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Lattice Boltzmann simulations of lamellar and droplet phases
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Lattice Boltzmann simulations are used to investigate spinodal decomposition in a two-dimensional binary
fluid with equilibrium lamellar and droplet phases. We emphasize the importance of hydrodynamic flow to the
phase separation kinetics. For mixtures slightly asymmetric in composition the fluid phase separates into bulk
and lamellar phases with the lamellae forming distinctive spiral structures to minimize their elastic energy.
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I. INTRODUCTION

Complex fluids such as microemulsions, foams, and c
loidal suspensions provide a wealth of interesting phys
phenomena. Their use is ubiquitous in the processing,
ergy, and chemical industries. Therefore it is important
explore ways in which their properties can be modeled
merically to test physical theories, predict behavior, and p
vide feedback to industrial planning.

The modeling of complex fluids is not an easy task
both the rheology and the complicated phase behavior of
fluid must be incorporated. Molecular dynamics simulatio
while providing an accurate picture of the microscopic ph
ics, are usually too computer intensive to address hydro
namic time scales. In computational fluid dynamic solutio
of the Navier-Stokes equations the specific behavior o
given fluid can only be input viaad hoc constitutive rela-
tions.

Recently new methods of simulating fluid flow have b
come available. These include lattice-gas cellular autom
@1#, dissipative particle dynamics@2#, and lattice Boltzmann
simulations@3#. The aim is to reproduce the physics of flu
flow, primarily mass and momentum conservation, while
cluding the important features of the underlying microsco
physics. These approaches have been successfully appli
several complex fluids including polymer solutions@4#, par-
ticulate suspensions@5#, and microemulsions@1#. However,
application of the techniques to model complex fluids is s
in its infancy and validation of, and comparison between,
different methods is still needed.

In this paper we concentrate on lattice Boltzmann sim
lations. A fluid is modeled on a mesoscopic length scale
means of distribution functions which evolve according to
discretized version of a simplified Boltzmann equation. T
correct equilibrium behavior is imposed by inputting the c
rect thermodynamics such that the system evolves to
minimum of a chosen input free energy@6,7#.

We use the lattice Boltzmann approach to explore
kinetics of phase separation of a model, two-dimensio
fluid with lamellar and droplet equilibrium phases. Our ma
conclusions follow.

~1! When the system is quenched to the lamellar phas
PRE 581063-651X/98/58~1!/480~6!/$15.00
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glassy metastable state of tangled lamellae forms. Howe
hydrodynamic flow alleviates the frustration and allows t
system to attain the striped ground state.

~2! As the concentration of the minority phase is i
creased the system tends to phase separate into a lam
and a one-component phase. The lamellae minimize t
free energy by forming a spiral pattern around the o
component hole. Again this state can only be reached by
fluid if hydrodynamic flow is allowed in the system.

~3! When one component of the binary fluid predomina
droplets of the minority fluid form. Their size is determine
by the balance of the surface tension terms in the free ene
Phase separation in this system is unaffected by hydro
namics.

Sections II and III of the paper are devoted to a desc
tion of the model and the relevant thermodynamics and t
summary of the numerical approach, respectively. Section
summarizes phase separation in a 50:50 fluid mixture
phasizing the role of hydrodynamics. The 60:40 mixtu
which phase separates into a lamellar and one-compo
state is considered in Sec. V. Section VI treats the 90
composition ratio where droplets of the minority phase
stable. Section VII summarizes the results, putting them
the context of previous work, and suggests directions
future research.

II. MODEL

We consider a two-dimensional binary fluid with comp
nentsA, B of number densitynA , nB , respectively. This can
be modeled by the Landau free energy@8#

C5E drWH a

2
~w!21

b

4
~w!41

k

2
~¹W w!21

z

2
~¹2w!2J ,

~1!

wherew5nA2nB is the order parameter of the system a
we assume that the total densityn5nA1nB is constant. The
free energy~1! corresponds to a disordered state at high te
peratures (a.0) and an ordered state at low temperatu
(a,0).
480 © 1998 The American Physical Society
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k is related to the surface tension. Fork sufficiently large
the ordered phase consists of two coexisting bulk pha
with nA2nB56w0, the volume of each determined by th
initial ratio of nA andnB . As k is decreased the formation o
interfaces becomes favorable but the fluid remains stable
cause of the positive curvature energy related toz in Eq. ~1!.
For nA;nB the ordered state is then a striped or lame
phase with the width of the lamellae being determined by
interface-interface interaction. FornA!nB this is replaced by
a phase of circular droplets ofA in B with radius determined
by the balance between the negative surface tension an
positive curvature free energies of the interfaces.

