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Difference-quotient turbulence model: The axisymmetric isothermal jet
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Taking the difference-quotient turbulence model into consideration, the mean velocities and the second-
order fluctuation correlations, also called Reynolds stresses, of the axisymmetric isothermal jet in a quiescent
surrounding are analytically calculated. Three propositions are stated and proved. They relate a normalized
turbulence fluctuation intensity and two turbulent energies on the center line of the jet to its spreading angle.
The experiments confirm all propositions and several other model results convincingly.
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PACS numbds): 47.27.Eq, 47.27.Ak

I. INTRODUCTION e.g., Ref.[11]). In a monumental monograph Abramovich
[12] summarized all the available empirical theories of free

In daily life turbulent round jets are ubiquitous fluid dy- jets, jets in finite spaces, turbulent jets in compressible gases,
namic elements. For example, a variety of different jets ocjets in the presence of flame fronts, etc.
cur at the outlet of hair dryers, in whirlpools, above over- Measurements of the mean velocity of round jets were
heated pressure cookers, in the vicinity of exhaust pipes, iRerformed using Pitot tubes. These measurements are well
gas and oil burners, and at outlets of aircraft power unitssummarized by Hinzg13] (see alsd14]). Later on most of
However, this fluid dynamic phenomenon does not have onlyhe experimentally determined turbulence quantities were as-
technical applications. For example, if a candle light isSociated with Corrsin and co-workef$5—17. More recent
blown out by a round turbulent jet of breathing air, this measurements were performed by Wygnanski and Fiedler
human-produced jet causes a second nonisothermal vertiddi4] and Rodi[18]. In 1988 Husseif19] applied hot wire
plumelike jet to disappear. The fully developed isothermaland laser Doppler anemometry and more recently experi-
axisymmetric jet is a fundamental example of free turbu-mental results were published by Panchapakesan and Lumley
lence, which at present can only be calculated by empiricaPerformed in a round jet of air and a helium [@0].
laws and is also apparently impossible to understand using TO restrict this treatise, out of the great variety of jets
first physical principle$1]. listed in the Introduction, only axisymmetric, fully developed

Wakes of different geometries and p|ane co- and CounteﬁurbU'entjGtS are considered. Isothermal flows of pure |IQUIdS
flows are similar basic elements with a mean shear. Roun@ll gases without additional particles, e.g., pollutants and wa-
jets are correctly interpreted as axisymmetric co- or counterter vapor, are described. Therefore, reactive flows are also
flows. In the past century numerous experimental studies oxcluded. The jet behavior calculated is created by forced
basic fluid dynamic examples were performed by engineergonvection and not, for example, by buoyancy effects.

On the other hand, physicists are more concerned with field- This article consists of derivations based on physical
theoretical aspects of turbulence, e.g., elimination of infraredaws, but also contains some assumptions. These do not con-
divergences and renormalizatif, study of structure func- tain empirical constants and they figure neatly into existing
tions[3], anomalous scalinfd], multifractal naturg5], tur-  theories and describe experimental data very well. We have
bulent cascades and intermitteri@], and universality7].  tried to give the reader the possibility to distinguish strict
According to L'vov and Procaccia, the marriage of the phys-results from model considerations only. Always when an as-
ics and mathematics of turbulence with the engineeringumption is introduced, an A has been placed in front of the
knowledge is a challenge ahead, which will last far into thecorresponding equation number, e.g., $4&) below, etc.

21st century[8]. The P denotes a proposition, e.qR47.

Early theoretical results of the axisymmetric jet were ob-
tained by applying the mixing-length hypothesis, introduced
by Prandtl in 192499]. One year later Tollmiefl0], on this
basis, calculated solutions of the mean downstream velocity,
which show a slightly too narrow maxima symmetric to the Because of the obvious insufficiency of local gradient-
axis of the jet. Schlichting, assuming a constant eddy viscostype turbulence transport, e.g., see the work of Colfiiij
ity, obtained better coincidence in the inner part of the jetand the more recent work of Bernard and Hand22],
but with larger deviations far away from the center ljsee, Hinze, Sonnenberg, and Builtj€23] (see also Hinze's book

on turbulencg13]) proposed, considering the turbulent shear
stress analogously to the description of the usual shear stress
*Present address: Daimler-Benz AG, Research and Technologgf viscoelastic fluidd24], by including a memory behavior
P.O. Box 2260, 89013 Ulm, Germany. depending on the time variabte

II. MOTIVATION OF THE DIFFERENCE-QUOTIENT
MODEL
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duy du, for the turbulent momentum transfer of eddies with different
> )+ o )|, correlation lengths and corresponding radii, respectively, we
2 ! generalize Eq(A2),

uéui=—sj dr M(7)
0

gxxoUy. (Al) - , , duy ,
! Zo0XN(X2,X5) (7_)(2 (X2—=X3)

—_— ! !

