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The hydrodynamic equations for a gas of hard spheres with dissipative dynamics are derived from the
Boltzmann equation. The heat and momentum fluxes are calculated to Navier-Stokes order and the transport
coefficients are determined as explicit functions of the coefficient of restitution. The dispersion relations for the
corresponding linearized equations are obtained and the stability of this linear description is discussed. This
requires consideration of the linear Burnett contributions to the energy balance equation from the energy sink
term. Finally, it is shown how these results can be imbedded in simpler kinetic model equations with the
potential for analysis of more complex states.
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[. INTRODUCTION tion parameter. The objective here is to provide a derivation
of the hydrodynamic equations from the Boltzmann equation
The rapid flow of granular media is frequently describedusing an extension of the Chapman-Enskog method to granu-
at the macroscopic level by the equations for fluid dynamicslar media. The transport coefficients in the heat and momen-
modified to account for dissipation among the interactingtum fluxes at Navier-Stokes order are calculated as functions
particles[1]. These equations are generally phenomenologiof the coefficient of restitution using a first Sonine polyno-
cal with unknown transport coefficients and with unknownmial approximation, as is usual for elastic fluids. Additional
limits of validity. The details and basis for such macroscopictransport coefficients associated with contributions from the
balance equations have their origins in the more fundamentaink term in the energy equation are discussed and those
microscopic kinetic theory description of granular flow. To required for a linear stability analysis at Navier-Stokes order
isolate the most important distinguishing feature of granulaup through second order in the gradigrage explicitly cal-
media, dissipative dynamics, we consider here the simplestulated in the same approximation. They characterize contri-
case of smooth hard spheres at low density. The system cobutions that are proportional to the Laplacian of the tempera-
sidered is well described by the Boltzmann kinetic equatiorture or the density.
modified to account for inelastic two-particle collisions. In the next section the Boltzmann equation for inelastic
Derivations of the hydrodynamic equations based on this andollisions is given and the exact balance equations for mass,
related kinetic equations have been considered for some timenergy, and momentum are obtained from it. The Chapman-
[2—4]. However, the complexity of the equation has led toEnskog method for obtaining a “normal” solution as an ex-
the use of various approximations not required for elastipansion in spatial gradients is described and the results
fluids and a complete identification of the transport coeffi-through Navier-Stokes order are given. The analysis is more
cients as a function of the dissipation parameter to Naviereomplete than previous studif®—4]; it is exact to leading
Stokes order has not yet been given. However, let us mentioorder in the dissipation but not limited to weak dissipation.
that very recently Sela and Goldhirsfh] have numerically Some details of the calculations are given in Appendixes A
obtained a perturbative solution of the inelastic Boltzmanrand B. The contributions coming from the energy sink term
equation to Burnett order, i.e., one order in the gradient@re also analyzed, and the coefficients associated with linear
beyond the Navier-Stokes approximation, although restricteterms are explicitly evaluated. This requires consideration of
to the small inelasticity limit. the distribution function to second order in the gradients
The consideration of the dependence of the transport cdBurnett orde). Appendixes C and D provide a sketch of the
efficients on the dissipation parameter can be significantalculation of these coefficients. The hydrodynamic equa-
since a primary application of hydrodynamics is to discovertions and their linearization about the homogeneous cooling
the conditions of stability for various states. Also, the rheol-state are discussed in Sec. Ill. The conditions for stability are
ogy of granular fluids under large shear is determined fromdentified as functions of the wave vector and the coefficient
the dependence of the transport coefficients on the dissip&f restitution.
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The derivation of hydrodynamics is based on a specialhere the inverse operatbrfor direct collisions is given by
“normal” solution expanded to low order in the spatial gra- o
dients. For more complex states the Boltzmann equation is bg=g—(1+a)(g-0)0. (5)
generally intractable and traditionallglastic collisiony it ) o ) ) _
has been replaced by model kinetic equations for such appliVith this identity the following properties aof f,f] follow
cations[6—8]. The spirit of a kinetic model is not to capture directly,
all details of the underlying Boltzmann equation, but rather
to preserve only the critical features responsible for the prop- 0
erties of interest. For example, a kinetic model should imply
the same macroscopic balance equations for mass, energy, f dv Jtf]= 0 . (6
and momentum density as derived from the Boltzmann equa- Emv2 —(1-a® o[ f,f]
tion. In the present case this should include the energy sink

due to inelastic collision$9,10]. This is discussed in Sec. The zeros on the right-hand side represent conservation of
IV, where it is shown to what extent the transport propertieS3ss and momentum for the two-particle collisions. The
of the Boltzmann equation can be embedded in a kinetigy —(1— a?) w[f,f] provides the rate of energy loss due
model. Three different versions of kinetic models for granu- dissipation, withw[ f,h] given by
lar flow are indicated depending on the degree of compro- ’ '
mise between quantitative accuracy and tractability. The fi- mmo? f q

Vi

nal section contains some further comments on o[f,h]= 16

hydrodynamics and kinetic modeling of granular flows.
_ 3

Il. BOLTZMANN EQUATION AND CHAPMAN-ENSKOG X fdv? Vi = Vol f(r Ve, Oh(rve ). (7)

SOLUTION .
The balance equations for mass, momentum, and energy fol-

The distribution functionf(r,v;t), for the positions and low by taking moments of the Boltzmann equation with re-
velocities of a low density gas of smooth hard spheres igpect to 1y, andv?, [2,3]
assumed to be well described by the Boltzmann kinetic equa-

tion [4,9], Dn+nV-u=0, (8
(o +v-Vf=J[f,f]. 1) Dtui+(mn)‘1VjPij=O, 9

The Boltzmann collision operatdf f,f] describing the scat- 2 _

tering of two particles is DT+ _3nkB(PijVjUi+V'CI)+T§—07 (10)

s ~ ~ ~ whereD=4,+u-V is the material derivative, and we have
Jf.fl=o Jdvl fdﬂ(@(g-a)(g'ﬂ) introduced the cooling rate
X(a 2 1=1)f(r,v,t)f(r,vq,1), 2 . 2
{f=(1-a®) g olf.1] (11

whereg=v—v;, ¢ is the diameter of the particles; s a unit
vector along their line of centers, ardl is the Heaviside The pressure tensd;; and heat fluxg are given by
function. The operator for “restituting” collisionsh™?, is
defined b n

erine Yy Pij[r,t|f]=E5ij+fdVDij(V)f(r,V.t)y

b™*h(G,9)=h(G,b™'g),

b-lg—g—a~Y(1+a)(g-&) 6. 3 q[r,tlf]zJ dv S(V)f(r,v,t), (12

The center of mass velocitg= (v+v,)/2 is invariant under _ 14,2 (m 5
the action ofb. It is easily verified that the total energy Dii(v)=m(vivi_ sV 5”')' S(V)= EV 28 V.
change in collision iSAE=—(1—a?)m/4(g- o)?, which 13
identifies @ as the coefficient of restitution, in the range 0
<a=<1. A useful identity, for an arbitrary functioh, is
given by

