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We present a quantitative continuum theory of “flocking”: the collective coherent motion of large numbers
of self-propelled organisms. In agreement with everyday experience, our model predicts the existence of an
“ordered phase” of flocks, in which all members of even an arbitrarily large flock move together with the
same mean veIocitYJ}iO. This coherent motion of the flock is an example of spontaneously broken sym-
metry: no preferred direction for the motion is picked aupriori in the model; rather, each flock is allowed
to, and does, spontaneously pick out some completely arbitrary direction to move in. By analyzing our model
we can make detailed, quantitative predictions for the long-distance, long-time behavior of this “broken
symmetry state.” The “Goldstone modes” associated with this “spontaneously broken rotational symmetry”
are fluctuations in the direction of motion of a large part of the flock away from the mean direction of motion
of the flock as a whole. These “Goldstone modes” mix with modes associated with conservation of bird
number to produce propagating sound modes. These sound modes lead to enormous fluctuations of the density
of the flock, far larger, at long wavelengths, than those in, e.g., an equilibrium gas. Our model is similar in
many ways to the Navier-Stokes equations for a simple compressible fluid; in other ways, it resembles a
relaxational time-dependent Ginsburg-Landau theory fonam component isotropic ferromagnet. In spatial
dimensiongd>4, the long-distance behavior is correctly described by a linearized theory, and is equivalent to
that of an unusual but nonetheless equilibrium model for spin systemsl<=éy nonlinear fluctuation effects
radically alter the long distance behavior, making it different from that of any known equilibrium model. In
particular, we find that ird=2, where we can calculate the scaling exponexctly flocks exhibit a true,
long-range ordered, spontaneously broken symmetry state, in contrast to equilibrium systems, which cannot
spontaneously break a continuous symmetrygin2 (the “Mermin-Wagner” theoremm We make detailed
predictions for various correlation functions that could be measured either in simulations, or by quantitative
imaging of real flocks. We also consider an anisotropic model, in which the birds move preferentially in an
“easy” (e.g., horizontglplane, and make analogous, but quantitatively different, predictions for that model as
well. For this anisotropic model, we obtain exact scaling exponents for all spatial dimensions, including the
physically relevant casé= 3. [S1063-651X98)08410-4

PACS numbd(s): 87.10+e, 64.60.Cn, 05.68.w

I. INTRODUCTION (2) The interactions are purely short ranged: each “boid”
only responds to its neighbors, defined as those ‘“boids”
A wide variety of nonequilibrium dynamical systems with within some fixed, finite distand®,, which is assumed to be

many degrees of freedom have recently been studied usifguch less thar., the size of the “flock.”
powerful techniques developed for equilibrium condensed (3) The “following” is not perfect: the “boids” make
matter physic$e_g_, Sca"ng, the renormalization group, Etc_ errors at all timeS, which are modeled as a stochastic noise.
One of the most familiar examples of a many-degree-of-This noise is assumed to have only short-ranged spatiotem-
freedom, nonequilibrium dynamical system is a large flockPoral correlations.
of birds. Myriad other examples of the collective, coherent (4) The underlying model has complete rotational symme-
motion of large numbers of self-propelled organisms occufry: the flock is equally likelya priori, to move in any di-
in biology: schools of fish, swarms of insects, slime molds,rection.

herds of wildebeest, etc. The development of a nonzero mean center-of-mass ve-
Recently, a number of simulations of this phenomenorocity (5) for the flock as a whole therefore requires sponta-
have been performgd—3]. Following Reynoldg3], we will neous breaking of a continuous symmetnamely, rota-

use the term “boid” and bird interchangeably for the par- tional).

ticles in these simulations. All of these simulations have sev- In an earlier papef4], we formulated a continuum model

eral essential features in common: for such dynamics of flocking, and obtained some exact re-
(1) A large number(a “flock”) of point particles sults for that model in spatial dimensiods-2 (appropriate

(“boids™ ) each move over time through a space of dimenfor the description of the motion of land animals on the

siond (=2,3,...), attemptingat all times to “follow” (i.e.,  Earth’s surfack Our most surprising result] was that two-

move in the same direction Jaits neighbors. dimensional moving herds with strictly short-ranged interac-
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tions appear to violate the Mermin-Wagner theorét) in ~ greater than the mean interbird distand@ur description is
that they can acquire long-ranged order, by picking out ahen valid for distances large compared/tg, and for times
consistent direction of motion across an arbitrarily larget much greater than some microscopic titge presumably
herd, despite the fact that this involves spontaneously brealef order/ /vy, wherev is a typical speed of a bird. Col-
ing a continuousgrotationa) symmetry. lective motion of the flock as a whole then requires that

Of course, this result does not, in fact, violate the(v(r,t))+0; where the averaging can be considered an en-
Mermin-Wagner theorem, since flocks are a nonequilibriumsemble average, a time average, or a spatial average. Equiva-
dynamical system. What is fascinatitat least to usabout lently, long-ranged order must develop for the flock as a
our result is that the nonequilibrium aspects of the flock dy-whole to move; i.e., the equal-time velocity autocorrelation
namics that make the long-distance, long-time behavior ofunction:
the flock different from that of otherwise analogous equilib- . R,
rium systems are fundamentally nonlinear, strong-fluctuation C(R)=(v(R+r1,t)-v(r,t)) (11
effects. Indeed, a “breakdown of linearized hydrodynam- .
ics,” analogous to that long known to occur in equilibrium Must approach a nonzero constant as the separdRpn
fluids [6] in spatial dimensiong=2, occurs in flocks for all —: specifically,
d<4. This breakdown of linearized hydrodynamics is essen-
tial to the very existence of the ordered statedin 2. Fur-
thermore, it has dramatic consequences everm foR.

The physics of this breakdown is very simple: abale
=4, where the breakdown doast occur, information about .
what is going on in one part of the flock can be transmitted tgem. Wheres is a local spin.
another part of the flock only by being passed sequentially Our most dramatic result is that an intrinsically nonequi-
through the intervening neighbors via the assumed shortibrium and nonlinear feature of our model, namely, convec-
ranged interactions. Below=4, where the breakdown oc- tion, suppresses fluctuations of the veloaityt long wave-
curs, this slow, diffusive transport of information is replaced|engths, making them much smaller than the analogi)us
by direct, convective transport: fluctuations in the local ve-fluctuations found in ferromagnets, for all spatial dimensions

locity of the flock became so large, in these lower dimen-g¢ 4o flockd< 4. Specifically, the connected pie@@(ﬁ) of
sions, that the motion of one part of the flock relative to . . - .
the correlation functiorC(R), defined as

another becomes the principal means of information trans
port, because it becomes faster than diffusion. There is a sort
of “negative feedback,” in that this improved transport ac-
tually suppresses the very fluctuations that give rise to it,
leading to long-ranged order id=2. The purpose of the \yhich is a measure of the fluctuations, decays to zero much
present paper is to study the properties of the “orderedmore rapidly as||§|—>oc than the analogous correlation
state” of the flock, i.e., the state in which all members of thef LA L .

flock are moving in the same average direction. Specificall unction in magnets. Quantitatively, for points whose sepa-

9 g p y

we will do the following: rationR= Fﬁ{L lies perpendicular to the mean direction of mo-

(1) We will give the details of the derivation of the results tion of the flock,
of Ref.[4], and give detailed predictions for numerous cor- . )
relation functions that can be measured in both experiments Cc(R)=RYY, 1.4
and simulations. In particular, we will show that two propa-
gating sound modes exist in flocks, with unusually aniso
tropic speeds, whose detailed dependence on the direction of (1.5
propagation we predict, making possible extremely stringent '
quantiyative tes_ts of our theory. We also calculate their at'exactly in d=2, and is<1—d/2, its value in magnetic sys-
Fenuatl_ons, Wh'Ch show highly anomalous, and strongly ANtems, for alld<4. Ford>4, x=1—d/2 for flocks as well as
isotropic, scaling. for magnets.

(.2) We will formulate and study the most completg 9en- Tpe physical mechanism for this suppression of fluctua-
eralization of the model of Ref4] for spatial dimensions tions is easy to understand: increased fluctuations in the di-
d>2. - : . rection of motion of different parts of the flock actuaky-

(3) We will include the effect of spatial aniSOrofg.9., hancethe exchange of information between those different
the fact that birds prefer to fly horizontally rather than verti- parts. This exchange, in turn, suppresses those very fluctua-

cally) on roc!< motion. . . ) ions, since the interactions between birds tend to make them
We describe Ehe rockawelth coarse-grained density an Il move in the same direction.

velocity fields p(r,t) andv(r,t), respectively, giving the These nonequilibrium effects also lead to a spatial anisot-
average number density and velocity of the birds at ttme ropy of scaling between the direction alon) @nd those
within some coarse-graining distancg of a given position  orthogonal to () the mean velocityv ). The physical origin

r in space. The coarse-graining distantgis chosen to be of the anisotropy is also simple: if birds make small errors
as small as possible, consistent with being large enough tha# in their direction of motion, their random motigrerpen-

the averaging can be done sensibtyparticular,”, must be  dicular to the mean direction of motiotv) is much larger

C(R—»)—[(v)|2. (1.2

Thus the average velocityw) of the flock is precisely
analogous to the order parametsy in a ferromagnetic sys-

Cc(R)=C(R)— lim C(R’), (1.9

[R'|—o0

where the universal “roughness exponent”

il

X=~
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than thatalong (v); the former is« 56, while the later is
proportional to 1 coséé~5¢°. As a result,any equal-time
correlation function in the system ainy combination of
fields crosses over from dependence purely| Iép| to de-
pendence purely oR; when

Ry |§L|){
A5 o

where/’ is the bird interaction range.
The universal anisotropy exponent

(=3 1.7

exactlyin d=2, and is<1 for all d<4.

In particular, the connected, equal-time, velocity autocor-

relation functionCC(Ii) obeys the scaling law

(Ry/70)

Cc(R) =R, [2Xf,| ————
h (IRL|1/0)¢

: (1.8

wheref, (x) is a universalscaling function. We have been

unable to calculate this scaling function, everdia2 where

we know the exponents exactly. However, the scaling form

(1.8) immediately implies that

Cc(R)=RMY,  when Ry//g>(R,1/0)*. (1.9
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FIG. 1. A snapshot of a simulated flock that has reached a sta-
tistically steady state. Note the enormous fluctuations in the density.
Quantitatively, the statistics of the spatial Fourier transf@;;(ﬁ)
obtained from this picture agree with our quantitative prediction
equation(1.10.

birds in a flock becom@nfinitely bigger than those in a fluid
or an ideal gas. This fact is obvious to the eye in a picture of

So far, our discussion has focused on velocity fluctuaa flock (see Fig. 1 Quantitatively, we predict that the spa-
tions. The density(R,t) shows huge fluctuations as well: tially Fourier transformed, equal-time density-density corre-
indeed, at long wavelengths, the fluctuations of the density ofation functionCp(q)E(lp(q,t)|2> obeys the scaling law

QEfd%*zxf a1 o

® (9. )¢

C,(a)= MUAE:

qimeeA, qj<q.
o T AN 20 o T R e [E T (1.10
R N C IR ST

whereY(6;) is a finite, nonvanishingd(1) function of the angled; between the wave vectar and the direction of mean
flock motion, q and ﬁL are the wave vectors parallel and perpendicular to the broken symmetry directiog, arhcm.

Ind=2,/=% andy=—1%, so

9”0
V(9@

Y(6g) =

The most important thing to note aboﬁ;,(ﬁ) is that it
diverges a$(i|—>0, unlike Cp(ﬁ) for, say, a simple fluid or

— (6/
q. %,  q<q,

q; %", (700> 000,/ (1.12)
q 't (9.0 =<qp.

(1) Calculate the complex numbers

gas, or, indeed, for any equilibrium condensed matter sys-

tem, which goes to a finite constafthe compressibility as
|g|—0.

p(q,0)=> et (1.12

This correlation function should be extremely easy to
measure in simulations, and in experiments on real herds or .
flocks, in which, say, video tape allows one to measure théor a variety ofqg’s.

positionsr;(t) of all the birds(labeled byi) in the flock at a
variety of timest. The recipe is simple:

(2) Average the squared magnitude of this number over
time. The result i£p(§).
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FIG. 2. Polar plot of the direction-dependent sound speeds Y

c(65), with the horizontal axis along the direction of mean flock

; FIG. 3. Plot of the damping Im vs q,=|q, | whereq, is the
motion.

projection of wave vectoﬁ perpendicularto the direction of the
mean flock velocityv) for fixed projectiong, of q parallel to (v).
Note that, for small|g|, the crossover between lawqZ and

In wocqi,/g occurs only for directions of propagaticﬁnvery nearly
arallel to the mean flock velocit§t'), since<1.

Time-dependent correlation functions@&ndv in flocks
also show interesting anomalous scaling behavior. Howeve
it is not so simple to summarize as the equal-time correlatio
functions. Indeed, time-dependent correlation functiGrs
equivalently, their spatiotemporal Fourier transfoyms not
have a simple scaling form. This is because the collective
normal modes of the flock consist of propagating, dampe
longitudinal “sound” modedi.e., density waves as well as,
in d>2, shear modes. The sound modes exhibit two differen
types of scaling: the period@l of a wave is proportional to its
wavelength\ (the constant of proportionality being the in-
verse sound spegdwhile thelifetime 7 of the mode is pro-
portional to\?, with z being another universal exponent. In
most systemse.g., fluids, crysta)sexhibiting sound modes,
z=2, corresponding to conventional diffusive or viscous
damping[6]. In flocks, however, we find

Note that this last result implies that the lifetimeof the
ave isocqp ?* for g/ ¢>(q, /)¢ and |g|—0; this only
appens for directions of propagation very nearly parallel to
{v). Note also that ird=2 wherez=2 and¢=2, z/{=2
and the damping isonventionaffor sound modes propagat-
ing parallel to the mean motion of the flock. For ather
directions of propagation, however, it is unconventional, and
characterized by=2.