Thermodynamic properties of the binary fluid follow d
rectly from the free energy~1!. In particular, we shall need
the chemical potentialDm which couples to the density dif
ferencew,

Dm5
dc

dw
5aw1bw32k¹2w1z~¹2!2w. ~2!

Obtaining the pressure tensor is slightly more complica
@9#. The pressure parallel to the interface follows from E
~1!,

pL5
a

2
w21

3b

4
w42kw~¹2w!2

k

2
~¹W w!21zw~¹2!2w

2
z

2
~¹2w!2. ~3!

However, off-diagonal terms must be added to ensure
the pressure tensor obeys the equilibrium condition

]aPab50. ~4!

Considering a linear combination of all symmetric tens
having two or four gradient operators shows that a suita
choice is

Pab5$pL1z~¹2w!21z]gw]g~¹2w!%dab1k]aw]bw

2z$]aw]b~¹2w!1]bw]a~¹2w!%. ~5!

III. LATTICE BOLTZMANN SIMULATIONS

The aim is to simulate a fluid with equilibrium propertie
described by the free energy~1! which obeys the Navier-
Stokes and convection-diffusion equations. To this end
use a lattice Boltzmann technique@7#.

We consider a square lattice and define two sets of di
bution functions$ f i% and $gi% on each lattice sitexW . Each
f i ,gi is associated with a lattice vectoreW i . The results pre-
sented in this paper are for a 9-velocity model on a squ
lattice with ei /c5(61,0),(0,61),(61/A2,61/A2),(0,0).

Physical variables are related to the distribution functio
through

n5(
i

f i , nua5(
i

f ieia , ~6!

w5(
i

gi , ~7!
es
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whereuW is the mean fluid velocity.
The distribution functions undergo a collision step fo

lowed by a streaming step according to the evolution eq
tions

f i~xW1eW iDt,t1Dt !2 f i~xW ,t !52
1

t1
~ f i2 f i

0!, ~8!

gi~xW1eW iDt,t1Dt !2gi~xW ,t !52
1

t2
~gi2gi

0!, ~9!

whereDt is the time step,t1 and t2 are relaxation param
eters, andf i

0 andgi
0 are equilibrium distribution functions the

choice of which determines the physics inherent in the sim
lation. Equations~8! and ~9! are discrete Boltzmann equa
tions with a Bhatnager-Gross-Krook~BGK! collision term
@10#.

Following the standard lattice Boltzmann prescription w
assume thatf i

0 andgi
0 can be expanded as power series in

bulk velocity

f i
05A1Buaeia1Cu21Duaubeiaeib1Gabeiaeib ,

~10!

f 0
05A01C0u2, ~11!

gi
05H1Kuaeia1Ju21Quaubeiaeib , ~12!

g0
05H01J0u2. ~13!

The expansion coefficientsA,B, . . . are determined by

(
i

f i
05n, ~14!

(
i

f i
0eia5nua , ~15!

(
i

f i
0eiaeib5Pab1nuaub , ~16!

(
i

gi
05w, ~17!

(
i

gi
0eia5wua , ~18!

(
i

gi
0eiaeib5GDmdab1wuaub , ~19!

where Pab and Dm are given by Eqs.~5! and ~2!, respec-
tively, and G is a mobility. Note that the conditions~14!,
~15!, and ~17! correspond to local conservation of densit
momentum, and density difference, respectively. Explicit e
pressions for the expansion coefficients are given in the
pendix.

Expanding Eqs.~8! and~9! to order (Dt)2 and using Eqs.
~14!–~19! leads to the macroscopic equations

] tn1]a~nua!50, ~20!
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] t~nub!1]a~nuaub!52]aPab1n¹2~nub!

1]b$l~n!]a~nua!%, ~21!

] tw1]a~wua!5Gu¹2Dm2u]aS w

n
]bPabD , ~22!

where

u5~Dt !c2~t221/2!, n5
~2t121!

6
~Dt !c2,

~23!

l~n!5S t12
1

2DDtS c2

2
2

dp0

dn D .

