PHYSICAL REVIEW E VOLUME 58, NUMBER 4 OCTOBER 1998

Statistical mechanics of vibration-induced compaction of powders
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We propose a theory that describes the density relaxation of loosely packed, cohesionless granular material
under mechanical tapping. Using the compactivity concept, we develop a formalism of statistical mechanics
that allows us to calculate the density of a powder as a function of time and compactivity. A simple fluctuation-
dissipation relation that relates compactivity to the amplitude and frequency of a tapping is proposed. The
experimental data of Nowadt al. [Powder Technol94, 79 (1997] show how the density of powder initially
deposited in a fluffy state evolves under carefully controlled tapping towards a random close g&&ng
density. Ramping the vibration amplitude repeatedly up and back down again reveals the existence of revers-
ible and irreversible branches in the response. In the framework of our approach the reversiblddoamch
which the RCP density is obtainedorresponds to the steady-state solution of the Fokker-Planck equation,
whereas the irreversible one is represented by a superposition of “excited state” eigenfunctions. These two
regimes of response are analyzed theoretically and a qualitative explanation of the hysteresis curve is offered.
[S1063-651X98)07510-2

PACS numbg(s): 81.05.Rm, 05.406:j, 03.20+i

I. INTRODUCTION this will not be considered her&V will depend on the coor-
dinates of the grains and their orientations and is the analog
There is an increasing interest in applying the methods o6f a Hamiltonian. Averaging over all the possible configura-
statistical mechanics and kinetic theory to granular material§ons of the grains in real space gives us a configurational
where processes are dominated by geometrical constraingéatistical ensemble describing the random packing of grains.
and friction and initially possess a memory of sample’'sSince we are assuming that we are dealing with a system
preparatiod:l,z:l_ In this paper we propose an ana|ytica| ap_Whose constituents are hm, impenetrabl}% we have to
proach that gives a qualitative explanation of experimentalnclude some account of this in our formalism in order to
data obtained by Nowakt al. [3]. They have shown that reduce the number of possible configurations the system may
external vibrations lead to a slow approach of the packindccupy. Also, for a packing that is stable under applied force
density to a final steady-state value. Depending on the initia¢ must consider the configurations restricting the number
conditions and the magnitude of the vibration acceleration0f possible volume states that the system may occupy to be
the system can either reversibly move between steady-sta@ly those configurations that are stable. Also grains cannot
densities or become irreversibly trapped in metastable state@verlap and this condition produces very strong constraints
i.e., the rate of Compaction and the final density depend Ser{frustratior) on their relative pOSitionS. This |mp||eS that all

sitively on the history of vibration intensities that the systemgrains have to be in contact with their nearest neighbors. Of
experiencessee Fig. 1 course in the real powder the topological defects can exist

A granu|ar material is a System with a |arge number ofSUCh as VacanCieS, VOidS, or arches. HOWeVer, as these will
individual grains and therefore it has a huge number of de-

grees of freedom. Grains interact with each other via contact p
forces that are determined by friction, gravitational loading,
and the amplitude of an exernal force if the system is per- P(X=0)

turbed. Therefore, one needs to invent a formalism that

would allow us to calculate macroscopic averages in terms of
microscopic(i.e., of individual graing properties of the sys-

tem. If we assume that it may be characterized by a small

number of parameter&.g., analogous to temperatu@nd

that this system has properties that are reproducible given the

same set of extensive operatiding., operations acting upon p(1=0)
the system as a whole rather than upon individual gjains

then we may apply the ideas of statistical averaging over the

ensemble of configurations to granular systéris r

In the present paper we consider the simplest model of a F|G. 1. Dependence of the steady-state packing density on the
granular material by introducing the volume functidhand  tapping history[3]. Experimental values of the density packing
assume the simplest case that all configurations of a givefiaction are in correspondence with the model paramepgis
volume are equally probable; in many cases the mechanism0)=1/v,~0.64,p(t=0)=py=10;~0.58, and p(X=0)
of deposition will leave a history in the configuration, but =2/(vy+v,)~0.62.
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be the subject of a future paper, we do not consider therstatistical mechanics of alloys we assume that each grain has
here. Thus we have a “microcanonical” probability distribu- a certain property, which defines the “interaction” with its

tion [4]
P=e S §(V—W)0®(contacts, )

eSh= f S(V—W)0 (contactyd(all degrees of freedom

nearest neighbors. Taking the coordination number of a grain
as such a property and assuming that there are just two types
of coordinationz, and z;, we assign a volume; to any
grain with z; coordination number. Thus we write the vol-
ume function as