This behavior of the damping.e., Imw), is summarized
in Fig. 3. Ford>2, the “hydrodynamic” mode structure
also includesd—2 “hyperdiffusive” shear modes, with
identical dispersion relations

z=z, d=2, (113) L qH/O
W= 'yqll_qufs Q.7 )_g . (1.1
andz< 2 for all d<4, for sound modes propagating orthogo- 470
nal to the mean direction of flock motion. That is, sound Tphe dispersion relations fap. and ws can be directly
modes are much more heavily damped at long wavelengthgoped by measuring the spatiotemporally Fourier trans-

in flocks than in mosf7] equilibrium condensed matter sys- formed density-density and velocity-velocity autocorrelation
tems. _ _ _ _ functions
The full dispersion relation for the sound modes is
C,(d,@)=(|p(q,®)|?),

O . N R .
"”_C*(eq)q_'qif*((qL/O)g)’ (1.14 Cij(d,0)=(vi(q,w)vj(—q,~ )), (1.17)

. respectively. Experimentally, or in simulatior(sp(d,w) can
whered; is the angle betweeg and(v), and the direction- be calculated by temporally Fourier transforming the spa-
dependent sound speeds(6;) are given by Eq(4.11) of tially Fourier transformed densit{i.12):

Sec. IV, with y and o; flock-dependent parameters apgl

the mean number density of “birds” in the flock. A polar - o it
plot of these sound speeds is given in Fig. 2. The expofient pn(d,w)= t;m pn(g,t)e”', n=0,12,...
is the universal anisotropy exponent described earlier, and (1.18

f.(x) are universal scaling functions that we have been un-
able to calculate. However, we do know some of their limits:over a set of long “bins” of time intervals of length>t,
(the “microscopic” time step and then averaging the

f.(x—0)—const0; f.(x—o)xx?{. (1.15 squared magnitudl(q,)|? over bins:
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® FIG. 5. Geometry of the anisotropic model. Birds prefer to fly in
the “easy” x-y plane. We take theifspontaneously chosgdirec-
¢(8)q c.(8,)q tion of motion within that plane to bg. The in-plane direction

) ) _ perpendicular to that ix. In generald, there ared—2 “hard”
FIG. 4. Plot of the spatiotemporally Fourier-transformed dens'tydirectionsFH perpendicular to this easy plane. The anisotropy of

correlation functioGC(d,w) vs o for fixed g. It shows two sharp
asymmetrical peaks ab=c.(6;)q associated with the sound

modes of the flock, where..(6;) are the sound mode speeds. The .
widths of those peaks are the second mode dampings.l(d;) change the exponenjs z, and{. Since\, doesnot renor-

scalingis betweerx and the othed—1 directionsy,r‘H .

gt f.[0/0/(q,70)*]- malize at one-loop order, all we can say at this point is that
there are three possibilities:
R Nmax Ip(ﬁ,w)lz (1) At higher order\, renormalizes to zerdf this is the
C,(qw)=> ———. (1.19  case, we can show that
n=0 Nmax
Closed form expressions for these correlation functions in 7= M (= d;_:_l X= % (1.2

terms of the scaling functions andfg are given in Sec. V. 5
Although these expressions look quite complicated, the )
behavior they predict is really quite simple, as illustratedexactly, for alld in the range Zd=4. Note that these re-
in Fig. 4, whereC, is plotted as a function ofv for sults linearly interpolate b_etween the equilibrium results
fixed g. As shown there,C, has two sharp peaks at :g, 52%, andX=1—10_|/2 in d=4, and our 2 resultsz
w=c.(60;)q, of width <q?f [q)//(4./0)*] and height =5, {=5, andy=—5ind=2. o
Ocq1(2X+z+3§+d—3)g[qH/o/(ql/o)g]_ Thus, c..(6;) can be (2) At higher order,)\z grows upon renormallzatlon_ and
simply extracted from the position of the peaks, while the'®@ches a nonzero fixed point valng at some new fixed
exponentsy, z, and¢ can be determined by comparing their point that differs from the\.,= 0 fixed point we have studied

widths and heights for differend’s previously, at which Eq(1.21) holds. The exponentg, z,

The scaling properties of the flock are completely summaf’lnd ¢ would still be universali.e., depend only on the di-

rized by the universal exponens ¢, andy. In d=2, our mension of spaca) for all flocks in this case, but those

L universal values would be different from Ed..21).
predictions for these exponents are (3) N, is unrenormalized to all orders. Should this happen,
z=8, (=% x=-i (1.20 N\, would parametrize a fixelihe, with continuously varying
values of the exponents y, and{.
These results arexactand universal for all flocks with the We reiterate: we do not know which of the above possi-
simple symmetries we discussed at the outset. bilities holds ford>2. However, whichever holds isniver-
Ford=+2, the situation is less clear. We have performed ssal; that is, onlyone of the three possibilities above applies
one-loop, 4- € expansion to attempt to calculate these expo4o all flocks. We do not, however, know which one that is.
nents, and find that, to this order, the model appears to have We also study an anisotropic model for flocking, which
a fixedline with continuously varying exponents £, andy.  incorporates the possibility that birds are averse to flying in
Whether this is an artifact of our one-loop calculation, orcertain directionge.qg., straight up or straight dowrin par-
actually happens, is unclear. A two-loop calculation mightticular, we consider the case in which, for arbitrary spatial
clarify matters, but would be extremely long and tedious.dimensionsd=2, there is an easplane for motion (i.e., a
(One loop was hard enough. d.=2 dimensional subspace of the full-dimensional
The origin of this complication is an additional convective spacg. In this case, the relevant pieces of thgvertex be-
nonlinearity [8] not discussed in Refl4]. This new term come a total derivative, and can be absorbed into the nonlin-
(whose coefficient is a parameter we caj) is unrenormal- ear term considered in Rd#], for all spatial dimensions,
ized at one loop order, leading to the apparent fixed line anot justd=2 as in the isotropic model. Hence, we are able to
that order. In two dimensions, this extra term can be writterpbtain exact exponents for this problem & spatial dimen-
as a total derivative, and can be absorbed into the nonlineaionsd, not justd=2.
term considered in Ref4]. Hence, ind=2, the results of4] We again find anisotropic, anomalous scaling fier4.
are sound. Ind>2, however, this new term has a different The anisotropy of scaling is between the direction in the easy
structure, and could, if it does not renormalize to zero,plane(call it x) perpendicular to the mean direction of mo-
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tion (call it y; which, of course, also lies in the easy plane while in d=2, where the model becomes identical to the
and alld—1 other directionsincluding y(see Fig. 5. That isotropic model(the easy plane of motion being the entire
is, the equal time, velocity-velocity autocorrelation function space in that cagewe again recover the isotropic resulfs,
obeys the scaling law =2, andy=—%. For the physical casé=3, we have

N 1/ rull/
CU(R)=x2XfU( (y /o) , | H|’ 0
(XIZ9)¢  (XI/)*

), (1.22 x(d=3)=—13, {(d=3)=3. (1.29

whereFH denotes thel—2 components of in the “hard"” The Fourier-transformed, equal-time densipy{(p) correla-

directions orthogonal to the easy plane, with the scaling extion functionC,(q) also obeys a scaling law
ponentsy and{ given by
Col@) =gy 2" Pi(qi+ap)

1-d
=== 1.2 T
e 2 Al 970 laul /o v 12
3 P\ (A0 (0, )" albxy) (120
é“:ﬁ (1.24

where Y4(6,,) is a finite, nonzeroO(1) function of the
exactly for all spatial dimensionsl in the range 2d<4. angle 0Xy=tan*1(qx/qy), and the scaling functiorﬁﬁ fol-
For d>4, y=1-d/2 and (=1, as in the isotropic case, lows

N const, /A5 +v]aul®) <(70a0)¢
A( ay’o |aul/o . o [1+2x+(d=1)2)/2¢ (1.2
P\ (A0 (g, )¢ X ) (R ¥ ET O L

(q§+VIﬁH|2

where/, is a “microscopic” length(of the order the inter- specialize this model to the “broken symmetry” state, in

bird distancg and » a dimensionless nonuniversal constantwhich the flock is moving with a nonzero mean spéejl In

of order unity. Sec. IV, we linearize the broken symmetry state model, and
Finally, the hydrodynamic mode structure of this aniso-calculate the correlation functions and scaling laws in this

tropic flock consists of a pair of propagating longitudinal linear approximation. In Sec. V, we study the anharmonic

sound modes, with dispersion relation given, in the coordi-corrections in the broken symmetry state, show that they

nate system of Fig(5), by diverge in spatial dimensiond<<4, derive the new scaling
laws that result in that case, calculate the exact exponents in
_ a0 |<§H|/0 d=2, and discuss the difficulties that prevent us from obtain-
w=C.+ (05,05 9—iqxfa o)’ ik ing these exponents for2d<4. In Sec. VI, we repeat all of
Ax” 0 (A" 0) the above for the anisotropic model. In Sec. VII, we describe

(1.28 in some detail how our predictions might be tested experi-
mentally, both by observations of real flocks of living organ-
isms, and in simulations. And, finally, in Sec. VIII, we dis-
cuss some of the open questions remaining in this problem,
and suggest some possible directions for future research.

wheref  is a universal scaling functio,. (65, ¢q) is given
by Eq.(6.22 of Sec. 6 and the dynamical exponent

3
2=2{=7—3=>7, (1.29
Il. THE ISOTROPIC MODEL

where the last equality holds oh= 3. Note that this value of

. . . ) In thi ion, we formul r model for isotropi
z again reduces to that of the isotropic modeldia 2, and this section, we formulate ou odel for isotropic

d—4 flocks. As discussed in the Introduction, the system we wish
T . . . .. to model is any collection of a large numhbérof organisms
The spatiotemporally Fourier-transformed den5|ty-den3|ty(hereafter referred to as “bird$in a d-dimensional space,

correlation function(|p(q,®)|?) has the same structure as wijth each organism seeking to move in the same direction as
that illustrated for the isotropic problem in Fig. 4, with the jts immediate neighbors.

modification tha, is replaced byjy, and the scaling func- e further assume that each organism has no “com-
tion f, is replaced byf,. The detailed expression for pass;” i.e., no intrinsically preferred direction in which it
{|p(q,w)|?) is given by Eq.(6.3)) of Sec. VI. wishes to move. Rather, it is equally happy to move in any

The remainder of this paper is organized as follows: Indirection picked by its neighbors. However, the navigation of
Sec. Il, we formulate the isotropic model. In Sec. lll, we each organism is not perfect; it makes some errors in at-
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tempting to follow its neighbors. We consider the case insame long-distance behavior. This belief can be justified by

which these errors have zero mean; e.g., in two dimensiongur renormalization-group treatment of the continuum

a given bird is no more likely to err to the right than to the model.

left of the direction picked by its neighbors. We also assume  So, given this lengthy preamble, whare the symmetries

that these errors have no long temporal correlations; e.g., &d conservation laws of flocks?

bird that has erred to the right at tinhés equally likely to err The only symmetry of the model is rotation invariance:

either left or right at a time" much later thart. . since the “birds” lack a compass, all directions of space are
Although the continuum model we propose here will de-eqyjvalent. Thus, the “hydrodynamic” equations of motion

scribe the long-distance behavior arfly flock satisfying the e \write down cannot have built into them any special di-

symmetry conditions we shall specify in @ moment, it iS in- o tion picked ‘a priori™; all directions must be spontane-

structive to first consider an explicit example: the automatorbusly picked out by the motion and spatial structure of the

studied by quselet al. [1]. I.n'th|s dlscrgte time model, a flock. As we shall see, this symmetsgverelyrestricts the
number of boids labeled by in a two-dimensional plane : . ;
allowed terms in the equation of motion.

with positions{ri(t)} at integer timet, each chooses the  \ota that the model doesot have Galilean invariance:

d|rect.|on it will move an the next t!me .ste(maken tq be of changing the velocities of all the birds by some constant
durationAt=1) by averaging the directions of motion of all - . .
boostv,, doesnot leave the model invariant. Indeed, such a

of those birds within a circle of radiug, (in the most con- b o . ! )
venient units of lengtiR,=1) on the previous time step boost isimpossiblein a model that strictly obeys Vicsek’s

(updating is simultaneolisThe distanc®, is assumed to be rules, since thespeedof all the bird§ will not rer_nain e_qual
<L, the size of the flock. The direction the bird actually 10 vo after the boost. One could image relaxing this con-
moves on the next time step differs from the above describegtraint on the speed, and allowing birds to occasionally speed
direction by a random angle;(t), with zero mean and stan- Up or slow down, while tending on average to move at speed
dard deviation\. The distribution ofy;(t) is identical forall  vo. Then the boost just described would be possible, but
birds, time independensnd uncorrelated between different clearly would change the subsequent evolution of the flock.
birds and different time steps. Each bird then, on the next Another way to say this is that birds move through a
time step, moves in the direction so chosen a distapa, resistive medium, which provides a special Galilean refer-

where the speed, is the same for all birds. ence frame, in which the dynamics are particularly simple,
To summarize, the rule for bird motion is and different from those in other reference frames. Since real
organisms in flocks always move through such a medium

6i(t+1)=(6;(t)) + (1), (2.2 (birds through the air, fish through the sea, wildebeest

through the arid dust of the Serengethis is a very realistic

r(t+1)=ri(t)+vo[cosh(t+1),sinf(t+1)], (2.2  feature of the model. _ S
As we shall see shortly, thigck of Galilean invariance

(7i(1))=0, (2.3  allowsterms in the hydrodynamic equations of birds that are
not present in, e.g., the Navier-Stokes equations for a simple
() (")) =A8 8y, (2.4  fluid, whichmustbe Galilean invariant, due to the absence of
a luminiferous ether.
where the average in E€.1) is over all birdsj satisfying The sole conservation law for flocks is conservation of
birds: we do not allow birds to be born or die “on the
IFi(H)—ri(H]<Ro (2.5  Wing."

In contrast to the Navier-Stokes equation, there is no con-

and 6(t) is the angle of the direction of motion of théh servation of momentum. This is_, ultimately, a consequence
bird (relative to some fixed reference axisn the time step  Of the absence of Galilean invariance. _

that ends at. The flock evolves through the iteration of this ~ Having established the symmetries and conservation laws
rule. Note that the “neighbors” of a given bird may change constraining our model, we need now to identify the hydro-
on each time step, since birds do not, in general, move i,qiynarpi: variables. They are the coarse-grameq bird velocity
exactly the same direction as their neighbors. field v(r,t) and the coarse-grained bird densitfr,t). The

This model, though simple to simulate, is quite difficult to field v (r,t), which is defined for alf, is a suitable weighted
treat analytically. Our goal in our previous wdik] and this  average of the velocities of the individual birds in some vol-
paper is to capture the essential physics of this model in fime centered om. This volume is big enough to contain

C?ntir}uum, “hy(rj]rodynamic” deslcription of | the flockh enough birds to make the average well behaved, but should
Clearly, some short-ranged details must be lost in such g6 3 spatial linear extent of no more than a few “micro-

description. However, as in hydrodynamic descriptions ofs.qyic jengthg(i.e., the interbird distance, or by a few times
equilibrium systemg6], as well as many recent treatments the interaction rang®;). By suitable weighting, we seek to

[9] of nonequilibrium systems, our hope is that our con- Ked (7 1) fairl i .
tinuum approach can correctly reproduce the Iong—distancé],q"’1 ev(r.t) fairly smoothly varying in space.

long-time properties of the class of systems we wish to The densityp(r,t) is similarly defined, being just the
study. This hope is justified by the notion of universality: all "'umber of particles in a coarse-graining volume, divided by
“microscopic models”(in our case, different specifications that volume.

for the exact laws of motion for an individual bjrthat have The exact prescription for the coarse graining should be
the same symmetries and conservation laws should have thmimportant, as long ap(F,t) is normalized so as to obey
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the “sum rule” that its integral over anynacroscopicvol- make the local have a nonzero magnitude=(/a/B) in the
ume (i.e., any volume large compared with the aforemen-grdered phase, wheee>0. D, ; , are the diffusion constants
tioned microscopic lengthse the total number of birds in  (or viscosities reflecting the tendency of a localized fluctua-
that volume. Indeed, the coarse-graining description just outijon in the velocities to spread out because of the coupling
lined is the way that one imagines, in principle, going OVerp.tween neighboring “birds.” Thé term is a random driv-

frorp a (;Ies%r]lpt!og_o_ga si|mpletﬂtwd Itn terlms (I)f e?u?rt:ons Ofing force representing the noise. We assume it is Gaussian
motion for the individual constituent molecules to the con- w1 \vhite noise correlations:

tinuum description of the Navier-Stokes equation.

We will also follow the historical precedent of the Navier- FE DN =AS: =) S(t—t'
Stokes [6] equation by deriving our continuum, long- (H(rOfi(r.e)) o= )
wavelength description of the floakot by explicitly coarse
graining the microscopic dynamids very difficult proce-
dure in practicg but, rather, by writing down the most gen-

eral continuum equations of motion forand p consistent _

. . . Po-
with the symmetries and conservation laws of the problem. "the final equatior(2.8) is just conservation of bird num-

This approach allows us to bury our ignorance in a few pheper (we do not allow our birds to reproduce or die “on the
nomenological paramete(s.g., the viscosity in the Navier- wing”).

Stokes equationwhose numerical values will depend on the Symmetry allows any of the phenomenological coeffi-
detailed microscopic rules of individual bird motion. What cients\;, a, o, B8, D; in Egs.(2.6) and(2.7) to be func-

terms can be present in the EOM’s, however, should depentclllonS of the squared ma nitucﬂélz of the velocity. and of
only on symmetries and conservation laws, arad on the d 9 Y

microscopic rules. the densityp as well.

