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Nonlinear response theory for time-periodic elongational flows
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The time-dependent nonlinear response theory of Petravic and [ERags. Rev. Lett78, 1199 (1997%);
Phys. Rev. E56, 1207 (1997)] is applied to the case of an atomic fluid undergoing oscillatory elongational
flow. It is found that nonlinear response calculations agree very well with direct nonequilibrium molecular
dynamics calculations of the diagonal elements of the pressure tensor. At very weak applied fields, nonlinear
response theory is statistically superior to the direct calculation, which suffers from low signal to noise ratios,
but at higher fields direct averaging of phase variables is observed to be su#tia83-651X98)12210-9

PACS numbsgs): 61.20.Ja, 05.26.y, 66.20+d, 83.50.Jf

I. INTRODUCTION that applies an oscillating strain rate to the equations of mo-
tion for a simple atomic fluid. This ensures that the system
Elongational flow is a difficult rheological problem to attains a temporally periodic steady state. For a given mag-
study by the use of molecular dynamics techniques. Thaitude of the strain rate, quantities of interest, such as the
main problem with such calculations is the requirement thatliagonal elements of the pressure tensor, and hence elonga-
the periodic boundary conditions evolve in time such thational viscosities, are then calculated by extrapolating their
they remain compatible with the equations of motion. Forfrequency dependent values down to zero frequency. The
planar shear flow this is not a problem, as the flow geometrynain advantage of this technique is that it provides a conve-
guarantees that the boundary conditions remain periodic fanient and consistent means of extrapolating to the zero fre-
theoretically infinite simulation times. However, for elonga- quency(steady elongationelongational viscosity, unlike the
tional flow this convenient geometry is destroyed. Elongastandard method, in which it may be difficult to distinguish
tional flow occurs when a fluid is stretched in at least onebetween the transient response and the steady-state response.
direction, and compressed in at least another. This implie¥he method also enables one to study the frequency depen-
that the simulation cell dimensions must either increase oflence of the elongational viscosity, and thus probe the rich
decrease in length. Eventually the simulation must ceasgjsco-elastic behavior of fluids subject to elongatjéh
when the length of the simulation cell in the compressing |n another attempt to address this problem of finite simu-
d|rr-_3ct|on reaghes its minimum extension of. twice th_e inter-jation time, Todd 9] applied time-independent nonlinear re-
action potentllal cutoff radius. For relatlvely simple fluids this sponse theory, in the form of the transient time correlation
is not a serious concer, as previous studies4] have functions(TTCF) of Morriss and Evan$10], to a fluid un-

shown that the fluid will reach steady state before the maxi- - ; : )
mum simulation time is reached. However, this will not bedergomg steady elongational flow. The advantage of this ap

) é)roach is that TTCF is much more efficient at low field
the case for more complex molecular fluids, where now th Strengths than direct averaging, and as the total simulation
relaxation times of the fluid will exceed the maximum allow- 9 ging,

