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Nonlinear response theory for time-periodic elongational flows

B. D. Todd
Cooperative Research Centre for Polymers, CSIRO Molecular Science, Bag 10, Clayton South, Victoria 3169, Australia

~Received 3 February 1998; revised manuscript received 2 July 1998!

The time-dependent nonlinear response theory of Petravic and Evans@Phys. Rev. Lett.78, 1199 ~1997!;
Phys. Rev. E56, 1207 ~1997!# is applied to the case of an atomic fluid undergoing oscillatory elongational
flow. It is found that nonlinear response calculations agree very well with direct nonequilibrium molecular
dynamics calculations of the diagonal elements of the pressure tensor. At very weak applied fields, nonlinear
response theory is statistically superior to the direct calculation, which suffers from low signal to noise ratios,
but at higher fields direct averaging of phase variables is observed to be superior.@S1063-651X~98!12210-9#

PACS number~s!: 61.20.Ja, 05.20.2y, 66.20.1d, 83.50.Jf
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I. INTRODUCTION

Elongational flow is a difficult rheological problem t
study by the use of molecular dynamics techniques. T
main problem with such calculations is the requirement t
the periodic boundary conditions evolve in time such t
they remain compatible with the equations of motion. F
planar shear flow this is not a problem, as the flow geome
guarantees that the boundary conditions remain periodic
theoretically infinite simulation times. However, for elong
tional flow this convenient geometry is destroyed. Elong
tional flow occurs when a fluid is stretched in at least o
direction, and compressed in at least another. This imp
that the simulation cell dimensions must either increase
decrease in length. Eventually the simulation must ce
when the length of the simulation cell in the compress
direction reaches its minimum extension of twice the int
action potential cutoff radius. For relatively simple fluids th
is not a serious concern, as previous studies@1–4# have
shown that the fluid will reach steady state before the ma
mum simulation time is reached. However, this will not
the case for more complex molecular fluids, where now
relaxation times of the fluid will exceed the maximum allow
able simulation time in all but the weakest of flows@5#. It is
primarily for this reason that few nonequilibrium molecul
dynamics~NEMD! studies of elongational flow have bee
attempted in the past decade.

There have been several recent attempts to overcome
technical difficulty. Baranyai and Cummings@4# devised a
method of increasing the total simulation time available
effectively doubling the cell length in the contracting dime
sion when it was close to the minimum length. This w
accomplished by defining one set of images as real parti
and adding random displacements to their positions and
locities. Since the overall system is a nonlinear dynam
one, the phase-space trajectories of the new particles wi
uncorrelated with the original particles after a characteri
time determined by the magnitude of the Lyapunov ex
nent. However, if the elongation rate is very high there is
time for the new particles to evolve along a substantia
different trajectory. It was found that for their system
simple Weeks, Chandler, and Anderson~WCA! atoms@6#,
this doubling scheme could only be used for elongation ra
,0.5 in reduced units.

Recently Todd and Daivis@7# devised a NEMD method
PRE 581063-651X/98/58~4!/4587~7!/$15.00
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that applies an oscillating strain rate to the equations of m
tion for a simple atomic fluid. This ensures that the syst
attains a temporally periodic steady state. For a given m
nitude of the strain rate, quantities of interest, such as
diagonal elements of the pressure tensor, and hence elo
tional viscosities, are then calculated by extrapolating th
frequency dependent values down to zero frequency.
main advantage of this technique is that it provides a con
nient and consistent means of extrapolating to the zero
quency~steady elongation! elongational viscosity, unlike the
standard method, in which it may be difficult to distinguis
between the transient response and the steady-state resp
The method also enables one to study the frequency de
dence of the elongational viscosity, and thus probe the
visco-elastic behavior of fluids subject to elongation@8#.