The turbulent shear stresgu] is a correlation of the veloc- Y241~ ~0xa(U1—U1_ ) )
ity fluctuationu; in the x, direction withu} in the x, direc- f L dxoN(X2,X3)
tion (compare Sec. ¥ ®)

An equation of this type can also describe the decay of _
isotropic turbulence. This approach was based on earlier inFhe normalized nonlocality functioN considered has now
tuitive ideas of Prandf{25]. Today, in turbulence research, been replaced by a non-normalized counterpartt can be
we have some conceptual understanding of appréadh, described by a linear combination of Heaviside distributions
even though a detailed mathematical derivation from basi¢two-sided step “functions) or a characteristic function, re-
equations is, to our knowledge, yet to be found. When derivspectively, with the properties
ing the Reynolds equations containing time-averaged values,

second-order moments appear. Further equations can be es- 0, X;<Xp

tablished to solve the problem also containing these second- N(Xp, X)) = 1. Xo<XL<X,+\ (A4)
order moments. However, then again, one-order-higher cor- 2272 N

relations, now third-order moments, appear in the expanding 0, Xp+A<X;.

system of equations. Continuing, in the end, one has to solve o .

a set of infinite partial differential equations. It is known that, OUr approach states that equal contributions of the time-
in certain cases when scaling applies, such a set can be rdveraged velocity gradient occur in a space interval of cor-
placed by one equation only, with just a dependence on theelation lengthA. Substituting in Eq.(A4) x,+\ by X
lowest-order moment, but showing a time delay and/or s@nd combining Eqs(3) and (A4), it follows that
nonlocality[26]. Such a transformation is equal to the tech-

nique of making a closure and that is exactly the procedure

introduced by the application of a turbulence model. In a _
closure, higher-order moments are described as functions of Uy = —oxa(Up—Uy )
moments, which are at least one order smaller. With assump- f X2maxdxg
tion (A1) the simplest case is considered, where the second- *2

qrder correlation is given by a functiona! depgndence on te is known that in many turbulent flows the mean velocity in

first-order moments only and these are identical to the meage main flow direction can be separated in the order of the

velocitiesu, andu,. . . o two variables<; andx, . Therefore, with this assumption, the
In Eq. (A1) the modified eddy viscosity is directly pro- 51 hand side of Eq5) can be integrated. This leads to the

portional to a length scalg, and the time-averaged velocity jifterence-quotient turbulence modéddQTM), which was

u;, respectively ¢ —u; ). M(7) denotes a memory func- developed several years ago by completely other mésaes

tion characteristic for the turbulent flow considered. Its di-Ref.[27]):

mension i 7] 1. This approach is also meaningful because

Ju
X2 ' 1 ’
mag X, — (X
JXZ 2 (9Xé( 2)

®

the production of turbulence is mainly driven by the gradient UsU;(Xq,Xp) = — UX2[U1(X1,XZ)—U1mm(x1)]

of the time-averaged velocity field reaching from the present . .

back to some time when a time correlation vanishes. It is Ug,(X1) —U1(X1,X2)

known that memory effects in time are the analog to nonlo- X < —x . (6)
calities in space. Because at the moment we are considering Zmax "2

only quasistationary cases, it is useful to study &) in

. . ) oL is a characteristic length of the flow problem, perpendicu-
three-dimensional Euclidean space by replacing time by théazr to the main flow direcgtion. The quanFt)itgé derﬁ)oterz)s the

transverse coordinate of the shear flow and the memory func- di helh takes i )
tion M(7) by a nonlocality functiorN(x}), space coordinate, whetg takes its maximum or supremum

as a function of the variable, .
— In 1994, by applying the difference-quotient turbulence
. ' ! / del, it was shown that the available simple turbulence
u ) dXN(X,X)—(X—X). moael, It Wi W val mp urou
1 2 2172 2 2 . .
mJ —e 29 models only relate to one or at maximum two eddy sizes and
(A2)  therefore are not expected to produce more than approximate
solutions. The DQTM, which is a generalization of Prandtl’s
The functiono is related to the Reynolds number. In Eg. mixing-length theory and corresponds to an infinite set of
(A2) the assumption of a flow with a large velocity gradienteddy sizes, produces several simple analytical results, e.g.,
transverse to the direction of the main flow is considered, s@xial and radial profiles of turbulence intensities, for wakes
that this gradient is at least one order larger than the one if27], the plane Couette floW28], and the plane Poiseuille
the downstream direction with reverse indices. Therefore, thfow [29], all agreeing well with experimental data. The
smaller gradient has been neglected. Because the nonlocalityake flow also defines a free turbulent flow problem and the
can be considered as a non-normalized probability functiofCouette and Poiseuille flows are “wall-turbulent” shear

