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Statistical mechanics of vibration-induced compaction of powders

S. F. Edwards and D. V. Grinev
Polymers and Colloids Group, Cavendish Laboratory, University of Cambridge, Madingley Road,

Cambridge CB3 OHE, United Kingdom
~Received 11 February 1998!

We propose a theory that describes the density relaxation of loosely packed, cohesionless granular material
under mechanical tapping. Using the compactivity concept, we develop a formalism of statistical mechanics
that allows us to calculate the density of a powder as a function of time and compactivity. A simple fluctuation-
dissipation relation that relates compactivity to the amplitude and frequency of a tapping is proposed. The
experimental data of Nowaket al. @Powder Technol.94, 79 ~1997!# show how the density of powder initially
deposited in a fluffy state evolves under carefully controlled tapping towards a random close packing~RCP!
density. Ramping the vibration amplitude repeatedly up and back down again reveals the existence of revers-
ible and irreversible branches in the response. In the framework of our approach the reversible branch~along
which the RCP density is obtained! corresponds to the steady-state solution of the Fokker-Planck equation,
whereas the irreversible one is represented by a superposition of ‘‘excited state’’ eigenfunctions. These two
regimes of response are analyzed theoretically and a qualitative explanation of the hysteresis curve is offered.
@S1063-651X~98!07510-2#

PACS number~s!: 81.05.Rm, 05.40.1j, 03.20.1i
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I. INTRODUCTION

There is an increasing interest in applying the methods
statistical mechanics and kinetic theory to granular mater
where processes are dominated by geometrical constr
and friction and initially possess a memory of sampl
preparation@1,2#. In this paper we propose an analytical a
proach that gives a qualitative explanation of experimen
data obtained by Nowaket al. @3#. They have shown tha
external vibrations lead to a slow approach of the pack
density to a final steady-state value. Depending on the in
conditions and the magnitude of the vibration accelerati
the system can either reversibly move between steady-
densities or become irreversibly trapped in metastable sta
i.e., the rate of compaction and the final density depend s
sitively on the history of vibration intensities that the syste
experiences~see Fig. 1!.

A granular material is a system with a large number
individual grains and therefore it has a huge number of
grees of freedom. Grains interact with each other via con
forces that are determined by friction, gravitational loadin
and the amplitude of an exernal force if the system is p
turbed. Therefore, one needs to invent a formalism t
would allow us to calculate macroscopic averages in term
microscopic~i.e., of individual grains! properties of the sys
tem. If we assume that it may be characterized by a sm
number of parameters~e.g., analogous to temperature! and
that this system has properties that are reproducible given
same set of extensive operations~i.e., operations acting upo
the system as a whole rather than upon individual grai!,
then we may apply the ideas of statistical averaging over
ensemble of configurations to granular systems@4#.

In the present paper we consider the simplest model
granular material by introducing the volume functionW and
assume the simplest case that all configurations of a g
volume are equally probable; in many cases the mechan
of deposition will leave a history in the configuration, b
PRE 581063-651X/98/58~4!/4758~5!/$15.00
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this will not be considered here.W will depend on the coor-
dinates of the grains and their orientations and is the ana
of a Hamiltonian. Averaging over all the possible configur
tions of the grains in real space gives us a configuratio
statistical ensemble describing the random packing of gra
Since we are assuming that we are dealing with a sys
whose constituents are hard~i.e., impenetrable!, we have to
include some account of this in our formalism in order
reduce the number of possible configurations the system
occupy. Also, for a packing that is stable under applied fo
we must consider the configurations restricting the num
of possible volume states that the system may occupy to
only those configurations that are stable. Also grains can
overlap and this condition produces very strong constra
~frustration! on their relative positions. This implies that a
grains have to be in contact with their nearest neighbors
course in the real powder the topological defects can e
such as vacancies, voids, or arches. However, as these