To reduce the complexity of our equations of motion still
further, we will perform a spatial-temporal gradient expan- IIl. THE BROKEN SYMMETRY STATE

sion, and keep only the lowest-order terms in gradients and \ye are mainly interested in the symmetry broken phase,
time derivatives oy and p. This is motivated and justified specifically in whether fluctuations around the symmetry
by our desire to considesnly the long-distance, long-time broken ground state destroy(is in the analogous phase of
properties of the flock. Higher-order terms in the gradientthe 2DXY mode). For a>0, we can write the velocity field
expansion are “irrelevant”: they can lead fmite “renor- asljzvo)“(HJrg;, Wherev0§(||=<5> is the spontaneous aver-

malization” of the phenomenological parameters of thea e value ofg in the ordered phase. We will choo
long-wavelength theory, bugannotchange the type of scal- gé vau vl P ' Wi %%

(2.9

whereA is a constant, andj denote Cartesian components.
Finally, P is the pressure, which tends to maintain the local

number densityp(F) at its mean valuepy, and Sp=p

ing of the allowed terms =/al B (which should be thought of as an implicit condition
With this lengthy preamble in mind, we now write down ONvg, sincea and B can, in general, depend ¢n|®); with
the equations of motion: this choice, the equation of motion for the fluctuatiéw of
V| is

90 +N1(0-V)o+No(V-0)o+ A3V (0|2 ;
w A1 (v-V)u+Aao(V-0)v+ A3V ([v]%) d16v|=— 019 0p—2ady|t+irrelevant terms. (3.1)
- - 2_) — > > -
—av— —VP+DgV(V-
av = Blv[*v sV(V-v) Note now that if we are interested in “hydrodynamic”

+D:V20+D,(v- V)2 +1, (2.6) modes, by which we mean modes for which frequency
—0 as wave vectog—0, we can, in the hydrodynamic
% (w,9—0) limit, neglectd, v relative toadv| in Eq. (3.1).
P=P(p)=2, on(p—po)", (2.7 The resultant equation can trivially be solved far:
n=1
; 5UH: - Dpo"H(Sp, (3.2
p N
E%—V'(vp):o, (2.8)  where we have defined another diffusion constans

=g, /2a. Inserting Eq.(3.2) in the equations of motion for

whereg, Dg, D,, andD+ are all positive, andv<0 in the v, anddp, we obtain, neglecting “irrelevant” terms:
disordered phase an@d>0 in the ordered statén mean- . . ... ..

field theory. The origin of the various terms is as follows:  dw. +ydpL+A1(v -V )v, +No(Vi v )v,

the\ terms on the left-hand side of E(.6) are the analogs

of the usual convective derivative of the coarse-grained ve- =—V.P+DgV (V. -v,)+ DTVfUNL DllaﬁvﬁrfL '
locity field v in the Navier-Stokes equation. Here the ab- 3.3
sence of Galilean invariance allows @iifeecombinations of

one spatial gradient and two velocities that transform like  dép s - = s 2
vectors; if Galilean invariancelid hold, it would force, T“LPOVL'ULJFVL'(UL p)+vod|6p=D 3] ép,
=MN3=0 and\;=1. However, Galilean invariance doast (3.9

hold, and so all three coefficients are nonzero phenomeno-
logical parameters whose nonuniversal values are detewhereD,, Dg, Dy, andD =D+ Dzvé are the diffusion
mined by the microscopic rules. Theand 8 terms simply ~ constants, and we have defined
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3.9

The pressurd® continues to be given, as it always will, by
Eq. (2.7).

From this point forward, we will treat the phenomenologi-
cal parametera;, y, and D; appearing in Eqs(3.3) and

’}/E)\lvo.

(3.4) as constants, since they depend, in our original model

(2.6), only on the scalar quantitiels|?> and p(r), whose

fluctuations in the broken symmetry state away from their

mean values 3 andp, are small. Furthermore, these fluctua-
tions lead only to “irrelevant” terms in the equations of
motion.
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[—i(0—yq)+T(D]or(q,0)=fr(qe), 4.1

[—i(0—yq)+T (@ ]v +i010, Sp=FL(q,w),

It should be emphasized here that, once nonlinear fluctua-

tion effects are included, the, in Eq. (3.4) will notbe given
by the “mean” velocity of the birds, in the sense of

Zivi]
N

(v)= (3.6

whereN is the number of birds. This is because, in our con-

tinuum language,

_[p(ru(rndin| _ [(pv)l

) {Jp(r,H)dr) ~ {p) 37
while vg in Eq. (3.5 is
vo=|(v(r,1))]. (3.8

Oncep fluctuates, so thgi=(p)+ Sp, the “mean” velocity
of the birds

(pv)| _|{e)w) |, (3pv)
w1 el

which only =vo=|(v)| if the correlation function(spv)
=0, which it will not, in general. For instance, one could
easily imagine that denser regions of the flock might mov

faster, in which casédpv) would be positive alongv).
Thus,(v) measured in a simulation by simply averaging the
speed of all birds, as in E¢3.6), will not be equal tavg in

Eq. (3.5). Indeed, we can think of no simple way to measure
vg, and so chose instead to think of it as an additional phe

(v)= (3.9

nomenological parameter in the broken symmetry state equa-

tions of motion(3.3). It should, in simulations and experi-
ments, be determined by fitting the correlation functions w
will calculate in the next section. One shouldt expect it to
be given by(v) as defined in Eq(3.7).

Similar considerations apply toy: it should also be

thought of as an independent, phenomenological parameter,

not necessarily determined by the mean velocity and nonlin
ear parametex, through Eq.(3.5).

IV. LINEARIZED THEORY OF THE BROKEN
SYMMETRY STATE

As a first step towards understanding the implications of

these equations of motion, we linearize therrﬁip and Sp
=p—py. Doing this, and Fourier transforming in space and
time, we obtain the linear equations

4.2
[—i(w—voa) +T,(q)18p+ipoq v, =0, (4.3
.where
(G0 = LD 4.4
aq.
and
. . . qu
01(0,0) =0, (q,0)— —— (4.5
°N

are the longitudinal and transver&e (L) pieces of the ve-
locity, f+(q,») andf,(q,®) are the analogous pieces of the

Fourier-transformed random ford¢q,w), and we have de-
fined wave-vector-dependent transverse, longitudinal, and
dampingsl’, 7 ,:

I'(9)=D. 9’ +D|qf, (4.6)
I'1(q)=D+aZ +Dyaf, 4.7
I',(a)=D,qf, (4.9

where we have defineB, =D++Dg, q, =|q, |.

Note that ind=2, the transverse veIocitﬁT does not
exist: no vector can be perpendiculartoth the x; axis and
ﬁi in two dimensions. This leads to many important simpli-
fications ind=2, as we will see later; these simplifications
make it(barely possible to geexactexponents ird=2 for

She full, nonlinear problem.

The normal modes of these equations dre2 purely
diffusive transverse modes associated with all of which
have the same eigenfrequency

wr=yq—il'+(q)=yq—i(Dqf +Digf), (4.9

eand a pair of damped, propagating sound modes with com-

plex (in both senses of the wojcigenfrequencies

. U:(f)d) ; v:(ea)
+=C+ 0) - F 26.(0-)| F

. - aﬁ)
=c.(65)a—i(D.af+D,q?) ;C((;)

2\Yq
2 v:(gd)
v=ba) | 4.1
P 2¢5(6;) o

where 6; is the angle betweeﬁ and the direction of flock
motion (i.e., thex; axis),
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The linear equation$.1)—(4.3) are easily solved for the

C+(‘9q)_ T Ceog fg) = c2(6g), (41D fields 8p, 7, andu, in terms of the random forces:
v (6g)== 7_2v°cos( 05)+ Col05), (4.12 v1(9,0)=Grr(q,0)fr(q,0), (4.19
1 0L(9,0) =G (4,0)fL(0,0)+G,(d,0)f,(d,),
Co( )= \/ (7y—v0)?coS( 85) + 5 sir(6;), ? ? (4.15
(4.13
and co=+\/o1po. A polar plot of this highly anisotropic 9p(Q,0) =G, (q,0)f (q,0)+G,,(q,0)f,(q,0),
sound speed is given in Fig. 2. We remind the reader that (4.16
here and hereafter, we only keep the leading-order terms in
the long-wavelength limit, i.e., for smadj; andq, . where the propagators are
1
Grr= (4.17

—i(0—yq)+Tr(@)’

i(w—vo0)—T,(q)

o _ . ) — _ . (4.18
[o—c.(d9allw—c_(8)al+io[TL(@)+T ()] -iglvol (@) + T ,(a)]

6 - ' |0’1Qj — _ — (4.19
[o—c.(69)al[w—c_(99)al+iw[I' (@) +T,(@)]=iglool () +T',(a)]

G, - : : - |Pon — _ — (4.20
[o—c. (09 al[w—c_(83)al+io[IL(q)+T ,(a)]—iglvol'L(@)+yT,(q)]

i(0—ya)—T(q) (4.2

G,,= : . . —.
P [o—ci(8galle—c_(6)a]+iw[TL(q)+T ()] —ig[velL(a)+ T ,(q)]

In writing the definitions of the propagato(d.14—(4.16), we have introduced a fictitious fordg in the p equation of
motion (4.3). Of course, this force is, in fact, zero; but the propaga@yg and G, nonetheless prove useful in the
perturbative treatment of the nonlinear corrections to this linear theory, so we have in€judere.

Given the expression@.14—(4.21) for the velocity and density in terms of the random fofceand the autocorrelation
(2.9 of that random force, it is straightforward to calculate the correlations of the densities and velocities. We find

Ij qw <U (— q,—w)v qv‘”))
1L

- - - - - TN . P -
=Gr1(0,0)Grr(= 0~ 0)(fr(q,0)f1,(= 0, ) +GL(q,0)GL(~ 0, ~ ) q2J (fu@,0)fL(-0,~w))
L

=Cr1(0,®)Pj(a) +C(q,0)Li(q), 4.22
where
L L
Lij(q)= gJ , (4.23
L
P (q)=6;— L5 (q) (4.24

are longitudinal and transverse projection operators that project any vector perpenditdérttee flock motionand (1 ,

. A
Cr(q,w)= = (4.25
(@)= ya)2+T%(q)
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and

_ A(w—vo0))?
[w—c.(09)a1 0—c_(65)q12+{o[TL (@) +T (D ]—alvel (@) + T ()]}?

CLi(g,0) (4.26

The transverse and longitudinal correlation functions E425 and(4.26) are plotted as functions of for fixed q in Fig.
6. Note that they have weight in entirely different regions of freque@sy: is peaked ato= yq, while C, | has two peaks,
at w=c-(6;)q. Since all three peaks have widths of ordér there is little overlap between the transverse and the longitu-
dinal peaks a$q|— 0.

The density-density correlation function

Apgd?
C,p= 5 5 = = = = (4.27
[o—ci(69)a]Tw—c_(05)a]"+H{w[TL(a)+T () ]=aglvol'L(a)+ T (a) ]}
|
looks almost identical taC,, , especially when one notes . y—v0)2 q 2
that near the frequencies=c. (6;)q where both peak, the F(g;x,y)= \/( T) 2(— +1, (430
numerator of Eq(4.26) {=[ci(05)q—v0q”]z}, differs from 0 .
that of Eq. (4.27) only by a |q|-independent factor of ) ) y—vo| q
[c-(63)d—voa1%/ poo1a . A-(Qik,y)=2F(Ax,y) +| )Kq—, (4.3
Given these Fourier-transformed correlation functions, it 0 +
is straightforward, and instructive, to Fourier transform bac
to real time. In particular, it is simple to calculate the spa-
tially Fourier-transformed equal-time velocity correlation v
function: K= —2 (4.32
VO1P0
(vi(ﬁ,t)vj(—d,t»: piij(ﬁ)fw d_wCTT((j,w) The second equality in Eq4.29 is obtained from the first
— 21T simply by canceling common factors oflpoqi out of the
= de numerator and denominator of various terms.
+|—ﬁ(Q)J 5-Cu(q.0) Note, and this will prove to be crucial later, tha{(q)
- dependonly on q, diffusion constants, and the dimension-
AlPi(@) . L@ 1 lessratios x and y/vy. This last fact is essential for our
=5 L ) — = |t —, renormalization-group scaling analysis, as we will show
I'+(q) i) d later.
(4.28 The 1/9? divergence of Eq(4.28 as|q|—0 reflects the

enormous long-wavelength fluctuations in this system.

where the second integral over frequency has been evaluated These fluctuations predicted by the linearized theory are
in the limit of |&|—>0, so thatc(ed)q>l“Locq2, and the fac- strong enough to destroy long-ranged orded#2. To see

tor $(q) dependonly on the directiord| of g, not its mag- this, calculate the mean-squared fluctuations ifr,t) at a

nitude, and is given by the sadly complicated expression 9iven pointr, and timet. T*his is simply the integral of the
trace of Eq.(4.28 over allq:

- 1 [ [c.(05)a—voqy]? ddq
= e g 2\ > _ > _
N Gl (9 a—vot + L6 (G)a— ayIT, /T, {ou(r.0) >—f—d<zw> (vi(a.nvi(=a.~)
N [c-(65)a—voq]® A f dlg [ (d-2)
c_(8g)d—voq+[c-(65)g—yq Il /T, 2| ) (2m)% Drg? +Dyqf
| AL(G.x,7) ) .33
F(dk,7)| AL (d k7)) —A_(d, k)T ,(@/TL(G) D.q?+D,q?/ |’ '
2/ 3 -
b A*((i""y) _ § 1 (429  The lastintegral clearly diverges in the infrared|(-0) for
A_(9,x,7)=A(d,xk, YT, ()/TL(q) d=<2. The divergence in the ultraviolelg| — ) for d=2 is

not a concern, since we do not expect our theory to apply for
where we have defined |(§| larger than the inverse of a microscopic lengsiich as
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In the next section, we will show that this prediction is
invalidated by nonlinear effects, and, in fact, much of the
scaling of correlation functions and propagators is changed
from that predicted by the linearized theory in spatial dimen-
sionsd=4.

j

/

V. NONLINEAR EFFECTS AND BREAKDOWN OF
LINEAR HYDRODYNAMICS IN THE BROKEN
SYMMETRY STATE

A. Scaling analysis

In this section we analyze the effect of the nonlinearities
in Egs.(3.3) and(3.4) on the long length and time behavior
of the system, for spatial dimensiods<4. We will rescale

lengths, time, and the fieIdEsL and p according to

cq 19, cq

FIG. 6. Plot ofC,,(q, ) andCy(g,») Vs w for identical fixed

d. Note the smallness of the overlap between the transverse and
longitudinal peaks.

>ZL—>b>_<l, XH—>ngH, t—b%,

. . (5.
v,—bXv,, JSp—DbXdp,

the interaction range’,). Presumably, at larger wave num- choosing the scaling exponents to keep the diffusion con-

bers, the correlation function falls off fast enough that thestantsDB'T,p,H, and the strengtiA of the noise fixed. The

wave-vector integral in E¢4.33 converges in the ultravio- reason for choosing to keep these particular parameters fixed

let. rather than, e.gg 4, is that these parameters completely de-
Indeed, we will in subsequent calculations mimic the ef-termine the size of the equal time fluctuations in the linear-

fect of this putative more rapid decay of correlationg@s ized theory, as can be seen from E¢.33. Under the res-

— oo with a sharp ultraviolet cutoff. We will restrict integrals calings (5.1), the diffusion constants rescale according to

over wave vectors to hypercylindrical shell with lofgery ~ Dg 1—b* ?Dg 1 andD,, ;—b?* %D, ; hence, to keep them

long) axis along the direction of flock motiox : fixed, we must choose=2 and{=1. The rescaling of the
. random forcef can then be obtained from the form of thé
g, [<A, —oo=sg=ow (4.34  correlations Eq(2.9) and is, for this choice of and¢,

with the ultraviolet cutoffA of order the inverse of a micro- f—b 17 d2f, (5.2

scopic lengthle. g.,/).
Obviously, this is quite an arbitrary choice of ultraviolet To maintain the balance betweémnd the linear terms iﬁL
cutoff, and any result that depends on the precise form of thith Eq. (3.3), we must rescale the velocity field according to

cutoff will not be accurately calculated by this prescription. R )

However,universal long-wavelength properties of the flock v, —bXu, (5.3

should be unaffected by the precise choice of cutoff, and itis

on those properties that we will focus our attention. with
The infrared divergence in E¢4.33 for d<2 cannot be

dismissed so easily, since our hydrodynamic theory should

get better asq|— 0. Indeed, in the absence of nonlinear ef-which is the roughness exponent for the linearized model.

fects, this divergenc;e is real, anq signifies the destructi'on 0f’hat is, we expec5 , fluctuations on length scaleto scale
long-ranged _O“’_er in the Im_eanz_ed model t_)y fluc_tuatlons,"ke LX. Therefore, the linearized hydrodynamic equations,
even for 6..I’bltl‘al‘|'|y S”".'a” noisd, in spatlal' dlmens[onsl neglecting the nonlinear convective term and the nonlineari-
<2, and in particularin d=2, where the integral in Eq. . ~. . - . .