In another attempt to address this problem of finite sim
lation time, Todd@9# applied time-independent nonlinear r
sponse theory, in the form of the transient time correlat
functions~TTCF! of Morriss and Evans@10#, to a fluid un-
dergoing steady elongational flow. The advantage of this
proach is that TTCF is much more efficient at low fie
strengths than direct averaging, and as the total simula
time for elongational flow is inversely proportional to th
field strength~i.e., the applied strain rate!, the simulation can
be run for much longer times than could otherwise be p
sible. As molecular fluids display significant non-Newtoni
behavior at relatively low strain rates, the method could
useful for studying their rheology under elongational flo
The method has another surprisingly beneficial feature
that it does not detect any transient oscillations in the pr
sure. This in turn allows more accurate determinations of
genuine long-time steady-state response of the fluid to
applied time-independent field.

The work performed in this paper essentially represen
synthesis of the previous two methods described above@7,9#.
The method of Todd and Daivis@7# is restricted to values o
the applied strain of;>0.1. Below this value the signal to
noise ratio deteriorates significantly, making the conve
tional direct averaging procedure unfeasible. Petravic
Evans@11# have recently shown that time-dependent nonl
ear response theory can be successfully applied to sys
that are driven by a time-periodic external field. The motiv
tion for this current work is to apply Petravic and Evan
method to the oscillatory system of Todd and Daivis, th
4587 © 1998 The American Physical Society
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4588 PRE 58B. D. TODD
allowing access to rheological information at strain rates n
mally inaccessible by conventional direct NEMD method

II. THEORY

Petravic and Evans@11# based their time-dependent no
linear response theory on the TTCF method of Morriss a
Evans@10#. They showed that for a system of particles und
the influence of an external time-periodic field, subject to
Gaussian isokinetic constraint, the ensemble average of
arbitrary phase variableB is given as

^B@G„t;w~ t !5wp…#&

5^B@G„0;w~0!5wp…#&2bE
0

t

dsFe~wp2vs!

3^B@G„s;w~s!5wp…#J@G„0;w~0!5wp2vs…#&, ~1!

where b51/kT, k is Boltzmann’s constant,w is a phase
angle in the generalized phase space defined byG85(G,w),
wp is an arbitrary constant value of this phase angle,Fe is the
external driving field of frequencyv, andJ is the dissipative
flux.

It is absolutely essential to understand the meaning of
~1!, and because of this some time will be devoted here to
interpretation before proceeding any further. Although it is
a form similar to the corresponding time-independent TT
expression, there are subtle differences in interpretation
the symbols that are not intuitively obvious.

Time-dependent TTCF makes use of an abstract notio
an ‘‘extended phase space,’’G85(G,w)5(qi ,pi ,w i ; i
51,...,N). To make sense of this, consider an ensemble oP
‘‘daughter’’ nonequilibrium phase space trajectories, ea
one originating att50 from an equilibrium ‘‘mother’’ tra-
jectory. Each daughter is initiated with different pha
angles, as depicted in Fig. 1~a!. In this paper each separa
time origin along the equilibrium mother trajectory is r
ferred to as a node. One can consider this entire set of ph
space trajectories belonging to asingle extended phase
space. One could follow the time evolution of any arbitra
phase variableB in this extendedphase space, and plot th
value of B@G„t;w(t)5wp…# as a function of time, as illus
trated in Fig. 1~b!. In this example, a set of four nonequilib
rium trajectories@curves (i ) – (iv)# are initiated at a node
each with a different value of the initial phase angle of t
driving field w~0!. If one were interested in the values
B(t) evaluated at only specificconstantvalues of the phase
anglewp , then one could, on a single graph, plot this val
of B@G„t;w(t)5wp…# for each of the four trajectories, as in
dicated in curve (v). One would find thatB@G„t;w(t)
5wp…# experiences an initial transient stage fromt50 ~i.e.,
when the field is switched on! up to some timet5ts . At
times t.ts , the value ofB@G„t;w(t)5wp…# is constant, in-
dicating that a temporally periodic nonequilibrium stea
state has been reached. This is analogous to the case o
lowing the traditional phase space trajectory of asinglesys-
tem under the influence of a time-independent field; in t
caseB(t) will also experience an initial transient stage b
fore reaching its steady-state value after some timets . In-
deed, it is precisely this analogy that allows one to derive
~1! in the first place; it relies on the fact that any pha
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variable in extended phase space, measured at aconstant
value of the phase anglewp , will always attain a ‘‘steady
state’’ under the application of a time-periodic driving exte
nal field. It is this correspondence that makes Eq.~1! so
similar in form to the time-independent TTCF expression

