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Information capacity of a hierarchical neural network
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The information conveyed by a hierarchical attractor neural network is examined. The network “learns”
sets of correlated patterfihe examplesin the lowest level of the hierarchical tree and can categorize them at
the upper levels. A way to measure the nonextensive information content of the examples is formulated.
Curves showing the transition from a large retrieval information to a large categorization information behavior,
when the number of examples increase, are displayed. The conditions for the maximal information are given as
functions of the correlation between examples and the load of concepts. Numerical simulations support the
analytical results|S1063-651%98)06110-9

PACS numbsds): 87.10+e, 64.60.Cn, 02.56-r

I. INTRODUCTION information capacity in Sec. Ill, in Sec. IV we study some
special cases which present the transition from a retrieval
In the context of learning rules by perceptrons, generaliphase to a categorization phase. Finally we conclude with
zation by a neural network is the capability of correctly clas-some remarks in Sec. V.
sifying patterns after some examples are “taught” to the
network (see, e.g., Refl1]). For attractor neural networks, Il. MODEL
another type of generalization was suggested, the categoriza- i i .
tion, that emerges from an encoding stage where a hierarchi- Con5|deNr a network o binary neurons, with states
cal tree of patterns is stor¢]. The ability of the network to  {oir€ =1}, at timet. The neurons states are updated in
classify the patterns on a lower level of the trée., the Parallel according to the deterministic rule
examplepinto categories defined by their ancestfrs., the N
concepty, arises from the Hopfield model if the examples are _ _
correlated with their concepi8]. i1 SO ), h"t_i(;) Jij it @
A minimal numberS of examples for each concept is
necessary to start the categorization. An extensive number &fhereh; ; is the local field of neuron at timet. The ele-
concepts is then “learned” by memorizing finite sets of ex- ments of the Hebbian-like synaptic matrix between neurons
amples. This was shown for networks of binary neurons withandj are given by
fully connected4,5], diluted[6], or layered 7] architectures, S
and for analod8], ternary[9], and nonmonotoni€10] neu- % 2 wp up 5
rons, using Hebbian synapses. A similar behavior was found ~ < mon 2
for pseudoinverse synapsgkl]. Categorization is achieved
through the appearance of symmetric spurious states. Thiﬁhere{n{”’}le are theexamplesof the concepté?. The

ability to categorize starts just when the capacity of the netgoncepts are independent identically distributed random vari-
work recovering the original examples is lost, because of th@pjes(IIDRV's), {£#=+1}P_, , with equal probability.

. : , =1
interference generated by their correlations. In the encoding stage, the examples are built from the

As i_n most models for pattern rec_ognition, an ad_eq“at‘?:oncepts, according to the stochastic process
analysis of the memory capacity of this network requires the

tools of information theory. In the case of nonbiased inde- p(7|EM)=b (P — M)+ (1—b)8(| n**)?~ 1), (3)
pendent patterns, one can avoid it and measure the perfor-

mance through the Hamming distaridebetween the neuron whereb=(7/P¢") gives the correlation between the ances-
and the retrieved pattern, and the load capaeityOne sce-  tors(the conceptsand the descendan(thie examplesof this
nario, whereD and « are not enough to characterize the tree of patterns. The secombf this conditional distribution
system, is that of sparse coded pattdt®. Another is that gives the component of the examples which is independent

of dependent patterns. This is the case for categorizatiopn the concepts. This process can equivalently be formulated
models, since the information conveyed by the examples igs 5##= ¢\ ## | where thebiasedlIDRV's \/* are distrib-

Zl -

‘]ij:

not extensive in them. uted according to
Our goal in this work is to establish a reliable measure for
the capacity of retrieving examples, and their categorization, pe(MP)=B, (NP —1)+B_8(\'*+1), 4

based in the information theory. In Sec. Il, we define the
model and its parameters. After obtaining expressions for theiith B..=(1+b)/2.
The macroscopic parameters which describe the state of
the network are theetrieval and categorization overlaps
*Electronic address: david@tfdec1.fys.kuleuven.ac.be respectively:
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1 1 ic=aM?. 7
=2 3wl M=y S o (6 c "