(4.28 diverges logarithmically in the infrared. This is so gilsjr']g(tl?lfePl_ff)szlgrf,_l)r;p]jgrtginglt\:\fgg?:%?: gkr)%vs//ewgc;gts ]
since, if(|v, |?) is arbitrarily Iarge even for arbitrarily small ;o fory becomes positive. T\hus this linearized theoEy pre-
A, our original assumption that can be written as a mean dicts the loss of long-range order éh=2, as we saw in Sec.
value (v) plus asmall fluctuationv, is clearly mistaken; 1V by explicitly evaluating the real space fluctuations.

indeed, the divergence af, suggests that the velocity can  Making the rescalings as described in E@sl), the equa-
swing throughall possible directions, implying thgr)=0  tion of motion(3.3) becomes
for d=2. - - IO - . -

In d=2, this result is very reminiscent of the familiar w1 +b™ydp +b™[Nq(v, -V )v, +Xa(V v v, ]
Mermin-Wagner-HohenberdMWH) theorem [5], which oo
states that @n gquilibrigm, a spontanequsly.broke.n continuous - _ Vl( E b, (Sp)"
symmetry is impossible ird=2 spatial dimensions, pre- n=1
cisely because of the type of logarithmic divergence of fluc- 5~ P
tuations that we have just found here. +DViv, +Dydfv + 1, (5.9

y=1—d/2, (5.4

+DgV,(V,-v))
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with
Y =x+1=2-d/2, (5.6)
Yo=2-{=1, (5.7)

and
ynzz—X+nX—1=n+(1—n)g. (5.8

The scaling exponeny, for p is given byy,= x, since the
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.. diqdw . - .
vD(r,t):f ————v,(q,0)e @, (5.9
> (2m)
d%qdw -
UJ_< r )= j ﬁlﬂ(q )€ (@r- ©  (5.10

where [ denotes a wave-vector integral restricted to a hy-
percylindrical shelb A <|q, |<A, whereA is an ultravio-
let cutoff, andf  likewise denotes an integral over the inte-
rior of this shell: |q,|<b *A. 8p and f, are likewise
separated.

(2) Average the EOM over the short wavelength fields

v,-, 8p-, andf- to get new, effective EOM for the long-

(Eensity fluctuations’p are comparable in magnitude to the wavelength fie|d$-,l< andsp , with “intermediate” renor-
v, fluctuations. To see this, note that the eigenmode of thenalized parameter®' , etc. This average is performed per-

linearized equations of motion that involvép is a sound
mode, with dispersion relatiom=c-.(6;)q. Inserting this
into the Fourier transform of the continuity equati4),
we see tha6p~ﬁl~v1 /g, . The magnitude otﬁL drops out
of the right-hand side of this expression; hedgescales like
lv,| at long distances. Therefore, we will choogg=x=
1-d/2.

The first two of these scaling exponents for the nonlin-

earities to become positive as the spatial dimensids de-

turbatively in the nonlinearities in the EOM. The
perturbation theory can be represented graphically; the inter-
ested reader is referred to the previously mentiojédor
further details on the mechanics of this.

(3) We now rescale the time, space, and the fields in the
EOM according to Eq(5.1) in order to restore the original
ultraviolet cutoff A of the problem. We will choose rescaling
exponentg, ¢, andy to produce fixed points.

Of course, the exponents are, in fact, completely arbitrary.

creased arey, and y,, which both become positive fat W_e need not ch(_)ose them to p_roduce fixed points. However,
o - =~ S s - it is very convenient to do so, since, as we will show in more

<4, indicating that theky(v, -V)v, Ao(Vi-vi)vi, and  gegail jater, the values of, ¢, and y thatdo produce fixed

a2V (3p?) nonlinearities are all relevant perturbations for points are exactly the values of the physical observable time,

d<4. So, ford<4, the linearized hydrodynamics will break anisotropy, and roughness exponents that characterize the

down. scaling properties of various correlation functions.

What can we say about the behavior of E(%3) and Performing this RG procedure, we find the following re-
(3.4) for d<<4, when the linearized hydrodynamics no longercyrsion relations:

holds? The standard approach for such problems is the dy-

namical renormalization group. In most cases, this approach dDg 1
is only practical near the upper critical dimensi@n our a7
cased.=4), and yields the anomalous exponents in an ex-

pansion ine=d.—d. This approach will obviously not be of d
much use in our problem id=2, where the ostensibly small ” L —[z-2¢+Gy,({g 1Dy,
parameter in this expansioe= 2. We will nonetheless un-

dertake this approach in Sec. V B, and show that, for unfor-

tunate technical reasons, we learn little even nead. For- On ”

tunately, as we show in Sec. VC, because of the various a7 Lzt (n=1Lx—1+Gr({gi)]on,
symmetries in Eq(3.3), we can obtain theexact scaling

exponents ird=2.

=[z-2+Gg1(9)]Dg 1, (5.11

(5.12
(5.13

d/ =(z=1)po, (5.14

B. Renormalization-group analysis,d<4

In this subsection, we analyze the effect of the relevant d\12,
nonlinearitiesk 1,\», anda, on the broken symmetry state d/
in spatial dimensiong<4.

Our tool is the dynamical renormalization gro(pr de-
tails, see, e.g., the excellent description in Forster, Nelson,
and Stepheifi6]). We will summarize the essential features
of this procedure here; readers interested in details are re-
ferred to[6].

We proceed through the iteration of the following 3 steps:

(1) We separate the fieldéL and dp, and the random

forcesf into short and long wavelength components, accord-
ing to

=[x— 1+Z+GlZp({gi})])\l,2pv (5.19

dA
g/ "[z-i-2x+1-d+Gy({ghla, (519

dUo

=(z={vo, (5.19

dy
VAR L (5.18
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where we have takebh=1+d/, d/'<1, to obtain differen- This particular correlation function is important because it
tial recursion relations, th€&'’s represent graphicdi.e., per-  gives us our best measure of the size of the velocity fluctua-
turbative corrections, and thég;}'s are a set of dimension- tions, and will ultimately determine whether or not these
less coupling constants involving ratios of powers of thefluctuations destroy the long-ranged orientational order of
dynamical parameters. We have also dropped “irrelevant’the flock (thereby driving its mean velocity to zero

terms in these recursion relations. The coupling constgnt Cij(a) is, of course, a function of the flock dynamical

is the coefficient of th?ﬁ'(ﬁ &p) nonlinearity in thep  parameterDg 1, D,, A, etc., as well as of]. Further-
equation of motion. This coupling constant is equal to 1, anqqre 4t smalf, it is difficult to calculate in spatial dimen-

must, up to trivial rescaling corrections, remain equal 10 15, g4 due to the nonlinear terms, for the reasons dis-

upan renormalization. This i.s a simplg consequence of th@,ssed above. So let us follow this renormalization-group
fact that mass conservation éxact that is, the equation of . - 0 0
matching procedure to rela;;(q;{B;}) where{B;} de-

motion for p mustremain the simple continuity equation . 0 :
ap+V-(pv)=0, except for the trivial changes introduced notes the set of dynamical parametBig, Djf, A, etc. in
tP puI =~ P 9 the unrenormalized model, to the same correlation function

by rescallng. This |mpllgs th@ﬂ({gi})._o’ exactly for all in the renormalized model, a renormalization group tihe
{gi}. We will later use this fact to obtain exact values for the ...

scaling exponentg, z, and{ in d=2. It is worth noting that
v is treated as an independent variable here, only its bare

\(/glg)e is related to the bare valuesXof andv through Eq. C”(ﬁl ) ;{Bio})

Although there is nosymmetry argument forbidding :e<2x+§+d—1)/cij[e/ciL ,ez/qH ABi{()}M,
renormalization ofv, and y, simple power counting shows
that there are noelevantgraphical corrections to them; this (5.20

is why no graphical corrections appear in E@s17), (5.18.

e eroned carler e escaln expOTEN, A10L ohere thl (1) cencte th renormalize parameters
Y- P P y In the discussion that follows, we will first consider the

fgst?:gllij;atlZzal)rﬁgmsert]rg?cvii.lInglv ﬁ:’ethg::]r":g;?'scﬁx%f q case @/ A)<(d, /A)¢. At the conclusion of the discussion
g exp P " of this special case, we will briefly indicate how the general

Eﬁgégi@ie';g\ﬂl’(gfﬁ B*\XI i;n?h?s‘"ggggg’o\ge t\rﬁveljlrg?avt?o;z case can be treated to obtain the scaling laws quoted in the
: : : Introduction. For the caseqf/A)<(q,/A)*, we will

(5.13 and(5.14 show thato; andpg flow to infinity. i - . .
Which of the parameters, then, should we choose to kee@hoose/=/*(qL)= In(A/qL), where A 1S the ultraviolet

fixed? That is, which is mostonveniento keep fixed? The Ccutoff, on the right-hand side, and obtain

answer to this question is provided by the renormalization

group matching formalism. This approach enables one to use - 0

the renormalization group to relate correlation functions in Cij(aL.a;:{Bi})

the original, unrenormalized model at long distances and A\ 2xHird-1

large times to the same correlation functions in the renormal- :(_) A L-{B.[/ @)1 |.

ized system at shorter distances and times. The advantage of a. o (g, NI .

this approach is that long distance, large time correlation

functions are hard to calculate th<4, since, as we showed

from our earlier scaling argumeniiand can also verify from

the renormalization-group recursion relatigbsl)—(5.12],  Now, if the originalg, was small €A) andwe have chosen
these armoF accurately galculable from thg harmonic theory e rescaling exponenig ¢, andz so that the nonlinearities
developed in Sec. IV, since the nonlinearitles,, A,, and  \ (/) \,(/), \,(7), anda(#) on the right-hand side of

o, have very large effects at long distances. By mapping=q. (5.21) flow, as /—, to O(1) fixed point values
these correlation functions onto thosesdibort distances in (NY,,0%), thenhy(Z4), Ma(Z4), N (7). and (/)
2p 1 ~ %] %/ p\“ % /1 %

the renormalized equations of motion, we circumvent th|sCan be replaced by those fixed point values, sifigawill be

problem. Clearly, th_ere IS a.cave_at here: even "’}t short d'Si'arge. Because those fixed point values are, by assumption,
tances, the correlation functions in the renormalized modeb(l) then, up taO(1) correction factors coming from these

canonly be calculated accurately in the harmonic thediry ,njinearities, the right-hand side of B&.21) can be evalu-
the nonlinear couplings in that renormalized model are not,

. i . ; ted in the h i imation Ed4.22, (4.25, and
too big. This suggests that tlnvenientchoice of the res- ed in the harmonic approximation Eqg.22, (4.29, an

. . - >~ (4.26. [The correction factors are only @(1)—i.e., not
caling exponenty, z, and{ is that which keeps the nonlin- divergent—because the right-hand side of E§.21 is
earities\1 5, N, ando, fixed.

Let us illustrate these considerations explicitly for Oneevaluated at _Iargm(|_qL|=A), where the infrared d"’e.r' .
very important correlation function: the equal time spatiallygences associated with the strong relevance of the nonlineari-

Fourier-transformed velocity-velocity autocorrelation func- ties do not matter. It is preciselyecauseof those infrared
tion: divergences that we coulibt evaluate the left-hand side of

(5.21) directly, but rather were forced to go through this
R ) ) seemingly circuitou®R G matching formalisn. Making that
Cij(@)=(vi(q,t)vj(—q,t)). (5.19 harmonic approximation on the right-hand side, we obtain

(5.21
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q) on/, :exd(z—¢)/,], as can be seen from their recursion
il A A ")} relationy, and the combination
(9. /A)
= A Pﬁ(fh) k(4 )— (5.26
D} A+ Dff [qy/(q, /A (qu/A)A
N A, By combining the recursion relatior(6.17), (5.13, and
D’CAZﬂLDﬁ‘[qH/(Ch INGE (5.14) into a recursion relation fok:
qH _ d In Uo 1d _
X ¢ A,(q NG {Bi(Z)} L (aL), d/(InK) 7~ 3a7,INo1tnpy)=1-¢
L (5.27
(5.22
_we find
where we have used the fact that we have chosen the scaling
exponents to maka and all the diffusion coefficientsD;} ()= 07 o (5.29

flow to fixed pointsA*, {D}. We wish to show that this

expression depends (ﬁn only through the scaling rati®  \yhich implies that

EqH/(ql/A)g. The first(transversgterm in Eq.(5.22 ex-

plicitly has this property. The secon@dongitudinal term 1-¢

would also, except for the factor, to which we now turn. k(£ )=rKo(€ ) = Ko<_) : (5.29
From Eq.(4.29 for ¢, we see that to calculate this factor we q

must calculate

.
(q

Using this in Eq.(5.26), we see that the combination
q
L IA)¢ q qu

;{Bi(/'*)}>
A(q /A o

(/) (5.30

2
_\/ HOD=oo AP 5 i
B 2vo(Z) (7) A( L/A)z ' takes onpreciselythe value it would take on using then-

renormalizedparameters and thenrescaledvave vectorﬁ.

(5.23 Hence, the same is true Bf A., andB. . And, therefore,
the same is true op(q).
A+(A B AB;(/ *)}) Thus, we can replac¢(A,qH/(ql/A)g;{Bi(/*)}) in Eq.
(a,/A)¢ (5.22 with ¢(q;{B?’}), its unrenormalized value straight
q from the linearized theory. Doing so, and recallinqthat the
= iF(A TCRING ABi(7& )}> unrenormalizeds(q) wasO(1) for all directionsq of g, we
see from Eq(5.22) that the correlation functio@;; is largest
NS )( q) ) when
200(7 %) LA IA)E q ¢
I (AL
(5.24 K”(X) : (5.30)
and - . N
For|g|< A, where our theory applies, E(.31) implies that
q) qi>dq, (since¢<1). In thatlimit, ¢(q)—1; using this in
B.| A, 2ABiI(74)5 the expressios.22 for C;; in the renormalized system, and
(qu/A) using Eq.(5.22 in turn in our expressiotb.2]) for Cj; in the
a original model, we obtain, fog>q, , the scaling law
=+ R
_F(A( L/A)g{ 1% *)}) e
Cy(d) =, PrHdre by, (q”—) (5.32
[¥(7 ) —vo(74)] /) q (a, IA)*
20070 T Adg )¢ o
Note that the rangej>q, for which this scaling law
(5.29 holds includes thosaﬁ 's which dominate the fluctations,
all of which are clearly dependennly on the fixed point namely, those W't[ql\/Az(quA)g'
value of the ratioy(/, )/ve(/,) (which is just a number of ~ IntegratingC;;(q) over all g gives the equal-time, root-

O(1) sincey(/,) andvy(/,) have the same dependence mean-squared real-space quctuatloerf
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. ddq . scaling law(1.8). This directly and simply relates the RG to
<|Ul(rvt)|2>:JWCii(q) physically observable correlation functions, so this is the
choice we will make.
d9-1q, - (qy/A) A scaling law similar to Eq(5.32 can be derived, by
=J—d ext *f’l)J il —— precisely the same type of arguments, for the equal-time
(2) (a./A) density-density correlation function:
dd—qu
:Af 2x+d—1’ (5.33 R ( a1/
qr C,(q)= f Y(6:), (5.3
D=l (| Y(%0). (5.3

where the final proportionality was obtained by scalipg

out of the q integral via the change of variableg  where, in writing this relation, we have used the fact that the
=AQ|(q, /A)* and we have defined the, -independent  «roghness” exponent fop, x,=x. the “roughness” ex-
constantA= [dQ; f;;(Q)) A2X**<. The final integral in Eq. ponent forg . g
(5.33 clearly converges in the infraredgf |—0) limit if The alert reader will have noticed that neither of the scal-
and only if y<0. Furthermore, ify is >0, and we impose an  ing laws (5.32) and (5.38 derived so far involves the time
infrared cutoff|q, |[>L_* in Eq. (5.33, whereL, is the rescaling exponent. This is unsurprising, since we have
lateral (i.e., L direction spatial extent of the system, we considered only equal-time correlation functions up to now.
easily obtain To fully study the dynamics of the model, we need to
consider correlations between differdgimhes as well as po-
<|5l(5,t)|2>=C’LfX. (5.39 sitions. Thesedifferent time correlation functions will in-
volve z.