With an appreciation of the notion of extended pha
space, we now consider the interpretation of the symb
under the integral sign, and indeed the interpretation of
integration itself. Again this is more easily explained pict
rially, with the aid of Fig. 2.

Consider a system which is driven by a time-periodic fie
Fe(t,w0), such thatFe(t,w0)5Fe(t1t,w0), wheret is the
period andw0 is an initial phase angle. Furthermore, lett
56dt, as depicted in Fig. 2, wheredt is the evolution time
step. The vertical and horizontal axes of the cells repres
time and phase angle evolutions of any arbitrary phase v
able B, respectively. In this specific example, we are inte
ested in the evolution of a trajectory that has commence
t50 with an initial phase anglew052vdt. Even though we
are only interested in calculating the nonlinear response
this one trajectory, the TTCF method of Petravic and Eva
@11# demands that a number ofdifferentnonequilibrium tra-
jectories be allowed to evolve, each starting att50 with
different initial phase anglesw0 such that they span the entir
range ofwP@0,Ft#, where Ft5vt. For the purposes o
illustration only, this range is divided into six discrete angl

FIG. 1. ~a! Schematic representation of extended pha
space. ~b! Time evolution ofB@G„t;w(t)5wp…# generated from a
set of nonequilibrium trajectories commencing at different init
values ofw.
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PRE 58 4589NONLINEAR RESPONSE THEORY FOR TIME-PERIODIC . . .
in Fig. 2, each separated byvdt, though in practice one
would need a larger set of discrete angles spanning@0,Ft#.
In such a pictorial scheme each distinct nonequilibrium t
jectory in the extended phase space would be represente
a diagonal arrow in a matrix of cells, commencing at (t,w)
5(0,w0) and moving down and to the right. Specific to o
example, the arrow commences at the point (t,w)5(0,2vdt).
As molecular dynamics simulations evolve with discrete
cremental time steps ofdt, each contiguous diagonal ce
represents a forward advance in time ofdt, and in phase
angle ofvdt, over the previous one. In addition, each c
depicts theproductof B at timet and phase anglew(t), with
the values of the external field and the dissipative flux eva
ated att50, i.e., Fe

„0,w(0)5w0…B@G„t;w(t)…#J@G„0;w(0)
5w0…#. However, the integration that appears in Eq.~1! is
not along the diagonal~i.e., not along the single trajectory
indicated by the arrow!; rather it is down the columns of Fig
2, from s50 up to any desired value of the time,s5t. The
integration occursonly for those values ofB that are evalu-
ated at a constant value of the phase anglew(t)5wp . For
example, if one wanted to calculate the value of^B@G„t
53dt;w(t)55vdt…#& using the TTCF formalism, one
would integrate over~i.e., sum! each of the shaded squares
the last column of Fig. 2 and average over the total num
of nodes. Doing this for each value oft would produce TTCF
values of^B@G„t;w(t)5wp…#& that correspond to the direc
values generated for curve (v) of Fig. 1~b!.