able simulation time in all but the weakest of floj. It is t?me for elongational flovy N invgrsely proportiongl to the
primarily for this reason that few nonequilibrium molecular field strengthi.e., the app!|ed strain rafiethe S|mulqt|on can
dynamics(NEMD) studies of elongational flow have been P& run for much longer times than could otherwise be pos-
attempted in the past decade. sible. As molecular fluids display significant non-Newtonian
There have been several recent attempts to overcome thghavior at relatively low strain rates, the method could be
technical difficulty. Baranyai and Cummingd] devised a useful for studying their rheology under elongational flow.
method of increasing the total simulation time available byThe method has another surprisingly beneficial feature in
effectively doubling the cell length in the contracting dimen- that it does not detect any transient oscillations in the pres-
sion when it was close to the minimum length. This wassure. This in turn allows more accurate determinations of the
accomplished by defining one set of images as real particlegenuine long-time steady-state response of the fluid to an
and adding random displacements to their positions and veapplied time-independent field.
locities. Since the overall system is a nonlinear dynamical The work performed in this paper essentially represents a
one, the phase-space trajectories of the new particles will bgynthesis of the previous two methods described abb)g
uncorrelated with the original particles after a characteristicThe method of Todd and Daiv|g] is restricted to values of
time determined by the magnitude of the Lyapunov expothe applied strain of-=0.1. Below this value the signal to
nent. However, if the elongation rate is very high there is nonoise ratio deteriorates significantly, making the conven-
time for the new particles to evolve along a substantiallytional direct averaging procedure unfeasible. Petravic and
different trajectory. It was found that for their system of Evans[11] have recently shown that time-dependent nonlin-
simple Weeks, Chandler, and Anders@WCA) atoms|[6], ear response theory can be successfully applied to systems
this doubling scheme could only be used for elongation ratethat are driven by a time-periodic external field. The motiva-
<0.5 in reduced units. tion for this current work is to apply Petravic and Evans’
Recently Todd and Daivif7] devised a NEMD method method to the oscillatory system of Todd and Daivis, thus
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allowing access to rheological information at strain rates nor- Nonequilibrium ' daughter" rjectortes
mally inaccessible by conventional direct NEMD methods.

/ \l/ \ @®
Do
Il. THEORY n i
Petravic and Evanfl1] based their time-dependent non- b \ e g .

linear response theory on the TTCF method of Morriss and
Evans[10]. They showed that for a system of particles under /
Equilibrium “mother’ trajectory

the influence of an external time-periodic field, subject to a
Gaussian isokinetic constraint, the ensemble average of an
arbitrary phase variablB is given as

(B[I'(t; ()= ¢p)])
t
=<B[F(o;¢<0>=gop)]>—/sf0dsFe<<pp—ws>

X<B[F(S;‘P(S)=(Pp)]J[F(O;‘P(O)Z‘Pp_wS)Dv (l) ot)=9, ()
2(0) =9,
where 8=1/kT, k is Boltzmann’s constanty is a phase 7
angle in the generalized phase space definell'by(I", ¢), ?(0)=9, =
@ is an arbitrary constant value of this phase angfeis the (B(t)>\
external driving field of frequency, andJ is the dissipative ~ ¢(0)=¢, =
flux. N
It is absolutely essential to understand the meaning of Eq #®=#;
(1), and because of this some time will be devoted here to its
interpretation before proceeding any further. Although it is in \
a form similar to the corresponding time-independent TTCF Y -
expression, there are subtle differences in interpretation of <B[F(""’(’)="’")]>
the symbols that are not intuitively obvious.
Time-dependent TTCF makes use of an abstract notion o
an “extended phase spaC(_e,T’ - (.F"P): (G .pi i FIG. 1. (a) Schematic representation of extended phase
=1,...N). To make sense of this, consider an ensembl of space. (b) Time evolution ofB[I'(t: ¢(t) = ¢,)] generated from a

“daughter” nonequilibrium phase space trajectories, €acfye; of nonequilibrium trajectories commencing at different initial
one originating at=0 from an equilibrium “mother” tra-  \5jyes ofe.

jectory. Each daughter is initiated with different phase

angles, as depicted in Fig(a). In this paper each separate variable in extended phase space, measured @inatant
time origin along the equilibrium mother trajectory is re- value of the phase angle,, will always attain a “steady
ferred to as a node. One can consider this entire set of phasetate” under the application of a time-periodic driving exter-
space trajectories belonging to single extended phase nal field. It is this correspondence that makes EL. so
space. One could follow the time evolution of any arbitrarysimilar in form to the time-independent TTCF expression.
phase variabld in this extendedohase space, and plot the  With an appreciation of the notion of extended phase
value of B[I'(t;o(t)=¢p)] as a function of time, as illus- space, we now consider the interpretation of the symbols
trated in Fig. 1b). In this example, a set of four nonequilib- under the integral sign, and indeed the interpretation of the
rium trajectories curves ()—(iv)] are initiated at a node, integration itself. Again this is more easily explained picto-
each with a different value of the initial phase angle of therially, with the aid of Fig. 2.