Here V=v—u is the velocity relative to the local flon3
=(kgT) %, andn(r,t), u(r,t), andT(r,t) are the local den-
sity, flow velocity, and temperature, respectively. The Bolt-
zmann equation admits a basic solution describing the homo-
f dvh(v)J[ f,f] geneous cooling state, in which the system is spatially
uniform and the temperature decreases monotonically in
- - time.
=02f dv, f dv f(f,V:t)f(f'Vlit)f do 06(g-0) The balance equations become a closed set of hydrody-
. namic equations for the fields, u, and T oncePj;[r,t|f],
X(g-o)(b—1)h(v), (4 qlr,t|f], and{[r,t|f,] are expressed as functionals of these
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fields. The latter are explicit functionals 6fso the desired To zeroth order in the gradients the kinetic equatin
forms are obtained from a solution to the kinetic equationbecomes
that expresses the space and time dependerfcerdfrely in
terms of the hydrodynamic fields. Such a solution is called a V1 O=[1@ 1O, (16)
“normal” solution, and a practical means to obtain it for ) ) )
small spatial gradients is given by the Chapman-EnskOJhe macroscopic balance equations to this order read
method[11]. The hydrodynamic equations depend on gradi- 0. 0. 1 (O
ents of the pressure tensor and heat flux, and on the pressure 4n=0, 3%u=0, T 15°T=-¢?, (17)
tensor multiplied by a gradient. Thus a calculationfofo
first order in the gradientéNavier-Stokes ordergives con-
tributions to the hydrodynamic equations up through second 20[f©,§O]
order in the gradients. Howevef] f] appears in the hydro- (O=1-a®)——————.
d i tions without additional gradients and requires 3nkgT
ynamic equa g q

calculation off to second order in the gradienBumett  Thg |eft side of Eq(16) can be evaluated more explicitly to
ordep for consistency. In this way, the balance equationsyj e
become approximate closed hydrodynamic equations vali
for long wavelength phenomer(ength scales large com- —(OT o O=7[fO §0O7, (199
pared to the mean free path

The solutions for homogeneous states are easily seen froor
Egs. (8)—(10) to be four “modes” with infinite relaxation
time, corresponding to the conserved density and momentum
density, and one with a relaxation time equal to the inverse
cooling rate ofT(t). For small but finite spatial perturba-
tions, the relaxation times for the first four modes becomelhe second form follows from the fact th&f is a function
finite, proportional to the square of the wavelength. The reof the velocity only throughv/v,, wherevo=(2/8m)*2 is
maining mode has a relaxation time proportional to the inihe thermal velocit& Thus its dependence on the temperature
verse cooling rate of the homogeneous state perturbed ky of the formT %% (®)(y/TY?), and consequently
terms proportional to the square of the wavelength. The ap-
pearance of two time scales within the hydrodynamic de-
scription is a new feature of granular media. However, the
fact that these time scales may be quite different does not
compromise the existence of a hydrodynamic descriptionln the following both forms, Eg(198 and Eq.(19b), will be
This is because the reference state for the Chapman-Enskoged. Dimensional analysis requires tfi&? is proportional
expansion incorporates the dynamics of cooling, so the reto nT¥2 The solutionf(®=f©)(V) is isotropic so that the
sidual corrections are all proportional to the small spatialzeroth order pressure tensor and heat flux are found to be
gradients.

The Chapman-Enskog method assumes a solution to the Pi(j0)=p5ij , q9=0, (21)
kinetic equation of the form

where the cooling raté(® is given by

(18

1 d
Eg(O)W.(Vf(O)):J[f(O)’f(O)]. (19b)

19
—Tan“”:E A (Vi) (20)

wherep=nkgT is the hydrostatic pressure.
f(r,v,t)=~f[v|n,u,T]. (149 To first order in the gradients E¢l) leads to an equation

for (1),
This means that the space and time dependence all occurs

through a functional dependence on the hydrodynamic fields. (ﬁ§°)+ L)yfV=— (aglbrv.v)f(o): — (D§1>+V.V)f<0>,
This functional dependence can be made local in space and (22
time through an expansion in the gradients of these fields, for

states with small spatial variations. In this case, the distribuwith D{"= 4"+ u.V and

tion function is represented as a series in a formal “unifor-

mity” parametere (set equal to unity at the ehd LfM=—J[fO fD]- [ fD) §O7], (23
f=fO4efDye2f@q4 ... (15  The macroscopic balance equations give
The series is generated by assigning a factoe o6 every D¥n=-nV.u, DMu;=—(mn)~Vp,

gradient operator. Use of this expansion in the definitions for

the fluxes and the dissipation functies f,f] gives a corre- 1 2T D

sponding expansion for these quantities. Finally, use of these Dy T=—ZVu=0oT, (24)
in the hydrodynamic equations leads to an identification of
the time derivatives of the fields as an expansion in the grayith
dients, 9= ¥+ oM+ . ... This is the usual Chapman-
Enskog method for solving kinetic equatioptl,12. The
problem is more complex here than for the casel since

the reference state about which gradients are considered is
not stationary, and the terms fro ?) are not zero. Therefore, Eq(22) becomes

40O, D]

(D=(1—- 2
Fr=-a) 0T

(25
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(004 L) f V= DTy £@ JdVD;(V)LG;(V)
vofdV D (V)Gj(V)'

=fO(V.u-V-VIn n)+(an<°>)(§v-u—v-VT> (36)
3  [AVS(V)-LAY)

vila)= v dVS(V) - A(V)

vy(a)=

Jd
+ me))[—(mn)lvianV-Vui]. (26)
i o) [AVS(V)-LB(V) a
vi(a)= ,
The solution to this equation has the form a vo dVS(V) - B(V)
fO=_A(V)-VIn T+B(V)-V In n+¢;(V)V,u;. where Dj;(V) and S(V) are defined in(13) and v,
: : 27 =(16/5)nc?(7/mpB)Y? is a characteristic collision fre-

quency introduced for normalization. The functioh(«) is
Substitution of Eq(27) into Eq. (26) and identifying coeffi-  related to the deviation of the fourth momeft®) from the
cients of independent gradients gives the set of equations thaorresponding value for a Maxwellian. These results are still
determine the functions4(V), B(V), and C;;(V). These exact. To obtain more explicit expressions for the depen-
equations and the details of their analysis are given in Apdence of the transport coefficients arwe use a first Sonine
pendix A. The contributions to the pressure tensor, heat fluxpolynomial expansion fotd(V), B(V), C;(V), and f©,
and cooling rate of first order in the gradients can be calcuThis is the usual approximation for a gas with elastic colli-

lated from Eqs(12) and(27) with the results sions and there is na priori reason to question its accuracy
here as well. It follows from symmetry that the leading terms
P(V=—5(Viuj+Vui— 5 5;V-u), (28)  in this expansion areA(V)«B(V)«=fyu(V)(V), Ci(V)
< fu(V)Dij(V), and FOV)—fy(V)<fu(V)[(BmV/2)?
qV=—«kVT—uVn, (290  —5BmMV?2+15/4]. Herefy(V) is the Maxwellian weight
factor defining the scalar product with respect to which the
(W=, (30) orthogonal polynomials are defined. With these expressions

the following results holdsee Appendix B
where  is the shear viscosity and is the thermal conduc-