It is essential to realise that each value ofB@G„t;w(t)
5wp…# in any one column of Fig. 2 originates from an ind
pendent,separate, trajectory in the full ensemble of extende
phase space. Equation~1! represents an integration alon

FIG. 2. Schematic representation of Eq.~1!. The example is
periodic in time, with periodt56dt.
-
by

-

l

-

er

contiguoustrajectories that originate from different initia
values of the phase anglew05wp2vs. Note that the field
and dissipative flux are evaluated att50 andw5w0 for each
individual trajectory, which is why they are represented
Fe(wp2vs) and J@G„0;w(0)5wp2vs…# in Eq. ~1!. As is
the case with time-independent TTCF the first term on
right-hand side of Eq.~1! simply represents the ensemb
average of the equilibrium value ofB at t50. Note that the
cells themselves are depicted in Fig. 2 as periodic, with
riod t. Thus, one only needs to generate trajectories that s
the extended phase space~G,w!, wherewP@0,Ft#. In our
example 6vdt5Ft , hence the diagonal arrow correspon
ing to a single trajectory repeats itself from the left of t
matrix whenever mod@w(t),6vdt#50. Finally, to generate a
complete picture of the evolution ofB as a function of time
and phase angle, one evaluates Eq.~1! for each value ofwp ,
as indicated by the shaded cells in Fig. 2. In this spec
example the TTCF method would yield the values
^B@G„t;w(t)…#& for all times up to t55dt, although of
course one can, in principle, continue integrating up tot
→`. Even though our example has been confined to ca
lating ^B@G„t;w(t)…#& for a nonequilibrium system with ini-
tial phase anglew052vdt, clearly we have all the informa
tion we need to calculate^B@G„t;w(t)…#& for any
nonequilibrium system commencing att50 with any w0 ;
thus one can extract an enormous amount of informa
from a single set of simulation data in the full extend
phase space.

With the interpretation of Eq.~1! clarified, it is a rela-
tively straightforward process to extend the theory to
case of elongational flow. In a previous paper@9# it was
demonstrated how to do this for time-independent elon
tional flow. Essentially the same procedure carries ove
the case of time-dependent flow. In short, the task is to g
eralize Eq.~1! for any arbitrary flow, and then identify the
values ofFe andJ for any specific elongational flow.

By applying the derivation of Petravic and Evans@11# to
any arbitrary generalized flow characterized by a tenso
external field Fe(w) and dissipative fluxJ(G), one can
readily show that the general expression for the nonlin
response of any phase variableB@G„t;w(t)5wp…# is given as

^B@G„t;w~ t !5wp…#&5^B@G„0;w~0!5wp…#&

2b(
d,s

E
0

t

dsFds
e ~wp2vs!

3^B@G„s;w~s!5wp…#

3Jsd@G„0;w~0!5wp2vs…#&, ~2!

whered, s range over all Cartesian dimensions.
For an atomic fluid undergoing planar shear flow, t

adiabatic time derivative of the internal energyH0 , is usu-
ally written asḢ052JFe, whereJ andFe are as previously
defined. For more complex flows, one can generalize thi
Ḣ052J:Fe, where now bothJ andFe are tensorial quanti-
ties as described above. For planar shear~or planar Couette!
flow, it is easily seen thatḢ052ġPxyV @12#, whereġ is the
strain rate,Pxy is thexy element of the pressure tensor~nega-
tive of the shear stress!, andV is the system volume.
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For oscillatory elongational flow,Fe can be expressed a
an applied time-dependent strain rate tensor,

Fe~w![¹u~w!5S «̇xx 0 0

0 «̇yy 0

0 0 «̇zz

D cos~w![«̇= cos~w!, ~3!

whereu is the streaming velocity of the fluid andėaa is the
elongational strain rate defined as]ua/]a, where a
5x,y,z. Here the explicit time dependence of the field h
been transformed into a dependence on an extended p
space variable, namely, the phase angle,w5vt1w0 . As-
suming pairwise additive potential interactions between
oms, the total internal energy of a particle is given as

Hi5
pi

2

2mi
1 1

2 (
j

f i j , ~4!

where the momenta,pi are peculiar with respect tou. The
total internal energy is thusH05( iHi . Assuming unthermo-
ng
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go
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t-

statted extended Sllod equations of motion for the part
dynamics@7,11,12#,

ṙ i5
pi

mi
1r i–“u~w!,

ṗi5Fi2pi–“u~w!,

ẇ5v, ~5!

the adiabatic time derivative of the total internal energy
given as

Ḣ052@ «̇xxPxx1 «̇yyPyy1 «̇zzPzz#cos~w!V

52@VP:“u~w!#[2J:Fe~w!. ~6!