FIG. 1. Dependence of the steady-state packing density on
tapping history@3#. Experimental values of the density packin
fraction are in correspondence with the model parametersr(X
50)51/v0'0.64,r(t50)5r051/v1'0.58, and r(X5`)
52/(v01v1)'0.62.
4758 © 1998 The American Physical Society
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be the subject of a future paper, we do not consider th
here. Thus we have a ‘‘microcanonical’’ probability distrib
tion @4#

P5e2S/ld~V2W!Q~contacts!, ~1!

eS/l5E d~V2W!Q~contacts!d~all degrees of freedom!,

~2!

where we defineQ as

Q~contacts!5H 1 if z>zm

0 if z,zm ,

wherezm is the minimal coordination number of a grain@5#.
We have to introduceQ because we consider the stable is
tropic and homogeneous packings. Just as in conventi
statistical mechanics with the microcanonical distribution

P5e2S/kd~E2H ! ~3!

and temperature

T5
]E

]S
, ~4!

we can define the analog of temperature as

X5
]V

]S
. ~5!

This fundamental parameter is called compactivity@4#. It
characterizes the packing of a granular material and ma
interpreted as being characteristic of the number of ways
possible to arrange the grains in the system into volumeDV
such that the disorder isDS. Consequently, the two limits o
X are 0 and̀ , corresponding to the most and least comp
stable arrangements. This is clearly a valid parameter
sufficiently dense powders because one can in principle
culate the configurational entropy of an arrangement
grains and therefore derive the compactivity from the ba
definition @6#. One can expect, despite the strong constra
resulting from the stability conditions, the number of pac
ings to grow exponentially with the volume of a sample a
the configurational entropy defined as a logarithm of t
number is extensive.

As usual, it is more convenient to introduce the canoni
probability distribution

P5e~Y2W!/lX, ~6!

wherel is a constant that gives the entropy the dimension
volume andY is the effective volume and the analog of th
free energy:

e2Y/lX5E e2W~m!/lXd~all!, V5Y2X
]Y

]X
. ~7!

To illustrate this theory consider the simplest example ofW,
the analog of the Bragg-Williams approximation@4#: Each
grain has neighbors touching it with a certain coordinat
and angular direction. In order to set up an analogy with
m
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statistical mechanics of alloys we assume that each grain
a certain property, which defines the ‘‘interaction’’ with it
nearest neighbors. Taking the coordination number of a g
as such a property and assuming that there are just two t
of coordinationz0 and z1 , we assign a volumev i to any
grain with zi coordination number. Thus we write the vo
ume function as

W5n0v01~N2n0!v1 , ~8!

where N is the number of grains in the system,ni is the
number of grains with the coordination numberzi , and
N5n01n1 . The simple calculation ofY andV gives us@4#

Y5N
v01v1

2
2NlX ln 2 cosh

v02v1

lX
, ~9!

V5N
v01v1

2
1N

v02v1

2
tanh

v02v1

lX
. ~10!

Thus we have two limits:V5Nv0 when X→0 and V
5N(v01v1)/2 when X→` (N is the number of grains!.
Note that the maximumV is not Nv1 , just as in the therma
system~say, a spin in a magnetic field! with two energy
levels E0 and E1 one hasE5E0 when T→0 andE5(E0
1E1)/2 whenT→`.

II. ‘‘TWO-VOLUME’’ MODEL: SOLUTION OF THE
FOKKER-PLANCK EQUATION

We consider the rigid grain powder dominated by frictio
deposited in a container that will be shaken or tapped~in
order to consider the simplest case we ignore other poss
interactions, e.g., cohesion, and do not distinguish betw
the grain-grain interactions in the bulk and those on
boundaries!. We assume that most of the particles in the bu
do not acquire any nonephemeral kinetic energy, i.e.,
change of a certain configuration occurs due to continu
and cooperative rearrangement of a free volume between
neighboring grains. Any such powder will have a reme
bered history of deposition and in particular can have n
trivial stress patterns; however, we will confine the analy
of this paper to systems with homogeneous stress, which
permit us to ignore it. The fundamental assumption is t
under shaking a powder can return to a well defined st
independent of its starting condition. Thus, in the simpl
system, a homogeneous powder, the density characterize
state.