s - 5 3
tivity. The other transport coefficient has no analogue for (@)= —=(1—a?)| 1+ —=c*(a) |, (38)
the elastic scattering case and is nonvanishing onlyafor 12 32
<1. The term¢® vanishes from symmetry since it is a
scalar that does not couple linearly to the vector functions ¢* () 32(1-a@)(1-2a?) (39
a)=
Ai(T,V) andBi(T,V'),' nor to thE{ traceless tens6y (T,V). 81— 17a+302%(1—a) |
The transport coefficients are given by
7(a) 1 -1 v (a)= 1—3(1—(1)2 1—ic*(a) (40)
7(a)==—=|Vi(@)-5(a)| . (3D 7 4 64" )"
7o
vi(a)=vi(a)=3(1ta)
* K(a) 2 * * -1 * g
1Wa)=—==5lv(@) =28 ()] 1+ e ()], 33 —3a
—_ — *
(32 X1+ 16(1 a)+ 1024 c*(a)|. (41
. n Equationg38) and(39) have been shown to be in very good
H (Q)ET_KOM(“) agreement with the numerical results obtained by a direct
Monte Carlo simulation of the Boltzmann equatiph3].
c*(a) This completes the identification of all terms in the expres-
=2{*(a) K*(a)+§ " sions (31)—(33) for the transport coefficients. The corre-
¢ (a) sponding contribution to the distribution functidf”) is cal-
X[zyz(a)_gg*(a)]—l_ (33  culated in Appendix C with the result
Here 5o=5mY%160%(wB)Y? and ko= 15kg 70/4m are the fO(V)= —,83nl[z—mS(V)-[K(a)VT-i-,u(a)Vn]
elastic limit values of the shear viscosity and thermal con- 5

ductivity, respectively. The dimensionless functionsaoin

these expressions are +,8‘177(a)D”(V)Viuj]fM(V). (42
(0) (0) £(0)
Fa)= g_ =(1— QZ)M , (34) The most frequently used expressions for transport coef-
Yo 3nvo ficients to date are those obtained by Letral. [3] using an

5 approximate moment method based on the Boltzmann equa-
8|(Am|°1 ar(0)_ 10 tion (low density limit of their resultsfor small . In the
> dVv Vvf 7| (35

* = —
c*(a) 1 current terminology this method calculates the contributions
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FIG. 1. Shear viscosity as a function of the coefficient of resti- FIG. 3. The transport coefficient as a function of the coeffi-
tution «. The solid line is the result obtained here by using thecient of restitutionae. Symbols are the same as in Fig. 1. The theory
Sonine expansion and the dotted line is the one reported if&ef. in Ref. [3] predictsu=0. The transport coefficient is reduced by
The dashed lines correspond to the model equations discussed iy T/n, wherek, is the elastic thermal conductivity.

Sec. IV. The shear viscosity is reduced in each case by its value in

the elastic limita=1. §(2): §1V2T+ §2V2n+ §3(VT)2+ §4(Vn)2+ Ls(VT)-(Vn)

from v¥ ., only to leading order in (¥ @) and neglects (Vi) (Vitg) + &7(Vity) (V). (43

completely the contributions fronf* (a) andc*(a). AlSO,  cajcylation of these coefficients requires knowledgd @k
this method predictg.(a) =0 in contrast to the finite result o congributions tof that determine the coefficients of
obtained here. Goldshtein and Shapidj use the correct i jinear terms in Eq43) are discussed in Appendix D. In
Chapman-Enskog method but report no results for any of thgye same Sonine polynomial approximation as discussed
three transport coefficients at Navier-Stokes order. Figuregpove it is found that, and ¢, are given by Eqgs(D19)—
1-3 show a comparison of our results with thosd3iffor (21, In order to provide an idea of the relevance of these
the coefficientsy, k, and u, respectively, as functions af. transport coefficientsy*/¢* andu*/¢% are plotted as func-
There are both qualitative and quantitative differences. Preﬂons of a in Figs. 4 and 5, respectively. The reduced coef-
liminary Monte Carlo simulations of the shear viscosity CON-sicients 7* and g*' are defi'ned in Eq(DiS) For not very
firm the accuracy of our results. Further details will be pro'inelastic lparticle;g* (%) is much smaller. than* (v*)

X ) ; TG )
vided elsewhere. Also shown in these figures are results fronﬁhat means that the termgV2T and £,V2n can be accu-

kinetic models discussed in Sec. IV. . ‘
We have already seen that there is no contribution to th ate):l)t/) nlegl]ected in the transport equatipase Eqs(58) and
65) below].

heating rate[r,t|f] of first order in the gradients. However, As mentioned in the Introduction, Sela and GoldhirEgh

for consistency it is necessary to include the contribution . .
from second-order gradients in the hydrodynamic equation{?"’l.ve obtained expressmns_for the Bol;zmann transport co_ef—
Icients up to Burnett order in the gradients and first order in

since the latter depend on the gradientsR)P and q®),
which also are of second order. Symmetry dictates the form

4

10
of é’(z)'
5
—— Sonine 3 L
F Lun etal. 10
PR ---- Model1 | | e
. ——- Model 2 N
—-— Model 3 ?4
10°
10’ : - - -
0.5 0.6 0.7 0.8 0.9 1.0
o

FIG. 4. Ratio of the thermal conductivity to the coefficient;
associated with the contribution from the energy sink term propor-
tional to the Laplacian of the temperature, as a function of the

FIG. 2. Thermal conductivity as a function of the coefficient of coefficient of restitutione. Both quantities have been reduced to
restitutiona. Symbols are the same as in Fig. 1. The heat conducdimensionless form. The precise definitions are given in the main
tivity is reduced in each case by its value in the elastic limit1. text.

0 ! L L !
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0.5 0.6 0.7 0.8 0.9 1.0
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FIG. 5. Ratio of the transport coefficiept to the coefficient,

associated with the contribution from the energy sink term propor-

IIl. HYDRODYNAMIC EQUATIONS AND STABILITY

The results obtained in the previous section for the pres-
sure tensor, heat flux, and energy sink provide the necessary
constitutive equations to convert the balance equatiBps
(10) into a closed set of hydrodynamic equations forT,
andu,

D;n+nV-u=0, (56)
DU+ (nm) 1V p—(nm) "1V, 7(V;u;+ V;u;
—%68;V-ul=0, (57
D,T+2(3nkg) " *pV-u—2(3nkg) " X(V;u))

X[7(Viuj+Vjui— § 6;V-u)]

tional to the Laplacian of the density, as a function of the coefficient —2(3nkg) -ly. (kVT)—2(3nkg) -ly. (uVn)
of restitutiona. Both quantities have been reduced to dimensionless

form. The precise definitions are given in the main text.

the inelasticity parametee=1— 2. In order to compare

=-T{O-T1®, (58

In general, the energy sink? has many contributions, as

with the results presented here, we have carried out an ejddicated in Eq.(43). Our analysis of the hydrodynamic

pansion of our results in powers ef

7* =1+ 2Bl e+0(€?), (44
K* =1+ 2% e+ O(€?), (45)
=5 +0(e), (46)
(F=1 e 53 €+0(€), (47)
(1= €et+0(€), (48)

5 =25 2+ 0(€%). (49

The corresponding results in R¢&] written in the units we
are using read

7Es~1.0160+ 0.180%k+ O(€?), (50)
kE~1.0259+0.2682%+ O(€?), (52
ui~0.527&+ O(€?), (52
(i~ 5 €—0.010%>+0(€3), (53
{} s¢~0.0866+O(€?), (54)
{3.56=O(€). (55)

We see that there is a quite good quantitative agreement with

no qualitative discrepancies. In particular, the orde¢ end

the sign of the first corrections to the leading terms are the

equations will be limited to their linearization about the ho-
mogeneous cooling state and consequently only the first two
terms of Eq.(43) are needed.