As it is these values ofJ andFe that must be substituted int
Eq. ~2!, one obtains the time-dependent TTCF expression
the time evolution of any arbitrary phase variableB(t) at a
constant value of the phase anglewp ,
^B@G„t;w~ t !5wp…#&5^B@G„0;w~0!5wp…#&

2bVS «̇xxE
0

t

ds cos~wp2vs!^B@G„s;w~s!5wp…#Pxx@G„0;w~0!5wp2vs…#&

1 «̇yyE
0

t

ds cos~wp2vs!^B@G„s;w~s!5wp…#Pyy@G„0;w~0!5wp2vs…#&

1 «̇zzE
0

t

ds cos~wp2vs!^B@G~s;w~s!5wp!#Pzz@G~0;w~0!5wp2vs!#& D . ~7!
di-
g
the

e-
nal

e
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Since we are only concerned in this work with calculati
the diagonal elements of the pressure tensor,Pdd ~whered
5x, y, or z!, we simply replaceB with Pdd in Eq. ~7!. It is
these elements that are directly related to the elongati
viscosity@7,8#, and are hence of significant rheological inte
est.

III. SIMULATIONS

The thermostatedextendedphase-space Sllod~so named
because of its close relationship to the Dolls tensor al
rithm! equations of motion@7,11,12# that are used in this
work are

ṙ i5
pi

mi
1r i–“u~w!,

ṗi5Fi2pi–“u~w!2api ,

ẇ5v, ~8!

wherea is a Gaussian thermostat multiplier used to constr
the system to constant temperature, given as
al

-

n

a5

(
i

pi–†Fi2@pi–“u~w!#‡

(
i

pi
2

. ~9!

As previously mentioned, the periodic boundary con
tions will evolve in time in an oscillatory manner. Integratin
the equations of motion shows that the dimensions of
simulation cell change exponentially, but periodically,

Ld~ t !5Ld~0!exp~ «̇ddv21@sin~vt1w0!2sin w0# !, ~10!

whereLd(t) is the length of the simulation cell at timet in
the directiond(d5x,y,z). The value ofv can be chosen
judiciously so that it is never less than the minimum fr
quency allowable for a given magnitude of the elongatio
strain rate,

vmin52U max~ «̇dd!

lnS 2r c

Ld~0! DU , ~11!

where r c is the cutoff potential radius. Any value of th
frequency less thanvmin will result in Ld(t),2r c for at least
one of the extended phase-space trajectories that spaw
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P@0,2p#, which is not allowable. We also note that, for co
stant volume, at least two dimensions must oscillate in tim
either expanding or contracting such that the total volume
the system is preserved@ i.e., Tr(“u)50#.

Simulations are performed on three kinds of oscillato
elongational flow: planar elongational flow~PEF!, uniaxial
stretching flow ~USF!, and biaxial stretching flow~BSF!.
PEF occurs when one of the diagonal elements in the st
rate tensor is zero, and the other two are equal in magni
and opposite in sign~stretching and compressing!. USF im-
plies one element is positive~stretching! and the other two
are negative~compressing! and of half the magnitude, while
for BSF one element is negative~compressing! and the other
two are positive~stretching! and of half the magnitude
These types of flows ensure that the system volume
constant of the motion. Actually, USF and BSF simulatio
are equivalent for oscillatory elongational flow. This is b
cause any particular cell dimension will expand for one-h
of the period and contract for the other half. If one th
extrapolates frequency-dependent values to zero freque
one can obtain all the information one needs for stea
elongation BSF-USF flows in a single oscillatory expe
ment. This is useful, for example, if one is interested in
zero-frequency elongational viscosity, but the technique
also be used to calculate frequency-dependent viscos
@7,8#.