It is sensible to seek the simplest algebraic model for
calculation and to this end, since the orientation of the gr
must have at least two degrees of freedom, saym1 andm2 ,
our volume function is

W5v01~v12v0!~m1
21m2

2!, ~11!

implying a two-dimensional picture~see Fig. 2!. When m
50 we haveW5v0 and then the grain is ‘‘well oriented,’’
which means that a free volume is minimal, and whenm
51 andW5v1 the grain is ‘‘not well oriented’’~free vol-
ume is maximal!. It is a self-consistent approximation sinc
the parametersv0 and v1 are the average volumes of th
grain in the presence of other grains. In general we can w
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e2Y/lX5E w~m!e2W~m!/lXdm, ~12!

wherew(m) is the weight factor attached tom. From Eq.~7!
we deriveY andV:

Y5Nv02NlX lnH lX

v12v0
~12e2~v12v0!/lX!J , ~13!

V5N~v01lX!2
N~v12v0!

e~v12v0!/lX21
. ~14!

Thus we have the same limits as for the volume function~8!:
V5Nv0 whenX→0 andV5N(v01v1)/2 whenX→`.

The main physical idea of our approach is the followin
All grains in the bulk experience the external perturbation
a random force with zero correlation time so that the proc
of compaction can be seen as the Ornstein-Uhlenbeck
cess for the degrees of freedomm i , i 51,2 @7#. Therefore,
we write the Langevin equation

dm i

dt
1

1

n

]W

]m i
5AD f i~ t !, ~15!

where ^ f i(t) f j (t8)&52d i j d(t2t8) and n characterizes the
frictional resistance imposed on the grain by its near
neighbors. The termf i(t) on the right-hand side of Eq.~15!
represents the random force generated by a tap. The t
‘‘shaken’’ or ‘‘tapped’’ have been used above and we ha
to make them more precise. The derivation gives the ana
of the Einstein relation thatn5lX/D. If we identify f as the
amplitude of the forcea used in the tapping, the natural wa
to make this dimensionless is to write the ‘‘diffusion’’ coe
ficient as

D5S a

gD 2 ns2

v
. ~16!

That is, we have the simplest guess for a fluctuati
dissipation relation

lX5S a

gD 2 n2s2

v
, ~17!

wherev is the volume of a grain,s the frequency of a tap
and g the gravitational acceleration. Use of the Langev
equation~11! is of course a crude simplification as it do
not explicitly take into account the presence of bounda
and topological constraints. Generally speaking, one wo
have to use the integro-differential Langevin equation w
the memory kernel

dm i

dt
1E

0

t

K~ t2t8!m i~ t8!dt85AD f i~ t !, ~18!

FIG. 2. Graphical representation of the limit values of the d
gree of freedomm in two dimensions.
:
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as one sees in experiment that the final density depends
sitively on the history of vibration intensities. Clearly, t
solve such an equation is not a trivial task, although
solution could give us a better understanding of many in
esting features of granular compaction. The problem of h
to choose the initial values ofm is in reality the deposition
problem. We will discuss it later.

The Langevin equation can be easily solved forW qua-
dratic in m:

m i~ t !5m i~0!e2gt1ADe2gtE
0

t

f ~ t8!egt8dt8. ~19!