(2) W: nol)o"l'(N_no)Ul, (8)
where we defind® as where N is the number of grains in the system, is the
1 i 7>7 number of grains with the coordination number, and
(contact$={ ' m N=ng+n,;. The simple calculation of andV gives us[4]
0 if z<z,,
U0+U1 Vo~ U1
wherez,, is the minimal coordination number of a grdii. Y=N 2 ~NAXIn 2 cosh AX ©)
We have to introduc® because we consider the stable iso-
tropic and homogeneous packings. Just as in conventional votvy  vg—U; Vo— U1
statistical mechanics with the microcanonical distribution V=N—7 N—>—tanh—~ (10

—a-Sks(E_ o
P=e ~"S(E—H) )  Thus we have two limits:v=Nv, when X—0 and V

=N(vg+v4)/2 whenX—o (N is the number of grains
Note that the maximunV is notNv4, just as in the thermal
JE system(say, a spin in a magnetic figldvith two energy
T= oS (4 levelsEy and E; one hasE=Ey; whenT—0 andE=(E,
+E;)/2 whenT—.

and temperature

we can define the analog of temperature as
II. “TWO-VOLUME” MODEL: SOLUTION OF THE

oV FOKKER-PLANCK EQUATION
We consider the rigid grain powder dominated by friction
This fundamental parameter is called compactii§f. It  deposited in a container that will be shaken or tapfad
characterizes the packing of a granular material and may berder to consider the simplest case we ignore other possible
interpreted as being characteristic of the number of ways it isnteractions, e.g., cohesion, and do not distinguish between
possible to arrange the grains in the system into voldkle  the grain-grain interactions in the bulk and those on the
such that the disorder i§S. Consequently, the two limits of boundaries We assume that most of the particles in the bulk
X are 0 andw, corresponding to the most and least compactlo not acquire any nonephemeral kinetic energy, i.e., the
stable arrangements. This is clearly a valid parameter foehange of a certain configuration occurs due to continuous
sufficiently dense powders because one can in principle caknd cooperative rearrangement of a free volume between the
culate the configurational entropy of an arrangement ofieighboring grains. Any such powder will have a remem-
grains and therefore derive the compactivity from the basidered history of deposition and in particular can have non-
definition[6]. One can expect, despite the strong constraintérivial stress patterns; however, we will confine the analysis
resulting from the stability conditions, the number of pack-of this paper to systems with homogeneous stress, which will
ings to grow exponentially with the volume of a sample andpermit us to ignore it. The fundamental assumption is that
the configurational entropy defined as a logarithm of thisunder shaking a powder can return to a well defined state,
number is extensive. independent of its starting condition. Thus, in the simplest
As usual, it is more convenient to introduce the canonicaBystem, a homogeneous powder, the density characterizes the
probability distribution state.
It is sensible to seek the simplest algebraic model for our
P=elY"WIX (6)  calculation and to this end, since the orientation of the grain

i _ i i must have at least two degrees of freedom, gayand u,,
where\ is a constant that gives the entropy the dimension oy, yolume function is

volume andyY is the effective volume and the analog of the
free energy: W=00+ (01~ 00) (45 + 1), (12)
implying a two-dimensional picturésee Fig. 2. When u

=0 we haveW=v, and then the grain is “well oriented,”
which means that a free volume is minimal, and when
To illustrate this theory consider the simplest exampl&®\pf =1 andW=uv, the grain is “not well oriented”(free vol-

the analog of the Bragg-Williams approximatiph]: Each  ume is maximal It is a self-consistent approximation since
grain has neighbors touching it with a certain coordinationthe parameters, and v, are the average volumes of the
and angular direction. In order to set up an analogy with thegrain in the presence of other grains. In general we can write

ayY
V=Y-X—. (7)

—YINX _ —W(u)/AX
e =|e d(all), .
f (all) X
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as one sees in experiment that the final density depends sen-
@é i sitively on the history of vibration intensities. Clearly, to
solve such an equation is not a trivial task, although the
uo et solution could give us a better understanding of many inter-
FIG. 2. Graphical representation of the limit values of the de-€Sting features of granular compaction. The problem of how
gree of freedomu in two dimensions. to choose the initial values qf is in reality the deposition

problem. We will discuss it later.
The Langevin equation can be easily solved WYérqua-

e Y\ X= f w(u)e  WWnXg (12)  dratic in u:
wherew(w) is the weight factor attached 0. From Eq.(7) wi(t)=pwi(0)e” "'+ De~ 7tftf(t/)eyt’dt/. (19)
we deriveY andV: 0

