote the results:

Gvv~qW ,v!5
i ~v2v0qy!2Gr~qW !

Den~qW ,v!
, ~6.25!

Gvr~qW ,v!5
is1qx

Den~qW ,v!
, ~6.26!

Grv~qW ,v!5
ir0qx

Den~qW ,v!
, ~6.27!

Grr~qW ,v!5
i ~v2gqy!2Gv~qW !

Den~qW ,v!
, ~6.28!

Cvv~qW ,v!5
D@~v2v0qy!21Gr

2~qW !#

uDen~qW ,v!u2
, ~6.29!
c
a-

Crv~qW ,v!5^dr~qW ,v!vx~2qW ,2v!&

5
Ds1qx@v2v0qy2 iGr~qW !#

uDen~qW ,v!u2
, ~6.30!

and

Crr~qW ,v!5
Dr0

2qx
2

uDen~qW ,v!u2
, ~6.31!

where we have defined

Den~qW ,v!5@v2c1~uqW ,fqW !q#@v2c2~uqW ,fqW !q#

1 i $v@Gr~qW !1Gv~qW !#2qy@v0Gv~qW !

1gGr~qW !#%, ~6.32!

which, of course, implies

uDen~qW ,v!u25@v2c1~uqW ,fqW !q#2@v2c2~uqW ,fqW !q#2

1$v@Gr~qW !1Gv~qW !#2qy@v0Gv~qW !

1gGr~qW !#%2. ~6.33!

These horrific expressions actually look quite simple wh
plotted as a function ofv at fixedqW ; indeed, such a plot of
Cvv looks precisely like the solid line in Fig. 6: two asym
metrical peaks, centered atv5c6(uqW ,fqW)q, with widths
e6(qW )}q2.

Note that, at this linear order, everythingscalesas it did
in the isotropic problem: peak positions}q, widths }q2,
and heights}1/q4.

Continuing to blindly follow the path we trod for the iso
tropic problem, we can calculate the equal-timevx2vx cor-
relation function:

Cvv~qW ![^vx~qW ,t !vx~2qW ,t !&

5E
2`

` dv

2p
Cvv~qW ,v!5

D

2

f~ q̂!

GL~qW !
, ~6.34!

where f(q̂) dependsonly on the directionq̂ of qW , and is
given by
f~ q̂!5
1

c2~uqW ,fqW !q
F @c1~uqW ,fqW !q2v0qy#

2

c1~uqW ,fqW !q2v0qy1@c1~uqW ,fqW !q2l1v0qy#Gr /Gv

1
@c2~uqW ,fqW !q2v0qy#

2

c1~uqW ,fqW !q2v0qy1@c2~uqW ,fvecq!q2l1v0qy#Gr /Gv
G . ~6.35!
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These fluctuations again diverge like 1/q2 as uqW u→0, just as
in the isotropic problem.

This completes our abbreviated discussion of the line
ized theory of the anisotropic model. The most succinct su
mary of this linearized theory is that everything scales jus
it did in the isotropic problem. This implies that the nonli
earities@i.e., thel ands2 terms in the equations of motio
~6.15!# become relevant in and below the same upper crit
dimensionduc54 as in the isotropic problem. Ford,4,
therefore, these nonlinearities will change the long-dista
behavior of the anisotropic model. We will now treat the
nonlinearities using renormalization-group arguments sim
to those we used for the isotropic model ind52. Now, how-
ever, they will work for alld between 2 and 4.

Notice that all of the nonlinearities in Eq.~6.15! are total
x derivatives, just as in thed52 case for the isotropic prob
lem. Now, however, this is true inall spatial dimensions, no
just in d52. ~This, of course, is the reason we chose
consider precisely two ‘‘soft’’ components.! Thus, we will
now be able to derive exact exponents in this model for
spatial dimensions. We will not go through the arguments
detail, as they are virtually identical to those in thed52 case
for the isotropic model, but will simply quote the conclu
sions:

~1! There areno graphical corrections toanyof the diffu-
sion constants in Eq.~6.15! exceptDx .