Indeed, the connected real-space, equal-time, velocity au- |t is easiest to work with the spaemd timeFourier trans-
tocorrelation function discussed in the Introduction is giveng, Cij(a’w), defined by

by
Cc(R)=(u(r+R,t)-v(r,t))—|(v(r,t))|? (vi(q,0)vj(—q,0"))=8(w+0')Cij(q,0). (5.39

=(u (TR0, (1)) We will find, as we have asserted many times already in
ddq . this paper, thalCij(ci,w_) does not have a simple scaling

= J’ ——C;(q)edR form, unlike the equal-time correlations. Nonetheless we can
(2m)" derive an expression for it in terms of functionscbfhatdo
dq (qu/A) show simple scaling behavior, namely, eﬁectiv% wave-

:f qi<2x+d+€1>f“(—> vector-dependent diffusion constants that divergecgsw
(2m)° (q, /A)* —0.

We begin this derivation by separati; into its trans-

i(a, R +ajR)) >
et . (539 yerse and longitudinal parts:

Making the changes of variable - N - N .
A Cij(9,0)=Lj;CL(q,0) + Pj;C+(q, ®), (5.40
- Q Q

R MR

5389 where Li=diaj/q? and Pj=38;—Lj—8& ) are, re-

spectively, the longitudinal and transverse projection opera-
we obtain the scaling lawl.8) for C.(R) quoted in the In-  tOrS defined in Sec. IV. Both the transverse and longitudinal
troduction, with pieces CL,T(cﬁ,w) obey the same renormalization-group
transformation

[ e Q|
fu(U)=fdd lQLdeii<a)

i CL,T(&L el -w?{Bio})

xel(QRQUQTxdtil (539 =Btz irdmlre, 1(efq, e gy.e” wi{Bi(/)}),
. . — 5.4
This shows that thg we obtain from the renormalization (549
group by the prescription we have chosen—namely, makin
thi_spgcifig set of para_melteli}r;BYTY”H A, )\Il'zp, arllndaz flow
to fixed points—is precisely the physical roughness expone .
defined by the velocity fluctuations. the exponential in Eq5.41). L _
To summarizeif we chose the rescaling exponegtsz As for the equal-time correlation function, it is convenient
and ¢ so as to make the particular subset of the dynamicahere to choose the rescaling facufrsu*ch thae’q, is right
parameter®g 1 ,, A, N\12,, ando, flow to nonzero fixed on the Brillouin zone boundary; i.ee/|q,|=A. Making this
points, thenthose y and { are the ones that appear in the choice, and taking\ =1, we obtain

%vhere we have been careful to take into account the rescaling
f the delta function in Eq5.39 in deriving the argument of
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Co (4, .qy,@;{B}) with the sound frequencies. (q; y,po.{B;}) obtained in the
harmonic theory:
_ _ ~ () o :
:ql (2x+z+¢+d l)CL,T a ,—gl’—z,{B'(/*)}),
L L >
+ VY ’ B
Y+ vo
where, on the right-hand side, we have defined =% 4d cosbq
1 —v()q CoSH; |2
. =In(T> . (5.43 + \/(% +01pe0? Sinf,
la. |
— 2
For the moment, let us focus on the longitudinal piece _(rfuo)ay \/((7 vo)q + 100’
CL(ﬁ,w). As we argued for the equal-time correlation func- 2 2
tion, here too we can evaluate the right-hand side in the (5.47
harmonic approximation, Eq4.26). This gives
Cu(dy .y, wi{B%}) F Dt £ D q)z 58
/=D +Df| —| , 5.4
A, Lo—vo(/)aa FJ2q; Brszerd D R ¥
= 5 ,
(5.44 ar\
s = | L
where F”(/*)_D”<qf) , (5.49
2 2
e , L
D_[ L_Z_M(/*)l LZ w(/*)l andD{', D} , andA, are the fixed point values @, , Dy,
N - and A, to which those parameters will have flown fot,
® , , large, as it will be for smalty, .
| S| [T )+ T ()] —vo(7 %) The complication of this expression—that is, the fact that
L stops it from having a simple scaling form—is that the pa-
/) 2 rametersy(/,), o1(/,), andpy(/,) that appear implicitly
x| T (/) + Y X" T (/ i in (5.44 do not flow to field point values for our “canoni-
L( *) / p( *) ¢ )
vo(/ %) qi cal” choice of y, z, and{, as discussed earlier. Physically,

(5.45 this reflects the fact that the scaling of the sospgedy w
«(q) is different from that of their damping&amping rate
q «q?2 in harmonic theory; we will show damping rateds)’
/ V= | ( here, in a moment
@x(74) wi(ql 'qf’7(/*)’p0(/*)’{8'(/*)})' To proceed, it is first useful to reorganize E.44)
(5.46 slightly; by multiplying numerator and denominator qﬁz,

Cu(dy gy @i{B})
_ A,Lo—vo(/)gyat JPa 2
[o—afw, (7)1 To=alo (/) P+ [0 [T(7/)+T (/)] [0o /)T )+ ¥(7OT (£ ) Jaga 1P

(5.50
Next, we solve the recursion relations fe(/, ), o.(/,), andpg(<,):
oo/ ) =€ 9 rug(/ =0)=v(0)gf ?, (551
Y/ )= y(/=0)=¥(0)qf %, (5.52
a1(/) =€ P 0y (/=0)=01(0)q; %, (553

po( /) =D 5 po(/=0)=po(0)ai "7, (554
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where in the second equality in each equation we have ﬂ'§edln(1/|ﬁi|). Using these results and the expressih46
and(5.47) for w.(/,), we see thatz and{ drop out of the combinations

1 ] (0)=v0(0) a )
§[y<0>+vo<0>]§7qi & \/(%%qg :

L L

1 0)—vo(0)]q;|*
= S(y+oo)g \/ (w) +01(0)po(0)q?

= w.[d,,9;7(0),v0(0),01(0),p(0)] (5.59

and therefore thpositionsof the peaks in the full correlation functigqs.50 are exactly those given by the harmonic theory
using the bare parametess(0), vo(0), y(0), andpg(0), namely,wi[d;y(O),vo(O),ol(O),po(O)]. This is a direct conse-
guence of the fact that there are fielevan} graphical renormalizations of the parameteyso,, andpg) that determine the
sound speedsee the recursion relatiofs.14—(5.17)] and shows that the relevant nonlinearities betbw4 donotalter the
positionsof the peaks in the spatiotemporally Fourier-transformed velocity-velocity autocorrelations.

The same cannot, however, be said for their widths. Indeed, using the above result for the sound speeds=aq8 Bgd.

(5.49, we see thaC,(q,») can be rewritten:

QP (/)= +04(0)pg(0)g2 72

- A Lo—vo(0)ql2q 72
[w—c, (051 w—c_(85)q1?+{w[TT(q) +T @)1 alve(0)T(a) + y(O) TR 1}’

CL(q,0) (5.5

where the sound speeds are given by the harmonic resutiscussed earlier, cannot be determined without knowing the
equation(4.11), and the renormalized dampings fixed-point valuesD}" of the diffusion constants. However,
regardless of their values, we still get a scaling law with the
same power of], and the same scalingariable q|/qf as
that found earlier in the opposite limit.

In between these two limits we have to choaosg to
) smoothly interpolate between the two limits. This choice will

z z q
QLEquL<_§|) , (5657

a1
q | q
A H
qT) qi=qifp(q7

L L

-

2
Ii(q)= +D}

q
Dﬁ* —
a1

I'%(q)=D} (558 clearly depend on the ratip /qf . Naively, one could imag-

ine simply choosing”, =In[min(1/q, ,O(l)/qﬁ’g)]. A sub-

tler choice would take into account tf@(1) perturbative
orrections we have neglected, and would presumably lead
0 a smooth crossover of, between the two limits.

The moral of this discussion is threefold:

obey simple scaling laws.

The exact form of the scaling laws that we have obtaine
here(namely, e.g.f (q;/q;)=[Dj (q;/qf)?+ D} 1), is not
correct, because our choice &f, =In(1/q,) is only valid
wheng? >qj . In the opposite limig{ <q, the fluctuations (1) We always get scaling laws of the for(§.57) for the
become negligible in the renormalized problem onﬁtngﬁ dampings.
becomes>DgA? in the renormalized problem, because at (2) The renormalized damping functions and the noise
this point the linearized approximation to the correlationstrength are always of such a form that they depemigt on
functions is smaller than its Iargest value at the Bri”OUinq‘ for qH>q£, and On|y onq, in the Opposite limit.
zone boundary. This means we can now stop the renormal-" (3) we can only calculate the scaling function if we know
ization at/, such thae’ g, =AXDg/D{}, which implies  the diffusion constants at the fixed point.
that 7, =In(1/q)/{+ O(1), where theO(1) factor isuni-
versal because it depends only on the fixed point values offhis last point will stop us from calculating the crossover
the diffusion constants. Performing the above calculationsunctions ind=2, even though, as we will see, wan cal-

with this choice of/, , we now obtain culate the exponents there.
) We see from Eq(5.57) that the physical significance of
- qr q the exponent is that it gives the scaling of the peak widths
R — * x| z/¢ =qnZ b o
T't(q)=| D +b¢ qlzlz) g xO(1) qifL(qi)' (in w) of C (q,w) with q, , while the peakpositionscon-

(5.59 tinue to obey the 2=1" scaling wq.

Similar, but actually far simpler, arguments show that the
where we have now defined (q;/qf)=[Df (q,/af)?*  transverse correlation functid®(g,») obeys
+D} (af/gp)? #¢]x0O(1). Note that the precise form of
this scaling function is different in this regime from that ) fA(qH/qg)qz—g—zxﬂ—d
found earlier forqj>q|‘. Furthermore, its exact form is un- C+(g,w)= = lz = (5.60
certain, due to our uncertainty in ti@(1) factor, which, as (w—=yq)+T(aq)




4846 JOHN TONER AND YUHAI TU PRE 58

whereI'+(q) obeys the scaling law We hope the reader has not been too confused by the fact
that we have restored the ultraviolet cutaff~1//, to the
. q problem by going back to dimensionful units wheke 1.
Fr(q)=qffr o) (5.6 This completes our discussion of how the renormalization
1L

group, and, in particular, the exponentsy, and{, relate to
physically observable correlation functions and propagators.

andf, is a scaling function associated with For general )
. . Now, we turn to the problem of actually calculating those
values ofqg, andq;, the same scaling functiofy, should exponents

also be present in all of the other correlation functions as
well (whereverA appeary such as Eq(5.56 for the longi- .
tudinal correlation function. C. Exponents ind=2

Likewise, the propagators of the full nonlinear theory are  To do this, we must calculate the graphical corrections in
given, ind<4, by the harmonic expression4.18—(4.21),  Egs. (5.11)—(5.16. The procedure for this, as discussed in
excepthatI' , I',, andI' in those expressions are replaced[6] involves the harmonic correlation functions and propaga-
by the anharmonic scaling law5.57), (5.58), and(5.61). tors and vertices representing the nonlinearitigs, and

To complete the specification of the scaling laws, we needr,. Rather than actually calculating these corrections, we
the asymptotic behavior of the scaling functidns_ r ,(u).  will show that, when\,=0, the structure of the theory is
From Egs.(5.57), (5.58, and the analogous result for Eq. such that we can determine the exponeptsz, and{ ex-
(5.61), and requiring that the second point of our tripartite actly.

moral applies, we see that Consider first thex; nonlinearity. Separating, into

transverse and longitudinal components,

const, u—0
W gz e 502 bi=urto, (569
and this can be written as
const, u—0 0, V)0, =(0r-V,)o SR VAR SR v RN
Vv = Vot (v Vo + (v Vo),
fL,T,p(u)OC[uZ/g' s, (5.63 L ) i ) 1 1
t(v-Vvur. (5.70
which implies that )
, c Now consider the graphs that can be constructed fogm
T (a)o( . q<al (5.64) —JT, the cross terms in this expression. These will always
L T.e qﬁ’g, q>qf . ' mix transverse and longitude propagators and correlation

functions in the internal integrals over momentum and fre-
The simplest summary of the scalingalf correlation func-  quency. But, as noted earlier in our discussion of the har-
tions and propagators is as follows: simply use the harmonignonic theory, the peaks in the longitudinal propagators and
expressions for themgxceptthat diffusion constant®rg,  correlation functions occur at different frequencig¢e
should be replaced by wave-vector-dependent quantities tha_lwi(a)] than those in the transverse propagators and cor-

diverge axg— 0, according to the scaling law relation function, which occur ato=0. Furthermore, the
overlap between these peaks is negligible, since their widths
b - g2 (q/A) (@* with z>1) are much less than this offset in peak po-
e =aL e, (q, IA)¢ sitions. This implies that the integral over wave vectors and
frequencies of any graph that mixes transverse and longitu-
the bare noise strength should be replaced by dinal propagators and correlation functions will be much less
(by powers ofg) than any similar graph containing purely
. q\?f2tind (qy/A) transverse or purely longitudinal propagators and correlation
A(q):A*(K) fa (q, /A (560 functions. Hence, the, — v cross terms in Eq(5.70 are
irrelevant compared to the putg andvy terms.
and the diffusion constar?| should be replaced by Now let us consider those relevant pieces. The Fourier

transform of thev piece at wave vectag can be written in

), (5.69

> _ (q/A) Fourier space:
Dy(q) =g *f (— 5.6
i@=ai =f) ERING (5.67
as can be seen by requiring that FT[(UT'VL)UTJ&:I% or(P)(A. ~P)vT (G P)
2
] q gt o (G
Dy(q)af=Df; q_é‘J 92 (5.69 |qJEF; vr(Plor(@=p), (5.7
1

the right-hand side being the form of thig-dependent term Where we have used the fact thay is transverse, so
in Eq. (5.57). p, -vt(p)=0. So this piece of thi; vertex, which is a term
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P to two independengxactscaling relations between the three
independent exponentg, z, and {. RequiringdDj ,/d/
=0 implies

z=2¢{, (5.79

P while requiringdA/d/ =0 leads to

FIG. 7. Feynmann graph renormalizing the noise correlations
Y grep g 7={+2x+d—1. (5.75

when \,=0. There is a factor of the external momentdm |

=(, associated with each vertex; hence this graph does not renO{/-V . .
malize A, but, rather, only change®(q?) pieces of thef —f cor- e emphasize that we have only shown that these relations

relation function. (5.74 and (5.75 hold when\,=0.
We can obtain a third independent exact scaling relation

i th ion f - . ional h | between these three exponents, and thereby determine them
in the equation foww;(q,t), is proportional to the externa exactly, when\,=0, by considering the renormalization of

momentumg, . So is the purely longitudinal term, as can the nonlinearities\, \,, anda,.

easily be seen in real space. Sim?qeis longitudinal, we can We start deriving this third relation by noting that when
write A,=0 and\;=\,=N\, there can b&o graphical renormal-
ization of 1. This is because for these parameter values the
> e equations of motior§3.3) and(3.4) have an exact symmetry
v =V, ¢ (5.72

that we call pseudo-Galilean invariance: namely, they remain

] ] unchanged under the “boost” transformation:
for some scalar fields. Now the second term in Ed5.70

can be rewritten in terms ap: r,—r, —\opt (5.79
1 ’ .