driving field ¢(0). If one were interested in the values of  Consider a system which is driven by a time-periodic field
B(t) evaluated at only specificonstantvalues of the phase F&(t,¢.), such thatFé(t,¢o)=F®(t+ 7,¢o), Wherer is the
anglee,, then one could, on a single graph, plot this valueperiod ande, is an initial phase angle. Furthermore, let

of B[I'(t; ¢(t) = ¢,)] for each of the four trajectories, as in- =64t, as depicted in Fig. 2, wherét is the evolution time
dicated in curve ¢). One would find thatB[I'(t;¢(t)  step. The vertical and horizontal axes of the cells represent
= ¢,)] experiences an initial transient stage from0 (i.e.,  time and phase angle evolutions of any arbitrary phase vari-
when the field is switched 9rup to some timet=t;. At  able B, respectively. In this specific example, we are inter-
timest>tg, the value ofB[I'(t; ¢(t)=¢p)] is constant, in- ested in the evolution of a trajectory that has commenced at
dicating that a temporally periodic nonequilibrium steadyt=0 with an initial phase angle,=2w t. Even though we
state has been reached. This is analogous to the case of falre only interested in calculating the nonlinear response for
lowing the traditional phase space trajectory dfimglesys- this one trajectory, the TTCF method of Petravic and Evans
tem under the influence of a time-independent field; in thig11] demands that a number differentnonequilibrium tra-
caseB(t) will also experience an initial transient stage be-jectories be allowed to evolve, each startingtat0 with

fore reaching its steady-state value after some tigneln- different initial phase angleg, such that they span the entire
deed, it is precisely this analogy that allows one to derive Eqrange of o €[0,0,], where® .= w7. For the purposes of
(1) in the first place; it relies on the fact that any phaseillustration only, this range is divided into six discrete angles
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P contiguoustrajectories that originate from different initial

0 b 26 08 st sos values of the phase anglg,= ¢,— ws. Note that the field
and dissipative flux are evaluatedtatO ande = ¢ for each
individual trajectory, which is why they are represented as
Fé(¢p— ws) and J[I'(0;¢(0)=¢,— ws)] in Eq. (1). As is

the case with time-independent TTCF the first term on the
right-hand side of Eq(1) simply represents the ensemble
average of the equilibrium value & att=0. Note that the
cells themselves are depicted in Fig. 2 as periodic, with pe-
riod 7. Thus, one only needs to generate trajectories that span
the extended phase spade ¢), where pe[0,®,]. In our
example @ dot=> _, hence the diagonal arrow correspond-
ing to a single trajectory repeats itself from the left of the
matrix whenever mddp(t),6wt]=0. Finally, to generate a
complete picture of the evolution & as a function of time

F ()
B(5t,2005t)
(@it e

o

F(0) F(wdr)
826208 |BS308)
50) /(o) ]

26t

F (5wét) E(0) F(wdr) v
B(3&:,206) |B(36&,308) |B(3&,408)
J(50&) J(0) J(@5t)

36t

Fos)  [EGos)  [FO Fi(ws) and phase angle, one evaluates @gfor each value ofp,,,
a8 BUAGL 00T JBUS, 208) |Bad 308 (BUSd0d) |BUS, Sub) as indicated by the shaded cells in Fig. 2. In this specific
........ R e /@3 example the TTCF method would yield the values of
EGosn  [RUes)  [EGes RO (B[T'(t; (t))]) for all times up tot=56t, although of
S& - [B560) B(sér, 200 B8 303) |BSS,408) |BOS, 505 course one can, in principle, continue integrating upt to
et e peed el Peed [0 — o0, Even though our example has been confined to calcu-
F(0) ACE)] Red)  |EGesy  [E(es) RSl lating (B[T'(t; ¢(t))]) for a nonequilibrium system with ini-
A e et e N el Ol Gy tial phase anglerp=2wdt, clearly we have all the informa-
J(0) M) J(2wdt) J(3dt) J(4c0dt) J(S0&)

tion we need to calculate(B[T(t;¢(t))]) for any
nonequilibrium system commencing &0 with any ¢g;
thus one can extract an enormous amount of information
from a single set of simulation data in the full extended