~2! The stable fixed point that controls the ordered ph
musthavelr* Þ0 at least forl(0),lr(0), which is a finite
fraction of all flocks, and

~3! D andlr are not graphically renormalized.
Point one suggests that, in constructing our dynam

renormalization group for Eq.~6.15!, we should scale thex
direction differently fromboth the y direction and thed22
hard directions. Furthermore, sinceboth the y directionand
the d22 hard directions are alike in having their associa
diffusion constants unrenormalized, we should scale th
directions thesameway. Therefore, in our renormalizatio
group, we will rescale as follows:x→bx, (y,xWH)
→bz(y,xWH), t→bzt. With these rescalings, the recursion r
lations forDi , iÞx, r, D, andlr become

dDi

dl
5~z22z!Di ~ iÞx!, ~6.36!

dD

dl
5@z22x1~12d!z21#D, ~6.37!

dlr

dl
5~x1z21!lr . ~6.38!

All three relations are exact, since none of these parame
experiences any graphical renormalization. As in the iso
pic case, we want all of these parameters to flow to fix
points; this leads to three exact scaling relations between
three exponentsx, z, andz:

z52z, ~6.39!

z22x1~12d!z51, ~6.40!
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whose solution is easily found in alld,4:

z5
3

72d
, ~6.42!

z5
6

72d
, ~6.43!

x5
12d

72d
. ~6.44!

Note that these reduce to our isotropic results ind52, as
they should, since the two models are identical there. T
also reduce to the harmonic valuesz52, z51, andx521,
in d54, as they should, since 4 is the upper critical dime
sion.

In the physically interesting case ofd53, we obtain:

z5 3
4 , ~6.45!

z5 3
2 , ~6.46!

x52 1
2 . ~6.47!

As in the isotropic case, we can use scaling arguments
to show that the effect of the nonlinearities can be fully
corporated by simply replacingDx everywhere it appears in
the linearized expressions by the divergent, wave-vec
dependent scaling form:

Dx~qW !5qx
z22f F ~qy /L!

~qx /L!z
,
~qH /L!

~qx/L!zG . ~6.48!

Doing this leads to all of the scaling laws for this anisotrop
problem quoted in the Introduction.

VII. TESTING THE THEORY IN SIMULATIONS
AND EXPERIMENTS

In this section, we discuss how our theory can be teste
simulations and direct observations of real flocks. T
‘‘real’’ flocks may include, e.g., mechanical, self-propelle
‘‘go carts’’ packed so densely that they align with the
neighbors@11#, as well as aggregates of genuinely livin
organisms.

We begin with a few suggestions about the best bound
conditions and parameter values for simulations or exp
ments, and then describe how the correlation functions
scaling exponentsx, z, andz predicted by our theory can b
measured. The most useful boundary conditions are ‘‘toru
conditions; that is, reflecting walls ind21 directions, and
periodic boundary conditions in the remaining direction, c
it y ~see Fig. 9!. The advantage of these conditions is that o
knowsa priori that, if the flock does spontaneously order,
mean velocity will necessarily be in the periodic~y! direc-
tion.

It might be objected that imposing such anisotrop
boundary conditions breaks the rotation invariance
model requires, but this is not, in fact, the case. A ‘‘bird
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deep inside the box moves with no special direction pick
out a priori; it can only find out about the breaking of rota
tion invariance on the boundary if the bulk of the flock spo
taneously develops long-range order. This is precisely an
gous to the way one speaks of a ferromagnet
spontaneously breaking a continuous symmetry even
orders in the presence of ordered boundary conditions.
by imposing these boundary conditions, we know the dir
tion of the flock motion~the y direction in the simulation!,
and, therefore, have oriented the simulation axes with
axes used in our theoretical discussion; i.e., ouri axis equals
the simulation’s periodic direction.

Alternative boundary conditions add the further complic
tion of having to first determine the direction of mean flo
motion before calculating correlation functions. This comp
cation is even worse for a finite flock~as any simulation mus
treat!, since the mean direction of motion will wander, e
ecuting essentially a random walk that will explore the f
circle in a time of orderTflock52pAN/D. Our results, which
assume aconstantdirection of flock motion, will only apply
for time scalest!TFlock. Even drifts of the mean flock di
rection through angles!2p can cause problems, howeve
since most of the interesting scaling behavior is concentra
in a narrow window of anglesqi;q'

z @q' ; i.e., near the
direction of mean flock motion. So this drift greatly comp
cates the experimental analysis, and is best avoided by u
the toroidal boundary conditions just described.

Of course, it is considerably harder to produce the
boundary conditions in a real experiment. Ants walki
around a cylinder may come close, although gravity will
ways break rotation invariance on a real cylinder. Perh
the experiment could be done on the space shuttle, or w
rapidly spinning cylinder producing artificial gravity tha
swamps real gravity, or by using neutrally buoyant orga
isms in a fluid. Alternatively, one could use a ‘‘track’’ suc
as that shown in Fig. 10, and take data only from the cro
hatched region, chosen to be in the middle of the stra
section of the track, far from the curves.