Usug=—oxo(U;—
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turbulent zones show an intense mixing and thus a visualization of
the turbulent domains. Hardly any transport of smoke into the lami-
nar core region takes place. Therefore, in a plane jet the core can
clearly be detected photographically. Its parabolic time-averaged
profile becomes transparent when the photographic exposure time is
high.

a) X
s W
=y-C
| 1
= FIG. 2. Photograph of a jet. Smoke particles injected into the
b) | Ug [} grap J p )
|

Up=T

The core region is paraboli@ark shaded domajirand

= X has a lengthx;, but in a simplified model it is drawn as
triangle reaching to the fictitious core length. A photo-
graph of a plane jet, with analogous features, and its core is

y shown in Fig. 2. The domaim,>x] is the self-similarity

0

p 0 x' x x"

FIG. 1. A turbulent round jet is emerging from a nozzle wit

diameterd,. According to current theory, the fictitious core length domain.
Xo is used in the description of the problg@. In a projection the The fluid is assumed to be incompressible and the density

time-averaged velocity component in the longitudinal direction onp t0 be constant. All other physical quantities are separated
the center line is showrb), which is constant in the core region into atime mean value and a corresponding fluctuation quan-
(x;<x}). After a transition region X;<x;<x}) in the self- tity, so that
similarity domain &7<x,) the velocity is hyperbolic.
x=x+x", xe{up,uy,..} (83

flows. In the two latter cases, in the differential equations
and their solutions an order parameter occurs, being a func- ¥ =0. (8b)
tion of the inverse Reynolds number. This naturally appear-
ing order parameter was shown to be equivalent to the pro- . . . -
duction of turbulent kinetic energy in the entire domain perNOW operation (8a) IS appllec_i to the continuity and the
unit length in the downstream direction. Navier-Stokes equations. Taking the average of aI_I the terms

The equations in this section also lead to ideas how thd! these equations leads to the Reynolds equations. For a
difference-quotient turbulence model could be generalized tgua3|stat|onary state and for flows free from mean rotational

describe more complex flows, e.g., with temporal behavior.r’nOtlon
However, this would be beyond the scope of this paper. Fur-
thermore, they show how a simple scheme for numerical uz=0, (99
calculations, based on the DQTM, could be designed. In con-

trast to standar#-e model applications, instead of one spa-

tial derivative over large domains, arithmetic averages of di- (7x ¢=0, ¢e {Uli 1Ugs-- (9b)
rectional derivatives would have to be taken into

consideration.
! I the following system is obtaingd 3]:

lIl. BASIC EQUATIONS

au; 1 o9 —
When a fluid streams out of a round nozzle into an infi- Xy Xy IXp (x2U2) =0, (10
nitely extended domain and the Reynolds number is very
large —5U1+— m 1&p+ — — 4
Uodo U x, T2 0, T axg | axg T T X, 9%, (Xai2t) =0,
Re= 7225 000, (7) (11
then a fully developed turbulent jet is observed. Such a jetis {2 %Jr—z du; 1 3dp L T+ 1 ( i)
drawn in Fig. 1. It has a linearly growing width in the down- 241 iXs  p 6’Xz axy ° 1
stream direction. The quantity denotes the diameter of the 1
nozzle andi, the constant velocity of the laminar flow in the - u_ézz ) (12)

e, direction at the locatiox;=0. X2
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Because very large Reynolds numbers are assu@edhe X\ Po
viscous terms in the momentum equations are neglected. Ap- b=B1 "] Xo- (21b
plying a scale analysigl3], one obtains a reduced equation 0
compared to Eq(12), Substituting these relations into the continuity equatib®
1 [75+ 1 4 1 —1_, s leads to
i X (M T @ df, 11 d
. _ _ . plfl—porld—-i-——d—(nfz):O, (22)
At this stage the assumption of isotropy of the fluctuation n Bndy
intensities is introduced
where
S22
= Al4
T (AL43 Potp1—p=1 (23
=uj?. (Al4b)

had to be assumed to obtain self-similarity. Similarly, the

Only with Eq.(A14b) Eq. (13) reduces and can be integrated momentum equation yields three equations

— 2 df, 1 df; 1 d
p+puy’=po, (15 f2—ponf; —+ = |f, —— = — (nf.y)|=0,
| PiT7 }90771d77 B|'2dy ndﬂ(’?zﬁ

wherep, denotes the undisturbed constant pressure far from (29
the turbulence domain. To drop the pressure term in(EL),
Eq. (15) can be substituted Po+2p1— P21=1, (253
— Uy _duy 9 =5 —5 19 T Po+p1=0. (25h)
ug %, +u, %, + %, (u"—uy)+ % 7% (Xou5uq)=0.