FIG. 2. Schematic representation of Ed). The example is phase space.
periodic in time, with periodr=64t. With the interpretation of Eq(1) clarified, it is a rela-

tively straightforward process to extend the theory to the

in Fig. 2, each separated hydt, though in practice one case of elongational flow. In a previous pagéi it was
would need a larger set of discrete angles spanpg ,]. demonstrated how to do this for time-independent elonga-
In such a pictorial scheme each distinct nonequilibrium trational flow. Essentially the same procedure carries over to
jectory in the extended phase space would be represented tiye case of time-dependent flow. In short, the task is to gen-
a diagonal arrow in a matrix of cells, commencing &pY eralize Eq.(1) for any arbitrary flow, and then identify the
=(0,¢0) and moving down and to the right. Specific to our values ofF¢ andJ for any specific elongational flow.
example, the arrow commences at the poing)E(0,2w4t). By applying the derivation of Petravic and Evdri4] to
As molecular dynamics simulations evolve with discrete in-any arbitrary generalized flow characterized by a tensorial
cremental time steps oft, each contiguous diagonal cell external field Fé(¢) and dissipative fluxJ(T'), one can
represents a forward advance in time &f and in phase readily show that the general expression for the nonlinear
angle ofwédt, over the previous one. In addition, each cell response of any phase variaBEl'(t; ¢(t) = ¢,)] is given as
depicts theproductof B at timet and phase angle(t), with
the values of the external field and the dissipative flux evalu{B[I'(t; p(t) = ¢,)1)=(B[I'(0;¢(0) = ¢,)])
ated att=0, i.e., F(0,p(0)= ¢)B[T'(t; ¢(1))]I[I'(0;¢(0)
=¢g)]. However, the integration that appears in Ef). is
not along the diagonali.e., not along the single trajectory
indicated by the arroyy rather it is down the columns of Fig.
2, froms=0 up to any desired value of the time=t. The X(B[I'(s;¢(s)=¢p)]
integration occur®nly for those values oB that are evalu- ) _
ated at a constant value of the phase anglg)=¢,. For X7l T0i0(0)=pp=0w9)]), (2
example, if one wanted to calculate the value(8[TI'(t : . :
=35t p(t)=5wdt)]) using the TTCF formalism, one where s, o range over all Cartes[an dimensions.
would integrate ovefi.e., sum each of the shaded squares in _For an latomlc .ﬂu'.d undergo_mg planar shear_ flow, the
the last column of Fig. 2 and average over the total numbefidiabatic time derivative of the internal enerly, is usu-
of nodes. Doing this for each value bivould produce TTCF  ally written asHo= —JF¢, whereJ andF* are as previously
values of(B[T'(t; ¢(t)=¢,)]) that correspond to the direct defined. For more complex flows, one can generalize this to
values generated for curve ) of Fig. 1(b). Hy= —J:F®, where now both) andF® are tensorial quanti-

It is essential to realise that each value BffT'(t; ¢(t) ties as described above. For planar sieaplanar Couette
= ¢,)] in any one column of Fig. 2 originates from an inde- flow, it is easily seen tha o= — yP,,V [12], wherey is the
pendentseparatetrajectory in the full ensemble of extended strain rateP,, is thexy element of the pressure tengoega-
phase space. Equatioil) represents an integration along tive of the shear stregsandV is the system volume.

