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Lattice Boltzmann simulations of lamellar and droplet phases
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Lattice Boltzmann simulations are used to investigate spinodal decomposition in a two-dimensional binary
fluid with equilibrium lamellar and droplet phases. We emphasize the importance of hydrodynamic flow to the
phase separation kinetics. For mixtures slightly asymmetric in composition the fluid phase separates into bulk
and lamellar phases with the lamellae forming distinctive spiral structures to minimize their elastic energy.
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PACS numbdrs): 47.11+j, 64.75+9g

[. INTRODUCTION glassy metastable state of tangled lamellae forms. However,
hydrodynamic flow alleviates the frustration and allows the

Complex fluids such as microemulsions, foams, and colsystem to attain the striped ground state.
loidal suspensions provide a wealth of interesting physical (2) As the concentration of the minority phase is in-
phenomena. Their use is ubiquitous in the processing, erfreased the system tends to phase separate into a lamellar
ergy, and chemical industries. Therefore it is important toand & one-component phase. The lamellae minimize their
explore ways in which their properties can be modeled nufree energy by forming a spiral pattern around the one-
merically to test physical theories, predict behavior, and procomponent hole. Again this state can only be reached by the
Vide feedback to industriai pianning_ f|UId |f hydrodynamic ﬂOW iS a”OWed in the SyStem.

The modeling of complex fluids is not an easy task as (3) When one component of the binary fluid predominates
both the rheoiogy and the Compiicated phase beha\/ior Of th@roplets of the minority fluid form. Their size is determined
fluid must be incorporated. Molecular dynamics simulations Py the balance of the surface tension terms in the free energy.
while providing an accurate picture of the microscopic phys-Phase separation in this system is unaffected by hydrody-
ics, are usually too computer intensive to address hydrody3amics.
namic time scales. In computational fluid dynamic solutions ~ Sections Il and Il of the paper are devoted to a descrip-
of the Navier-Stokes equations the specific behavior of &lon of the model and the relevant thermodynamics and to a
given fluid can only be input viad hoc constitutive rela- Summary of the numerical approach, respectively. Section IV
tions. summarizes phase separation in a 50:50 fluid mixture em-

Recently new methods of simulating fluid flow have be-Phasizing the role of hydrodynamics. The 60:40 mixture
come available. These include lattice-gas cellular automat@hich phase separates into a lamellar and one-component
[1], dissipative particie dynamK{Q], and lattice Boltzmann state is considered in Sec. V. Section VI treats the 90:10
simulations[3]. The aim is to reproduce the physics of fluid composition ratio where droplets of the minority phase are
flow, primarily mass and momentum conservation, while in-Stable. Section VII summarizes the results, putting them in
cluding the important features of the underlying microscopicthe context of previous work, and suggests directions for
physics. These approaches have been successfully appliedftiure research.
several complex fluids including polymer solutidrl, par-
ticulate suspensions], and microemulsion§l]. However, Il. MODEL
application of the techniques to model complex fluids is still '
in its infancy and validation of, and comparison between, the We consider a two-dimensional binary fluid with compo-
different methods is still needed. nentsA, B of number densityn,, ng, respectively. This can

In this paper we concentrate on lattice Boltzmann simube modeled by the Landau free enef@y
lations. A fluid is modeled on a mesoscopic length scale by
means of distribution functions which evolve according to a (a b . ¢
discretized version of a simplified Boltzmann equation. The xp:i dr[—(¢)2+ — (@)% = (V)2 + 2 (V2¢)2},
correct equilibrium behavior is imposed by inputting the cor- 2 4 2 2
rect thermodynamics such that the system evolves to the @)
minimum of a chosen input free enerf,7].

We use the lattice Boltzmann approach to explore thevhere p=n,—ng is the order parameter of the system and
kinetics of phase separation of a model, two-dimensionalye assume that the total density- ny+ ng is constant. The
fluid with lamellar and droplet equilibrium phases. Our mainfree energy1) corresponds to a disordered state at high tem-
conclusions follow. peratures §>0) and an ordered state at low temperatures