(16) The system containing the three equati@B8), (259 and
(25b) with the variableg,, py, p,, andp,; cannot yet be

After applying assumptiofA144) to cancel the third term, it g, e definitively. A further relation is needed for that pur-

follows that pose. It follows from the self-similarity of the Reynolds
_du; _du; 1 4 — . . shear stress
Ula—)(l+uza—)(2+x—2(9—)(2(xzuzul)— : 17) __
2 () (269
In this reduced form the momentum equation is applied. It is uy 287,
important to stress that the third and fourth terms in @4)
cannot be neglected by magnitude of order estimates as they % (Xq)=Uy(x1,0) (26b)
are both of the same order as the fifth tefeng., compare
maxima in Figs. 5 and)8 and is
IV. SELF-SIMILARITY 2p;—pP21=0. (27)

From experimental observations it is known that for all Finally, the solution of Eqs(23), (258, (25b), and(27) can
x;>x; a self-similarity domain exist¢Fig. 1), where the g5sily be determined,

mean physical quantities can be made dimensionless to be-

come functions of only one variable. This leads to the pos- Po=1, (283
sibility of transforming the two partial differential equations
(10) and(17) into a single ordinary differential equation. The p=—1, (28b)
following self-similarity relations are assumed to hold. Dis-
tances from the pol&,-p are replaced by, because in the py=—1 (289
self-similarity domainx,>|p|: '
. X, P P21=—2. (28d)
U;=Ug (X_ f1(7), (18) o .
0 After a substitution of Eq9289 and(28b) into Eq.(22) one
.\ P2 obtains the continuity equation
— 1
Uz—Uo(XO) fa(m), 19 . df, 11 d o 0
.\ P2 1T 7 d7] B 7 d7] (77 2 ’
upuj=— 2(—1) o) (20)
U2l =~ Xo 27 and analogously the momentum equat{@d) alters to

= (213 (24, O L), df 1 d (9 |=0. (30
n b, 1 771d77 B 2d77 ndnﬂz .
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At present only two equations exist for the three functions 1 ‘ ‘
f,, f,, andf, ;. Therefore, as pointed out in Sec. Il, a clo- ——Theory
sure or a turbulence model is demanded. Thus, at this stage 08 L ® x,/do =60 i
the DQTM is applied. oy C x/dy =75
206l A x/dy =975 | |
V. MEAN VELOCITIES 8 4
AND THE REYNOLDS SHEAR STRESS E) 04l E
The normalized mean velocity in the radial direction is g
derived by a partial integration of a rearranged equat&gh § 02" Ay ]
1 (»
fo=8| nf1—— | fi(H)§d&|. (3D 0 : : : : :
nJo 0 0.5 1 15 2 2.5 3
Now the DQTM is introduced. From Fig.(d one can im- n
mediately see that FIG. 3. Experimental data of the time-averaged velocity compo-
B nent in the downstream direction, taken from Réf]. These are
X2max 0, (329 compared with theoretical results calculated by applying the
_ DQTM. The measured points lie very close to the Gaussian distri-
u . =0, (32 pution function(37).
U =UT(Xy). (320 ity is compared with the experimental data from Rdf4].

When the solution of; is inserted into Eq(31), the mean
The quantityb defines the width of the jet, where the kinetic velocity in the radial direction is obtained
energy of the mean motion in thg direction%pﬁf decays

to the fraction 1¢. Then we obtain 1 ) 1 1 )
f,=pB4 7 ex 57 —; 1—ex 57 .
db (39)
g= d_Xl (3369

From Egs.(37) and(39) it follows immediately that
=B, (33b

p=tan 5
_ . _ To compare model results with experiments, the data of
It is clear that a higher Reynolds stress is related to a largeyyygnanski and Fiedlef14] have been chosen. The reason

1
f,=p Wfl_;(l_fl) . (39

. (330

spreading anglex of the jet. From Eqs(6) and(32) it fol-  for this is that they also have published information on the
lows that radial velocity profile(see Fig. 4. A further comparison has
been added to the figure. The experimental results of Fig. 3
foo—— E f(1—f 34 have been inserted into E(R9) to obtain mean velocities in
1=~ B — f1(1-fy). (34) SIS _
n the radial direction shown for three distances downstream,

) i ) which are presented by open markers. In the domain
Equations(31) and (34) are inserted into Eq(30). These  —j 4 . 24 thexperimental data are slightly higher than

substitutions lead to the corresponding quantities stemming from the calculated
£2 function. Otherwise the agreement is good.
J'nfl(f)f de=1-2f,— 7 —, (353 _ From Eqgs(34) and(37) one obtains the radial shear stress
0 fi distribution
, dfy 1 1 2
=y (35b) f21=—B; exp —5 7| —exp—79)). (40

Taking the derivative of Eq353 yields a highly nonlinear |, Fig 5, pesides the agreement with theoretical results, the
ordinary differential equation for the mean flow velocity in mapping together of the different extracted experimental
the axial direction data, those represented byDaand the others marked by an
2en o3 N2 £2¢7 _ I, is a very reliable test of the performance of the difference-
7fif1=2(11)"=3nfa(f1) = 111, =0. (36 quotient turbulence model.