! ! The retrieval information can be similarly measured, by
computing the retrieval overlap and the entropy of the ex-
amples, since this entropy can also be factorized as
p({ 7P} =T1Pp({ /**}7), such that the entropy is ex-
tensive in the concepts and in the neuroH${ 7/*}{\,>>]

In the thermodynamic limit, the qualities of the retrieval and
of the categorization can be measured by taking theNim
—oo of the overlaps for a single concept, say 1, which

ive

g =>PNH[{7/*}51=pNH[{#*}>]. Thus it is enough to cal-

lp— /. 1p 1 /¢l culate the entropy of a set of examples of a single concept,
m,’= sgriihi_¢]), Mi=(&sgih;_1]), 6 ) .
V= rsarihe- ) (= (£sgrihe1]) © {nP}f,E{n{”’}S, on a single neuron, to obtain the entropy of
N.p,S
where the brackets mean averages over the set of exampi§ Whole se{7{**}{27. S, ,
7' and the local fielch,_, for a single neuron. On the other hand{7"} is not a set of IIDRV's, so

The generalization error[1,3] can be defined a€!  P({7"};) is notfactorizable in example probabilities, and the
=(|o— £Y2)=1—M?, as a function of the categorization €Ntropy is not extensive in the examplesH[{»"}}]
overlap. The stationary states are given by macroscopic ovef =5H[ 7°]. So the retrieval information is not the naive
laps with examples of a given concept, say’=m'’, and  One,ir# aS.
microscopic remaining overlaps>1 andm*?~1/\/N. The Let {#*}={#"}; be a set of examples of a given concept
general solution is represented by a retrieval overlap with #n @ given neuron. In calculating({%”}) we proceed as
single example, samllz m, and thequasisymmetriover- follows: we take the conditional probability of the examples
laps with the other examplesp»=m® and p>1. In the  given the conceptp({7°}|£), from Eqg.(3), and average it
retrieval phase one has~1 andmS~b?, while in the cat- on the distribution of,
egorization phase the stable stataris mS~b, which may

S
lead to a large categorization overldpi=M~1. In the

pe(7°)+ pe(—7n”)

P = P =

following we will consider a situation where the network P’ =(p7 }|§)>§ ,,1;[1 2 ®)
relaxes to equilibrium states, so we can drop the tiroe the

parameters. wherepg is the probability distribution in Eq4). After ex-

panding this product, we calculated the entropy of this dis-
IIl. INFORMATION CAPACITIES tribution, obtaining
In this section we describe a way to measure the storage S s

of information by the network in the retrieving and cate- H[{Wp}]:_kzo CAIN(AY),

gorizing regimes. There are two types of information 9)

to be extracted from the patterns in these networks: retrieval A=[B*BS k+BkBS K12,

information and categorization information. The former
is that Wh|ch_ can be con\{eyed from_ the examples to thgfvherecf' are the combinatorial numbers.
neurons, while the latter is that which can be conveye

from the concepts. In each case one must calculate thﬁ In evaluating the equivocation in the retrieval, here we
information  entropy of the pattem distributions, ave to multiply this entropy by the square of the retrieval

Nopp_ NS overlap of a single example. Since we have to subtract the
HILET 1=~ Zqgyp(EMDINPAE D], and HI{7 10T information due to the categorization, and the overlaps be-

= —E{”i/.l.p}p({ 7 In[p({7”)], where p({&}) and tween examples and their concepts bre(7”¢), we esti-
p({7~*}) are the concepts and examples joint probabilitymate the total retrieval information adg=pN(m
distributions, respectively. —bM)2H[{7"}]. Therefore the retrieval informatiotper

The categorization information can be easily measured byynapsgis
computing the categorization overlap of a single condéipt,

and its entropy. Since the concep{tg{‘}?"f are IIDRV’s,

theer probability distribution is factorial, p(.{fiﬂ}iN,)Lp) . Although other measures for the information could be
=I17,’p(&"). Thus the entropy of the concepts is extensive, e, they must be monotonous functions of those we con-
H{&NP1=20TH[ &]1=pNH[£], where the entropy of a sider in the Eqs(7) and (10). Nevertheless, these have the
single concept on a single neuronHg £]=10g,(2). As we  advantage that both are equivalently scaled, and they can be
study binary patterns, we shall use base-2 logarithm in ordedirectly compared to each other.