(1) When the system is quenched to the lamellar phase ga<0).
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« is related to the surface tension. Rosufficiently large  whereu is the mean fluid velocity.
the ordered phase consists of two coexisting bulk phases The distribution functions undergo a collision step fol-
with ny—ng= * ¢q, the volume of each determined by the lowed by a streaming step according to the evolution equa-
initial ratio of n, andng . As k is decreased the formation of tions
interfaces becomes favorable but the fluid remains stable be-
cause of the positive curvature energy related o Eq. (1).
For np,~ng the ordered state is then a striped or lamellar
phase with the width of the lamellae being determined by the
interface-interface interaction. Fop<<ng this is replaced by
a phase of circular droplets éf in B with radius determined
by the balance between the negative surface tension and the
positive curvature free energies of the interfaces. where At is the time stepy; and 7, are relaxation param-
Thermodynamic properties of the binary fluid follow di- eters, and? andg? are equilibrium distribution functions the
rectly from the free energyl). In particular, we shall need choice of which determines the physics inherent in the simu-
the chemical potentiah » which couples to the density dif- |ation. Equationg8) and (9) are discrete Boltzmann equa-

. . - 1
fi(X+eAt,t+At)—f(X,t)=— T—(fi—f?), (8)
1

- - - 1
gi(x+eAtt+A)—gi(x)=——(gi—g)), (9
2

ferenceep, tions with a Bhatnager-Gross-KroqilBGK) collision term
[10].
Ap= _‘/’:a¢+ be3— kV20+£(V2)26e. ) FoIIowmgOthe st%ndard lattice Boltzmann prescn_pno_n we
op assume that;’ andg; can be expanded as power series in the
. - . gulk velocity
Obtaining the pressure tensor is slightly more complicate

[9]. The pressure parallel to the interface follows from Eg. f9=A+Bu,g,+Cu’+ Du,ugei &g+ G,p€i.Lig,

(1), o
a , 3b 4 2 K = 2,2 fo=Ao+ Cou? an
pL=5 2+ 7' ke(V29) — (Vo) >+ {o(V2)2¢ oo
¢ vz, \2 giozH+Kuaeia+JU2+QuauBeiaeiﬁ’ (12
— (V22 ®
2 go=Ho+Jou?. (13

However, off-diagonal terms must be added to ensure thaf,o expansion coefficients,B, . .

g ” . are determined b
the pressure tensor obeys the equilibrium condition y

aapaﬂzo' (4) 2 in:n, (14
I

Considering a linear combination of all symmetric tensors

having two or four gradient operators shows that a suitable
choice is 2| fle,=nu,, (19

Pas={PLt L(V?0)?+ (0,00, (V?@)} Bupt Kdudge .
— H{0u005(V20) + 3500, (V20)}. ) 3 Vo= Pag Uiy, (10
lll. LATTICE BOLTZMANN SIMULATIONS

2 gi=e, (17

The aim is to simulate a fluid with equilibrium properties
described by the free enerdi) which obeys the Navier-
Stokes and convection-diffusion equations. To this end we > 9lei,= oU,, (18)
use a lattice Boltzmann techniq{g]. i

We consider a square lattice and define two sets of distri-
bution functions{f;} and{g;} on each lattice site. Each > gl 5=l Apd s+ oU,Ug, (19)
fi,g; is associated with a lattice vecté{. The results pre- i
sented in this paper are for a 9-velocity model on a square .
lattice with e, /c= (= 1,0), (0 1), (+ 112, % 142),(0,0). whereP,; and Au are given by Egs(5) and (2), respec

Physical variables are related to the distribution functioné(lilse)ly;iﬁg?ll;) 'ioﬁrgoglrl]';y'toi\lg{ Sarhca:;tn?eerv;?igiltg‘ngl;%'sit
through ! P Y

momentum, and density difference, respectively. Explicit ex-
pressions for the expansion coefficients are given in the Ap-
n=z fi, nua=2 fieiy, (6) pendix.
! Expanding Eqs(8) and(9) to order (At)? and using Egs.
(14)—(19) leads to the macroscopic equations

QDZZ gi, (@) dn+d,(nu,)=0, (20
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5t(nU5)+(9a(nUaU5): _&apaﬁ"'VVz(nUﬁ) ’ (a) ) (o) ) , ()

+tdg{N(n)da(nuy)}, (2D

drp+d,(ou,)=T OV2A u— aaa(gaﬁpaﬁ> . (22

where
27—1
6= (At)C2(7,— 1/2), V=%(At)cz,
(23
1 c® d
)\(n)=(Tl_§)At ?—d—?]o)

It is apparent from these equations of motion that the fluid
will evolve through two competing growth mechanisms. The
first of these is diffusion, described by E@2) with u=0.
The second is bulk momentum transfer or hydrodynamic
flow described by the Navier-Stokes equati@d). The rela-
tive importance of diffusive and hydrodynamic flow can be
altered by varying the viscosity through changes im, [see