t
—B; OdSF‘fs(,(sop— wS)
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For oscillatory elongational flows® can be expressed as statted extended Sllod equations of motion for the particle

an applied time-dependent strain rate tensor, dynamics[7,11,13,

: 0 O . i

o . fi:&+fi'VU(<P),
F(e)=Vu(e)=| O &y 0O [codg)=g coge), (3 m;

0 0 & :

_ pi=Fi—pi-Vu(e),
whereu is the streaming velocity of the fluid ardg,, is the .
elongational strain rate defined asu,/d,, where « p=w, )
=X,Y,z. Here the explicit time dependence of the field has . I I . .
beer>1/ transformed intF()) a dependeelce on an extended phaégg adiabatic time derivative of the total internal energy is
space variable, namely, the phase angle;wt+ ¢q. As- given as
suming pairwise additive potential interactions between at- S . .
oms, the total internal energy of a particle is given as Ho=~TexPuct 8yyPyyt 8Pz lc0d 0)V

o? =—[VP:Vu(e)]=—J:F%¢). (6)

LTt y
Hi= 2m; Tz 2,: bij » 4) As it is these values aof andF® that must be substituted into
Eq. (2), one obtains the time-dependent TTCF expression for

where the momentay; are peculiar with respect to. The the time evolution of any arbitrary phase variaBé&) at a
total internal energy is thud,=X;H; . Assuming unthermo- constant value of the phase anglg,

|
(BIT'(t; ¢(t)=¢p)])=(B[T'(0;¢(0)=¢,)])

t
—ﬁV( éxxfods cog $p— wS)(B[I'(s;¢(8)= @p)] PulI'(0;¢(0)= $Pp— ws)])

t
+ éyyfods cog $Pp— wS)(B[I'(s;¢(s)= (Pp)] Pyy[F(O;(P(O) =¢p— ws)])

t
b2, ds cOs 9, wS)(BLI(516(9) = ) IPLAT(0:0(0) = ¢~ 0] |. @

Since we are only concerned in this work with calculating

the diagonal elements of the pressure tenBgg, (Where & > pie[Fi—Ipi-Vu(e)]]

=X, Y, or ), we simply replaceB with Psin Eq. (7). It is a= : (9)
these elements that are directly related to the elongational E p2

viscosity[7,8], and are hence of significant rheological inter- T

est.

As previously mentioned, the periodic boundary condi-
tions will evolve in time in an oscillatory manner. Integrating
1. SIMULATIONS the equations of motion shows that the dimensions of the

The thermostateextendedphase-space Sllotso named simulation cell change exponentially, but periodically,

because of its close relationship to the Dolls tensor algo- _ : BT .

rithm) equations of motior{7,11,19 that are used in this LoD =LA0)exple 50 L SiN(wt+ ¢o) =SiN gol), (10

work are whereL 4(t) is the length of the simulation cell at timedn
the direction§(6=x,y,z). The value ofw can be chosen
judiciously so that it is never less than the minimum fre-

rizalfri Vu(e), quency allowable for a given magnitude of the elongational
! strain rate,
pi=Fi—pi-Vu(e)—ap;, Opmin= —ma)(; 50) ' (12)
In ° )
L5(0)

e=w, €S)
wherer is the cutoff potential radius. Any value of the

wherea is a Gaussian thermostat multiplier used to constrairfrequency less thaw;, will result in L 5(t)<2r for at least
the system to constant temperature, given as one of the extended phase-space trajectories that spans
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€[0,27], which is not allowable. We also note that, for con- 80 o @ ]
stant volume, at least two dimensions must oscillate in time, [ &

% " Io o ]
either expanding or contracting such that the total volume of (a3 %Fﬁﬁﬁﬁ%ﬁmﬁ%ﬁ%ﬁmﬁ%ﬁiﬁ?