Other, more ingenious ways to prepick the direction

FIG. 9. Illustration of the optimal boundary conditions for sim
lations and experiments to test our predictions. The top and bo
walls are reflecting, while periodic boundary conditions apply at
left and right walls~i.e., a bird that flies out to the right instantl
reappears at the same height on the left!. The mean direction of
spontaneous flock motion, if any occurs, is clearly forced to
horizontal by these boundary conditions. In spatial dimensiond
.2, one should choose reflecting boundary conditions ind21 di-
rections, and periodic in the remaining direction, thereby forc
^vW & to point along that periodic direction.
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mean motion through boundary conditions may also
dreamed up by experimentalists more clever than we are

We strongly caution anyone attempting to test our resu
however, that it isonly through boundary conditions that on
may prepick the direction of mean motion.Anyapproach that
prepicks this direction in the bulk of the flock, such as givi
each bird a compass, letting them be blown by a wind, or
downhill, or follow a chemical scent, etc., will lead to
model outsidethe universality class of our isotropic mode
since the starting model does not have any rotation inv
ance to be spontaneously broken~unless the anisotropy
leaves an ‘‘easy plane’’ in which all directions are equiv
lent, in which case our anisotropic model of Sec. VI applie!.
Indeed, such flocks of ‘‘birds with compasses’’ will be le
interesting than the models we have studied here, since
‘‘compass’’ will introduce a ‘‘mass’’ that makes any fluctua
tion away from the prepicked direction of flock motion dec
rapidly ~i.e., nonhydrodynamically! with time. In such a
model, it is easy to show that the nonlinearities are irr
evant, and there are no interesting fluctuations left at lo
distances and times.

And now a few words about parameter choices. For d
niteness, we will discuss in what follows the Vicsek mod
whose parameters arev05S/R0 , whereS is the distance the
birds travel on each time step andR0 is the radius of the
circle of neighbors, the mean number densityr0 in units of
1/R0

d whered is the dimension of the system, and the no
strengthD, which is the mean squared angular error. Sin
the interesting nonlinear effects in our model come fro
terms proportional tov0

2 , those effects will become impor
tant at shorter length scales in a faster moving flock. Tha
in, e.g., the Vicsek model, should we choose the dimens
less velocity as large as possible,consistentwith the flock
ordering. However, if we takev0 too big, i.e.,v0@1, then,
on each time step, each bird is likely to have a complet
different set of neighbors. It is difficult to see how order c
develop in such a model. So, to takev0 as big as possible
without violatingv0@1, we should choosev0;1. The simu-
lations of Vicseket al. @1# took v0!1, and, hence, probably
never explored~in their finite flocks! the long length scale
regime in which our nonlinear effects become important.

Now to the mean densityr0 , which is, of course, just
determined by the total number of birdsN and the volumeV
of the box viar05N/V. We clearly want this to be large
enough that each bird usually finds some neighbors in
neighbor sphere: This means we wantr0R0

d>O(1). How-

m
e

e

g

FIG. 10. More practical ‘‘track’’ geometry for experiments o
real flocks. Data should only be taken from the cross-hatched re
centered on the middle of the ‘‘straightaway.’’
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ever, if we maker0 too large, each bird has so many neig
bors that a simulation is considerably slowed down, since
‘‘direction picking’’ step of the Vicsek algorithm takes
time proportional to the number of neighbors~because we
have got to average their directions!. Thus, for simulations,
one wishes to chooser0 as small as possible, consisten
again, with getting good order.

Finally, we consider the noiseD. Here again, to see ou
fluctuation effects, we wantD as big as possible. However,
D is too big, the flock will not order. Furthermore, even ifD
is small enough that the flock does order, we want also to
sure that we are well below the critical valueDc of D at
which the flock disorders. Otherwise, for distances sma
than the correlation lengthj associated with the order
disorder transition, the scaling properties of the flock will
controlled by the fixed point that controls the order-disord
transition,not the low-temperature fixed point we have stu
ied here.