(vL-V)oLi=(9;0)(9;0i)=(9;$)(0;) =3 1(d; 3 p), v, (rt)—o, (1) +op, (5.77
(5.73
o o ) where the “boost” velocityu, is an arbitrary constant vector
which is clearly %total derivative, whose Fourier transformin the | plane.
is proportional toq, . This symmetry must be preserved upon renormalization
Hence, the twaelevantpieces of thex; vertex are pro-  with the samevalue ofA. Hence, there can be no graphical
portional to the external momentum, . Clearly, theo,  renormalization ofx, when\;=\,. That is,G}=0 when
term, being a total derivative, is also proportional @, in ~ M1=\,. SinceG,=0 always, it is clear that, ik ;<\, ini-
Fourier space. Hence, whap=0, all the remaining relevant tially, it will always remain so upon renormalization.
vertices are proportional t(iL . An immediate consequence This implies that, _for flocks that sta_rt_ with b"’?"i less
of this is thatA andD| acquire no graphical renormalization. than_the barex, (which should be a f|n|t_e fraction of_all.
For A, this can be seen by noting that any graph that renorpos‘s,ible EOCk}S only th types of fixed points are possible:
malizesA (e.g., Fig. 7 must contain two external vertices, () A=A, =0 or(I) x5 #0. _ _
each proportional ta, , and hence must be proportional to ' e first type of fixed pointl), however, is readily seen
g . Therefore all renormalizations af must be propor- o be unstable ta,,, which must always be nonzetand, in

. . - ) fact, =1) initially. Hence, this fixed point is never reached,
tional tog? , and hence negligible, ag|—0, relative to the ) y y

Lo © A and we must flow to a fixed point of type Il. To see that fixed
bareA. Likewise, any graph for the diffusion constants mustpointS of type | arainstable note that for such a fixed point,

be proportional to Fig. 8, which must be proportional to atihe gnly remaining relevant nonlinearityds . But, by itself,
least one power of), . SinceD| andD, involve no powers 4, cannotrenormalizeany of the diffusion constant®g and
of CL , they cannotbe renormalized graphically. D;. The reason for this is that any grafdg., Fig. 8 that
Thus, whem\,=0, A, D,, andD get no graphical renor- renormalizesany diffusion constant must have an external
malization. That is,G|, G,, and G, in Egs. (5.12 and velocity leg emerging from the right. However, using only
(5.16 are, exactly,=0. Thus, the requirement that, D, the o, vertex, whichonly involves p, we canonly make
andD,, flow to fixed points @Dy ,/d/)=0=dA/d/ leads graphs with g leg emerging from the right. Therefore, at a
fixed point of type 1,Gg =0, exactly, in Eq(5.11). Thus, to
- find a fixed point forDg 1, we must choosg=2. Combin-
P ing this with the previous exact scaling relatiof®ss74) and
~ (5.79, we find{=1 andy=1-d/2. But using these values
q\ (which are nothing but those that we found in the harmonic
theory), we find thath , is a relevant perturbation at any fixed
point of type I:

L & g
FIG. 8. Feynmann graph for diffusion constants. Wher=0,

this graph is proportional to at least one powefaf/=q,, and, so, L Wl BN (5.79
cannot renormaliz® or D, . dl P ’
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for all spatial dimensionsl<4. Note that(5.78 is exactat  so that the full v, nonlinearity becomes(\i+\,)

. . - )\'_ ~
any fixed point of type |, sinc&,=0, exactly. , X d,(v2)x, which is just what we would get if we started
So fixed points of type | are unstable, and we will alwaysWith a (primed model with\,=0 and\]=\;+\,. This
flow to a fixed point of type Il. Using the recursion relation later model. since it ha)s’—Oz must haV(le thel“cazn-onical”
N __ . . ’ — Y,
(5.19 for ).\P’ and*the fact thatQp—O always, We_lmmed|- exponents(5.80—(5.81) aznd, hence, so must the\{,\A,)
ately obtain than, can be#0 if and only if a third exact ,n4e| which includes all possibte=2 models. So all mod-
scaling relation is satisfied, namely, els in d=2 must have the canonical exponer&80—
Y=1-z. 79 (582

Equivalently, we can derive this result by simply noting

The three relationg5.74), (5.75, and(5.79 that hold when  that, in d=2, the full v, —v, vertex becomes;(\;
X,=0 can be solved trivially, to find the exact scaling expo-+A2)x(v), Which is a totalx derivative even when,

nents in alld<4 that describe flocks with ,=0: #0. Furthermore, thed=2 model now has the pseudo-
Galilean invariance(5.76 and (5.77) when N;+X,=\,,.
d+1 These two propertiesv( —v, vertex totalx derivative, and
~ g5 (5.80 pseudo-Galilean invariance at a special poare all that we
used to derive the “canonical” exponef$.80—(5.82); so
2(d+1) those canonical exponentsusthold in d=2. Settingd=2
z= 5 (5.81) in Egs.(5.80—(5.82, we obtain
and =%, (5.80
3- 2 z=¢, (5.87
X=—5 - (5.82 )
X= "5 (5.89

Note that these match continuously, at the upper critical di;
mensiond=4, onto their harmonic values=1, z=2, and
x=1-d/2= -1, as they should.
If A$2*>\P" then, besides the two cases that we dis-g
cmissed albove, there may be a third type of fixed palit)  gc4jing results for correlation functionsdr=2 quoted in the
A, =0,A7 #0. _ . Introduction. Note also that for this set of exponents{
For this type of fixed point to be stable, the exponepts 2, 4+ 1—-d=0. Hence, from Eq(5.66, we see that the
andz have to safisfy noise strengthA is a constant, independent (if which
x+z<1. (5.83 makes sense sinck is unrenormalized graphi(_:ally. So,_ in
the d=2 model, we can calculate all correlation functions
The above inequality, together with E¢5.74 and Eq. from their harmonic expressions, except that we repIaEe the
(5.79, give Egs.(5.80, (5.81), and(5.82 with the = signs  diffusion constantdDg 1, with functions that diverge ag
replaced by<. For simplicity, we will only discuss the cases —0 according to the scaling laws
with A§*°<\B%®, where the exponents are given by Egs. @)
gy )

Note, in particular, thag<<0. This implies, as discussed ear-
lier, that the flock exhibits true long-ranged order.

Using the exponent&.86—(5.88 in the general scaling
ations, such as Eq.31) and(5.33), we obtain all of the

(5.80, (5.81), and(5.82. However, all the qualitative results D 415

will be valid for case Ill, e.g., the spontaneous symmetry 5 (@) =0, s (q, /A)3"
broken phase will be more stable in case lll if it is stable in

case Il because of the inequality. The simplest possible scavhere we have used the exatt2 exponentgz=2 and ¢
nario is that there is only one stable fixed point, regardless of 2 in the general scaling law5.65. Dy, on the other
whether)\Bare<)\Bareor not, and that it is type Il, and has the hand, are, likeA, constants, since=2{ [see general equa-
canonlcal exponentss 80—(5.82. We consider it highly tion (5.12)], which also makes sense sindg,, are unrenor-
probable that this is, in fact, the case. Even if it is not, Eqsmalized graphically. Hence, the only replacement needed to
(5.80—(5.82 do hold for some flocks(those with )\Bafe turn the harmonic results into the correct results for the full,

(5.89

>)\lar€) nonlinear theory id=2 is Eq.(5.89.
Our derivation of these result6.80—-(5.82 depended
only on the assumption that; =0. Note, however, that in D. d>2

d=2, any flock is equivalent to a flock with,=0. This is Now we turn tod>2. Here the canonical exponents need
because the\; and A, vertices become identical id=2, ot hoig if A% 0. The obvious thing to do, therefore, is to
wherev, has only one component, which we will take to be getermine whether a small, is a relevant or irrelevant per-
x. Thatis, ind=2, turbation at the\,=0 fixed point. We have attempted to do
. . . this to leading(one-loop order in a 4- € expansion. This
N0V )0, =N X0, dwy=3N10x(00)X, (584 involves calculating the perturbative correctiofs , and
o A A ng in the recursion relationé.15—(5.13 to one-loop or-
No(V1 -0 )01 = NoX(dxv,)ux=3h20x(v5)X  (5.85  der, and to linear order iN,. Once this is done, we can find
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a fixed point with \,=0, and then calculate the linear = We should emphasize thatl flocks will be described by

renormalization-group eigenvalue af, at this fixed point. only one of the three possibilities enumerated abGwe,

That is, we will expand the right hand side of the recursionone cannot have different possibilities realized in different

relation(5.15 for A, to linear order in\,, obtaining flocks). Unfortunately, we have no idea which of the above
possibilitiesis realized for 2<d<4.

d\,
T =72h2 (5.90
dl VI. ANISOTROPIC MODEL
for N\y=\1, \,=\}, 0,=0%, and\, small. If y, is <0, Not all flocks, of course, are equally likely to move in any

then the\ ,=0 fixed point is(at least locally stable, and the direction in the space they occupy. Flocks of birds, for in-
canonical exponent$.80—(5.82 will hold for all d. Unfor-  stance, although they occupyds=3 dimensional volume
tunately, an(extremely laboriouscalculation(involving 14  (the aip, are far more likely to move horizontally than ver-
different Feynmann graphshows, after many seemingly tically. This is presumably because gravity breaks the rota-
miraculous and unexpected cancellations between differeritonal symmetry between the horizontal plane and vertical
graphs, thaG}, G;, andG,,, areexactlyzero to one loop  directions.

order. This implies that One can imagine a variety of “microscopic” rules, like
the Vicsek rule described earlier, that would exhibit such
x+1—2z=0(€?) (5.99 anisotropy. For example, one could apply a “Vicsek” rule in

three dimensions, selecting thereby a vedtorinstead of

and that, to this order at least; ,, and o, can take orny  gying along that vector, however, one could instead move
value at the fixed point. That is, to this order, there appears tQIong a vector “compressed” along son® axis

be a fixed “line” [actually, a fixed four-dimensional sub-

space k1,\2,\,,05)], instead of a single fixed point. This,

unfortunately, eliminates all of our predictive power for the
exponents. For example, keepibyg fixed leads to

n'=snz+n, , (6.2)

with s<1 andn, =n—n,z. This will tend to promote mo-
z—2{=—G|(A1,\2,\,,07). (5.92 t@on in thex—y. plane at the expense of motion i_n_ thd_irec—
tion. Alternatively, one could project all velocities into the
Our earlier arguments show th&; vanishes if\, does; x-y plane, apply a Vicsek rule to thefwhile still sampling
however, to this ordex; can be anything; hence, so c@p, neighbors in three dimensionsind then add to thisy move
and so we getho information abou and/ from this relation ~ a random decorrelated step in thelirection[10].
at all. Likewise the recursion relation far leads to For technical reasons that will, we hope, become obvious,
we will focus our attention on systems that, whatever their
z—{—2x+1-d=—Gu(A3,\1,N,,02)  (5.99  spatial dimensiom, have an easplane of motion; i.e., two
) ) ) ) o ) components of velocity that ametrinsically favored over the
with the right-hand side again vanishinghif=0, but taking  gtherd—2. We will also assume perfect isotropgthin this
on any value you like i, can be anything, as it can, to this plane and within the d—2 dimensional “hard” subspace.
order. The case of birds flying horizontally correspondsite 3.

So what actually happens for<al<4? Unfortunately, A natural extension of our fully isotropic modd&OM) to
from our one-loop calculation, we cannot say, but can onlyhis case is

enumerate the possibilities:

Possibility I At higher order,\, proves to be irrelevant, AN D -V o+ NA(V - D)o+ NV (|52
and flows to zero at the fixed point. In this case, the canoni- WA (0 V)o+Ao(V-0)v+AaV (o))
_cal exponent$5.80—(5.82 will hold, for all flocks, in alld =—VP(p)+av—Blv|%— Savy+DgV(V-v)
in the range 2 d<4.

Possibility I: d\,/d/=0 to all orders(i.e., exactly. In +DVZ+DIVEu+Dy(v- V2o +f. (6.2

this case, there is a fixed linéor, more generally,D-

dimensional subspace wilh=1) with exponents that vary Mass conservation, of course, still applies:

as continuous functions of,, which can take on any value.

Hence, the exponentg, z, and{ will be continuously vari- dp+V-(pv)=0 (6.3
able functions of the parameters in the ordered phase. This

behavior is somewhat reminiscent of that of the 2 equi' and the pressur@(p) will still be given by the same expan-
librium X—Y model, although here it is occurring for an sjon in sp=p—p,

entire range of spatial dimensiork2 <4, and, furthermore,

is not associated in any way with the absence of true long- *
ranged orientational order, since such order is actually P(p)= > on(op)". (6.9
present in our model. n=1

Possibility Ill: d\,/d/>0 at higher order, and the or- . .
dered phase is controlled by a nem} #0 fixed point. In  In Eq.(6.2), vy denotes thel—2 “hard” components ob,
this case, the exponents will again be universal, but presuni-€., thoseorthogonalto thed=2 easy plane. Likewis&y;
ably, different from the canonical onés.80—(5.82. Unfor-  and V7 denote the operatorS2_,%/dx? and 9 ,%9x?,
tunately, we have no idea what they will be. respectively, wheré=1,2 are the “easy” Cartesian direc-
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tions, andi=3—d the “hard” ones. The term- Sa|v|?, dvy=—D, dyp, (6.10
da>0 suppresses these components of velocity relative to
those in the easy plane. vy=—D,uVup, (6.11)

Equation(6.2) is not, of course, the most general aniso-
tropic model we could write down. For instance, one couldwhere we have defined the diffusion constants
have anisotropy in the nonlinear terms: e.g., terms like
(ve-V)v, could have different coefficients thanov D,,= e 6.12
-ﬁ)JH. However, becauséH winds up being “massive,” 2a
in the sense of decaying to zero too rapidlg., nonhydro-
dynamically at long wavelengths and times to nonlinearly Dy=—
affect the hydrodynami¢long wavelength, long timebe- P Sa
havior of the flock(in its low-temperature phaseany addi-

tional terms in Eq(6.2) distinguishingv, anduv, will have

01

(6.13

and we have used the relatig6.4) for the pressure, and
dropped all but the leading order linear termsdp, since

no effect on the hydrodynamic behavior in the low- . :
“temperature” phase. That is, Eq6.2) already contains ir;lrgeTeevrapr)l?wers 0idp in Eqs.(6.10 and(6.1D prove to be

enough anisotropy to generate all possible relevant, symme- |, _. : :

try allowed terms in the broken symmetry state. Hence, qualézlr?gjhhset gggﬂggsg'm and(6.1D, and taking, for the

will keep things simple and not generalize Ef.2) further. '
As we did for the isotropic problem, we will now break

the symmetry of this model, i.e., look for solutions to the

form

v(N)=[vo+ vy (I ]y+u,(r,OXx+vy(rt) (6.19

we can write a closed system of equations #g¢r,t) and
v(r,t)={(v)+du(r,t). 65 Op(rb):

_ 2 2
Now, however, the direction of the mean velocity) 9Op+vodydp+ Ix(pux) =(D,pydy+DViy) dp, 6.1
[which we will choose as before, to be a static, spatially (6.19

uniform solution of the noiselessf(= 0) version of(6.2)] is A
not arbitrary, but must lie in the easy (1,2) plane. To see this i+ ydyvx+ Eax(vi) = — 0104(3p) — 7204 8p)*+ (D ;
let us, without loss of generality, write
. . +D 33+ DyVE) v+ 1y, (6.16
<U>:U0yy+l)022 (66)
A A where we have defined=\A;+\,, and y=\qvq, and
with vg, andv, constantsy in the easy plane armione of  dropped irrelevant terms.

the d—2 “hard” directions. To solve Eq(6.2) with f=0, Proceeding as we did in the isotropic model, we begin by

these must obey linearizing these equations, Fourier transforming them, and
determining their mode structure.

avgy— ﬂ(vgervfz)z)UOy: 0 (6.7) The result of the first two steps is the Fourier-transformed

equations of motion
and R R R
. [—i(@=voGy) +T,(@)]6p(0,) +idupovx(d,©) =0,
(a— 5a)UOZ_IB(v0y+UOz)UOZ:O- (6.8 (6.17

Subtracting vo,X (6.8) from vg,X (6.7 we obtain  [—j(w-— yqy)+rv(a)]vx(a,w)+igqugp(ﬁ'w):fx(a,w),
davoyvo,= 0, which implies that eithev, or vy, must be (6.18
zero. It is straightforward to show that the former solution is
unstablgwith two linear eigenvaluea>0) to smaIIJe fluc-
tuations, while the latter is stab{with d—2 linear eigenval-

where we have defined

et 2 2
- ) _ A _ . ‘
ues— Sa<0) tovy fluctuations, so the solution wittv) in Fo(@)=Dyyty+ Dpudi .19
the easy plane is the stable one. Furthermore, fluctuations in s 5 5
the “hard” directions are “massive,” in the sense of decay- I',(q)=Dyay+ Dnan + Dy - (6.20

ing rapidly to zero even at long wavelengths, and so can be Again as in the isotropic model, we first determine the
neglected in the low-temperature phdgest like v fluctua- . _ - i o
tions in the isotropic caseLikewise, if we take eigenfrequencies(q) of these equations, finding