For the geometry used in this work, PEF implies«̇xx
52 «̇, «̇yy5 «̇, «̇zz50, and BSF-USF implies«̇xx5 «̇, «̇yy
52 1

2 «̇, «̇zz52 1
2 «̇ ~or, equivalently, «̇xx52 «̇, «̇yy5

1
2 «̇,

«̇zz5
1
2 ė).

The simulation cell consisted ofN5108 atoms that inter-
act via the WCA potential of Weeks, Chandler, and And
sen @6# defined asf(r )54(r 2122r 26)11 for r ,21/6;
f(r )50, for r .21/6, where the WCA potential constantss
and «, as well as the mass of the atoms and Boltzman
constant, are defined to be unity for simplicity, and theref
all measured properties are in dimensionless reduced u
The system is three dimensional, and is periodic in all
mensions. All simulations are performed at the Lenna
Jones triple point,r50.8442 andT50.722. The equations o
motion were integrated using a fourth-order Runge-Ku
scheme, and the integration timestep ranged between 0.
0.004 in reduced units for all simulations.

The size of the equilibrium cell wasLx5Ly5Lz
5(N/r)1/355.0388. In all simulations, an equilibrium
‘‘mother’’ trajectory was maintained at a constant-state po
of (r,T)5(0.8442,0.722), while at equal intervals a fe
hundred time steps apart, a sufficient number of nonequ
rium ‘‘daughter’’ trajectories were initiated to span the ent
extended phase space angle,wP@0,2p# ~see Fig. 1!. This
time separation was chosen to ensure that contiguous
equilibrium trajectories originating from different node
were uncorrelated.

Morriss and Evans@10# demonstrated that for planar she
simulations, a substantial improvement in the signal to no
ratio at long times can be obtained through prudent pha
space symmetry mappings. This mapping scheme was
extended to incorporate elongational flow@9#, and the same
scheme is used in this work. For PEF simulations a suita
mapping isG1→G2 , whereG15(xi ,yi ,zi ,pxi ,pyi ,pzi), G2
5(yi ,xi ,zi ,pyi ,pxi ,pzi). This mapping has the necessa
,
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requirements that it preserves the total internal energy of
equilibrium system att50, while ensuring at the same tim
that the new nonequilibrium trajectory (G2) evolves along a
distinct path to the original nonequilibrium trajectory (G1).
For BSF/USF flows, two initial equilibrium phases are insu
ficient for zeroing the long time fluctuations, and an ad
tional phase-space mapping,G1→G3 , where G3
5(zi ,yi ,xi ,pzi ,pyi ,pxi), is required. Neither of these
schemes are unique, or exhaustive, but they are sufficie

IV. RESULTS AND DISCUSSION

The results of an oscillating PEF simulation with«̇xx
520.5, «̇yy50.5, «̇zz50 are shown in Figs. 3~a! and 3~b!.
These results consisted of data averaged over a total o
323200350 NEMD trajectories~i.e., 10 separate runs o
two phase-space mappings of 200 nodes of 50 discrete p
angles spanning the rangewP@0,2p#). The frequency of the
applied strain rate wasv512.566, which corresponds to
period of t50.5 reduced time units. The frequency is hig
enough to ensure thatLd(t)@2r c, and hence that simulation
artifacts induced by small box dimensions are minimize
Each NEMD trajectory was run for a total length of 3t time
steps.