If this transition is continuous, as it appears to be in V
sek’s simulations@1#, this correlation length diverges asD
→Dc

2 . Thus, to observe scaling behavior we predict over
many decades of length scale as possible, we want to ch
D substantially less thanDc , but as big as possible consi
tent with this~to maximize fluctuation effects!. ChoosingD
to be a little below the point at which the mean velocity^v̂&
starts to ‘‘saturate’’ seems like a fairly good compromi
between these two competing effects. Similar considerat
apply for choosing the optimalr0 , andv0 , which we want
to be as small or big, respectively, as they can be with
substantially suppressing long-ranged order. The b
choices will probably lead to all three parametersr0 , v0 ,
andD being, in suitably dimensionless units,O(1).

Having chosen the appropriate parameter values
boundary conditions, what should an experimentalist
simulator measure to test our theory? We have already
cussed a number of such measurements in the Introduc
namely, the spatially Fourier-transformed equal-time a
spatiotemporally Fourier-transformed unequal time dens
density correlation functionsCr(qW ) and Cr(qW ,v), respec-
tively. Our predictions for these are given in Eqs.~5.38! and
~5.40!.

One additional correlation function that can be measu
quite easily is the mean-squaredlateral displacement of a
bird:

w2~ t ![^uxW i
'~ t !2xW i

'~0!u2& ~7.1!

perpendicularto the mean direction of motion of the flock
This can easily be measured as a function of time in a si
lation or experiment simply by labeling a set ofn birds in a
‘‘strip’’ near the center of the channel with its long ax
running parallel to the mean direction of bird motion~see
Fig. 11! and then following their subsequent motion. It
best to center the strip in the channel so as to postpone
birds reaching the reflecting walls as long as possible. O
they do reach the walls, of coursew2(t→`) saturates at
;L'

2 , L' being the width of the channel. We will deal in th
following discussion with times much smaller than that
quired for a bird at the center of the channel to wander ou
its edge. Since the' positionxW i

' of each bird obeys
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xW i
'~ t !5xW i

'~0!1E
0

t

vW i
'~ t !dt, ~7.2!

wherevW i
'(t) is the' velocity of the i th bird at timet, the

mean width is given by

w2~ t !5E
0

t

dt8E
0

t

dt9^vW i
'~ t8!•vW i

'~ t9!&. ~7.3!

Now we need to relate the velocity of thei th bird to the
position and time-dependent velocity fieldvW'(rW,t). This is
easily done:

vW i
'~ t !5vW'@rW i~ t !,t# ~7.4!

whererW i(t) is the position of thei th bird at timet. This is
given by

rW i~ t !5rW i~0!1 v̄t x̂i1dxi
i~ t !x̂i1dxW i

'~ t !, ~7.5!

where

v̄[
1

NU(i
vW iU ~7.6!

is the velocityaveraged over all birds, which, as discussed
earlier, is not to be confused with the space averagedv0

[u*vW (rW,t)ddr u that appears in the expression for the sou
speedsc6(uqW). This distinction proves to becrucial here, as
we shall see in a moment. In Eq.~7.5!, dxi

i(t) and dxi
'(t)

reflect the motion of thei th individual bird relative to the
mean motion of the flock~at speedv̄).

Using Eq.~7.5!, we see that the desired single bird aut
correlation function in Eq.~7.3! is

FIG. 11. Illustration of the experiment to measure the me
squared lateral wanderingw2(t). One labels all of the birds som
central stripe~of width !L, the channel width!, and then measure

the evolution of their mean displacementsxW'(t) perpendicular to
the mean direction of motion~which mean direction is horizontal in
this figure!.
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^vW i
'~ t8!•vW i

'~ t9!&5^vW'$rW i~0!1@ v̄t81dxi~ t8!# x̂i

1dW x'~ t8!,t8%•vW'@rW i~0!1 v̄t91dxi~ t9!x̂i

1dxW'~ t9!,t9#&

5Cc@xW'~ t8!2xW'~ t9!,v̄ut82t9u

1dxi~ t8!2dxi~ t9!,t82t9#, ~7.7!

whereCc(RW ,t) is the real-space velocity field autocorrelatio
function defined in the Introduction.

We assume~and will verify a posteriori! that bothdxi

and dW x' are small enough compared to the average mo

v̄t x̂i that their effect on the velocity-velocity autocorrelatio
in Eq. ~7.7! is negligible. For now neglecting them, we s
that we are left with the task of evaluatingCv(RW'50,Ri

5 v̄t,t).
ExpressingCc in terms of its Fourier transform then give

Cc~RW'50,Ri5 v̄t,t !5E dd21q'dqidvei ~v2 v̄qit !Cii ~qW ,v!.

~7.8!