The solution of the differential equation is

fi=exp(—37°). (37
’ The mass flow rates can be derived from the mean veloci-
In Fig. 3 the analytical solution for the axial mean veloc- ties. The mass flux in axial direction is

VI. ENTRAINMENT
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- 0.01 ]
>~
=
3,
'% O %A ]
>
c — Theory
8 -0.01 | e Experiment
S O x;/dg =60
O X4 /do =75
0021 2 x/dy =975
0 05 1 1.5 2 25 3
n

FIG. 4. Theoretical results are compared with the data fromth

measurements given in Réfl4]. The open markers denote trans-

formed experimental data shown in Fig. 3. The radial mean velocity

is less than 2% of the axial mean velocity. The conditigr<0
describes domains where the flow vectors point toward the axi
Here entrainment of ambient air into the jet occurs.

m1=2wpf U].XZdXZ' (41)
0
The outgoing mass flow at the nozzle exit is
ds
mozp’?TZUO. (42)

Inserting Eq.(37) into Eq. (41) and dividing by Eq.(42)
leads to

M 2 (43
mo  \dg 3
B? [x
=8 ||, (43b)
m? \ Xq
0.02 e
o a1 —Theory
! -.0 o D:60
g oos| /o m D75
g R A D:975
D > e I: 50
= 00 o <o I 60
01l : ]
g ¢ 1. 75
2 *
[2]
. &
T 0.005- ]
é -
[5) <&
M OC/ L L L .‘!
0 05 1 15 2 25 3
n

FIG. 5. The directly measured Reynolds shear stresses are
noted by aD. The number after the capital lettér denotes the
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2

B
k1=8ﬁ, (430
where the definition of the mixing number
do

has been introduced. It is the dimensionless ratio of the tube
diameterd, and the fictitious core distancg. The mixing
number shows values of
m=0.15-0.18. (45)
when jets emerge from round nozzles.
Ricou and Spalding30] also report a linear behavior of
e mass flux as a function of the axial distamge After a
reviewing process they conclude that the values of the con-
stantk; obtained see Eqs(43a and(43¢)] range from about
0.22 up to 0.404 according to the investigators. Their own
experimentally determined value of this constant is 0.32.
They further comment that in the present state of turbulence
theory the constark; can only be determined by experimen-
tal means. In Sec. VIl it is shown that with high accuracy we
have

m=23 (463

ok, =4p. (46b)
Ricou and Spalding do not mention the spreading angle or
the spreading parameter. However, frém=0.32, with Eq.
(46b), Bis now determined to be 0.080, which certainly must
be close to its actual valugcompare, e.g., in Refl14]
B=0.074 or in Ref[20] 8=0.082. The experimental results

of Ricou and Spalding are shown in Fig. 6. There is no doubt
that the mass flow is very accurately a linear functiorxof

VIl. A PROPOSITION
AND THE REYNOLDS NORMAL STRESSES

At the beginning of this section a proposition is intro-
duced, which in the remainder of the section is proved in the
context of the DQTM.

Proposition. The relative turbulence intensity in the
downstream direction on the axis of the jet in the self-
similarity domain is identical to the square root of its spread-
ing parameter

Vurzria = VB, (P47)
The definition of the normalizing quantity of the fluctuation
intensity has been presented in Sed.sée Eq(320)].
In this article, no reference is made to known relations
gbetween potential core lengths and spreading angles of jets
(Fig. 1) (see, e.g.[31]). The aim of this section is to deter-

distance downstream from the nozzle and is measured in units ¢hine the normal turbulence stresses in the three space direc-

dy. The three Reynolds shear stresses, represented by \aere
calculated by taking the data 6f shown in Fig. 3 and then apply-
ing Eq.(34).

tions. From the DQTM, by replacing all second indices by
the first (2—1), the following second-order correlation
function is obtained:
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200 T T T T T T T a) 05 T T T T
— Theory, p =0.080, m=0.16 -o-- X /%9=1.25 -~ X1 /Xp=5.00
® Experiment - X1 /%y=1.50 - —- x;/%0=10.0
- 150 - ] 041 | = x;/x=2.00 — x;/Xp=00
E ‘ E b o o0
bas 1 r K ®a
£ 100- 1 ~ 03] g
7 55
s 02
50 .
[ Broad jet
01 p=0.074
0 L [ I 1 Loy 00 i
0 100 200 300 400 500 ol . . . .
X1 0 005 01 015 02 025
d, X2
X
FIG. 6. The linear dependence of the mass flux in axial direction 1
on the distance downstream from the origin of the jet also follows b) 05 — e
from dimensional analysis. The theory presented, based on the
DQTM, yields different relations, which also match very well nu- — Wygnanski & Fiedler
merically. In this figure a comparison of theoretical and experimen- 04 -~ - Corrsin & Uberoi .
tal data from Ref[30] is shown.
— Uy U 03} ]
Up"=—oxa(Ug=uy ) S —— - (A483) =
Imax X1 o0
o o 02 F "~ Broad jet ]
xg = {xsJuy=max{uy}}. (A48b) N x1/d =20
X1 N N
. . . . 0.1+ N L
From Fig. 1 the following obvious relations are extracted: N Narrow jet
N Xl/d0=20
Xl:X05 (49a 0 1 L i L.
0 005 01 015 02 025
leax_ XO, (49b) ﬁ
— X
u; =0, (490 1
_ FIG. 7. Fluctuation intensities in the longitudinal direction for
Uy .= Yo, (490 different distances downstream. TKi®) experimentally observed