Averaging over the ensemble we get

Y=NUO—N)\XIn{ (1—e (17vaAXy 1 0 (13)

v (i) =pi(0)e ", (20
N(vi—vo) where w;(0)=1 is the initial value ofu; and y=2
V=N(vg+AX)— : 14 Hi _ > Of y=2[(v1
(o ) elvi—vAX_q a4 —vo)/v has the meaning of relaxation time of the degree of

freedomu. Ast—oo, u goes tow;=0, which corresponds
Thus we have the same limits as for the volume functRn  to the random close packing limit. The Fokker-Planck equa-
V=Nvg whenX—0 andV=N(vg+v4)/2 whenX—oo. tion seems to be quite generic in modeling the response of
The main physical idea of our approach is the following:granular materials to an externally applied shear &g
All grains in the bulk experience the external perturbation aslthough in that problem it is more convenient to use the
a random force with zero correlation time so that the processolume “Hamiltonian” W as a function of the coordination
of compaction can be seen as the Ornstein-Uhlenbeck prawumber of each grain. The standard treatment of the Lange-

cess for the degrees of freedqm, i=1,2[7]. Therefore, vin equation(15) is to use it to derive the Fokker-Planck
we write the Langevin equation equation

duij 1 W oP & 3

—+ — —=Dfi(t), 15 - = B — — L =

dt 14 &,u,l \/— I( ) ( ) ot ( 1] ﬁMIaMJ + yl] (9,Uq ,U/] P O, (21)

where (f;(t)f;(t"))=25; 6(t—t") and v characterizes the \here D;;=Ds; and y;=y5,;. Equation (21) can be
frictional resistance imposed on the grain by its neareskolved explicitly. It has right- and left-hand eigenfunctions
neighbors. The ternf;(t) on the right-hand side of Eq15)  p_andQ, and eigenvalues, such that

represents the random force generated by a tap. The terms

“shaken” or “tapped” have been used above and we have d d
to make them more precise. The derivation gives the analog wnPnZ&_M Djj <9_,w+ YiiMj | Pns (22
of the Einstein relation that=\X/D. If we identify f as the ! '
amplitude of the force used in the tapping, the natural way P 9
to make this dimensionless is to write the “diffusion” coef- ann=< —Dj; oot 7”"”)7(3”’ (23
ficient as i M

a\2po? or, equivalently, a Green'’s function

D=|=| —. (16)
g v
| _ | G=2 Py(u)Qu(p)e . (24)

That is, we have the simplest guess for a fluctuation- n

dissipation relation ) ] o S
It follows that if we start with a nonequilibrium distribution

a 2 V20'2
AX=|= , 17) .
g/ v PO(t=0)=> A.P,, A,,Zf QnPVduydu,
n=0
wherev is the volume of a graing the frequency of a tap, (25

and g the gravitational acceleration. Use of the Langevin

equation(11) is of course a crude simplification as it does it will develop in time as
not explicitly take into account the presence of boundaries
and topological constraints. Generally speaking, one would
have to use the integro-differential Langevin equation with
the memory kernel

©

PO(t)=AsPo+ >, A P,e“nt, (26)
n#0

g t where[P©@du,du,=A,. This coefficient is determined by
ﬁJrf K(t—t")p(t))dt' = \/Bfi(t), (18) the number of grains present in the pow_der and heng:e must
dt 0 be a constant. The steady-state distribution function is
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e—(ul—vomimgmx The general solution of the Fokker-Planck equati@th)
PO(t—o)= T . (27 goes to its steady-state value wher, so we can expect
j e—<v1—vo)(ﬂf+ﬂg>/KXdM1dM2 W(X,t) to diminish (as the amplitude of tapping increases
0

until one reaches the steady-state vaﬁ@(). The formula
(14) can be obtained using E¢B1) whent—« and repre-
sents a reversible curve in experimental datf3df Altering

a moves one along the curv,ezv/V_V(X)zp(a). We can
P,= Hne—(vl—uo)wfwg)/)\x, (28) identify time with the number of taps, so wherever we start
with any initial pq) anda, successive tapping takes one to
whereH,, are Hermite polynomials ang; e (0). In our  reversible curvg(a). Or, if one decides on a certain number
caseu; e (0,1). One can avoid this mathematical difficulty Of tapst#<, one will traverse a curvp(a), wherep..(a)
by taking into account the crudety of our model and con-=p(a). Notice that the simple result lies within the crudety
structing the “first excited state” P,=[a(u2+u?)  Of our model. The general problem will not allow us to think
+b]e_(U1_U0)(M§+M§)MX orthogonal to the ground-state of X asX(a) independent of the development of the system.

eigenfunctionP,. This eigenfunction describes the initial The thermal analogy is this: If the Brownian motion in an

state of our system, i.e., loosely packed deposited poWde?nsemble of particles is controlled by a random fdriteat is