Using the fact thatCii (qW ,v) is peaked atv5c6(uqW)q with
widths that scale likeq'

z f @qil 0 /(q'l 0)z#, the dominating
peak is atv5v2 for v0(0).g(0) or atv5v1 for v0(0)
,g(0), with heights that scale asq'

2dg@qil 0 /(q'l 0)z#
with d52x1z1z1d21 @see Eq.~5.56!#. Assuming that
v0(0).g(0), it is straightforward to show that, upon inte
grating Eq.~7.8! over v, we obtain

Cc5E dd21q'dqie
i [c2~uqW !q2 v̄qi] t f 2S qil 0

~q'l 0!zD q'
z2d.

~7.9!

This integral is dominated, ast→`, by qi;(q'l 0)z/l 0
@q' ; hence,uqW→0, and we get

Cc5E dd21q'dqie
i ~v02 v̄ !qit f 2S qil 0

~q'l 0!zD q'
z2d .

~7.10!

We can scale the time dependence out of this integral w
the change of variables

qi[
Qi

t
and qW'[

QW '

t ~1/z!
, ~7.11!

which give

Cc}t2x/z. ~7.12!

Using this in Eq.~7.7! for the single bird velocity autocorre
lation function, and then usingthat autocorrelation function
in the expression~7.3! for the mean squared random wa
distance gives

w2~ t !}E
0

t

dt8E
0

t

dt9ut82t9u2x/z. ~7.13!
n

th

Now, we need to distinguish two cases:
Case~1!: 2x/z.21. In this case, which holds ind52,

wherex52 1
5 andz5 3

5 , the double integral overt8 andt9 is
dominated, fort@t0 , the microscopic time scale, byt8, t9,
and ut82t9u of order t@t0 . Hence, our calculation ofCc
which used the hydrodynamic~i.e., long time! limiting forms
of the correlation functions,is correct, and Eq.~7.13! holds.
Changing variables toT8[t8/t andT9[t9/t, we see that

w2~ t !}t2~11x/z!5t4/3,
2x

z
.21, ~7.14!

the last equality holding ind52. Note that this behavior is
‘‘hyperdiffusive’’: the mean-squared displacementw2(t)
grows faster than it would in a simple random walk; i.e
faster than linearly with time t.

Case~2!: 2x/z,21. In this case, which certainly hold
for d.4 ~where x512d/2,21 and z51), the integral
over t9 convergesas ut82t9u→`. Hence, that integral is, in
fact, dominated byut82t9u5O(t0), the microscopic time,
where our hydrodynamic result Eq.~7.12! is not valid. Pre-
sumably, the correctut82t9u→0 limit of the single bird ve-
locity autocorrelation~7.3! is finite; and, hence, so the inte
gral overt9 in Eq. ~7.13! approaches a finite limit ast→`.

Hence, we get

w2~ t !}E
0

t

dt83~finite constant!}t,
2x

z
,21.

~7.15!

We now need only verify oura posterioriassumptions tha
dxi anddW x' were negligible in the velocity-velocity autocor
relation Eq.~7.7!.

First considerxW' ; we have just shown that the root-mea
squareduxW'(t8)2xW'(t9)u}ut82t9u11x/z. From our scaling
expression ~6.43!, we see that Cc(R' ,Ri ,t)'Cc(R'

50,Ri ,t) if R'
z !Ri . In Eq. ~7.7!, we are interested inR'

}ut82t9u11x/z and Ri}ut82t9u; hence, the conditionR'
z

!Ri will be satisfied asut82t9u→` provided z1x,1.
Sincez<1 andx,0 for all d>2, this condition is satisfied
for all d>2. For dxi we need only show thatudxi(t8)
2dxi(t9)u!ut82t9u asut82t9u→`. This is easily shown by
using the fact, alluded to earlier, thatdv i(rW,t), the fluctua-
tion of the velocityalong the mean direction of motion, ha
only short-ranged temporal correlations. Using this fact, i
straightforward to show thatdxi(t) just executes a simple
random walk; that is,

Audxi~ t8!2dxi~ t9!u2}Aut82t9u!ut82t9u ~7.16!

and hence these fluctuations are negligible as well.
Unfortunately, the analogous calculation for the anis

tropic model shows that this random ‘‘transverse walk’’
much less interesting: the mean-squared transverse disp
ment in thex direction~the direction in the ‘‘easy place’’ of
the anisotropic model orthogonal to the mean direction
motion, y) is given by an expression very similar to E
~7.16!
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^uxi~ t !2xi~0!u2&[w2~ t !5E
0

t

dt8E
0

t

dt9^v ix~ t8!v ix~ t9!&

~7.17!

and a calculation so closely analogous to that just given
the isotropic model that we shall not bother to repeat it
this case shows that

^v ix~ t8!v ix~ t9!&}ut82t9u32d22/z. ~7.18!