to count information in bits, then we hawd[£]=1. The
equivocation in the categorization can be evaluated by the
square of the overlap, in such a way that no information is
transmitted by the concepts M =0 and the information is We now present the equilibrium states for the networks
maximal if M= =1, showing that the information is sym- which are used to obtain the retrieval and categorization in-
metric in this overlap, because an inverted concept formation. These states are studied for two systems: an
= —¢; carries the same information than=¢,. Therefore, asymptotic network Nl— ), for which analytical stationary
the total categorization information Ig;=pNM?2H[£], and  equations were derive@i3], and finite-sized systems, for
the categorization informatiotper synapseis which simulations of the dynamics in E€l) are carried on.

= a(m—bM)2H[{7"}]. (10

IV. RESULTS
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While the information measures obtained in Sec. Ill are func- o b=0.3;my=1;0=01
tions of asymptotic parameteM and m, the results from '
simulation use the overlaps in E($).

A. Asymptotic network

First we study the stationary states of the overlaps in Egs.
(5), in the thermodynamic limiN—cc. Using the Hebbian
synapses in Eq(2) in the dynamics in Eq(1), taking the
local field at the fixed point, and averaging over the distribu-

tion of a single example, one obtains 0.0
S-1 w 0.05
m=> ps(k)J Dz[B,G,—-B_G_], 0.04
k=0 —o0
— 0.0
S-1 " =
M= >, ps(k)f DZB,G.+B_G_], (11 0.02
k=0 - 0014
571 Xs (= 000 =
mS= >, ps(k)gj Dz[B,G,.+B_G_], In(s)
k=0 —

) L . . FIG. 1. The overlapgtop) and information(bottom as func-
for the retrieval, categorization, and quasisymmetric overlapgns of In@), for b=0.3 anda=0.01. The squaregircles are the

respectively. Here simulation results for retrievalcategorization for N=10* and t

=10; the dashedsolid) curves are the asymptotic results.
G. =sgf xsm>=m-+zyar], (12 solid) ymp

with xSEEEZZ)\pEZk—(S—l). and the averages are over when the overlaps converge. Thus we halmoststationary

the remainingS— 1 examples from the first concept, and the states in most cases, except when a state of noninformation is
remainingp—21 concepts. The first is the binomial variable obtained, for which the times of convergence are typically
Xxs=2k—(S—1), distributed according to much larger.

The capacity is analyzed as a function of the two param-
eters of loading of the network: the rate of loading of con-
cepts,a=p/N, and the number of examples per concét,

The sample averages are taken over an interval B Io(in
dz ) a. When simulating the information as a function &f we
Dz=——e %72 (14 first generate the concepts and then consecutively store the
V2m examples of each concept. When simulating the information

In the present case of a fully connected network, there is gsa function ofx, we generate th& examples of the con-

strong feedback in the dynamics, but an expression for th§6Pt generated at each step of the learning. _
variance of the noise can be obtained using a replica sym- 1he network is trained then storing examples, while the

ps(k)=Cy 'BYBS K, (13)

the last is a Gaussian noise, distributed according to

metric approachi3,s], r_etrieval gnq categorization overlgps are monotorized. For a
fixed «, it is expected that on increasing the network

[1-C(1-Db?)(1-b%*+sb?)]?+(s—1)b* passes from a regime where the retrieving information is

=S , (19 large to another where the categorizing information increases

[1-C(1-b*)[1-C(1~-b*+sb?)]? up to saturation in a upper bound. This behavior is seen in
with Fig. 1, where the overlaps, as well as the information, are
plotted as a function of I'§), with a correlatiorb=0.3, for a

1 S? o loading of conceptse=0.01. When more and more ex-
C=—> ps(k)f Dz4B.G,.+B_G_]. (16)  amples are learned, the retrieval information increases until a

Jar =0 o maximum atSg=7; then it falls down. After a while, when

We have to solve Eqg11)—(16), then introduce the over- "° information is transmitted, the network reachesSat
~ 33, the categorization phase, where the categorization in-

laps in the expressions for the informatigRgs. (7) and formation jumps to a higher value. It continues to increase
10)]. These analytical results for the information are then ™~ . :
(10] y until it saturates at;=0.01, when the network reach&s

resented in comparison with the results from simulations. ; . . i
P P ~1 after S~90. The retrieval information capacity of the

network isig~0.06. The asymptotic theory fad—oo fits
quite well the simulation foN=10%, except in the region of

The simulations we have performed are for networks oo information. This is due to the finite number of steps used
N=5000 and 1% neurons, which are updated in parallel ac-in the dynamical simulatiort=10, while the convergence to
cording to the dynamics in Eql), up tot=10 time steps, or the fixed point there is very slow.