FIG. 1. Snapshots of the growth of domains with time for a
binary mixture symmetric in composition. Gray scaling from black

. . o o\ a . = white corresponds t¢=—1=¢=1. Each column represents a
Eq. (23)]. For high viscosities the velocities remain suffi- different physical situation(a) a quench to the homogeneous two-

C|en|tly Smaf” r:hat .hydrOdynamI.C ﬂ%\fN IS Irremvfmt a.nd th.e phase region> k. ; (b) a quench to the lamellar phage< «; in a
evolution of the microstructure is diffusive. For low viscosi- high viscosity fluid. The lamellae form in a tangled pattern which

ties, however, the Reynolds number becomes larger and hyjeomes frozen in timég) a quench to the same value ofas (b)

drodynamic effects can dominate in changing the domairyt for a low viscosity fluid. Hydrodynamic modes allow the lamel-
morphology. Simulations run from the same initial condi- e to reorder giving, locally well-defined striped regions.

tions but with high or low viscosities enable us to build up a

very clear picture of the effects of hydrodynamics on theg (r,=50,=—0.85), (c) low viscosity, lamellar

domain growth. equilibrium (7, =0.585x=—0.85).
Consider firs{a) which is at a value ok that corresponds
IV. 50:50 COMPOSITION: METASTABILITY to bulk phase separation and a valuemgfthat suppresses
AND THE EFFECT OF HYDRODYNAMICS hydrodynamic flow. After initial transients sharp domains

form. These are more elongated than for a system ith
with a ratio of number densities, :ng of 50:50 when it is =0 but they grow continuously and become more isotropic.

guenched from a disordered state into the ordered regior??n exponentx characterizing the growth is commonly de-

Our aim is to compare the path of the spinodal decomposi-ned by

tion for different values of the surface tension and of the

viscosity. Initial results for this concentration have appeared R(t)~1*, (24)
elsewherd 11].

For all runs the system was initialized with=1.0 ande ~ whereR(t) is a length scale, which we take as the inverse of
chosen randomly betweer-0.5 and 0.5. It was then the first moment of the circularly averaged structure factor,
guenched to a final state defined by paramegers-1, b  andt is the time[12]. At late timesa converges to 1/3 as
=¢=1. The simulations were run witht=0.004,c=1, expected for Lifshitz-Slyozov diffusive growth in a binary
7,=0.778 675 1, and’=1. The system size was 12828 system. Runs at different values &findicate that as< is
and simulations were typically run for 1@ime steps. This decreased an increasingly long time is taken to reach the 1/3
took approximately ten days on a DEC Alpha Workstation.regime[11].

Smaller lattice sizes gave similar results. For k<k.~—0.8 there is a qualitative change in the be-

For « sufficiently negative the equilibrium state is a havior of the system as shown in Fig(bl These results
lamellar phase. After a quench at high viscosity the fluid getsvere obtained for the same value of but with x=—0.85
stuck in a metastable state of lamellae which have approxiwhere the equilibrium is the lamellar state. Now the system
mately the correct width, but which are tangled. For lowforms portions of lamellae of width approximately equal to
viscosity, however, hydrodynamic flow builds up and canthe equilibrium value. These lamellae are tangled in a way
remove topological defects from the system and allow thehat depends on the initial conditions. The diffusive growth
fluid to reach equilibrium. to the tangled phase is slow, possibly logarithmic, and once

Evidence for these conclusions is shown in Fig. 1 wherdhe glassy phase has been reached there is no further discern-
snapshots of the domain growth are compared for three diflble movement on the time scale of the simulation. For
ferent sets of parameter&) high viscosity, two-phase coex- smaller k the lamellae are thinner and the system freezes
istence ¢, =50,k=0.1), (b) high viscosity, lamellar equilib- sooner.