As in our analysis of the isotropic case, here, too, the qu
tion of whether ‘‘simple random walk’’ behavior@w2(t)
}t# or ‘‘hyperdiffusive’’ behavior@w2(t)}tg,g.1# occurs
hinges entirely on whether the exponent in Eq.~7.18! is
greater or less than21, with hyperdiffusive behavior occur
ring in the former case~exponent.21) and simple random
walk behavior in the latter~exponent,21). Using our ex-
act result~6.43! for z in the anisotropic model for 2<d<4,
we see that hyperdiffusive behavior will occur if

32d2
2

z
5

222d

3
.21, ~7.19!

which is satisfied only ford,5/2. Unfortunately, this condi-
tion is not satisfied for eitherd53 or d54. In d52, the
anisotropic model is the same as the isotropic model, w
for d.4, z52 and 32d22/z,21. So in no case in which
the anisotropic model is different from the isotropic one
hyperdiffusive behavior observable; rather, we exp
w2(t)}t for all those cases. This negative prediction cou
be checked experimentally, although its confirmation, wh
a nontrivial check of our theory, would clearly be less exc
ing than verification of our hyperdiffusive predictionw2(t)
}t4/3 for the isotropicd52 model.

Some of the numerical tests discussed in this section h
been carried out recently, and good agreement with our
diction has been reached@12#.

VIII. FUTURE DIRECTIONS

In this paper, we have only scratched the surface of a v
deep and rich new subject. We have deliberately focused
the most limited possible question: what are the propertie
a flock far from its boundaries, and deep within its order
state? Every move away from these restricting simplifi
tions opens up new questions. To name a few that we hop
address in the coming millennium:

~1! The transition from the ordered~moving! to disor-
dered~stationary, on average! phase of the flock. This can b
studied by analyzing the~unstable! fixed point at which the
renormalizeda of our original model~2.6! is zero. The dy-
namical RG analysis of this point would be technically sim
lar to the one we have presented here for the low-tempera
phase, with a few crucial differences:~a! All components of

vW , not just the' components, become massless at the tr
sition. ~b! The fixed point will be isotropic, since no speci
directions are picked out bŷvW &, since^vW & still 50 at the
transition. ~c! The buvW u2vW term becomes another releva
vertex. We know, by power counting, thatat the transition,
this vertex becomes relevant ind54. Indeed, if we ignore
the l vertices, our model simply reduces to a purely rela
r
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ational time-dependent Ginsburg Landau~TDGL! model for
a spin system with the number of componentsn of the spin
equal to the dimensiond of the space those spins live in.

We have convinced ourselves by power counting thaat
the transition, ford,4, thel vertices are arelevantpertur-
bation to the Gaussian critical point. Whether they constit
a relevant perturbation to the 42e TDGL fixed point,
thereby changing its critical properties, can only be answe
by a full-blown dynamical renormalization group analys
Obviously, a similar analysis could also be done for the
isotropic model.

~2! The shape and cohesion of an open flock, and its fl
tuations. We have thus far focused on flocks in closed
periodic boundary conditions. Real flocks are usually s
rounded by open space. How do they stay together un
these circumstances? What shape does the flock take?
does this shape fluctuate, and is it stable? This issue is so
what similar to the problems of the shapes of equilibriu
and growing crystals~e.g., faceting, dendritic growth!. In
those problems, it was important to first understandbulk pro-
cesses~e.g., thermal diffusion in the case of dendrit
growth! before one could address surface questions~e.g.,
dendritic growth!. The nontrivial aspects of thebulk pro-
cesses in flocks~e.g., anomalous diffusion! will presumably
radically alter the shapes and their fluctuations.