The linearization about the homogeneous state leads to
partial differential equations with coefficients that are inde-
pendent of the space variable but dependent on the time,
since the reference state is cooling. This time dependence
can be eliminated through a change in the time and space
variables, and a scaling of the hydrodynamic fields. Let
Y (1, )=y, (r,t)—yu,.(t) denote the deviation of the hy-
drodynamic fields from their value in the homogeneous state.
A set of Fourier transformed dimensionless variables are
then defined by

Neal )= [ ol e oy, 1,7), (59
_OT(7) [om v
9k(T)—m. Wk(T)—m ou(7),
P
pi(r)= L7 (60
H

The subscriptH indicates that the quantity is computed in
the homogeneous cooling state, dnand = are the dimen-
sionless space and time variables,

1 t , , _VH(t) m
TZEJOdt vu(t'), I= 2 (kBTH(t)

and vy (t)=(16/5)ny 0 kg T(t)/m]Y2 In terms of these
variables the linearized hydrodynamic equations are

1/2
r, (61

d :
E_pk‘F'kaH:O, (62)

same in both theories. The quantitative differences are prob-

ably due to the use of different trial functions and also to the

numerical evaluation of the integrals in RE5].

d
S kR w ik O+ ikp=0,  (63)
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d 0.2
((9—7—5* + 3 kz)wkfo, (64)
P s
SO S = DR B[ 20+ § (uF — 3)K i
0.0
+ Zikw,,=0. (65)
The symbolsw,, andw,, denote the longitudinal and trans-
versal components of the velocity field relative to the wave
vector k, respectively. Moreover, we have introduced the
reduced Burnett transport coefficients -0.2 ‘ .
0.0 0.2 0.4
3p 3n%kg k

§IZZ—M§1, 3=

€3 (66) FIG. 6. Dispersion relations for the hydrodynamic modes vs the

reduced wavenumbér. From top to bottom the curves correspond
Equation(64) is decoupled from the rest and can be inte-to the shear modesL(, the heat modeH), and the sound modes

2K0

grated directly yielding (£). The coefficient of restitution isx=0.9. Boths and k are
measured in the reduced dimensionless units defined in the main
Wi, (1) =w,, (0)exp(s, 7), (67)  text.
where It is straightforward to solve Eq69) in this entire param-
eter space. As an illustration, the dispersion relations for a
s =0%— 3 7" K% (68)  three-dimensional system witli=0.9 are shown in Fig. 6.

The modes have been labeled as shear modes lieat
This identifies two degenerate shear modes. The remainingiode ), and sound modesH) with the above understand-
three eigenmodes have the forg(k)exds,(a,K)7] for n ing that, except for the shear modes, the physical meaning of
=1,2,3, wheres,(a,k) are the solutions of the equation the modes is different from that of elastic fluids. At very
small k all modes are real, while at largér two modes
become a complex conjugate pair of propagating modes.
Only the common real part of the propagating modes has
been plotted. The results are similar at other valuea.of
1,2 * k15 ek %k _ pk\T_ #x2 The linear hydrodynamic equations characterize the sta-
Tkt + S i)]=g ]S bility of the homogeneous cooling state. It is seen that the
shear and heat modes are positive Kerk$ andk<k;, re-

5
S 306+ B - K| K =2

+[F (k= —p*+ 5K = F k=0, (69 spectively, where
which follows from Eqgs(62), (63), and(65). Since the latter 20* 1/2 ar+ 1/2
are valid only fork<1 (i.e., for wavelengths long compared KC :( ) kS=
to the mean free patland for 0<a<1, the solutions to Eq. 7* 5(k*={1—p*+{3)

(69) are meaningful only in this range. For the special case of (70
elastic collisionsp=1, the solutions are polynomials knof

degree two corresponding to two sound modes and a heaherefore, initial long wavelength perturbations of the ho-
diffusion mode. However, the eigenvalues and eigenvectorsmogeneous cooling state that excite these modes will grow
are not analytic about the point=1k=0 so that even in the exponentially, representing an instability of the reference
range close to the elastic limit the hydrodynamic modes musstate. As the perturbations become larger, the full nonlinear
be interpreted with some care. In this rangfe < (1—a?) hydrodynamic equations are required to understand the sub-
and k both are small parameters {89), and the type of sequent evolution and possible stabilization. Molecular dy-
modes obtained in the approach to the elastic limit dependsamics simulations show the formation of spatial structures
on how these parameters approach zero. Analysis of@. in the fluid at this later stage.g., velocity vortices and high
shows that ifk—0 as {*Y with y<1/2 then the solutions density clustens|14—16. The analysis here based on kinetic
have the interpretation of modified sound modes and a hedleory provides an alternative and potentially more instruc-
mode, similar to those in the elastic limit. Otherwise thetive method to study these effects, using direct simulation
relationship to the elastic case is not simple and the modedglonte Carlo methods to solve the kinetic equatidi]. The
couple to different hydrodynamic variables. More generally,advantages of this approach to exploring unstable dynamics
away from the elastic limit the eigenvalues have a morehas been illustrated recently for elastic flujds].

complicated dependence &nand {*. The caseke *Y for The reference state for the hydrodynamic equations is
small /* andy=<1/2 sometimes is referred to as the hydro-spatially homogeneous but not stationary, due to the continu-
dynamic limit, which is a misnomer since solutions to Eq.ous collisional loss of energy. The distribution function for
(69) for any values ofk<1 and O<a<1 characterize the the homogeneous cooling state is a local equilibrium distri-
hydrodynamic modes. bution with a time dependent temperature given Ty)
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=T(0)e‘25* ™. To analyze spatial perturbations of this homo- 1 0
geneous state, dimensionless hydrodynamic fields have been 0
introduced in this section that include some of this time de- f dv (f—"fg)= , (73
pendence. For example, the reduced velocity figldr) is 2 3p

_m —
obtained by scaling relative t¢T(7) and this is responsible 2 2v

for the positive values of the modes in Fig. 6kat 0. Posi- , , i
tivity of the modes in the linear equations therefore reprehere{ is the functional off defined by Eq(11). Next we

sents instability of the reduced variables only. These are thE2guire the existence of a given homogeneous cooling solu-
relevant variables for the time dependent reference state af{P" fr- From the discussion leading to HgO) this implies
their instability signals an onset of the nonlinear couplings ofthat

these variables that are responsible for the subsequent forma- Ly 9

tion of spatial structures. Another important point to be noted folful=fy+ =i 2 (viy). (74)

is that the exponential behavior for the modes in the reduced 2vy ov

variable  translates into an algebraic decay in titye A sufficient condition for both Eq9.73) and (74) is to take

d
, (72) fo[f]=f/H+2—ia—V'(Vf/H), (79

t Sn/g*
14—
to

e’TSn:

Wheretglzg* v9(0)/2. A more complete discussion of the wheref ,, is the local version of,, with the temperature

stability of the homogeneous state to spatial perturbationand density replaced by their true nonequilibrium values as-

will be given elsewhere. sociated withf, and withv replaced by. The kinetic equa-
tion obtained using Eq.75) reads

IV. KINETIC MODELS

J
The Chapman-Enskog method described in Sec. Il gener- (o +v-V)f=—w(f=f, )+ 3 5(9_\/ (Vi) (76)

ates a special solution to the Boltzmann equation suitable for

states whose space and time dependence can be descriliéds form encompasses the kinetic model of R¢f€] and

through the hydrodynamic fields. Within this context, the[10], which differ in the choice of ;. These will be referred

method generates that solution as a perturbation expansionia as models 1 and 2, respectively, and are reviewed briefly

small spatial gradients relative to the homogeneous coolingh Appendix E.