the system i de., Tr(Vu)=0 o Lo X PO '
e system is preservgde., Tr(Vu)=0]. _ _ . s e+ o 3
Simulations are performed on three kinds of oscillatory L. » ]

=3

s PP @ - PO ]
elongational flow: planar elongational floPEPR, uniaxial Te 65 [ _ssoonnnnts - ]
stret?:hing ﬂow(uspF), and biaxal stretching flowBSP. 5 00 e e e e
PEF occurs when one of the diagonal elements in the strain 60 F ]
rate tensor is zero, and the other two are equal in magnitude [ ]
and opposite in sigistretching and compressingJSF im- 55 s attotEM TR T A
plies one element is positivistretching and the other two P seast ]
are negativécompressingand of half the magnitude, while 50 o R R
for BSF one element is negativeompressingand the other 0 05 1 15

two are positive(stretching and of half the magnitude.
These types of flows ensure that the system volume is a  ss - .
constant of the motion. Actually, USF and BSF simulations ,
are equivalent for oscillatory elongational flow. This is be- 80 ¢
cause any particular cell dimension will expand for one-half
of the period and contract for the other half. If one then _
extrapolates frequency-dependent values to zero frequency, 7.0
one can obtain all the information one needs for steady- Fa :
elongation BSF-USF flows in a single oscillatory experi- 4
ment. This is useful, for example, if one is interested in the 6.0
zero-frequency elongational viscosity, but the technique can :
also be used to calculate frequency-dependent viscosities 55 |
[7,8]. [
For the geometry used in this work, PEF implieg,

()

75 |

=&, 8,y=8, £,,=0, and BSF-USF implies, =&, &,y ° e '

= —%é, ézz:_%é (or, equiva|ent|y,éxxz —é, éyy:%Sr FIG. 3. (a) Direct (D) and TTCF(T) values Of(Pg@[F(t;_(pp

ézz:%.e)- =0)]) fo_r a PEF simulation with an applied strain rate af,
The simulation cell consisted &f=108 atoms that inter- = —0.5,€y,=0.5,¢,,~0, and frequency oé=12.566. Error bars

act via the WCA potential of Weeks, Chandler, and Ander-for direct pressures are smaller than the plotting symbol charac-
sen [6] defined asé(r)=4(r 2—r 6 +1 for r<2Ue ters. (b) Direct and TTCF pressures for the system(an

#(r)=0, for r>2v6 where the WCA potential constants . _ _

and ¢, as well as the mass of the atoms and Boltzmann'§equirements that it preserves the total internal energy of the
constant, are defined to be unity for simplicity, and thereforegquilibrium system at=0, while ensuring at the same time
all measured properties are in dimensionless reduced unitat the new nonequilibrium trajectory’f) evolves along a
The system is three dimensional, and is periodic in all di-distinct path to the original nonequilibrium trajectory/s.
mensions. All simulations are performed at the Lennardfor BSF/USF flows, two initial equilibrium phases are insuf-
Jones triple pointp=0.8442 andl = 0.722. The equations of ficient for zeroing the long time fluctuations, and an addi-
motion were integrated using a fourth-order Runge-Kuttdional — phase-space mapping,I'i—T's, where I
scheme, and the integration timestep ranged between 0.00%(Zi ,Yi ,Xi ,Pzi,Pyi,Pxi), IS required. Neither of these

0.004 in reduced units for all simulations. schemes are unique, or exhaustive, but they are sufficient.
The size of the equilibrium cell wad =L, =L,
=(N/p)*¥=5.0388. In all simulations, an equilibrium IV. RESULTS AND DISCUSSION