B. Simulation
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FIG. 4. The categorization information as a functionagffor

) b=0.2 and S=170. Asymptotitc(solid), and simulation forN
FIG. 2. Same as Fig. 1, fdr=0.3 anda=0.04. =5000 (dashedl

A case with a larger load of concepis=0.04, is plotted checked that for a larger load of concepi®=0.06) the
in Fig. 2. Although now the network can only retrieve well categorization information is larger than the retrieval infor-
examples up t&=3 well, it hasig~0.10. Then there is a mation. Also we verified that for higher correlation® (
large waiting period where the information stays close t0=0.6) the categorization information can be the larger one,
zero, up toSc~74, when the categorization information even for a small load~0.01, while for smaller correlations
jumps toic~0.04, which is much larger than in the cage (b=<0.2) the retrieval information is always the larger one.
=0.01. For a fixedS, one expects that on increasiagthe cat-

Comparing this with a network with a larger correlation, egorization informatiortif b or S are large enougtincreases
b=0.4, plotted in Fig. 3, we observe that the network canup to a maximum value, after which it decreases until it
store only S;=2 examples with a larger overlap, with a becomes zero at a critical. This behavior can be seen in
maximal retrieval informatiotig~0.05, which is somewhat Fig. 4, where the case whdén=0.2 andS=170 is plotted.
smaller than the naiv€a~0.08. However, the categoriza- We verified that the larger the values bf the higher the
tion information approaches its saturation valge-0.04 maxima ofic, and less examples are needed. We also ob-
much faster; onl\5~ 30 examples must be learned. We haveserved that the retrieval information has a similar nonmono-

tonic behavior ifb or S are small.
b=0.4;m,=1;0=.04

10§ V. CONCLUSION
0.8 The information conveyed by the categorization model
was studied. It was shown that the transition from the re-
g 06 trieval phase to the categorization phase causes a transition
= in the information: the retrieval information decreases when
0.4 4 ; .
the network is oversaturated with examples, and, after a pe-
0.2 riod of resting, the categorization information increases.
It is interesting to note that, although neither the retrieval
0.0 nor the categorization information surpasses the usual
Hopfield model 6=1, b=1), which is ig~0.13 at «
=0.135, the fact that the network can return to behave as an
0.04 associative memory after a long period refsting between
N Sgr<S<S; is an advantage with respect to Hopfield net-
o work. It is also worthy of note that the retrieval information
0.02 can still be relatively large, as we see in Fig. 2, a quotation
which to our knowledge has not been observed before in any
work about the categorization model in the literature.
0.00 The simulation results fit very well with the theoretical

results in both retrieval and categorization regimes, showing
that almost no effect of finite size is present, but the time of
FIG. 3. Same as Fig. 1, fdr=0.4 anda=0.04. convergence in the resting period must be much larger than
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that used in this work. Both expressions for the information“catch” from the concept. However we prefer to use the
about the retrieval and the categorization in E4€)—(17) estimation in Eq(7) to compare with the retrieval informa-
are not claimed to be exact. They are approximations for éion with the same precision.

more precise measure, theutual information[13] between Finally, we hope that the present approach to the informa-
neuron and patterns7[o,£]=H[£]—(H[o|£]);, where tion content of a neural network of correlated patterns can be
H[ o|£] is the conditional entropy. Since we know that the used in the context of more general architectures and learn-
conditional probability of the neuron, given the concepting rules. A more general distribution of the*’ [14] may
state, isp(o|&)=(1+Maé&)5(|o]>—1), we can replace the also deserve some attention.

categorization information by

1+M 1-M

Io,€é]= 3 IN(1+M)+ : In(1—M). (17 ACKNOWLEDGMENT
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