state. While the calculations are tractable to the order con- An important consequence of the choi@®) is that ve-

sidered here they become prohibitively complex for statesocity moments of sufficiently high degree diverge. This is

with larger spatial gradients, such as granular flow undemost easily seen for the simplest case of homogeneous states

shear or driven by other external forces and boundary conasing the change of variablgs, is defined below Eq(19b)]

ditions. For such cases and for more general states outside

the hydrodynamic description it is useful to consider kinetic VH -

mode)I/ equ)z;tions in placg of the Boltzmann equation. Such dr=—-dt, c=vive(t), f=vg(Of, 77)

equations are obtained by replacing the complex Boltzmann

collision operator with a simpler form, restricted to retain to get

certain fundamental properties such as those leading to the 5

balance equations for mass, energy, and momentum. Kinetic o 7 T

models have been used extensively for gases with elastic (07+2v)(T=Tw)= g&c'[c(f fu)l (78)

collisions, providing quantitative descriptions of states far . o .

from equilibrium that have not been possible using the Boltwhere(=¢/vy, v=vlvy, ande=v8(t)fH. Consider the

zmann equatiof7]. In this section, a brief description of the scalar moments

generalization to inelastic collisions is given. As a first test of

kinetic models for this case, it is shown that much of the

hydrodynamics obtained in the previous sections from the

Boltzmann equation can be imbedded in the models with a

suitable choice of parameters_ USing Eq(78) an equation for their time evolution is ob-
The class of kinetic models considered are one relaxatioffined,

time models of the form

M(')(7)=J dec'f(c, 7). (79

J Q) — | 7) Q) (h
(a+v-V)f=— u(f—fo). (72) geM(N=(=2vHIDIMTD =My (80)

The parameter is a scalar functional of only through its It follows that moments of degreE>2v/{ grow without
dependence on low degree momentsf adnd possibly the bound as a function of time, due to the term on the right side
dissipation parametef which characterizes the cooling rate of Eq. (75). For model 1 this behavior is expected since the
in granular media. The functiofy=f[f] is a functional of  corresponding moments df; do not exist; for model 2 it
f to be specified. To constrain the form of this functional werepresents an inconsistency between the ch@ibeand the
first require the exact balance equations throjsgie Eq(6)]  additional requirement in this model thiagt— ), . Neverthe-
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less, for relevant values af the values of for which these choose them such that the viscosity agrees with that from the
problems arise are large and of little physical interest. FoBoltzmann equation, aside from the valuecfgiven by Eq.
instance, fora=0.9 the smallest moment to diverge is for (83), which must be kept by consistency, i.e., require that
| =26. Even if very large dissipatiory=0.6, is considered . L 5 . L 0 ik
divergence only shows up fde=8. The description of the vi=v;=1-3(1-a)% v3=1-3i(1-a)"—{y.
low order moments relevant for hydrodynamics is quite good (89
for both models, as illustrated below for the transport coef-
ficients.

A better choice than Eq(75), still consistent with the
requirementg73) and(74), is given by

The explicit expressions for the transport coefficients for
each of the models follow by substituting the above equa-
tions into Egs.(31)—(33). It must be noticed that there the
expression for the heat conductivity(«) is reduced by its
) Boltzmann value for the elastic limit. This latter does not
folf]1=f, u+ 2, 3—V-(Vf). (81 agree with the limiting value derived from the model equa-
v tion, which iSKO,iZSnkéT/vao. Therefore, if the transport
The model kinetic equation obtained using Eg1l) in Eq.  Coefficients are reduced by their elastic values as derived
(72) is from the models the factor of 2/3 disappears in 8. For
the same reason, a factor of 2/3 appears in fronf‘obn the
A, right hand side of Eq(33).
(Gtv-Vf=—v(f-fr)+2{--(VH. (82 The transport coefficients obtained from the Chapman-
Enskog expansion of the different models are shown in Figs.
This will be referred to as model 3. All three models are(1)—(3). Model 3 provides the most accurate results as com-
quite similar although model 3 predicts finite moments ofpared with the expressions obtained from the Boltzmann
any degree(it leads to an evolution equation of forfd,  equation in the Sonine approximation. Nevertheless, also
+2v)(f—f,)=0] and therefore is expected to be more ac-models 1 and 2 give a quite fairly qualitative description of
curate for applications outside the hydrodynamic limit asthe @ dependence of the transport coefficients. In practical
well. More detailed discussion of the mathematical basis fo@Pplications dealing with specific physical situations, the
this choice is given elsewhere. model to be used will be dictated by a compromise between
The Chapman-Enskog analysis of Appendixes A and Baccuracy and tractability.
applies for these kinetic models as well, and the expressions
for the transport coefficients given by E¢81)—(33) are still V. DISCUSSION
valid. Only the values o€* («) and the linear operatdr in
the expressions fory , vy, and v}, are changed. For the
above three models these are found to be

The primary objective of this work has been to derive a
fluid dynamics description for inelastic hard spheres from an
underlying kinetic theory in a systematic analysis. In addi-
tion to giving a firm foundation for the hydrodynamic equa-

cHa)= ———— ¥=ct=0, (83)  fions, the kinetic equation admits an efficient complementary
12(1+5a?) way to determine the hydrodynamic fields directly through
Monte Carlo simulatioi17]. The derivation of the hydrody-
_ _ B 1 4(0) namic equations consists of two steps. First the macroscopic
Li=vi, Lp=vy, Lsg=v3— 343 3+V-a—v * balance equations for mass, energy, and momentum are ob-
(84) tained from the kinetic equation without approximation.
Next, the fluxes and energy sink in these equations are de-
[0=(fy]=3(1—a?)vy, =123 (85  termined from a solution to the kinetic equation expressed in
terms of the hydrodynamic variables and their spatial gradi-
The values ofc] («) follow from the calculation off ,; in ents. The Chapman-Enskog method described in the Appen-
model 1 using a Gaussian form féy{ f] , while in models 2  dixes yields this solution as an expansion in these gradients.
and 3 the choicd ;=T is made. These choices are dic- Truncation of this series at zerotfirst) order yields Euler
tated by simplicity but other choices are possif#eg., the (Navier-Stokeslevel fluxes, and associated contributions to
approximation(B1) from the Boltzmann equatign With  the hydrodynamic equation of fir&secondl order in the gra-
these forms folL, Egs. (36) and (37) are easily evaluated, dients. In the case of inelastic collisions there is a sink in the

with the result energy equation that requires calculation of the solution to
the kinetic equation to one order higher than that used for the

via)=vig(a)=v(a)=17, (86)  fluxes. The small parameter in this expansion is the ratio of

the mean free path relative to the wavelength of the hydro-

via(a)=vi(@)=vi(a)=v; (87)  dynamic variation. The mean free path is independent of the
time and therefore constant even for the homogeneous cool-

,,;B(a) =vE4R, vi(a)= VZB(“): vE+ 3oy ing state so the conditions for Navier-Stokes order hydrody-