It is apparent from these equations of motion that the fl
will evolve through two competing growth mechanisms. T
first of these is diffusion, described by Eq.~22! with uW 50W .
The second is bulk momentum transfer or hydrodynam
flow described by the Navier-Stokes equation~21!. The rela-
tive importance of diffusive and hydrodynamic flow can
altered by varying the viscosityn through changes int1 @see
Eq. ~23!#. For high viscosities the velocities remain suf
ciently small that hydrodynamic flow is irrelevant and t
evolution of the microstructure is diffusive. For low viscos
ties, however, the Reynolds number becomes larger and
drodynamic effects can dominate in changing the dom
morphology. Simulations run from the same initial cond
tions but with high or low viscosities enable us to build up
very clear picture of the effects of hydrodynamics on t
domain growth.

IV. 50:50 COMPOSITION: METASTABILITY
AND THE EFFECT OF HYDRODYNAMICS

We first describe the behavior of a symmetric binary flu
with a ratio of number densitiesnA :nB of 50:50 when it is
quenched from a disordered state into the ordered reg
Our aim is to compare the path of the spinodal decomp
tion for different values of the surface tension and of t
viscosity. Initial results for this concentration have appea
elsewhere@11#.

For all runs the system was initialized withn51.0 andw
chosen randomly between20.5 and 0.5. It was then
quenched to a final state defined by parametersa521, b
5z51. The simulations were run withDt50.004, c51,
t250.778 675 1, andG51. The system size was 1283128
and simulations were typically run for 105 time steps. This
took approximately ten days on a DEC Alpha Workstatio
Smaller lattice sizes gave similar results.

For k sufficiently negative the equilibrium state is
lamellar phase. After a quench at high viscosity the fluid g
stuck in a metastable state of lamellae which have appr
mately the correct width, but which are tangled. For lo
viscosity, however, hydrodynamic flow builds up and c
remove topological defects from the system and allow
fluid to reach equilibrium.

Evidence for these conclusions is shown in Fig. 1 wh
snapshots of the domain growth are compared for three
ferent sets of parameters:~a! high viscosity, two-phase coex
istence (t1550,k50.1), ~b! high viscosity, lamellar equilib-
d
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rium (t1550,k520.85), ~c! low viscosity, lamellar
equilibrium (t150.585,k520.85).

Consider first~a! which is at a value ofk that corresponds
to bulk phase separation and a value oft1 that suppresses
hydrodynamic flow. After initial transients sharp domai
form. These are more elongated than for a system witz
50 but they grow continuously and become more isotrop
An exponenta characterizing the growth is commonly de
fined by

R~ t !;ta, ~24!

whereR(t) is a length scale, which we take as the inverse
the first moment of the circularly averaged structure fact
and t is the time@12#. At late timesa converges to 1/3 as
expected for Lifshitz-Slyozov diffusive growth in a binar
system. Runs at different values ofk indicate that ask is
decreased an increasingly long time is taken to reach the
regime@11#.

For k,kc;20.8 there is a qualitative change in the b
havior of the system as shown in Fig. 1~b!. These results
were obtained for the same value oft1 but with k520.85
where the equilibrium is the lamellar state. Now the syst
forms portions of lamellae of width approximately equal
the equilibrium value. These lamellae are tangled in a w
that depends on the initial conditions. The diffusive grow
to the tangled phase is slow, possibly logarithmic, and o
the glassy phase has been reached there is no further dis
ible movement on the time scale of the simulation. F
smaller k the lamellae are thinner and the system free
sooner.

FIG. 1. Snapshots of the growth of domains with time for
binary mixture symmetric in composition. Gray scaling from bla
⇒ white corresponds tow521⇒w51. Each column represents
different physical situation:~a! a quench to the homogeneous tw
phase regionk.kc ; ~b! a quench to the lamellar phasek,kc in a
high viscosity fluid. The lamellae form in a tangled pattern whi
becomes frozen in time;~c! a quench to the same value ofk as~b!
but for a low viscosity fluid. Hydrodynamic modes allow the lame
lae to reorder giving, locally well-defined striped regions.
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Remaining with the valuek520.85 we then ran the
same simulation~starting from the same initial conditions!
for t150.585. The lower value oft implies a lower viscosity
and the possibility of hydrodynamic flow at earlier time
The initial behavior was the same as for case~b! with a
glassy lamellar phase being formed. However, at a later t
t there was a significant change in the domain pattern. T
is most easily seen from the snapshots in Fig. 1~c! where it is
apparent that the topological frustration of the glassy phas
being removed and the lamellae are lining up in the glo
equilibrium state.