off axis peaks at small distancésom Refs.[14,16])) are also ob-

together with solutions already introduced in previous secservable in theéa) theoretical results. In accordance with the propo-
tions [see Eqs(333a and (33b)]. It is meaningful that the sition, when an experimental jet shows a higher fluctuation intensity
characteristic length in the longitudinal directign is iden-  on the axis the spreading angle is also larger.

tical to the only available length in this direction, the core _ ) o
distancex,. Inserting the values just determined into Eq.Fig- 7@]. Corresponding measurements are shown in Fig.

(483 and slightly rearranging the following equations are 7(0). )
At large distances from the nozzle, becausef@<1 ac-

cording to Eq.(37), the self-preservation increases and the

obtained:

us solution (50b) becomes completely self-similar,
fl1==> (509
U1 f11=Bf1(7), X1>Xo. (51
X1 Equation(50b) suggests the following limit to the relative
X_O_fl fluctuation intensity on the axis of the jet:
X1 X1
Xo f1(0) X_O_fl(o)
911~ \/,E " (5239
Xo 2
uy = uO(x_l) , (500) Xo
g11= Vfi1. (500 =B (52b)
With Egs.(50a—(50d the normal stress was calculatete =const, (520



466 PETER W. EGOLF AND DANIEL A. WEISS PRE 58

0.6 . ‘ been derived in two different ways. The deviation of the two
[ — Theory, x;/dg=97.5 results is small. This confirms the proposition.
0.5 o Expt., x;/dg=60 ] To calculateu, andus it is assumed that the second and
i O Expt/xl/d 75 third diagonal component of the Reynolds tensor show the
L .y 1 O— . . . . . . - -
04 s Expt, x,/dg= 975 ] same spatial distribution but with a slightly smaller intensity
05y o ] up2=uj4? (A53a)
38 &
[ ‘h P y o
02} =gu’ r=h (A53b)
0.1 isotropy < y= 8. (A53¢)
T . . The momentum conservation equati®d] is
0 0.5 1 1.5 2 25 3 N —
12 12
“l— =z U TUs
n M(X1)=2mp . ui+ug - Xodx, (549
FIG. 8. The relative fluctuation intensity in the axial direction is
shown. The experimental data stem from Hé#]. The deviation =M(0) (54b)
of the theoretical function from the experimental results at mean
distancesy is related to the production of turbulent kinetic energy 7Td2
and an incomplete turbulent transport of this kind of energy. =4 PUo (540

becausef;(0)=1. The final result(52b “proves” the  panchapakesan and LumIg30] have found experimentally
proposition on the basis of the DQTM. However, it must bethat this conservation is valid withit: 5% deviation from
remembered that the model has not yet been rigorously dev (0) for distances 38 x,/d,<150. For the self-similarity

rived from first principles. domain, substituting Eqs(18 (50b), and (53b) into Eq.
The jet measured by Corrsin and Ubefd6] is narrower (544, after a division byu* 2 it follows that

than the one that was experimentally investigated by Wygn-

anski and Fiedlef14] [Fig. 7(b)]. This completely corre- X1

sponds to the presented theory, which states that the fluctua- (.. X_o_ fq 1 (d,

tion intensity on the axigsee in the same figure at/x; f f§+(,8—y) fi|ndn=55 ) ( ) .
=0) is smaller in the case of a narrower jet. However, this ~° ﬁ—l 867 \xu) luy
only qualitatively confirms propositioiP47 by measure- Xo

ments. More reliable comparisons of theoretical predictions (59

and experimental data of the normal stress in the axial dlrecA
tion are shown in Fig. 8. The deviation of measurement
from the theoretical results varies to a great extent on th
experimental work taken into consideration in each case. For

fter the introduction of the Gaussian distribution function
37) into Eq. (55), with £€= 72, the following equation is
btained:

example, in Ref[32] it was reported that in many experi- o o

ments self-preservation was not attained completely. Théy—8— 1) gd§+— f e’fd§+(,3—y)f eg’zdg}
lack of self-preservation leads to deviations. It is believed 0 0

that these deviations, occurring at mediugyx, only, are 1 (do)\?(x,

caused by the underlying production of turbulent kinetic en- =13 (x ) (x - ) (56)
ergy and that fluctuation energy has not been perfectly dis- B 0 0