Averaging over the ensemble we get

^m i~ t !&5m i~0!e2gt, ~20!

where m i(0)51 is the initial value ofm i and g52@(v1
2v0)/n has the meaning of relaxation time of the degree
freedomm. As t→`, m goes tom f50, which corresponds
to the random close packing limit. The Fokker-Planck eq
tion seems to be quite generic in modeling the respons
granular materials to an externally applied shear rate@8#,
although in that problem it is more convenient to use
volume ‘‘Hamiltonian’’ W as a function of the coordination
number of each grain. The standard treatment of the Lan
vin equation~15! is to use it to derive the Fokker-Planc
equation

]P

]t
5S Di j

]2

]m i]m j
1g i j

]

]m i
m j D P50, ~21!

where Di j 5Dd i j and g i j 5gd i j . Equation ~21! can be
solved explicitly. It has right- and left-hand eigenfunctio
Pn andQn and eigenvaluesvn such that

vnPn5
]

]m j
S Di j

]

]m i
1g i j m j D Pn , ~22!

vnQn5S 2Di j

]

]m i
1g i j m j D ]

]m j
Qn , ~23!

or, equivalently, a Green’s function

G5(
n

Pn~m!Qn~m!e2vnt. ~24!

It follows that if we start with a nonequilibrium distribution

P~0!~ t50!5 (
n50

`

AnPn , An5E QnP~0!dm1dm2

~25!

it will develop in time as

P~0!~ t !5A0P01 (
nÞ0

`

AnPne2vnt, ~26!

where*P(0)dm1dm25A0 . This coefficient is determined by
the number of grains present in the powder and hence m
be a constant. The steady-state distribution function is

-
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P~0!~ t→`!5
e2~v12v0!~m1

2
1m2

2
!/lX

E
0

1

e2~v12v0!~m1
2
1m2

2
!/lXdm1dm2

. ~27!

The Fokker-Planck operator~21! has a complete orthogona
set of eigenfunctions

Pn5Hne2~v12v0!~m1
2
1m2

2
!/lX, ~28!

whereHn are Hermite polynomials andm iP (0,̀ ). In our
casem iP (0,1). One can avoid this mathematical difficul
by taking into account the crudety of our model and co
structing the ‘‘first excited state’’ P25@a(m1

21m1
2)

1b#e2(v12v0)(m1
2
1m1

2)/lX orthogonal to the ground-stat
eigenfunctionP0 . This eigenfunction describes the initia
state of our system, i.e., loosely packed deposited pow
Therefore, it is easy to see that the initial nonequilibriu
distribution ~26! depends on how the the powder is depo
ited. Constantsa andb can be defined from the orthonorma
ity relations. By using

Pn5QnP~0!~ t→`!, Q051, ~29!

and

E
0

1

Q2L̂FPP2dm1dm25v2 ~30!

one can easily verify that the eigenvaluev2 ~which corre-
sponds toP2 and gives us the decay rate of our nonequil
rium distribution! is a constant dimensionless number.

Suppose now that deposition produces a highly impr
able configuration, indeed the most improbable configu
tion, with m1

21m2
252 and the mean volume functionW̄

52v12v0'v1 , where

W̄~X,t !5E P~0!~X,t !Wdm1dm2 . ~31!

It is possible to imagine a state where all the grains
improbably placed, i.e., where each grain has its maxim
volumev1 . In a thermal analogy this would be like a full
magnetized magnetic array of spins where the magnetic
is suddenly reversed. Such a system is highly unstable
equilibrium statistical mechanics does not cover this cas
all. It will thermalize consuming the very high energy whi
establishing the appropriate temperature. Powders, howe
are dominated by friction, so if one could put together
powder where the grains were placed in high volume c
figuration, it will just sit there until shaken; when shaken
will find its way to the distribution~6!. It is possible to iden-
tify physical states of the powder with characteristic valu
of volume in our model. The valueV5Nv1 corresponds to
the ‘‘deposited’’ powder, i.e., the powder is put into the mo
unstable condition possible, but friction holds it. WhenV
5Nv0 the powder is shaken into closest packing. The int
mediate value ofV5(v01v1)/2 corresponds to the mini
mum density of the reversible curve. Thus we can offer
interpretation of three values of density presented in the
perimental data@3#.
-
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The general solution of the Fokker-Planck equation~21!
goes to its steady-state value whent→`, so we can expec
W̄(X,t) to diminish ~as the amplitude of tapping increase!