Therefore, it is easy to see that the initial nonequilibriumdefined in terms of its amplitude and time profile, this ran-
distribution (26) depends on how the the powder is Olepos_dom force defines the temperature in the system. Our prob-

) . lem is like a magnetic system where magnetic dipoles are
!ted. Co_nstanta andb Gan be defined irom the orthonormal- affected by a constant magnetic field, being random at high
ity relations. By using

temperature and increasingly oriented by the external field as

The Fokker-Planck operat@21) has a complete orthogonal
set of eigenfunctions

P,=0,PO(t—x), Q=1 (29) the temperature falls.
and I1l. DISCUSSION
1 . . . . . .
i _ The physical picture presented in Sec. Il is consistent with
LepPodudus= 30 -
fo QelrpPoduaduz=w; 30 everyday knowledge of granular materials: when poured they

take up a low density, but when shaken they settle down,
one can easily verify that the eigenvalug (which corre- unless shaken violently, in which case they return to low
sponds toP, and gives us the decay rate of our nonequilib-density. These effects are much more pronounced in systems
rium distribution is a constant dimensionless number. with irregularly shaped grains than with fairly smooth uni-
Suppose now that deposition produces a highly improbform spheres; indeed, the more irregular a grain is, the more
able configuration, indeed the most improbable configurathe discussion above describes big differences betwggn
tion, with u2+ u3=2 and the mean volume functiow  andp. The experimental data $8] show the packing den-
=2v,—vo~v;, Where sity dependence on the paramdter a/g for a fixed number
of taps. A loosely packed bead assembly first undergoes ir-
_ © reversible compaction corresponding to the lower branch of
W(X!t):J’ PTX,)Wdu1du, . (81  x(I). The settling behavior becomes reversible only once a
characteristic acceleration has been exceeded. Our theory
It is possible to imagine a state where all the grains argives three pointp(X=0),p(X=c) and p(t=0), which
improbably placed, i.e., where each grain has its maximunare in the ratioov, !, 2/(vg+v4), vy >, and these are in
volumev,. In a thermal analogy this would be like a fully reasonable agreement with experimental dgéX=0)
magnetized magnetic array of spins where the magnetic fieleés 1/v,~0.64, py=1/v1~0.58, and p(X==2)=2/(vg+v,)
is suddenly reversed. Such a system is highly unstable ang 0.62. Another important issue is the validity of the com-
equilibrium statistical mechanics does not cover this case giactivity concept for “fluffy” but still mechanically stable
all. 1t will thermalize consuming the very high energy while granular arrays, e.g., for those composed of spheres avith
establishing the appropriate temperature. Powders, howeves0.58. In our theoryp(X==) corresponds to the beginning
are dominated by friction, so if one could put together aof the reversible brancksee Fig. 1 and using our analogy
powder where the grains were placed in high volume conwith a magnetic system is analogous to dipoles at a high
figuration, it will just sit there until shaken; when shaken it temperature. The irreversible branch has an analog in the
will find its way to the distribution(6). It is possible to iden- behavior of the magnetic system where initially the dipoles
tify physical states of the powder with characteristic valuesare strongly aligned with an external field, but this field is
of volume in our model. The valu¥=Nuv, corresponds to then flipped to the opposite direction.
the “deposited” powder, i.e., the powder is put into the most  The fluffy powder is a very complicated object as it has
unstable condition possible, but friction holds it. Wh¥n plenty of topological defects and stress arches. Throughout
=Nuvg the powder is shaken into closest packing. The interthe paper we assumed that our granular array is spatially
mediate value ofV=(vy+uv4)/2 corresponds to the mini- homogeneous, which is the case for densities of the revers-
mum density of the reversible curve. Thus we can offer arible curve. However, this is a very subtle problem that will
interpretation of three values of density presented in the exbe the subject of a future paper. It is a difficult problem to
perimental dat43]. decide whether embarking on a vast amount of algebraic
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work that a superior mode would entail is worthwhile. How- n, the law seems to be even slower attjiit. Our simple
ever, our simple model is quite physical and can be extendednalysis is clearly inadequate to obtain such a result, which is
when experiments would justify the work. quite outside the straightforward method of expansion in the
A final point is that we find the loweirreversiblg curve  present set of eigenfunctions. However, there is an argument
buildup to the uppefreversible curve exponentially in time by Boutreaux and de Gennfk0] that argues that a Poisson
V(1) = Vi € 1+ V(1 — e 91), 32 distribution can provide this logarithmic behavior.

while one can expect the logarithmic in time approach to the
steady-state density, e.g., the Vogel-Fulcher—type curve, ACKNOWLEDGMENTS
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