~3! A somewhat related question is: What happens if bi
move at different speeds? By ‘‘move at different speed
we do not mean simply that at any instant, different bir
will be moving at different speeds@a possibility already in-
cluded in our ‘‘soft spin’’ dynamical model equation~2.6!#.
Rather, we mean a model in which some birds have a dif
ent probability distribution of speeds than others.~In our
model, this distribution of the speed of any given bird is t
same over a sufficiently long time, and controlled by t
values of the parametersa andb, with largea andb lead-
ing to a distribution sharply peaked around a mean sp
v05Aa/b, while smalla andb lead to a broader distribu
tion!. More generally, one could imagine two~or many! dif-
ferent species of birds,~labeled byk) all flying together,
each with different mean speedsv0

k . What would thebulk
dynamics of such a flock be? Would there be large sc
spatial segregation, with fast birds moving to the front of t
flock, and slow birds moving to the back? If so, how wou
such segregation affect the shape of the flock? Would it e
gate along the mean direction of motion? Would this elo
gation eventually split the flock into fast and slow movin
flocks?

~4! At the other extreme, one could consider flocks
confined geometries; e.g., inside a circular reflecting wal
d52. In such a case, the time averaged velocity of the flo

^v̂(rW,t)& t could not be spatially homogeneous but wou
have to circulate around the center of the circle; i.

^v̂(rW,t)& t5 f (r ) û. The spatially inhomogeneous pattern
velocity and density that resulted could be predicted by
continuum equations. This problem is potentially related
the previous one, since one way a flock containing, s
somevery fast birds and othervery slow birds, could stay
together would be for the fast birds to fly in circles inside t
essentially stationary volume of space filled by the sl
birds. It would be very interesting to make the connecti
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between our continuum theory and the recently observed
cular motion of Dictyostelium cells in a confined geome
@13#.

~5! One could relax the constraint on conservation of b
number, by allowing birds to be born, and die, ‘‘on th
wing.’’ Numerical studies of such models, which may
appropriate to bacteria colonies, where reproduction
death are rapid, as well as the migration of, e.g., huge h
of caribou over thousands of miles and many months, h
already been undertaken@14#; it should be straightforward to
modify our equations by adding a source term to the b
number conservation equation.

~6! It is possible that phase transitions other than that fr
the moving to the nonmoving state occur in flocks. For e
ample, in some preliminary simulations of microscopic mo
els in which birds try to avoid getting too close to the
neighbors, rather than merely following them, we have
served~literally by eye! what appears to be a ‘‘flying crys
tal’’ phase of flocks: the birds appear to lock themselves o
the sites of a crystalline lattice, which then appears to m
coherently. It would be very interesting to test numerica
whether this optical appearance reflects true long-ra
translational order, by looking for a nonzero expectat
value of the translational order parameters.

rGW ~ t !5^S ie
iGW •rW i ~ t !/N&, ~8.1!

which will become nonzero in the thermodynamic (N→`)
limit at a set of reciprocal lattice vectorsGW if such long-
ranged order actually develops. It will also beextremelyin-
teresting to include the possibility of such long-ranged or
in our analytic model, and study the interplay between t
translational order and the anomalous hydrodynamics
we have found here for ‘‘fluid’’ flocks. Will anomalous hy
drodynamics suppress the ‘‘Mermin-Wagner’’ fluctuatio
of translational order, just as it does those oforientational
order, and lead to true long-rangedtranslationalorder, even
in d52? Will the crystallization suppress orientational flu
tuations, and thereby slow down the anomalous diffus
that we found in the fluid case? And in any case, what are
temporal fluctuations ofrGW (t)?

It should be noted that this problem potentially has all
richness of liquid crystal physics: in addition to ‘‘crysta
line’’ phases, in which the set$GW % of reciprocal lattice vec-
tors in Eq.~8.1! spans alld dimensions of space, one cou
imagine ‘‘smectic’’ phases in which all theGW ’s lay in the
same direction, and ‘‘discotic’’ phases ind53, in which the
GW ’s only spanned a two-dimensional subspace of this th
dimensional space. The melting transitions between th
phases and the ‘‘fluid,’’ moving flock, as well as possib
ir-

d
ds
e

d

-
-

-

o
e

e
n

r
s
at

n
e

e

e-
se

direct transitions between them and the stationary flo
phase, and between each other, would also be of great i
est.

We should point out here that these models differ cons
erably from recently considered models of moving flux la
tices @15# and transversely driven charge density wav
@15,16# in that here the direction of motion of the lattice
not picked out by an external driving force, but, rather, re
resents a spontaneously broken continuous symmetry.