An example of the effect of hydrodynamic flow on th
defects is shown in Fig. 2. The lamellae are initially t
wide. Hydrodynamic forces tend to lengthen them, caus
the broken lamallae to join and the stripes to buckle. At h
viscosities the defect does not disappear.

V. 60:40 COMPOSITION: SEPARATION TO COEXISTING
LAMELLAR AND BULK PHASES

We next consider a concentration rationA :nB560:40.
Now there is too little of theB phase to form lamellae of th
correct width throughout the system. We shall show that
equilibrium state corresponds to phase separation int
lamellar region coexisting with a bulkA phase. As before
equilibrium can only be reached with the help of hydrod
namic flow.

Simulations were again run at different values oft1 andk
to provide a comparison. Snapshots of the time evolution
shown in Fig. 3 for the same parameters as those used fo
symmetric mixture considered in Sec. IV. Figure 4 is
double logarithmic plot of the variation of the domain si
with time comparing the growth in the three different cas

Column ~a! of Fig. 3 shows the path to bulk phase sep
ration for k50.1. Droplets form by spinodal decompositio

FIG. 2. Defect being removed by flow. The lamellae are initia
too wide. Hydrodynamic forces tend to lengthen them, causing
broken lamellar to join and the stripes to buckle. Gray scaling fr
black ⇒ white corresponds tow521⇒w51.
.
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and then grow by Lifshitz-Slyozov diffusion. The curvatu
term in the free energy becomes less important for lar
droplets and they become more circular. The data in Fig
are consistent with the expected growth exponenta51/3 at
late times.

Figure 3~b! compares a simulation fork520.85, a value
for which the lamellar phase is stable in the symmetric m
ture. The value oft1 is chosen so that only diffusive growt
is possible. It is apparent from Fig. 3~b! that the final state is
a mixture of droplets and short lamellae. There are no furt
discernible changes in morphology on the time scale of
simulation as confirmed in Fig. 4.

Evidence that this droplet state is metastable is provi
when the same simulation is run with a low viscosity. Bu
fluid flow now allows the droplets to join to form lamella
and align. A surprising amount of movement is seen lead
to the growth process shown in Fig. 3~c!. In Fig. 4 the onset
of hydrodynamic flow in this system is marked by a rath
sharp increase in the measured length scale.

e

FIG. 3. Snapshots of the growth of domains with time for
binary mixture slightly asymmetric in composition. Gray scalin
from black⇒ white corresponds tow521⇒w51. ~a! A quench
to the homogeneous two-phase regionk.kc ; ~b! a quench to the
lamellar phasek,kc in a high viscosity fluid. Short lamellae form
in a pattern which becomes frozen on the time scale of the sim
tion; ~c! a quench to the same value ofk as ~b! but for a low
viscosity fluid. Hydrodynamic flow allows the system to attain
equilibrium of coexisting lamellar and bulk-A phases.
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The final state is coexistence between a lamellar an
bulk A phase. The lamellae order in a distinctive spi
around the hole ofA phase, to minimize the elastic fre
energy which would be generated by incorrect lamellar sp
ings.

Finally we remark that very similar results were obtain
for a concentration ratio ofnA :nB570:30.

VI. 90:10 COMPOSITION: THE DROPLET PHASE

Finally we describe phase separation in a highly asy
metric binary fluid withnA :nB590:10. Now the equilibrium
for k sufficiently negative comprises droplets ofB in A.
Figure 5 compares results for two different values ofk: ~a!
high viscosity, two-phase coexistence (t1550,k50.1), ~b!
high viscosity, lamellar equilibrium (t1550,k520.85).
The main difference between the growth processes in F
5~a! and 5~b! is a direct consequence of the final equilibriu
state. Fork50.1, once the domains have formed they co
tinue to grow slowly by the diffusion of material betwee
them. This is the Lifshitz-Slyozov growth process, driven
the difference in chemical potential between droplets of d
ferent size. Fork520.85, however, there is a preferred si
for droplets, set by the competition between the surface
sion and the curvature energy, and growth stops once
droplets have reached this size. A second difference is
for the negative value ofk droplets form much more quickly
in the early stages of growth. This is a consequence of
reduced surface tension.