tributed over the whole width of the jet by transportation by applying Eq. (44), after some reductions in size, a simple
the mean motion and turbulent convection. For example, beTreIatmn follows:

ter agreement has been obtained in experiments performed in

a helium jet[20]. Wygnanski and Fiedler14] interpret the m? X1

deviations as follows: “The fact that the longitudinal inten- 1- 4_132) ( 1- X_o

sity contains more of its energy at the lower part of the v=B- , (579
spectrum is indicative of the manner in which the energy is 2ﬁ—1

being transferred, namely from the mean motioruq and Xo

only then tou; andug. isotropys= 8=y (57by

Because the agreement is goodkat 0, from measured
data the following results are obtained, which provide a con- em=23. (579
firmation of proposition(P47) by experiments: The mean
velocity profile (Fig. 3, B determined by curve fitting Note that Eq(570) is identical to Eq(46a), which was used
B=0.074 and the axial fluctuation intensitiig. 8, x,/x;  without a derivation at the previous stage to calculate the
=0) B=0.28=5=0.079. Following the statement of entrainment rate. An incomplete self-preserving state is char-
proposition(P47), from one set of experimental datg,has  acterized byn>23. In Figs. 9a) and 9b) m is 2% higher
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than 8. Comparing the results of Figs. 8 and 9, we note that  a) 0.6 —— R
the experiments do not indicate isotropy on the axis, which is

in contrast to results observed by other investigatses, 05k — Theory, x; /d¢=97.5 ]
e.g., Refs[15,32), who found isotropic behavior in some T ¢ Expt., x;/dy=60

domain around the jet axis. Such conditions are to be ex- [ O Expt., x;/do=75

pected since production of turbulence in the middle of the jet 04 + Exot, x,/dg=97.5 ]
is weak and the turbulence present is mainly due to transport o XPr X/ T

by mean and turbulent motion. Because of the lack of self- vy 03| p=0.074 ]
preservation, the additional energy still contained in the axial £0O m=2.04 p=0.151

fluctuation correlations at intermediate(Fig. 8 is missing 0.2'[ &

in the intensities in the radial and azimuthal directipRigs.

9(a) and 9b)]. This is why these contributions, which have
reasonable profiles compared to model calculations, show 0.1+
smaller amplitudes in comparison to the results in Fig. 8. I

VIIl. TURBULENCE ENERGY BALANCE 0
The turbulent energy equation for an axisymmetric flow n
can be derived straightforwardly from the momentum equa- b) 06 . .
tion [13] '
p+c+d+,+=0. (58) 05 [ — Theory, x,/dy=97.5 1
¢ Expt., x1/dy=60
The first energy term in this equation is the description of 04l O Expt, x;/do=75 ]
production of turbulent kinetic energy : » Expt,x,/d=975
Uy —s duy Uy 50 03| $=0.074 ]
=ulul —+ /2_+ /2_. _ _
p=uzuy 2o o T2 o (59 oo m=2.04 B=0.151
. . 0.2
The second terna describes the turbulent convection
__ 1 9 _ 60 0.1
=— +—— (X
c P (uge) X, 9%, (XaUge), (608
O I L \\\\\\\\\\\\\\\m:]
e=uj’e, (60b) 0o 05 1 15 2 25 3
wheree describes the dimensionless turbulent kinetic energy n

[see below, Eqs(76a—(760] and FIG. 9. Relative intensities in thé) radial direction andb)
Lo azimuthal direction. Experimental data have been copied from Ref.
e=zuiui, 1e{1,23. (61) [14]. The functionsy,, andgs; are defined as shown in Eq§03—

In Eq. (61) Einstein’s summation convention is applied. The (°09. but by taking the intensities in the, and x, directions,
diffusion d is given by respectively into consideration.

9 — 1 9 L Proposition.The relative turbulent production(s) on the
d=— (ue) + — — (XyUye). (62 axis of the jet in the self-similarity domain is identical to
9% X2 0%z minus half of the spreading parameter

The quantity. denotes the pressure diffusion 7(0)=— BI2. (P65
119 — 19 A The productionp is made dimensionless
= ol (up)+ X 9% (XaUzp) (63
_bPX 66
and.~ the dissipation term Eavial (66)
auj auj It is straightforward to derive
S=y — — (64)
an an —
. dfl (977 1 (9U1 — dfl (97]
The first two terms, which denote production and convec- ™ X1| ~ Zlﬁa_x;r x| axy fatu; dn 9%,

tion, contain correlations that have already been derived in

this article. Therefore, they will be examined further. The df, dn
last three contributions in Eq58) show additional correla- + 22@ 5_X2 : (67)
tions, which we intend to refer to in a subsequent work. Now

a second proposition can be stated. With



468

g 1 68
T (683
an 1
duy 1
- _ Tk
Xm X1 Ui, (68C)
it follows that
1 df, df;) 1 df,
W:_Eled —fu|fitn— a7 szzd (69
Equation (34) is now inserted forf,;. Equation (39)

yields the expression faof, and Eq.(51), with the isotropy
assumptionA53c¢), leads to the function describing, and
f,,. After several terms have canceled out, we obtain

(gl

From Eq.(37) it follows immediately that

1 dfl

1 1 dfy

df;

T (7D

:_ﬂfl

With this equation, several simplifications can be applied.