(88)  hamics are essentially the same as for elastic collisions.
The Chapman-Enskog solution is not the most general
wherevy = v; /vy, {3y = [ full/vo. These are still free param- solution to the kinetic equation and consequently the result-
eters of the models that can be chosen to optimize the modeisg hydrodynamic equations do not give a complete descrip-
for any particular application. For example, it is possible totion of the response of these variables to an initial perturba-
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tion. To clarify the context in which the hydrodynamic APPENDIX A: CHAPMAN-ENSKOG SOLUTION

equations apply it is useful to recall the case of small initial The Chapman-Enskog solution to the Boltzmann equation

perturbations for a gas with elastic collisions. The IinearizeqS based on the uniformity parameter expansion of [&§)
kinetic equation has a fivefold degenerate spectrum at th{"bgether with the corresponding expansion for the time de-
origin for asymptotically long wavelengths, corresponding 10y atives of the hydrodynamic fields. To zeroth order the
the five conserved variabléghe hydrodynamic modgsin  go|ytion £(©) is determined from Eq(16). For fluids with
addition there are points, branch cuts, efc. in the spectrurgjastic collisions the result is a local Maxwellidg but the
bounded away from the origin by the collision frequengy  axact solution is not known for# 1. To next orderf™® is

corresponding to excitations of all other degrees of freedomne solution to Eq(26), which can be rewritten using Eq.
(the kinetic modes At finite wavelengths this separation of (20) as

points in the spectrum persists, except for wavelengths on
the order of the mean free path. Consequently, the kinetic 0) 1 A1) )
modes decay on a time scale of the inverse collision fre- (07 + LI = 0T orf
quency leaving only the hydrodynamic modes at longer =A-VInT+B-VInn+C;V,u, (Al
times. This explains why a reduced description of the dy-
namics, given by the hydrodynamic equations, provides gherel is the linear operator given by E@3) and 7! is
complete description on sufficiently long time scales. Nowihe Jinear functional off(") given by Eq.(25). The coeffi-
consider the case of inelastic collisions. Since energy is naients of the field gradients on the right side are functions of
conserved the fivefold degenerate set of points in the spes/ and the hydrodynamic fields
trum become four points at the origin and one at the finite
inverse cooling rate/(®), for long wavelengths. The kinetic v s P
modes are again bounded away from the originvpy Note A(V|n,T) =5 — (VIO) —(Bm) 1 —fO  (A2)
that here we are referring to the actual time varidatded not 2V IV
to 7 defined in Eq(61). Using the parameters of the previous
section it is found that & ¢(©/v,<5/12, with the lower and 9
upper limits corresponding ta=1 anda =0, respectively. B(V|[n,T)= —Vf<°)—(/3m)‘1a—vf(°), (A3)
Thus the hydrodynamic modes are again closer to the origin
than the kinetic modes and dominate for long times. A more
complete description of the relationship of the hydrodynamic
and kinetic modes will be given elsewhere. The conclusion is
that the hydrodynamic equations apply for sufficiently large
space and time scales, just as for the case of elastic collifhe solution to Eq(A1) therefore has the form
sions.

The hydrodynamic equations as derived by means of the
Chapman-Enskog method are restricted to near equilibrium

situations. Even in the elastic case there is very little known . N .
about solutions of the Boltzmann equation far from equilib- | N€ 1€ft side of Eq(A1) can be simplified by noting that;,

rium. It is then useful to consider model kinetic equations'S raceless and therefodg also is traceless. Sl'n@él) ISa

that retain the relevant properties of the Boltzmann equatiofc@lar it follows directly from symmetry tha")=0. Also _

but are simpler than it. In this paper, we have discussed threté“? time derivative can be expressed in terms of the gradients
models with different degree of accuratgnd complexity. ~ USINg

All of them have been shown to lead to hydrodynamic equa-

tions similar to the Boltzmann equation. Also, the model JOV In T=V(T 20O0T)=—O(V Inn+ 1V InT)
referred to as model 2 is known to provide a semiquantitative "t t 2 ( A6)
description of the(inelastig Boltzmann equation for some

fbaer":goguz?euollllg(r)l\lljvr.n state$20,21]. Other applications are The functionsA, B, andC

Jd 0) 1 0 0)
Cij(V|n,T):{9—Vi(ij )= 3855y (VIO (A9

fP=A4.VIn T+B-VInn+C;Viu;. (A5)

ij in the solution( A5) are found
by equating coefficients of the various gradients

(0)
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1P§j1>=f dV D;;(V)Ce (V) ViU,

——T](Vjui+Vin—%5ijV'U), (A].O)
Use of Eq.(A9) gives an equation forp,
—{OTdrn— ﬁf dV D;;(V)LG;;(V)
%f dV D;;(V)Cj;(V). (A12)
Define
JdV Dj;(V)LG;(V)
Yr T TV Dy(VIG (V) (AL3
Then Eq.(A12) becomes
(={OTor+v,)n=- %j dVv D;;(V)Cij (V).
(A14)

Dimensional analysis requires th&® and v, are propor-
tional to T¥2 while the integral on the right side is propor-
tional to T . Therefore the viscosity is proportional -2
and Eq.(A14) gives immediately

n=- Dii(V) o (Vf )

)
10(v,,— (1/2) {'9)

V. mV2£O

1
- d _ 1401,
3(vn—(1/2>§<°>>J “Plrm 2

(A15)
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1
u=— 3—nf dVv S(V)-B(V). (A19)

The analysis is similar to that above for the viscosity, with
the results

(A20)

K=—

3Ty (0))f dVvs(V)-A(V),

2

M:
2v,—3(

§<0>IK_ 1 dV S(V)-B(V)
n 3n ,
(A21)
with

fdV S(V)-LB(V)

TdV S(V)-B(V)
(A22)

1dV S(V)-LA(V) -
TdV S(V)-A(V) * e

V=

Use of the above forms foA(V) and B(V) allows further
simplification,

37/ AVS(V)-A(V)

~&T dVvVay. {V(Tan<°>)+(ﬁm) 1O

()], (A23)

ZmB

1
3—nf dV S(V)-B(V)

m J
- 2y, (0) -1__ £(0)
GnJ dv vav [Vf +(Bm)

5¢*(a)

It is convenient to express this result in dimensionless form
by introducing a characteristic average collision frequencyWith these resultsc and . become

vg defined in terms of the Boltzmann viscosity fer 1, 7,

16 2 7TkBT
V0=p/7;o=€na' o

The result(A15) then takes the dimensionless form

(A16)

L_(-3)7t, (AL7)
7o
where* = vy and vi=v, /v,.
The heat flux to this order is
q¥=—kVT—uVn, (A18)

with transport coefficients given by

1
K=— ﬁf dvs(Vv)- A(V),

=— . A24
amp? (A24)
2
—=gim20) ke, (A25)
n_'u’_ * *\— 1| % i 1 %
TKO_Z(ZV“ 3¢*) | ¢ Ko+ 5C* |, (A26)
where vi=v,lvy, vi=v,lvo, and Ko

—75kB/€‘>4<72(77,6'm)1’2 is the Boltzmann thermal conductiv-
ity for a=1.

APPENDIX B: EVALUATION OF ¢*, v, vk, AND vﬁ

The results of Appendix A for the transport coefficients
are still formal since they depend @, v}, v, and v} .
Here approximate expressions for these quantities will be
obtained by using an expansion in Sonine polynomials. This
is the same approximation as is used in the case of fluids
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with elastic collisions and it is known in that case to be very
accurate. In the above Sonine approximation @) can be J dvY(V)L[X(V) (V)]
solved with the resulf4,22]:

FOV) =y (V{1+ L c* (a)[( BmVR)2— & BmV2+ 257} =—02f dedvl fdfr 0(g-0)(g-a)Y(V)
(Bl) —2K—1_ (0)

The functionc* («) is given to linear order by Eq(39). x(a b DIV T(VX(V)

Consider nowZ* =y, with (9 defined by Eq.(18). FTONV) (V)X (V)]

Using the approximationiB1) and neglecting again terms
nonlinear inc*, it is obtained: :UZJ’ dv f dvy FONV)E(VX(Vy)
2 f(O)'f(O)
§*=<1—a2>—3“’gnv - %z, . .