until one reaches the steady-state valueW̄(X). The formula
~14! can be obtained using Eq.~31! when t→` and repre-
sents a reversible curve in experimental data of@3#: Altering
a moves one along the curver5v/W̄(X)5r(a). We can
identify time with the number of taps, so wherever we st
with any initial r (0) anda, successive tapping takes one
reversible curver(a). Or, if one decides on a certain numb
of tapstÞ`, one will traverse a curver t(a), wherer`(a)
5r(a). Notice that the simple result lies within the crude
of our model. The general problem will not allow us to thin
of X asX(a) independent of the development of the syste
The thermal analogy is this: If the Brownian motion in a
ensemble of particles is controlled by a random forcef that is
defined in terms of its amplitude and time profile, this ra
dom force defines the temperature in the system. Our p
lem is like a magnetic system where magnetic dipoles
affected by a constant magnetic field, being random at h
temperature and increasingly oriented by the external field
the temperature falls.

III. DISCUSSION

The physical picture presented in Sec. II is consistent w
everyday knowledge of granular materials: when poured t
take up a low density, but when shaken they settle do
unless shaken violently, in which case they return to l
density. These effects are much more pronounced in syst
with irregularly shaped grains than with fairly smooth un
form spheres; indeed, the more irregular a grain is, the m
the discussion above describes big differences betweenr (0)
andr. The experimental data of@3# show the packing den
sity dependence on the parameterG5a/g for a fixed number
of taps. A loosely packed bead assembly first undergoe
reversible compaction corresponding to the lower branch
r(G). The settling behavior becomes reversible only onc
characteristic acceleration has been exceeded. Our th
gives three pointsr(X50),r(X5`) and r(t50), which
are in the ratiosv0

21 , 2/(v01v1), v1
21 , and these are in

reasonable agreement with experimental data:r(X50)
51/v0'0.64, r051/v1'0.58, and r(X5`)52/(v01v1)
'0.62. Another important issue is the validity of the com
pactivity concept for ‘‘fluffy’’ but still mechanically stable
granular arrays, e.g., for those composed of spheres wir
<0.58. In our theoryr(X5`) corresponds to the beginnin
of the reversible branch~see Fig. 1! and using our analogy
with a magnetic system is analogous to dipoles at a h
temperature. The irreversible branch has an analog in
behavior of the magnetic system where initially the dipo
are strongly aligned with an external field, but this field
then flipped to the opposite direction.

The fluffy powder is a very complicated object as it h
plenty of topological defects and stress arches. Through
the paper we assumed that our granular array is spat
homogeneous, which is the case for densities of the rev
ible curve. However, this is a very subtle problem that w
be the subject of a future paper. It is a difficult problem
decide whether embarking on a vast amount of algeb
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work that a superior mode would entail is worthwhile. How
ever, our simple model is quite physical and can be exten
when experiments would justify the work.

A final point is that we find the lower~irreversible! curve
buildup to the upper~reversible! curve exponentially in time

V~ t !5Vinitial e
2vt1Vfinal~12e2vt!, ~32!

while one can expect the logarithmic in time approach to
steady-state density, e.g., the Vogel-Fulcher–type cu
which is typical of disordered thermal systems such as s
and structural glasses@9#

V~ t !5Vf1~Vi2Vf !e
2vt1Tt2e ~33!

wheree is large. In fact, identifyingt as the number of tap
od

S.

ls
.

ed

e
e,
in

n, the law seems to be even slower at (lnt)21. Our simple
analysis is clearly inadequate to obtain such a result, whic
quite outside the straightforward method of expansion in
present set of eigenfunctions. However, there is an argum
by Boutreaux and de Gennes@10# that argues that a Poisso
distribution can provide this logarithmic behavior.
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