“mother” trajectory was maintained at a constant-state point
of (p,T)=(0.8442,0.722), while at equal intervals a few The results of an oscillating PEF simulation wit,
hundred time steps apart, a sufficient number of nonequilib=—0.5, éyy= 0.5, &,,=0 are shown in Figs.(d) and 3b).
rium “daughter” trajectories were initiated to span the entire These results consisted of data averaged over a total of 10
extended phase space angles[0,27] (see Fig. 1L This  X2xX200xX50 NEMD trajectories(i.e., 10 separate runs of
time separation was chosen to ensure that contiguous nobwo phase-space mappings of 200 nodes of 50 discrete phase
equilibrium trajectories originating from different nodes angles spanning the range=[0,2]). The frequency of the
were uncorrelated. applied strain rate wa®=12.566, which corresponds to a
Morriss and Evang10] demonstrated that for planar shear period of 7=0.5 reduced time units. The frequency is high
simulations, a substantial improvement in the signal to noisenough to ensure thats(t)>2r ., and hence that simulation
ratio at long times can be obtained through prudent phaseartifacts induced by small box dimensions are minimized.
space symmetry mappings. This mapping scheme was lat&ach NEMD trajectory was run for a total length of tme
extended to incorporate elongational fl§94, and the same steps.
scheme is used in this work. For PEF simulations a suitable Figure 3a) showsP ss (wheres=x, y, or z) as a function
mapping isI';— I, wherel';=(X;,Y;,Z,Pxi,Pyi Pzi), I';  of time at a constant phase anglegf=0. The TTCF values
=(Yi»Xi,Z ,Pyi,Pxi Pz). This mapping has the necessary are calculated by Eq7), and are compared with the direct
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time-averaged results. One observes an initial period where 8O, ' ‘ @ |
the fluid relaxes to a nonequilibrium “steady state” at ap- I LS ]
proximately t=0.35, after which the pressui@t constant 7.5 }$ C%é%%%&%%%ﬁiiﬁ%ﬁ%gﬁ%ﬁ%ﬁ
®p) is essentially constant, though there is evidence of weak ]
oscillations in the direct pressures. In fact, plotting the pres- 70 O ., N ]

. . . . . = o PP (O X Pl (O
sure in this manner is a very useful tool for checking if the T s o ¢ P
fluid has attained a genuine time-periodic steady state. A plot o2 o5 [ o P - PTZ(O) 1
of the pressure itself would, of course, oscillate with period T “ ]
7, and it is not as obvious to determine when a time-periodic [

6.0 &

Stegg%/hiﬁéednii(bg)egnﬁiﬁggiﬂ results are in excellent :gmﬁMﬁggégﬁﬁﬁﬁgﬁ%ﬁ%ﬁﬁ%ﬁﬁﬁi
agreement with each other. This represents the first indepen- 55 | T - ]
dent check that the method of Petravic and EvplH is 0 05 1 15

indeed valid, and will work for generalized flows. However,
contrary to Petravic and Evans, the direct results are more 85 [
efficient for this relatively high strain rate than the TTCF :
results(the error bars for the direct results are smaller than 80 [

the plotting symbol size In their work Petravic and Evans 5 @ ° P:xx
found that time-dependent TTCF was more efficient than ] i
direct averaging for high or low strain rate ratesntrary to L T ”
time-independent TTCF, which is known to be more efficient ® os i ll:

only at low strain rate§9,10]). A possible reason for this is
the difference in system size of the current work compared 60 M
with that of Petravic and Evans. In their simulations they
only considered a two-particle system, where naturally the :
statistical noise in the direct calculations would have been 5o L ‘
significantly worse than in this work, where the number of 0 05 ] 1 15
particles is 108. Thus it is likely that for very small system e o
sizes, time-dependent TTCF is at least as efficient as direg FIG. 4. (3 D and T values _°f<P55[r(t"PP_Q)]>_fgr a BSH
averaging, but that this is not necessarily true as the numberSF simulation with an applied strain rate ef,=—0.5, sy,
2 . . . =0.25, £,,=0.25, and frequency of»=12.566. (b) Direct and

of particles in t_he S|mulgit|on_cell increases. TTCF pressures for the system (.