Iy 6.9 0= (q)=C-(0G,¢g)d—ie-(q), (6.21)
fluctuations indvy=vy—vg, will also be massivéwith lin- where the sound speeds
gar.elgenvalue 2a). Eliminating the.massn./e f|elq&;y anq C.(0g,b5) = %(7+U0)0059dicz(0d:¢i) (6.22
vy in favor of the pressure, as we did fév | in the isotropic
case, gives with
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Ca 05, b5)= \/%( y—00)2c0S 05+ 01p SINF 0;C0S g, C,(0,0)=(8p(q,0)vx(— 0, — »))

(6.23 _Aayafo—voly—iT,(@)]

wheredj is the polar angle betweeiland they axis, andeg |Den(ﬁ,w)|2 . (6.30
is the azimuthal angle, measured relative to xhexis, i.e.,
the angle between thgrojection of ﬁ orthogonal toy, and and
the x axis.
A polar plot of this sound speed vers@gfor ¢;=0 [i.e., »
g in the “easy” (i.e., x-y) pland looks exactlylike that for C (Gw)= Apgax (6.31
the isotropic mode(Fig. 2). Indeed,any slice with fixed ¢ ppr |Den(q,w)|?’ '
looks qualitatively like that figure, although, ag;— /2
(i.e., asq, , the projection ofj orthogonal toy, approaches \yhere we have defined
orthogonality to thex axis), the sound velocity profile be-
comes two circles with their centers on thexis and both N
circles passing through the origin. Den(q,w)=[w—c.(63,¢q)al[w—C_(05,¢q)d]
The dampings. (q) in Eq. (6.21) are 0@?), and given - - > >
by Pingse-.(a) In Bq. (6.21) are 061, and g Hi{olT ()T, (6)]- ay[val, ()
+ 9T, ()1} (6.32
. c(65.99 - - Al
()= ——[T,(q)+T,(q)]
2¢5(04,9q) which, of course, implies
—Mr(*)_,_lr(*) (6.24) > 2 2 2
+202(05,¢5) o vg * D/ ' IDen(q,)|*=[w—Cc,(6;,07)a]Tw—Cc_(65,4¢4]
Note that, unlike the isotropic problem itt>2, here there Hol[T,(a)+T,(a)]—ay[vel,(a)
are no transverse modesany d we always have just two + 4T (a)]}z (6.33
p . .

longitudinal Goldstone modes associated withanduv, .

We can now again parallel our treatment of the isotropic
model and calculate the correlation functions and propagalhese horrific expressions actually look quite simple when
tors. The calculation is so similar that we will not repeat theplotted as a function of at fixedq; indeed, such a plot of

details, but merely quote the results: C,, looks precisely like the solid line in Fig. 6: two asym-
. . metrical peaks, centered at=c.(6;,¢q)d, with widths
G (G.w)= i(0—voqy) —T',(q) 6.25 €. (q)*q2.
vo(Gh @ Den(q,w) ' ' Note that, at this linear order, everythisgalesas it did

in the isotropic problem: peak positionsq, widths «q?,
and heights<1/q*.

- i
G,,(0,0)= L?X, (6.26 Continuing to blindly follow the path we trod for the iso-
Den(q, ) tropic problem, we can calculate the equal-time-v, cor-
) relation function:
> 1po0x
G W)= ———— 6.2
pold.) Den(q,w) (6.2 C. (=(v(a.Dv.(—0.t
(@) =(vx(a,)vx(—a,1))
. i(@=yay)=Ty(9) J do - A $(Q
G,,(q,0)= - , 6.2 =| —C,(qw)==—=>, (63
pp(0 @) Den.o) (6.28 57 Cw(Ae)=3 @) (6.34
_ 2 204 ~ ~ -
c (a,w): Alle voq{) +Fﬂ(q)], (6.29 where ¢(q) dependsonly on the directionq of g, and is
o |Den(q,)|? given by
|
. 1 [c:(6G,43)d—voay]?
#(a) s T

Co(0g,0q)a [ C1 (05, h5)d—vody+[Ci (b5, d5)a—Nwoay]T, /T,

. [c_(85.,0q)d—vody]?
C+( 0& ’ ¢d)q_v0qy+ [C—( 0& ’ d’vecq)q_ )\lquy]Fp/rv

(6.39
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These fluctuations again diverge likeqt/as|g|—0, just as x=1-z (6.41
in the isotropic problem. o ] )

This completes our abbreviated discussion of the linearWhose solution is easily found in all<<4:
ized theory of the anisotropic model. The most succinct sum-

mary of this linearized theory is that everything scales just as (=——, (6.42
it did in the isotropic problem. This implies that the nonlin- 7—d

earities[i.e., the\ and o, terms in the equations of motion

(6.15] become relevant in and below the same upper critical ,o 0 6.43
dimensiond,.=4 as in the isotropic problem. Fai<4, 7—d’ ‘
therefore, these nonlinearities will change the long-distance

behavior of the anisotropic model. We will now treat these 1-d

nonlinearities using renormalization-group arguments similar X=724" (6.49
to those we used for the isotropic modelds 2. Now, how-

ever, they will work for alld between 2 and 4. Note that these reduce to our isotropic resultslin2, as

Notice that all of the nonlinearities in E¢6.15 are total  they should, since the two models are identical there. They
x derivatives, just as in thé= 2 case for the isotropic prob- also reduce to the harmonic values 2, (=1, andy=—1,

lem. Now, however, this is true iall spatial dimensions, not in d=4, as they should, since 4 is the upper critical dimen-
just in d=2. (This, of course, is the reason we chose tosjon.

consider precisely two “soft” componenjsThus, we will In the physically interesting case df=3, we obtain:
now be able to derive exact exponents in this model for all
spatial dimensions. We will not go through the arguments in (=2, (6.495
detail, as they are virtually identical to those in the 2 case
for the isotropic model, but will simply quote the conclu- z=3, (6.46
sions:

(1) There areno graphical corrections tany of the diffu- X=—13. (6.47

sion constants in Eq6.15 exceptD,,.

(2) The stable fixed point that controls the ordered phasé\s in the isotropic case, we can use scaling arguments here
musthave)* #0 at least fox (0)<\ ,(0), which is a finite to show that the effect of the nonlinearities can be fully in-
fraction of all flocks, and corporated by simply replacinB, everywhere it appears in

(3) A and\, are not graphically renormalized. the linearized _expressions by the divergent, wave-vector-

Point one suggests that, in constructing our dynamicaflependent scaling form:
renormalization group for Eq6.15, we should scale thg
direction differently fromboth the y direction and thed — 2 D.(G) = g7 *f (ay/A) (an/A)
hard directions. Furthermore, sinbeth they directionand (@)= (G /A (g A)E
thed—2 hard directions are alike in having their associated g g
diffusion constants unrenormalized, we should scale thesBoing this leads to all of the scaling laws for this anisotropic
directions thesameway. Therefore, in our renormalization problem quoted in the Introduction.

group, we will rescale as follows:x—bx, (y,iH)

. (6.48

—>b£(y,)zH), t— b%. With these rescalings, the recursion re- VIl. TESTING THE THEORY IN SIMULATIONS

lations forD;, i#X, p, A, and\, become AND EXPERIMENTS
dD. In this section, we discuss how our theory can be tested in
—=(z-20)D; (i#X), (6.3  Simulations and direct observations of real flocks. The

dl “real” flocks may include, e.g., mechanical, self-propelled
“go carts” packed so densely that they align with their
neighbors[11], as well as aggregates of genuinely living
organisms.

We begin with a few suggestions about the best boundary
dn conditions and parameter values for simulations or experi-
d—l":(X+ z—1)\,. (6.39 ments, and then describe how the correlation functions and

scaling exponentg, z, and{ predicted by our theory can be
) ) measured. The most useful boundary conditions are “torus”
All three relations are exact, since none of these parametetnditions: that is, reflecting walls id—1 directions, and
experiences any graphical renormalization. As in the isotroperipdic boundary conditions in the remaining direction, call
pic case, we want all of these parameters to flow to f'XeJt) y (see Fig. 9. The advantage of these conditions is that one
points; this leads to three exact scaling relations between thg,owsa priori that, if the flock does spontaneously order, its

dA
o7 ~Lzm2x+(1=d)¢-1]A, (6.37

three exponentg, z, and{: mean velocity will necessarily be in the periodiy) direc-
tion.
z=2{, (6.39 It might be objected that imposing such anisotropic

boundary conditions breaks the rotation invariance our
z—2x+(1-d)¢=1, (6.40 model requires, but this is not, in fact, the case. A “bird”



PRE 58 FLOCKS, HERDS, AND SCHOOLS: A QUANTITATIVE ... 4853

___________
- -~
————
i Sw
- -~

el periodic iny .
l” \\\
{ A
1 ]
1\ ]
A [
. 7
\\ /"
S reflecting Pt
boundaries ‘x / / /
y - .
7 7T 7 7 7 7 7 FIG. 10. More practical “track” geometry for experiments on

real flocks. Data should only be taken from the cross-hatched region
FIG. 9. lllustration of the optimal boundary conditions for simu- centered on the middle of the “straightaway.”

lations and experiments to test our predictions. The top and bottom

walls are reflecting, while periodic boundary conditions apply at the . .
left and right walls(i.e., a bird that flies out to the right instantly M€an motion through boundary conditions may also be

reappears at the same height on the)léfhe mean direction of dreamed up by exp_erimentalists more _clever than we are.
spontaneous flock motion, if any occurs, is clearly forced to be We strongly caution anyone attempting to test our results,
horizontal by these boundary conditions. In spatial dimensibns however, that it i9only through boundary conditions that one

>2, one should choose reflecting boundary conditiond di-  may prepick the direction of mean motioknyapproach that
rections, _and periodic in t_he_renjalm_ng direction, thereby forcingprepicks this direction in the bulk of the flock, such as giving
(v) to point along that periodic direction. each bird a compass, letting them be blown by a wind, or run

downhill, or follow a chemical scent, etc., will lead to a
deep inside the box moves with no special direction pickegnodel outsidethe universality class of our isotropic model,
outa priori; it canonly find out about the breaking of rota- gsjnce the starting model does not have any rotation invari-
tion invariance on the boundary if the bulk of the flock spon-ance 1o be spontaneously brokéanless the anisotropy
taneously develops long-range order. This is precisely analqayes an “easy plane” in which all directions are equiva-

gous to the way one speaks of a ferromagnet ag inwhich case our anisotropic model of Sec. VI applies
spontaneously breaking a continuous symmetry even if IFndeed, such flocks of “birds with compasses” will be less

ord_ers m_the presence of ordereo! _boundary condmons_. S?r‘lteresting than the models we have studied here, since the
by imposing these boundary conditions, we know the d'rec“compass” will introduce a “mass” that makes any fluctua-

tion of the flock motion(the y direction in the simulation . ) - 4
and, therefore, have oriented the simulation axes with théIon away from the prepicked direction of flock motion decay
i ' rapidly (i.e., nonhydrodynamical)ywith time. In such a

axes used in our theoretical discussion; i.e.,|paxis equals S . . .
the simulation’s periodic direction. model, it is easy to shovy that t_he nonllnea_lrmes are irrel-

Alternative boundary conditions add the further complica-€Vant, and there are no interesting fluctuations left at long
tion of having to first determine the direction of mean flock distances and times. . _
motion before calculating correlation functions. This compli- And now a few words about parameter choices. For defi-
cation is even worse for a finite flo¢ks any simulation must niteness, we will discuss in what follows the Vicsek model,
tread, since the mean direction of motion will wander, ex- Whose parameters avg=S/R,, whereSis the distance the
ecuting essentially a random walk that will explore the full birds travel on each time step aft} is the radius of the
circle in a time of ordef o= 27+N/A. Our results, which ~ circle of neighbors, the mean number dengigyin units of
assume @onstantdirection of flock motion, will only apply ~ 1/Rg whered is the dimension of the system, and the noise
for time scales<Tg. Even drifts of the mean flock di- strengthA, which is the mean squared angular error. Since
rection through angles<2# can cause problems, however, the interesting nonlinear effects in our model come from
since most of the interesting scaling behavior is concentratetrms proportional twZ, those effects will become impor-
in a narrow window of ang|e5|”~qf>ql; i.e., near the tant at shorter length scales in a faster moving flock. That is,
direction of mean flock motion. So this drift greatly compli- in, e.g., the Vicsek model, should we choose the dimension-
cates the experimental analysis, and is best avoided by usingss velocity as large as possibtmnsistentwith the flock
the toroidal boundary conditions just described. ordering. However, if we take, too big, i.e.,vy>1, then,

Of course, it is considerably harder to produce thesén each time step, each bird is likely to have a completely
boundary conditions in a real experiment. Ants walkingdifferent set of neighbors. It is difficult to see how order can
around a cylinder may come close, although gravity will al-develop in such a model. So, to takg as big as possible
ways break rotation invariance on a real cylinder. Perhapwithout violatingv,> 1, we should choose,~ 1. The simu-
the experiment could be done on the space shuttle, or with tions of Vicseket al.[1] took vy<1, and, hence, probably
rapidly spinning cylinder producing artificial gravity that never exploredin their finite flocks the long length scale
swamps real gravity, or by using neutrally buoyant organ+egime in which our nonlinear effects become important.
isms in a fluid. Alternatively, one could use a “track” such  Now to the mean densitp,, which is, of course, just
as that shown in Fig. 10, and take data only from the crossdetermined by the total number of birtisand the volumeé/
hatched region, chosen to be in the middle of the straighof the box viapyo=N/V. We clearly want this to be large
section of the track, far from the curves. enough that each bird usually finds some neighbors in its

Other, more ingenious ways to prepick the direction ofneighbor sphere: This means we waR3=0(1). How-
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ever, if we makep, too large, each bird has so many neigh-
bors that a simulation is considerably slowed down, since the
“direction picking” step of the Vicsek algorithm takes a
time proportional to the number of neighbdtsecause we =0
have got to average their directign3hus, for simulations,

one wishes to choosg, as small as possible, consistent,
again, with getting good order.

Finally, we consider the nois&. Here again, to see our
fluctuation effects, we wark as big as possible. However, if 7EEE - >
A is too big, the flock will not order. Furthermore, evenhif SEHER TS
is small enough that the flock does order, we want also to be B el g

1

o8 o TaSs
%S Ly
S 6
> @°

sure that we are well below the critical valde, of A at 0 ak Ans e w(t)
which the flock disorders. Otherwise, for distances smaller " s yteratnl s ?
than the correlation lengtlf associated with the order- ) g 057500

disorder transition, the scaling properties of the flock will be ettt

controlled by the fixed point that controls the order-disorder
transition,not the low-temperature fixed point we have stud-
ied here.

FIG. 11. lllustration of the experiment to measure the mean-
squared lateral wandering?(t). One labels all of the birds some
central stripgof width <L, the channel width and then measures

If this transition is continuous, as it appears to be in Vic—th i { thei disol st dicular 1
sek’s simulationg1], this correlation length diverges ds e evolution of their mean displacements(t) perpendicular to
the mean direction of motio(which mean direction is horizontal in

— A, . Thus, to observe scaling behavior we predict over a%is figure.
many decades of length scale as possible, we want to choose
A substantially less tha ., but as big as possible consis- .
tent with this(to maximize fluctuation effectsChoosingA >_<>-L(t)=>z*(0)+J’ J-L(t)dt 7.2
to be a little below the point at which the mean velodify) ! ' 0 '
starts to “saturate” seems like a fairly good compromise
between these two competing effects. Similar consideration\ﬁlherel;;(t) is the L velocity of theith bird at timet, the
apply for choosing the optimaly, anduvo, which we want 2 "\ i s given by ’
to be as small or big, respectively, as they can be without
substantially suppressing long-ranged order. The best . .
choices will probably lead to all three parametggs vy, Wz(t):J dt'J dt" (v (t')-vi(t"). (7.3
andA being, in suitably dimensionless uni9(1). 0 0

Having chosen the appropriate parameter values and
boundary conditions, what should an experimentalist oNow we need to relate the velocity of théh bird to the

simulator measure to test our theory? We have already c_“%iosition and time-dependent velocity field (r,t). This is
cussed a number of such measurements in the Introductlog'as”y done:

namely, the spatially Fourier-transformed equal-time and

spatiotemporally Fourier-transformed unequal time density-

density correlation function€p(q) and Cp(q,®), respec-

tively. Our predictions for these are given in E¢5.38 and .