0 X | do O(=g-0)(g-0)(b—1)[Y(V)+Y(vy)].
(B2)

(B9)

wherel is the dimensionless integral

The evaluation of Egs(B6) and (B7) is now a well-
defined problem. The integrations are straightforward but
lengthy, and the exact evaluation is facilitated considerably

by the use of symbolic computer programs. For the reader

2 2
|:7T_gf dVl f de e_(U1+U2)|U1_02|3[1+ %C*(a)

X (v—5v5+ ). (B3) interested in confirming our results some of the intermediate
] . . results are given. Consider first; . Use of Eq.(B9) in Eq.
The integral can be performed with the final result (B6) leads to
F=(1-a)H[1+ Fc* (@), (84) ,
«_ M8

*

o2 j dv f AV, FOV) fu(V1)Dy(Vy)

The functions»* , v*, and »* are evaluated approxi- v
71 Uk 7

mately by expandingA(V), B(V), andC;;(V) as a series in
Sonine polynomials and using the lowest order truncation.
To lowest-order the velocity dependence is

ANV)xfyS(V), B\V)xfyS(V), Cj(V)=fyDj(V),
(B5  The solid angle integral oves can be performed with the

where f,,(V) is the Maxwellian. Then the expressions for "€Sult

* * *
v, Vi, andv, become

7~ 10nv,

X J do®(—g-0)(g-0)(b—1)[VV;+Vy;Vy].
(B10)

2
. JdV Dy(V)L[fy(V)Dy(V)] =P
7 pofdV fu(V)Dy(V)Dyj(V) 0
Xfm(V1)D;i(V1)g9g; - (B1y

(3—a)(1+a)02f dvf dv, fOv)

14

BZ
N —mnyof dVDj;(VIL[fu(V)D;(V)],  (B6)
Next, change variables %@ andg, and perform the integra-

« x JAVS(V)-L[fy(V)S(V)] tion overg to get
T eV F(VS(V) - S(V)
A | 24\ 12
2mpg® x__ =" (11— N\2Tn 2
= Tone ) VSV)-LIfVSVL. B) T 5vo(,3m) (4= (=) ino
The linear collision operatdr, defined by Eq(23), is X dex fO* (X)X (% + X?) \Jarerf(X) + Xe %],
0

LIX(V) Fu(V)] (B12
_ _sz dv j do 0(g-o)(g-0)(a 21— 1) where f(O* (X)=n"1(2/8m)%? ) (2/8m)¥?X] and erfX)
! is the error function oX. The integral oveiX is performed

KFOV) g (V)XV) + FOV 1y (V)X(V)], using the approximatio(B1) for the final result

(B8)

vy=[1-3(1-a)?’][1- & c*(a)]. (B13
with the operatob ™! given by Eq.(3). Integrals of the form K
JSdvYL[fyX] can be transformed as follows by a change of
variables, In a similar wayvy = v} is evaluated as
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203
*:V*:mﬂ
«~PuT 1500,

14

(1+a)azf dVJdvl f<°>(V)fM<v1>S(v1)fd& 0(g-0)(9:0){3Gi(g-0)4(1—a)

+[(9iG- 0+ G-g0)(g-0)— 0:G- o(g-0)2(1+ a) ]}

m2ﬁ3
~ 60N,

6 21

~ 450,

Bm

In the above expressions it §:(V+Vl)/2. Finally, inte-

gration overX using once again approximati@B1l) yields

*_ ok _ 1 33 1
vi=v;,=51ta)|l+ F(1l-a)+

It is easily checked that the results given by E@&l3) and

(B15) reduce to the correct elastic values fo=1.

APPENDIX C: THE DISTRIBUTION FUNCTION

In the first Sonine polynomial approximation described in
Appendix B the distribution function to Navier-Stokes order

has the form

fONV)=[ctS(V)-V In T+¢,S(V)-VIn n
+CUD|J(V)V|UJ]fM(V) (Cl)

L+ ara?s [ v [ avy 1OV, (VDS (VI3 676 (1-2a)+ (3- )90 G ]

1/2 -
no-z(—) (1+a)f dX fO% (X){4(4—3a)X2e X +[5(5—3a) X+ 4(4—3a)X3)]merf(X)}.
0

(B14)
|
= ! f dVv S(V)-B(V
T (V)-B(V)
1
I—Cnﬁf dviyu(V)S(V)-S(V)
= > g C4
__Cnﬁﬁ . ( )
The distribution functiorf™) is therefore
2m
fOV)=—pg%n"1 = SV)-(kVT+uVn)
+ 787D (V)Viu; | fu(V). (CH

APPENDIX D: DETERMINATION OF ¢®@

The macroscopic balance equations depend on the gradi-
ents of the pressure tensor and heat flux. Thus determining
the latter to first orde(Navier-Stokesin the gradients leads
to contributions of second order. For consistency the source
term in the temperature equation must be calculated to sec-

The coefficienty, ¢,, and c, are determined in terms of ond order. The contributioti® is given by

the transport coefficients directly by use of this form in their

definitions(A11) and (A19),

1
n=— E av Dij(V)Cij(V)

:_Cul_]bf dVv fu(V)Dj;(V)Djj(V)

=—cynB 2, (C2

dVv S(V)-.A(V)

K=

3T

1
=—0Tﬁf dViu(V)S(V)-S(V)

S5nkg
5m B2 (C3)

:—CT

(0 =(L- a?) oo ol 19, 1V] + 26{ )£, (DD

wherew[ f,h] is defined by Eq(7). The general form of(?

is given in Eq.(43). In this appendix the contributions &%)

that are linear in the gradients are considered, since only
these contribute to the linear stability analysis. Therefore, the
quantity we are interested in is

4
g<L2>s(1—a2)£w[f<°>,f§2)]. (D2)
Here f(?) denotes the part of® that is linear in the gradi-
ents. The Chapman-Enskog equation ff&? is

(A0 +L)fP=—52fO— (DM +V.V)f D+ I 1D £,
(D3)

which simplifies forf(® to



PRE 58

(A0 + L) 2T

=—2(3nkg) " Y(«kV?T+ uV?n)of©

2m
+ ?,83n‘1S(V)V:(KVVT+ uVvn)fy

d
+(nm)’17][% V(V~U)+V2U]~ Wf(o)
2m 2T
~ 5 3nl(?K+ nu|S(V) - (VV-u)fy

=B~ D (V)[(nm) "1V V;p—V-V(V;u)]fy.

(D4)

Further simplifications occur by noting the{tz) is a scalar so
that any contributions t6{*) that are vector or traceless func-
tions of the velocity will not contribute. Lef(?) denote the
residual part off(®) that gives contributions td{?. The
vector and traceless parts on the right side of(Ed) can be

neglected for the purposes of calculatiﬁff) and we get

(0 +L)6f 2 — ({2 Tor 1O

= 1_r;]B3n_lfM(V)S(V)-V_2ﬁ(3n)—1(Tan(o))

X (kV?T+ wV2n). (D5)
The solution to this equation has the form
SFP=M(T,V)V2T+N(T,V)V?n, (D6)
leading after substitution into E4D2) to
(2= V2T+ V2, (D7)
Then using the fact that

370 T

IOVT=— ——V2T—- ——

> V2n+ nonlinear terms,

(D8)

the equations foM andN are found to be

370
d +L

( —{OTor— M— ¢, Tof@

1—?[33n’1fM(V)S(V)-V—2,3(3n)’1(Tan(°)) ,

=K

(D9)
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(—OTar+L)N—,Ta.f©
T§<°> 2m
M+ u 15ﬁ N~y (V)S(V)-V
—2B(3n) Y(Tof©) . (D10)

The functionsM (V) andN(V) are scalars and are orthogo-
nal to 1,V, andV2. Thus their lowest order Sonine expan-
sion should be
M(V)—=cPPV)fu(V),  N(V)=cZPV)fu(V),
(D11

where

P(V)=(3 BmV?)?— 3 BmV2+ 2 (D12
is the third Sonine polynomial except for a normalization
factor, which is not relevant for our purposes. Use of Egs.