We first describe the behavior of a symmetric binary fluid
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FIG. 2. Defect being removed by flow. The lamellae are initially
too wide. Hydrodynamic forces tend to lengthen them, causing the
broken lamellar to join and the stripes to buckle. Gray scaling from

. A
black = white corresponds tgp=—1=¢=1. "Lf.j.‘

Remaining with the value<=—0.85 we then ran the e’ ;
aining with th ve then ran 2
same simulatior(starting from the same initial conditions €2 T
for 7,=0.585. The lower value of implies a lower viscosity ('_/.jj}i
and the possibility of hydrodynamic flow at earlier times. ',':'435;
The initial behavior was the same as for cdbg with a L '!..- ."
glassy lamellar phase being formed. However, at a later time 2ifevet
t there was a significant change in the domain pattern. This . o
is most easily seen from the snapshots in Fig) tvhere it is FIG. 3. Snapshots of the growth of domains with time for a

apparent that the topological frustration of the glassy phase {&nary mixture slightly asymmetric in composition. Gray scaling
]‘rom black= white corresponds t¢=—1=¢=1. (a) A quench

to the homogeneous two-phase region . ; (b) a quench to the
lamellar phasec< k. in a high viscosity fluid. Short lamellae form

in a pattern which becomes frozen on the time scale of the simula-
tion; (c) a quench to the same value &fas (b) but for a low
g/iscosity fluid. Hydrodynamic flow allows the system to attain its

being removed and the lamellae are lining up in the globa
equilibrium state.

An example of the effect of hydrodynamic flow on the
defects is shown in Fig. 2. The lamellae are initially too
wide. Hydrodynamic forces tend to lengthen them, causin

the broken lamallae to join and the stripes to buckle. At highequiliblrium of coexisting lamellar and bulk-phases.

viscosities the defect does not disappear.

and then grow by Lifshitz-Slyozov diffusion. The curvature

term in the free energy becomes less important for larger

LAMELLAR AND BULK PHASES droplets gnd they become more circular. The data in Fig. 4
are consistent with the expected growth exponentl/3 at

V. 60:40 COMPOSITION: SEPARATION TO COEXISTING

We next consider a concentration rati :ng=60:40. late times.

Now there is too little of thé8 phase to form lamellae of the Figure 3b) compares a simulation for= —0.85, a value
correct width throughout the system. We shall show that thdor which the lamellar phase is stable in the symmetric mix-
equilibrium state corresponds to phase separation into tre. The value ofr, is chosen so that only diffusive growth
lamellar region coexisting with a bulk phase. As before, is possible. It is apparent from Fig(8 that the final state is
equilibrium can only be reached with the help of hydrody-a mixture of droplets and short lamellae. There are no further
namic flow. discernible changes in morphology on the time scale of the

Simulations were again run at different valuesrpfind « simulation as confirmed in Fig. 4.

to provide a comparison. Snapshots of the time evolution are Evidence that this droplet state is metastable is provided
shown in Fig. 3 for the same parameters as those used for threhen the same simulation is run with a low viscosity. Bulk
symmetric mixture considered in Sec. IV. Figure 4 is afluid flow now allows the droplets to join to form lamellae
double logarithmic plot of the variation of the domain size and align. A surprising amount of movement is seen leading
with time comparing the growth in the three different casesto the growth process shown in FigicR In Fig. 4 the onset
Column (a) of Fig. 3 shows the path to bulk phase sepa-of hydrodynamic flow in this system is marked by a rather

ration for k=0.1. Droplets form by spinodal decomposition sharp increase in the measured length scale.
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The final state is coexistence between a lamellar and a ,‘.'.. cee ‘e,
bulk A phase. The lamellae order in a distinctive spiral . ® .‘ *o v ,°.'.'..io “ous
around the hole ofA phase, to minimize the elastic free St a0 o
energy which would be generated by incorrect lamellar spac- |} ® | -0 a% e o
ings.
Finally we remark that very similar results were obtained - ‘ . ,'.'.'. o o-. Ky
for a concentration ratio afiy :ng=70:30. ' " .':: :‘ oo, 0...0 ."
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Finally we describe phase separation in a highly asym- ' ® ...,'::°:. .ot
A i ; ; ‘N —00" ilibri L) *%s 4 8%
metric binary fluid withn, :ng=90:10. Now the equilibrium D ' ! ee e’ .'.0,0 os

for « sufficiently negative comprises droplets Bf in A.