Runs for a low viscosity and negativek showed a negli-
gible influence of hydrodynamics on growth for this conce
tration. This is as expected. Hydrodynamic flow can act
make a droplet circular because of the pressure differe
between points of different curvature. However, once
drops are circular hydrodynamic flow cannot directly lead
droplet coalescence although it may speed up the diffu
growth @13#.

FIG. 4. Double logarithmic plot of the evolution of the invers
first moment of the structure factor as a function of time for each
the simulations shown in Fig. 3: (3) bulk phase separation, (h) a
quench to the lamellar phase with high viscosity, (n) a quench to
the lamellar phase with low viscosity. The straight line has slo
1/3.
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VII. CONCLUSIONS

We have shown that there is a wealth of interesting
havior as even rather simple structured fluids attain equi
rium. Competition between diffusive and hydrodynam
modes leads to final states dependent on the dynamic pa
eters of the system. In particular, we have emphasized
hydrodynamic flow is often important in allowing a syste
to reach its equilibrium state.

The results were obtained using lattice Boltzmann sim
lations. The approach has two particular advantages in
context. First equilibrium is determined by a free ener
which is an intrinsic part of the simulation so the structure
the equilibrium state can be chosen rather naturally. S
ondly the viscosity of the fluid can be tuned over a wi
range. We caution, however, that the lattice Boltzmann e

f

e

FIG. 5. Snapshots of the growth of domains with time for
binary mixture highly asymmetric in composition. Gray scalin
from black⇒ white corresponds tow521⇒w51. ~a! A quench
to the homogeneous two-phase regionk.kc ; ~b! a quench to the
droplet phasek,kc where the final length scale is set by the com
petition between the surface tension and the curvature energy.
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lution is not described by anH theorem and thus no proo
exists that the path to equilibrium is a physical one.

Lattice Boltzmann simulations do not intrinsically includ
noise although this can be added in anad hocway. An im-
portant question is whether such fluctuations can relax
disordered lamellar states. We ran simulations aimed at
vestigating this but found no effect of noise on the glas
structure. In real two-dimensional smectics fluctuations
stroy the lamellar order. However, for this model we exp
a stable lamellar phase, both because of the lack of fluc
tions and because we impose a mean-field free energy.

Our conclusions are in broad agreement with those
Bahiana and Oono@14# who considered the spinodal decom
position of a model of block copolymers designed to give
lamellar equilibrium. Despite the long-range interactions
the model a tangled lamellar phase was formed afte
quench. This could be ordered by including terms appro
mating hydrodynamic flow in the simulation. Other relat
work @15# uses a Langevin approach which includes hyd
dynamics to model phase separation in microemulsions.
domain growth slows as the surfactant density is increa
This method provides an alternative numerical way to stu
complex fluids and it would be interesting to gain a full
understanding of the applicabilities of the different a
proaches.

There are many questions that remain to be conside
These include the effect of confinement or shear on the ph
separation, dynamical asymmetry in the viscosities of
two fluid components, and the role of a very low diffusivit
which has been shown to alter the path to bulk phase s
ration in binary fluids@16#. Work is in progress to include a
surfactant as a third phase rather than modeling its effec
changing the surface tension. Extensions to three dimens
ys
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are highly desirable. These are feasible but at the limit
current numerical resources.
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APPENDIX

A suitable choice of the coefficients in the expansions
the lattice Boltzmann equilibrium distributions~10!–~13!
consistent with the conditions~14!–~19! is

A5
5

4Fa

2
w21

3b

4
w42kw~¹2w!

1jw~¹2!2w1
z

2
~¹2w!2G Y ~12c2!,

A05n216A, B55n/~12c2!,

C0522n/~3c2!, C525n/~24c2!, D55n/~8c4!,

Gxx52Gyy5
5k

2
@~]xw!22~]yw!2#Y8c4

15z@]yw]y~¹2w!2]xw]x~¹2w!#/8c4, ~A1!

Gxy55k]xw]yw25z$]xw]y~¹2w!1]yw]x~¹2w!%,

H05w24H, H55GDm/~12c2!, K55w/~12c2!,

J0522w/~3c2!, J525w/~24c2!, Q55w/~8c2!.
ys.
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