Figure 3~a! showsPdd ~whered5x, y, or z! as a function
of time at a constant phase angle ofwp50. The TTCF values
are calculated by Eq.~7!, and are compared with the direc

FIG. 3. ~a! Direct ~D! and TTCF ~T! values of ^Pdd@G„t;wp

50…#& for a PEF simulation with an applied strain rate of«̇xx

520.5, «̇yy50.5, «̇zz50, and frequency ofv512.566. Error bars
for direct pressures are smaller than the plotting symbol cha
ters. ~b! Direct and TTCF pressures for the system in~a!.
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time-averaged results. One observes an initial period wh
the fluid relaxes to a nonequilibrium ‘‘steady state’’ at a
proximately t50.35, after which the pressure~at constant
wp) is essentially constant, though there is evidence of w
oscillations in the direct pressures. In fact, plotting the pr
sure in this manner is a very useful tool for checking if t
fluid has attained a genuine time-periodic steady state. A
of the pressure itself would, of course, oscillate with per
t, and it is not as obvious to determine when a time-perio
steady state has been reached.

Both the direct~D! and TTCF~T! results are in excellen
agreement with each other. This represents the first inde
dent check that the method of Petravic and Evans@11# is
indeed valid, and will work for generalized flows. Howeve
contrary to Petravic and Evans, the direct results are m
efficient for this relatively high strain rate than the TTC
results~the error bars for the direct results are smaller th
the plotting symbol size!. In their work Petravic and Evan
found that time-dependent TTCF was more efficient th
direct averaging for high or low strain rate rates~contrary to
time-independent TTCF, which is known to be more efficie
only at low strain rates@9,10#!. A possible reason for this is
the difference in system size of the current work compa
with that of Petravic and Evans. In their simulations th
only considered a two-particle system, where naturally
statistical noise in the direct calculations would have be
significantly worse than in this work, where the number
particles is 108. Thus it is likely that for very small syste
sizes, time-dependent TTCF is at least as efficient as d
averaging, but that this is not necessarily true as the num
of particles in the simulation cell increases.

Of further interest in Fig. 3~a! is the similarity of
Pdd~w5wp) with Pdd in the time-independent TTCF studie
of elongational flow previously done@9#. A comparison of
both results in fact stresses the point thatPdd evaluated at a
constant phase angle for a time-dependent simula
evolves in time in much the same manner asPdd would for a
time-independent simulation. As previously mentioned, i
precisely this similarity that enables the relatively simp
time-dependent TTCF expressions in Eqs.~2! and ~7! to be
derived.

The diagonal elements of the pressure tensor, for both
direct and TTCF methods, are plotted in Fig. 3~b!. In this
case the TTCF data represent the shaded cells in Fig. 2@i.e.,
each shaded column represents a point on Fig. 3~b!#. Once
again there is excellent agreement between both method
expected,Pxx and Pyy have a period oft and are out of
phase byp, while Pzz is weakly oscillatory with periodt/2,
even though«̇zz50.

Simulations were also performed for a BSF/USF syst
with «̇xx520.5, «̇yy50.25, «̇zz50.25. Once againv
512.566 (t50.5), and each NEMD trajectory was run for
total simulation time of 3t. A total of 10333140350 tra-
jectories were run. Figure 4~a! displaysPdd(wp50) for this
system. Once again, agreement between the direct and T
methods is excellent, with the direct values statistically
perior at these strain rates. Also, as«̇yy5 «̇zz, Pyy and Pzz
are identical to within statistical errors.

In Fig. 4~b! the pressures are plotted as functions of tim
again displaying excellent agreement between both meth
It is noted here that as TTCF involves time integrations
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correlation functions, statistical errors will propagate as ti
advances. As these calculations are computationally in
sive ~a total of 3.153108 time steps for the results in Fig. 4!,
it is difficult to simulate for total individual trajectory length
of more than severalt without significant computational re
sources. The simulations for this study were performed
the CSIRO NEC SX4 vectorizing supercomputer. All sim
lations were performed using only a single processor. As
TTCF method involves nonequilibrium trajectories that sp
the entire set of extended phase space, it is ideally suite
parallelization. For maximum efficiency, at each node o
processor could be used for each trajectory that spanw
P@0,2p#. In such a way the time-dependent TTCF calcu
tion would then become equally as efficient as the tim
independent TTCF calculation running on a single proces
in that a larger number of nodes are possible, which in t
would improve the overall statistical accuracy of the resu