Then we obtain

m=13—f2 (72)

1+B8+p 1)4—,8

This equation is graphically shown in Fig. 10, where its re-

sults are compared with data obtained by measurements,

again from Ref[14]. The absolute value of the production
term shows a maximum at finite.

Applying a Taylor expansion to the exponential functions
describingf, in Eq. (72) produces

(1—§ 2)—(1— 2) 1+3+3i)
2 n 7]2
7l
+IB? 1—5 (73@
) 1 1
=7 (ﬁ— §>—§/3- (73b)

Now the function on the axis, wheng=0, can be evaluated,

7(0)=—3 (74)
This is exactly the statement of the second propositR89.
With 8=0.074 one obtaing= —0.037(see in Fig. 10 at the
location »=0).

The third proposition is related to the convection term.
Proposition.The relative turbulent convectiogy(7) on the
axis of the jet in the self-similarity domain is identical to

minus three times the spreading parameter

x(0)=-38. (P75
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FIG. 10. The dimensionless turbulent production term extracted
from measurementgfrom Ref. [14]) and calculated with the
DQTM. The turbulent production term has a local maximum on the
axis. Its numerical number is directly related to the spreading pa-
rameter.

The dimensionless turbulent kinetic energyf the jet can
be determined from some results derived in Sec. VI,

1 ul +u2 +u3

e(X1,Xp)= > I (763
3°
X1 ;
B2y | %Xt ¢
T2 X !
1
0
(76b)
X
3 x_l_fl
_° 0
=23 X fq. (760
=1
Xo

Again for simplicity only large distances > X, and isotropy
of the fluctuationgsee Eq(76¢)] are considered. Then

3
=35 Bf1. (77
Equation(609 is then further developed
_dfy an s _,du ;de dp
d v 1 1e+3fu] d e+f1 1 d (9)(1
df, o an _*3 de dy
+_f2U1 e+ — d (? +f2U1 d77(9X2
(78)

With Egs. (689—(68c one obtains for the dimensionless
convection term

CXq

X==%3

= (79
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the result 0.2 | :
----- Theor
df, de Y
=—p—e—3f.e— nf, — 011l O Measurement 1
X n d7] 1 7 d77 =
11 1df, 1 de g 500200,
+——fet———et—f,—. (80) = 0f 577 008
Bn 2 Bdyp B *dy S =0
> &4
Inserting Eq.(39) together with Eq(77) and after canceling §-01f 0 y
a great number of terms a next intermediate result is o 20
ot
X= 5 UL R I T I I A I 1 1
2 d d
K nEn 0 05 1 15 2 25 3
Substituting the solutior(71), the final turbulent convection n

term reduces to an even more simple analytical expression

than the production terr(i72),
x= %IBfl(l_Sfl)- DQTM. At »=1.2 the sign of this turbulence energy alters. The
function takes a maximum at approximatejy-2.1 and decreases
This result is in very good coincidence with measurementgoward infinity to zero.
derived by experimental means by Wygnanski and Fiedler . . . L
[14]. Their curve, fitted to the measured data, is referred to iﬁmdel’ is taken to derive the DQTM. This derivation is not

several articles and textbooks published in the years subs¥€t rigorous, but its features are at least comp_atlble with
quent to their work. generally accepted methods of turbulence modeling. Then a

Becausd,(0)=1, the special algebraic expression on thecomprehensive theory of thg _axisymmetric isothermal jet,
axis is 1(0) P 9 P based on the DQTM, describing up to second order mo-
ments, is presented. Compared to existing similar models

FIG. 11. The dimensionless turbulent convection term extracted
from measurementgfrom Ref. [14]) and calculated with the

(82

x(0)=2pf,(0)[1—3f,(0)] (833  known to the authors, this presentation has the least number
of empirical constants. In this theory it is shown that fluctua-
=-3p8, (83b tion quantities and turbulent energy terms on the jet axis are

. . B _ proportional to the spreading parameter of the jet. The mass
which proves the third propositiofP75 on the basis of the flow at any cross section in the self-similarity domain down-
DQTM and notably, without the occurrence of a single em-stream of the nozzle is also directly related to the spreading

pirical constant. If3=0.074, theny(0)= —0.222(compare
with the numerical ordinate value in Fig. 11

IX. CONCLUSIONS

parameter. All the results are very simple analytical formu-
las. Their agreement with experimental data is good.
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