F_igure_5 co_mpares results for t_WO different valuesof(a) FIG. 5. Snapshots of the growth of domains with time for a
high viscosity, two-phase coexistence, £504=0.1), () pinary mixture highly asymmetric in composition. Gray scaling
high viscosity, lamellar equilibrium 7 =50«=—0.85).  from black= white corresponds te=—1=¢=1. (a A quench
The main difference between the growth processes in Figse the homogeneous two-phase regior «. ; (b) a quench to the
5(a) and 8b) is a direct consequence of the final equilibrium groplet phasec< «, where the final length scale is set by the com-
state. Fork=0.1, once the domains have formed they con-petition between the surface tension and the curvature energy.
tinue to grow slowly by the diffusion of material between
them. This is the Lifshitz-Slyozov growth process, driven by
the difference in chemical potential between droplets of dif-
ferent size. Fok= —0.85, however, there is a preferred size . . .
for droplets, set by the competition between the surface ten- /& have shown that there is a wealth of interesting be-
sion and the curvature energy, and growth stops once thléawor as even .rather simple S'[.I’UCtL.JI’ed fluids attain equnllb—
droplets have reached this size. A second difference is th&UM. Competition between diffusive and hydrodynamic
for the negative value of droplets form much more quickly modes leads to final states erendent on the dynamllc param-
in the early stages of growth. This is a consequence of theters of the system. In particular, we have emphasized that
reduced surface tension. hydrodynamic flow is often important in allowing a system
Runs for a low viscosity and negativeshowed a negli- to reach its equilibrium state.

gible influence of hydrodynamics on growth for this concen- The results were obtained using lattice Boltzmann simu-
tration. This is as expected. Hydrodynamic flow can act tdations. The approach has two particular advantages in this
make a droplet circular because of the pressure differenceontext. First equilibrium is determined by a free energy
between points of different curvature. However, once thewhich is an intrinsic part of the simulation so the structure of
drops are circular hydrodynamic flow cannot directly lead tothe equilibrium state can be chosen rather naturally. Sec-
droplet coalescence although it may speed up the diffusivendly the viscosity of the fluid can be tuned over a wide
growth[13]. range. We caution, however, that the lattice Boltzmann evo-

VII. CONCLUSIONS



PRE 58 LATTICE BOLTZMANN SIMULATIONS OF LAMELLAR ... 485

lution is not described by akl theorem and thus no proof are highly desirable. These are feasible but at the limit of

exists that the path to equilibrium is a physical one. current numerical resources.
Lattice Boltzmann simulations do not intrinsically include
noise although this can be added inadhhocway. An im- ACKNOWLEDGMENTS

portant question is whether such fluctuations can relax the \we would like to thank P. V. Coveney and A. Wagner for
disordered lamellar states. We ran simulations aimed at imhe|pful comments. J.Y. acknowledges support from the

vestigating this but found no effect of noise on the glassyepSRC (Grant No. GR/K97788 and NATO (Grant No.
structure. In real two-dimensional smectics fluctuations deCcRG950356.

stroy the lamellar order. However, for this model we expect

a stable lamellar phase, both because of the lack of fluctua- APPENDIX

tions and because we impose a mean-field free energy.
Our conclusions are in broad agreement with those o : oo S

Bahiana and Oonfll4] who considered the spinodal decom- EZ?};Z%%? Bt(?:tfrzréaggn;?g:!(l&bz)ur?lgl_sérlbutlon(SLO)—(13)

position of a model of block copolymers designed to give a ! Wi i a !

A suitable choice of the coefficients in the expansions of

lamellar equilibrium. Despite the long-range interactions in 5[a 3b
the model a tangled lamellar phase was formed after a A= -0+ —o*—ko(V?p)
: . ) . 42 4
guench. This could be ordered by including terms approxi-
mating hydrodynamic flow in the simulation. Other related vy Lo, )
work [15] uses a Langevin approach which includes hydro- +Ee(V) e+ 5 (Vi) (12c%),
dynamics to model phase separation in microemulsions. The
domain growth slows as the surfactant density is increased. A,=n—16A, B=5n/(12c?),

This method provides an alternative numerical way to study

complex fluids and it would be interesting to gain a fuller Co=—2n/(3c?), C=-5n/(24c?), D=5n/(8c*),
understanding of the applicabilities of the different ap-
proaches.

There are many questions that remain to be considered.
These include the effect of confinement or shear on the phase ) ) 4
separation, dynamical asymmetry in the viscosities of the +5{[0ypdy (V@) — dxpdx(V7@)]/8C7,  (AL)
two fluid components, and the role of a very low diffusivity, _ _ 2 2
which has been shown to alter the path to bulk phase sepa- Cry=5xdupdye =500 dy(V7e) + oy eV},
ration in binary fluid§16]. Work is in progress to include a Ho=¢—4H, H=5TAu/(12c?), K=5¢/(12c?),
surfactant as a third phase rather than modeling its effect by
changing the surface tension. Extensions to three dimensions Jo=—2¢/(3c?), J=-—5¢/(24c?), Q=5¢/(8c?).

5
Gyy= — ny=7k[(axcp)2— (&y¢)2]/804
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