One of the major advantages of the TTCF method o
direct NEMD is to be found in simulations with relativel
weak strain rates. In such cases it is well known that dir
averaging of phase variables suffers from intolerable sig
to noise ratios@12#. Thus, the only practical method current
available is response theory. Note that while other formu
tions of nonlinear response theory exist, TTCF~both time
dependent and time independent! has thus far proved to be
the most practical@9–12#.

In Figs. 5~a! and 5~b! the results of an oscillating PEF
simulation consisting of a total of 53232000350 NEMD
trajectories are displayed. In this case«̇xx520.002, «̇yy

FIG. 4. ~a! D and T values of^Pdd@G„t;wp50…#& for a BSF/
USF simulation with an applied strain rate of«̇xx520.5, «̇yy

50.25, «̇zz50.25, and frequency ofv512.566. ~b! Direct and
TTCF pressures for the system in~a!.
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50.002, «̇zz50. The frequency is the same as before,
now the total simulation time per NEMD trajectory is 2t. It
is clear from these figures that for such a low value of«̇ the
TTCF method is able to generate data that does not su
from the scatter of the direct results, in agreement with
results of Petravic and Evans@11#. Note that on the magni
fied scale of Fig. 5~a!, ^Pxx(t50)&5^Pyy(t50)&Þ^Pzz(t
50)& due to averaging over the phase-space mappings u
These zero-time~equilibrium! pressures are within error lim
its of each other~at equilibrium all pressures should be th
same in the limit of infinite averaging time!.

FIG. 5. ~a! D and T values of^Pdd@G(t;wp50)#& for a PEF
simulation with an applied strain rate of«̇xx520.002, «̇yy

50.002, «̇zz50, and a frequency ofv512.566. ~b! Direct and
TTCF pressures for the system in~a!.
m

hy
t
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V. CONCLUSIONS

In this paper, the newly developed time-dependent tr
sient time correlation function theory of Petravic and Eva
@11# has been applied to a simple atomic fluid experienc
oscillatory elongational flow. Normal stresses are calcula
by the method and compared with direct time-averaged
ues and excellent agreement is found between both meth
confirming the validity of the theory for generalized tim
dependent periodic flows.

At higher values of the applied strain rate direct averag
is seen to be statistically superior to the TTCF results,
contrast to the results of Petravic and Evans@11# who ob-
served similar efficiencies for both methods even at h
values of the applied field. It is noted, however, that the wo
of Petravic and Evans was performed on only a two-part
system, whereas all simulations done for this paper were
a system of 108 particles. It thus appears that direct ave
ing is still more efficient than the TTCF method for a suf
ciently large number of particles at high field strengths. Ne
ertheless, TTCF is certainly shown to be more efficient th
direct averaging at low values of the strain rate, and it is
this region where its superiority is clearly evident for gen
alized flows. While time-dependent TTCF is computationa
intensive, it is highly suited for straightforward paralleliz
tion, in which it would be expected to become as compu
tionally efficient as time-independent TTCF calculations a
on a single processor machine. Furthermore, as the ti
dependent TTCF method spans the entire set of exten
phase space, an enormous amount of information is c
tained within a single set of simulations. Within the curre
range of computational power available, the time-depend
TTCF method could be extremely valuable for studyi
small systems, in which the limitations of statistical noise a
substantially reduced in comparison to the traditional NEM
procedure of direct time averaging of phase variables.

Note added in proof.Recently, a new method that gua
antees unrestricted duration NEMD simulation of time ind
pendent planar elongational flow has been implemented.
details see Ref.@13#.
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