(D1)) into Eq.(D2) yields

(1 aZ)C(Z)( 3(:4), (D13)
L= >v0 (1 az)C(z)(l+364) (D14)

Now we substitute EqgD11) into Eqgs.(D9) and(D10),
multiply by V4, and integrate ove¥. In this way it is ob-

tained that
{1 c* 4x Sc*
_ 5 ox *\~(2) _ 27 - —
(=3¢ +V§)CT o 1+ 2 +]_5p1/0(1 4 |’
(D15
(—2§*+v*)c§3)
52 @ 1 A 5¢”
R 1+ 2) e & +15pV0 4 )
(D16)
where
JAVWALLE(V)P(V)]
vo  dVVA 4, (V)P(V)
30npek2T2|
=|——— fdv VAL[fu(V)P(V)].
m
(D17

Upon deriving the above equations use has been made of the
fact thatc{?«T~* and c/?«T°. Taking into account Egs.
(D13 and(D14), the above equations can be converted into
two closed equations faf; and ¢,. Introducing the dimen-
sionless transport coefficients

. 3p . 3n2kB
51:2_K051, 5= 52,

(D18)
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one gets m 312 m\?
3t/ 5c* fo= ”( 2kaTA) ex"( - 2kBTA>’ ED
gleie(l—a2)x*(1+ )(1——)
64 4
where
* C* -1
5 5 2
X Vz_gg*_ﬁ(l_a) 1+ 64 1+? Azl—a(l—az), (EZ)
77c* ; - : ;
~i (1_a2)K*<1_ ) V? —Sp - 3 (1-ad) a being gconstant. This choice fbg leads to Eq(73) with
64 { approximated by
33—;* -1
X| 1+ =7 ” : (D19) {1=ria(l-a?). (E3)
3c* 5c* The value of the constargt can be fixed by requiring the
§’z‘=[§’{ 4 5 (l—a®)u*| 1+ 64)(1_ 7 ) above expression to agree with the one obtained from the
Boltzmann equation, Eq.11), in the local equilibrium ap-
* c*\ 171 proximation, i.e. withf replaced byfy,. This gives
* 5 2
X|v;—20"— 5 (1-a%)| 1+ o4 1+?
51/0 (E4)
77c* a=-——.
= G+ (1t pr| 1= 1201
64
350+ | -1 The solution of the model for the homogeneous cooling state
X|vE=20*— 5 (1-a?)| 1+ &2 ) (D20)  reads
o /
In the last transformations we have consistently neglected f(v t):f dx POON ( m )32
those contributions that are nonlinear é¢%. The only re- HAE 1 H 2mkgTH(t)XA
maining task is to compute the characteristic frequen?y )
defined by Eq(D17). This can be done by using the same _ mo
' ; . X ex , (E5)
procedure as discussed in Appendix B. We merely quote the 2kgTH(t)xA
result,
1+a P(x)=px (1*P p=—2 (E6)
v =gz 271207+ 300*~ 300 ' 1-A"
c* It is now trivially seen that Eq(E1) is equivalent to Eq(75)
9y — 3002 3
+54(137= 92— 300"+ 30a ) |- D2D it appropriate choices fdfr, and{.

Model 2 was formulated at the level of the Enskog equa-
tion in Ref.[10]. In the low density limit, it reduces directly
to Eq.(75) with f ,=fy, the Maxwellian local equilibrium

Model 1 was introduced in Ref19] (see also the discus- distribution, while{ is given by the exact functional df of
sion in Ref.[23]). It was formulated by means of a kinetic Eq.(11). Then it follows thatf is also a Maxwellian for this

APPENDIX E: TWO PREVIOUS KINETIC MODELS

equation of the same form as H§2) with model.
[1] See, for instance, P. K. Haff, J. Fluid MectB4, 401 (1983; Haro and C. Vareg@World Scientific, Teaneck, NJ, 199(p.
and C. S. Campbell, Annu. Rev. Fluid Me@2, 57 (1990. 166-181.
[2] J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. Anal. [8] J. W. Dufty, A. Santos, and J. J. Brey, Phys. Rev. Lét.
87, 355(1989; Phys. Fluids28, 3485(1986. 1270(1996.
[3] C. K. W. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, J. [9] J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Pig#%.1051
Fluid Mech. 140, 223(1984. (1997.
[4] A. Goldshtein and M. Shapiro, J. Fluid Mec282, 75 (1995. [10] J. W. Dulfty, J. J. Brey, and A. Santos, Physica2A0, 212
[5] N. Sela and I. Goldhirsch, J. Fluid MecB61, 41 (1998. (1997.
[6] C. CercignaniTheory and Application of the Boltzmann Equa- [11] J. A. McLennan,Introduction to Nonequilibrium Statistical
tion (Elsevier, New York, 1976 Mechanics(Prentice-Hall, Englewood Cliffs, NJ, 1989

[7] For a recent review see J. W. Dufty, irectures on Thermo- [12] J. Ferziger and H. KapeMathematical Theory of Transport
dynamics and Statistical Mechaniasgited by M. Lgpez de Processes in Gasédlorth-Holland, Amsterdam, 1972



PRE 58 HYDRODYNAMICS FOR GRANULAR FLOW AT LOW DENSITY 4653

[13] J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Phys. Rev. E[18] J. M. Montanero, A. Santos, M. Lee, J. W. Dufty, and J. F.

54, 3664(1996. Lutsko, Phys. Rev. 557, 546 (1998.
[14] I. Goldhirsch and G. Zanetti, Phys. Rev. L&, 1619(1993; [19] J. J. Brey, F. Moreno, and J. W. Dufty, Phys. Revo4& 445

I. Goldhirsch, M. L. Tan, and G. Zanetti, J. Sci. Compgjtl (1996.

(1993. [20] J. J. Brey, M. J. Ruiz-Montero, and F. Moreno, Phys. Rev. E
[15] S. McNamara, Phys. Fluids B, 3056 (1993; S. McNamara 55, 2846(1997).

and W. R. Young, Phys. Rev. &3, 5089(1996. [21] J. J. Brey and D. Cubero, Phys. Rev5E 2019(1998.
[16] J. A. G. Orza, R. Brito, T. P. C. van Noije, and M. H. Ernst, [22] T. P. C. van Noije, and M. H. Emstnpublished

Int. J. Mod. Phys. @8, 953(1997). _ ] ] [23] J. J. Brey, F. Moreno, and J. W. Dufty, Phys. Re\6'F. 6212
[17] G. A. Bird, Molecular Gas Dynamics and the Direct Simula- (1998; A. Goldshtein and M. Shapirabid. 57, 6210(1998.

tion of Dense FlowgClarendon Press, Oxford, 1994