~7! Finally, we would like to study the problem of th
growth of order in flocks. This is a phenomenon we have
seen every time we walk onto a field full of geese: even
ally, our approach startles the geese, and they take of
masse. Initially, they fly in random directions, but quick
the flock orders, and flies away coherently. The dynamics
this process is clearly in many ways similar to, e.g., t
growth of ferromagnetic order after a rapid quench from
initial high temperatureTi.Tc , the Curie temperature, to
final temperatureTf,Tc , a problem that has long been stu
ied @17# and proven to be very rich and intriguing. In flock
where, as we have seen, even the dynamics of thecompletely
orderedstate isvery nontrivial, thegrowth of order seems
likely to be even richer.

Even this list of potential future problems, representin
as it does, probably another ten years of research for sev
groups, clearly represents only a narrow selection of the p
sible directions in which this embryonic field can go. W
have not even mentioned, for example, the intriguing pr
lem of one-dimensional flocking, with its applications to tra
fic flow ~and traffic jams!, a topic clearly of interest. This
problem has recently been studied@18# and found to also
show a nontrivial phase transition between moving and n
moving states.

We expect flocking to be a fascinating and fruitful top
of research for biologists, computer scientists, and both
perimental and theoretical physicists~at leastthesetwo! for
many years to come.

ACKNOWLEDGMENTS

We profusely thank T. Vicsek for introducing us to th
problem. We are also grateful to A. Csirok, E. V. Alban
and A. L. Barabasi for communicating their work to us pri
to publication, to M. Ulm and S. Palmer for performing som
inspirational simulations, and for equally inspirational d
cussions, to J. Sethna and K. Dahmen for pointing out
existence of thel2 and l3 terms, and to P. McEuen fo
suggesting the go-carts. J.T. thanks the Aspen Center
Physics for their hospitality at several stages of this wo
J.T.’s work was supported in part by the National Scien
Foundation under Grant No. DMR-9634596.
our

@1# T. Vicsek, Phys. Rev. Lett.75, 1226~1995!; A. Czirok, H. E.

Stanley, and T. Vicsek, J. Phys. A30, 1375~1997!.
@2# B. L. Partridge, Sci. Am.246~6!, 114 ~1982!.
@3# C. Reynolds, Comput. Graph.21, 25 ~1987!; J. L. Deneubourg

and S. Goss, Ethology, Ecology, Evolution1, 295 ~1989!; A.
Huth and C. Wissel, inBiological Motion, edited by W. Alt
and E. Hoffmann~Springer-Verlag, Berlin, 1990!, pp. 577–
590. We thank D. Rokhsar for calling these references to
attention.

@4# J. Toner and Y. Tu, Phys. Rev. Lett.75, 4326~1995!.
@5# N. D. Mermin and H. Wagner, Phys. Rev. Lett.17, 1133

~1966!.



ng
ica
n

t-

,
,

th

ea

ev.

ap-

s.

v.

4858 PRE 58JOHN TONER AND YUHAI TU
@6# D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A16,
732 ~1977!.

@7# Smectic-A liquid crystals show even stronger damping at lo
wavelengths than that found here for flocks. For a theoret
treatment, see G. F. Mazenko, S. Ramaswamy, and J. To
Phys. Rev. Lett.49, 51 ~1982!; Phys. Rev. A28, 1618~1983!.
Experimental confirmation of this theory is given by S. Bha
tacharya and J. B. Ketterson, Phys. Rev. Lett.49, 997 ~1982!.
See also the discussion in P. G. deGennes and J. ProstThe
Physics of Liquid Crystals, 2nd ed.~Clarendon Press, Oxford
1993!, pp. 457–465.

@8# We thank Karen Dahmen and Jim Sethna for pointing out
existence of this term to us~although, given all the difficulty
this term has caused us, it is unclear whether thanks are r
the appropriate response!.
l
er,

e

lly

@9# See, e.g., M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. R

Lett. 56, 889 ~1986!.
@10# We thank Stephanie Palmer for suggesting this alternative

proach to us.
@11# We thank Paul McEuen for suggesting this realization to u
@12# Y. Tu, J. Toner, and M. Ulm, Phys. Rev. Lett.80, 4819~1998!.
@13# H. Levine ~private communication!.
@14# E. V. Albano, Phys. Rev. Lett.77, 2129~1996!.
@15# L. Balents, M. C. Marchetti, and L. Radzihovsky, Phys. Re

Lett. 78, 751 ~1997!.
@16# L. Radzihovsky and J. Toner~unpublished!.
@17# See, e.g., M. Mondello and N. Goldenfeld, Phys. Rev. E47,

2384 ~1993!.
@18# A. Czirok, A. L. Barabasi, and T. Vicsek~unpublished!.