(5.40. wherer,(t) is the position of thath bird at timet. This is
One additional correlation function that can be measuredgjiven by

quite easily is the mean-squaréateral displacement of a

bird: Fi()=r,(0) +utx)+ oxXI(t) X+ 8% (1), (7.9

v (=0, [ri(t),t] (7.4)

w2(t)=(|x" (1) —x(0)|?) (7.0 where

perpendicularto the mean direction of motion of the flock. _ 1 .
This can easily be measured as a function of time in a simu- = N’ 2 Ui
lation or experiment simply by labeling a setmbirds in a !
“strip” near the center of the channel with its long axis ) ) ) )
running parallel to the mean direction of bird motiésee IS the vglocnyaveraged over all .bll’d.SWhICh, as discussed
Fig. 11 and then following their subsequent motion. It is €arlier, isnot to be confused with the space averaged
best to center the strip in the channel so as to postpone tie|fv(r,t)d%| that appears in the expression for the sound
birds reaching the reflecting walls as long as possible. Oncspeeds .. (65). This distinction proves to berucial here, as
they do reach the walls, of course/’(t—=) saturates at we shall see in a moment. In E(Z.5), 5x‘i‘(t) and 5xﬁ(t)
~L?, L, being the width of the channel. We will deal in the reflect the motion of théth individual bird relative to the
following discussion with times much smaller than that re-mean motion of the flockat speed).

quired for a bird at the center of the channel to wander outto  Using Eq.(7.5), we see that the desired single bird auto-

its edge. Since the positiomziL of each bird obeys correlation function in Eq(7.3) is

(7.6
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(Ui (t) v () =(v {ri(0) +[ot’ + ox)(t) X
+ 8%, (1)t} v, [1i(0) +ut"+ 8%)(t")X;
+ 0%, (1"),t"])
=Co X (1) =X, (t"),v]t 1]
+ ox)(t") — oxy(t"),t" —t"], (7.7

whereC(Rt) is the real-space velocity field autocorrelation
function defined in the Introduction.
We assumgand will verify a posterior) that both 6x|
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Now, we need to distinguish two cases:

Case(1): 2x/¢>—1. In this case, which holds id=2,
wherey=— £ and/=2, the double integral over andt” is
dominated, fot>t,, the microscopic time scale, ky, t”,
and |t —t”"| of ordert>ty,. Hence, our calculation o€,
which used the hydrodynamice., long time limiting forms
of the correlation functionds correct, and Eq(7.13 holds.
Changing variables td'=t'/t and T"=t"/t, we see that

WZ(t)Mt2(1+X/{):t4/3, 2_X>_1,

(7.19

and 5x, are small enough compared to the average motiotthe last equality holding iml=2. Note that this behavior is

v_t>A<H that their effect on the velocity-velocity autocorrelation
in Eq. (7.7) is negligible. For now neglecting them, we see
that we are left with the task of evaluatir(gv(@:O,R”
=ot,t).

ExpressingC. in terms of its Fourier transform then gives

Co(R.=0R=vt,1)= f dd*l(hdquwei(W;q”t)Cii(ﬁ,w)-
(7.8

Using the fact thaC”(ﬁ,w) is peaked atv=c.(603)q with
widths that scale Iike:]jf[qH/O/(qi/o)g], the dominating
peak is atw=w_ for vy(0)>y(0) or atw=w, for vy(0)
<y(0), with heights that scale ag; °g[d;”o/(d,/0)*]
with 6=2x+z+(+d—1 [see Eq.(5.56]. Assuming that
vo(0)>vy(0), it is straightforward to show that, upon inte-
grating Eq.(7.8) over w, we obtain
I

This integral is dominated, &s-, by g~ (q,/0)*//
>q, ; hence,§;—0, and we get
|

We can scale the time dependence out of this integral wit
the change of variables

a1 o
(A.70)*

z—46
1

C.= J' ddf1qldq“ei[c_(ﬁd)q7;q|‘]tf - (
(7.9

q”o
(qL/6)§

z—46
1

Cc:f dd‘lqldqe“”"_”_)qtf(
(7.10

- Q
1=

N

Q|

Q=+ and

(7.10)

which give

Coxct?Xé, (7.12
Using this in Eq.(7.7) for the single bird velocity autocorre-
lation function, and then usintihat autocorrelation function
in the expressior{7.3) for the mean squared random walk
distance gives

t t
wz(t)ocfodt’fodt"|t’—t"|2X’4. (7.13

h

“hyperdiffusive”: the mean-squared displacement’(t)
grows faster than it would in a simple random walk; i.e.,
fasterthanlinearly with time t.

Case(2): 2x/{<—1. In this case, which certainly holds
for d>4 (where y=1-d/2<—-1 and {=1), the integral
overt” convergesas|t’' —t"|—c. Hence, that integral is, in
fact, dominated byt —t"|=0(ty), the microscopic time,
where our hydrodynamic result E(Z.12 is not valid. Pre-
sumably, the corredt’ —t"”|—0 limit of the single bird ve-
locity autocorrelation(7.3) is finite; and, hence, so the inte-
gral overt” in Eq. (7.13 approaches a finite limit as— .

Hence, we get

t . 2x
w2(t)ocf dt’ X (finite constanit, ?<—1.
0
(7.15

We now need only verify oua posterioriassumptions that
ox and 5x, were negligible in the velocity-velocity autocor-
relation Eq.(7.7).

First considepzL ; we have just shown that the root-mean-
squared|x, (t') =X, (t")]e|t’ —t"|**¥¢. From our scaling
expression (6.43, we see that C. (R, ,R,t)~C(R,
=0Ry 1) if RE<R|. In Eq.(7.7), we are interested iR,
x|t —t"|**X¢ and Ryx|t’ —t"|; hence, the conditiorR{
<Ry will be satisfied as|t’—t"|—% provided {+ y<1.
Since/<1 andy<O0 for all d=2, this condition is satisfied
for all d=2. For 6x; we need only show thaféx(t’)
ox(t")[<|t’ —t"| as|t’ —t"|—o. This is easily shown by
using the fact, alluded to earlier, thatz‘|(F,t), the fluctua-
tion of the velocityalongthe mean direction of motion, has
only short-ranged temporal correlations. Using this fact, it is
straightforward to show thadx(t) just executes a simple
random walk; that is,

VIdxy(t) = oxy(t") [P\t =t <t =t"]  (7.16
and hence these fluctuations are negligible as well.
Unfortunately, the analogous calculation for the aniso-
tropic model shows that this random “transverse walk” is
much less interesting: the mean-squared transverse displace-
ment in thex direction (the direction in the “easy place” of
the anisotropic model orthogonal to the mean direction of
motion, y) is given by an expression very similar to Eq.

(7.1
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t t ational time-dependent Ginsburg Landd@iDGL) model for
(Ixi(H)=x(0)[F)=w?(t)= Jodt' Ldt"@ix(t’)vix(t"» a spin system with the number of componentsf the spin
(7.17) equal to the dimensiod of the space those spins live in.
We have convinced ourselves by power counting #tat
and a calculation so closely analogous to that just given fothe transition, ford<<4, the\ vertices are aelevantpertur-
the isotropic model that we shall not bother to repeat it forbation to the Gaussian critical point. Whether they constitute
this case shows that a relevant perturbation to the 4e TDGL fixed point,
, " . em3—d— thereby changing its critical properties, can only be answered
(Ui vp(t)= |t =t . (7.18 by a full-blown dynamical renormalization group analysis.

As in our analysis of the isotropic case, here, too, the quesPbviously, a similar analysis could also be done for the an-
tion of whether “simple random walk” behaviofw?(t)  isotropic model.
«t] or “hyperdiffusive” behavior[w?(t)=t?,y>1] occurs (2) The shape and cohesion of an open flock, and its fluc-
hinges entirely on whether the exponent in E@.19 is tuations. We have thus far focused on flocks in closed or
greater or less thar 1, with hyperdiffusive behavior occur- periodic boundary conditions. Real flocks are usually sur-
ring in the former caséexponent>—1) and simple random rounded by open space. How do they stay together under
walk behavior in the latte(exponent<—1). Using our ex- these circumstances? What shape does the flock take? How
act result(6.43 for z in the anisotropic model for 2d<4, does this shape fluctuate, and is it stable? This issue is some-
we see that hyperdiffusive behavior will occur if what similar to the problems of the shapes of equilibrium
and growing crystalge.g., faceting, dendritic growth In
those problems, it was important to first understhnotk pro-
cesses(e.g., thermal diffusion in the case of dendritic
growth) before one could address surface questitng.,
which is satisfied Only fod<5/2. Uﬂfortunately, this condi- dendritic growth_ The nontrivial aspects of thbulk pro-
tion is not satisfied for eithed=3 or d=4. In d=2, the  cesses in flockée.g., anomalous diffusiorwill presumably
anisotropic model is the same as the isotropic model, whilgadically alter the shapes and their fluctuations.
for d>4,z=2 and 3-d—-2/z<-1. So in no case in which  (3) A somewhat related question is: What happens if birds
the anisotropic model is different from the isotropic one ismove at different speeds? By “move at different speeds,”
hyperdiffusive behavior observable; rather, we expectyve do not mean simply that at any instant, different birds
w(t)ect for all those cases. This negative prediction couldwill be moving at different speeds possibility already in-
be checked experimentally, although its confirmation, whilecluded in our “soft spin” dynamical model equatid@.6)].
a nontrivial check of our theory, would clearly be less excit-Rather, we mean a model in which some birds have a differ-
ing than verification of our hyperdiffusive predictiow’(t)  ent probability distribution of speeds than othet our
ot** for the isotropicd=2 model. model, this distribution of the speed of any given bird is the
Some of the numerical tests discussed in this section havsame over a sufficiently long time, and controlled by the
been carried out recently, and good agreement with our presalues of the parameters and 3, with largea and 8 lead-

s_q_2-272_ 7.1
E_T>_’ (7.19

diction has been reach¢d?2]. ing to a distribution sharply peaked around a mean speed
vo=+alB, while smalla and 8 lead to a broader distribu-
VIIl. FUTURE DIRECTIONS tion). More generally, one could imagine twWor many dif-

ferent species of birdgjabeled byk) all flying together,

In this paper, we have only scratched the surface of a vergach with different mean speedé. What would thebulk
deep and rich new subject. We have deliberately focused odynamics of such a flock be? Would there be large scale
the most limited possible question: what are the properties opatial segregation, with fast birds moving to the front of the
a flock far from its boundaries, and deep within its orderedflock, and slow birds moving to the back? If so, how would
state? Every move away from these restricting simplifica-such segregation affect the shape of the flock? Would it elon-
tions opens up new questions. To name a few that we hope @ate along the mean direction of motion? Would this elon-
address in the coming millennium: gation eventually split the flock into fast and slow moving

(1) The transition from the orderetimoving to disor-  flocks?
dered(stationary, on averag@hase of the flock. This canbe  (4) At the other extreme, one could consider flocks in
studied by analyzing thé@unstable fixed point at which the confined geometries; e.g., inside a circular reflecting wall in
renormalizede of our original model(2.6) is zero. The dy- d=2. In such a case, the time averaged velocity of the flock

namical RG analysis of this point would be technically simi- (5 (r t)), could not be spatially homogeneous but would
lar to the one we have presented here for the IOW'temperatU%ve to circulate around the center of the Circ'e; i_e_1

phase, with a few crucial difference&) All components of (6(F,t)>t=f(r)f9. The spatially inhomogeneous pattern of

v, not just theL components, become massless at the tranyelocity and density that resulted could be predicted by our
sition. (b) The fixed point will be isotropic, since no special continuum equations. This problem is potentially related to
directions are picked out b{w), since(v) still =0 atthe  the previous one, since one way a flock containing, say,
transition. (c) The B|v|?v term becomes another relevant somevery fast birds and othevery slow birds, could stay

vertex. We know, by power counting, that the transition, together would be for the fast birds to fly in circles inside the
this vertex becomes relevant ih=4. Indeed, if we ignore essentially stationary volume of space filled by the slow
the \ vertices, our model simply reduces to a purely relax-birds. It would be very interesting to make the connection
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between our continuum theory and the recently observed cidirect transitions between them and the stationary flock
cular motion of Dictyostelium cells in a confined geometry phase, and between each other, would also be of great inter-
[13]. est.

(5) One could relax the constraint on conservation of bird We should point out here that these models differ consid-
number, by allowing birds to be born, and die, “on the erably from recently considered models of moving flux lat-
wing.” Numerical studies of such models, which may betices [15] and transversely driven charge density waves
appropriate to bacteria colonies, where reproduction anfl15,16 in that here the direction of motion of the lattice is
death are rapid, as well as the migration of, e.g., huge herdsot picked out by an external driving force, but, rather, rep-
of caribou over thousands of miles and many months, haveesents a spontaneously broken continuous symmetry.
already been undertakéh4]; it should be straightforward to (7) Finally, we would like to study the problem of the
modify our equations by adding a source term to the birdgrowth of order in flocks. This is a phenomenon we have all
number conservation equation. seen every time we walk onto a field full of geese: eventu-

(6) Itis possible that phase transitions other than that fronally, our approach startles the geese, and they take off en
the moving to the nonmoving state occur in flocks. For ex-masse. Initially, they fly in random directions, but quickly
ample, in some preliminary simulations of microscopic mod-the flock orders, and flies away coherently. The dynamics of
els in which birds try to avoid getting too close to their this process is clearly in many ways similar to, e.g., the
neighbors, rather than merely following them, we have ob-growth of ferromagnetic order after a rapid quench from an
served(literally by eye what appears to be a “flying crys- initial high temperaturdl;>T,., the Curie temperature, to a
tal” phase of flocks: the birds appear to lock themselves ontdinal temperaturd ;< T, a problem that has long been stud-
the sites of a crystalline lattice, which then appears to movéed [17] and proven to be very rich and intriguing. In flocks,
coherently. It would be very interesting to test numericallywhere, as we have seen, even the dynamics oféhepletely
whether this optical appearance reflects true long-rangerderedstate isvery nontrivial, thegrowth of order seems
translational order, by looking for a nonzero expectationlikely to be even richer.

value of the translational order parameters. Even this list of potential future problems, representing,
- as it does, probably another ten years of research for several
pa(t)=(Z;e'® "/N), (8.1)  groups, clearly represents only a narrow selection of the pos-

_ ) ) sible directions in which this embryonic field can go. We
which will become nonzero in the thermodynaml-=)  haye not even mentioned, for example, the intriguing prob-
limit at a set of reciprocal lattice vectolS if such long-  lem of one-dimensional flocking, with its applications to traf-
ranged order actually develops. It will also betremelyin-  fic flow (and traffic jamy a topic clearly of interest. This
teresting to include the possibility of such long-ranged ordefroblem has recently been studighB] and found to also
in our analytic model, and study the interplay between thisshow a nontrivial phase transition between moving and non-
translational order and the anomalous hydrodynamics thahoving states.
we have found here for “fluid” flocks. Will anomalous hy-  We expect flocking to be a fascinating and fruitful topic
drodynamics suppress the “Mermin-Wagner” fluctuationsof research for biologists, computer scientists, and both ex-
of translational order, just as it does those ofientational  perimental and theoretical physicigts leastthesetwo) for
order, and lead to true long-ranggdnslationalorder, even  many years to come.
in d=2? Will the crystallization suppress orientational fluc-
tuations, and thereby slow down the anomalous diffusion ACKNOWLEDGMENTS
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