Of further interest in Fig. & is the similarity of
P ss(e=@p) with P55 in the time-independent TTCF studies correlation functions, statistical errors will propagate as time
of elongational flow previously dong®]. A comparison of advances. As these calculations are computationally inten-
both results in fact stresses the point tRg}; evaluated at a  sive (a total of 3.15< 10 time steps for the results in Fig),4
constant phase angle for a time-dependent simulatioit is difficult to simulate for total individual trajectory lengths
evolves in time in much the same manneiPgg would fora  of more than severat without significant computational re-
time-independent simulation. As previously mentioned, it issources. The simulations for this study were performed on
precisely this similarity that enables the relatively simplethe CSIRO NEC SX4 vectorizing supercomputer. All simu-
time-dependent TTCF expressions in E@Y.and(7) to be  lations were performed using only a single processor. As the
derived. TTCF method involves nonequilibrium trajectories that span

The diagonal elements of the pressure tensor, for both thihe entire set of extended phase space, it is ideally suited to
direct and TTCF methods, are plotted in Figh)3 In this  parallelization. For maximum efficiency, at each node one
case the TTCF data represent the shaded cells in Hige.2  processor could be used for each trajectory that spans
each shaded column represents a point on Higl]30nce  e[0,27]. In such a way the time-dependent TTCF calcula-
again there is excellent agreement between both methods. A®n would then become equally as efficient as the time-
expected,P,, and P,, have a period ofr and are out of independent TTCF calculation running on a single processor
phase byr, while P, is weakly oscillatory with period/2,  in that a larger number of nodes are possible, which in turn
even thoughe,,=0. would improve the overall statistical accuracy of the results.

Simulations were also performed for a BSF/USF system One of the major advantages of the TTCF method over
with &,,=-0.5, &,,=0.25, £,,0.25. Once againw direct NEMD is to be found in simulations with relatively
=12.566 (r=0.5), and each NEMD trajectory was run for a weak strain rates. In such cases it is well known that direct
total simulation time of 3. A total of 10<3X 140X 50 tra- averaging of phase variables suffers from intolerable signal
jectories were run. Figure(d displaysP s;5(¢,=0) for this  to noise ratio§12]. Thus, the only practical method currently
system. Once again, agreement between the direct and TTGivailable is response theory. Note that while other formula-
methods is excellent, with the direct values statistically sutions of nonlinear response theory exist, TTQoth time
perior at these strain rates. Also, é@zézz, P,y andP,,  dependent and time independehgs thus far proved to be
are identical to within statistical errors. the most practica]9-12].

In Fig. 4(b) the pressures are plotted as functions of time, In Figs. 5a) and §b) the results of an oscillating PEF
again displaying excellent agreement between both methodsimulation consisting of a total of %62 2000< 50 NEMD
It is noted here that as TTCF involves time integrations oftrajectories are displayed. In this casg,=—0.002, &,
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6.390 F T / T o ] V. CONCLUSIONS
6.385 2‘;><>\§><><><><>< xxxxxxx;xx\&xxxxxxxxxxxxg In this paper, the newly developed time-dependent tran-
! i P 0 sient time correlation function theory of Petravic and Evans
| 02PoRopoodoooegagoopacdogodeoadd Lt [11] has been applied to a simple atomic fluid experiencing
Y /’ A - ,pnz@ oscillatory elongational flow. Normal stresses are calculated
N ; v \ WA o by the method and compared with direct time-averaged val-
rrpoasodpbanpasananasnasdasasd | 0 ues and excellent agreement is found between both methods,
ooy frasenses A e o an > A
: \ T x o confirming the.va_l|d|ty of the theory for generalized time-
-/ / \/ /] dependent periodic flows.
PV ] At higher values of the applied strain rate direct averaging
is seen to be statistically superior to the TTCF results, in
contrast to the results of Petravic and Evabh$] who ob-
time ' served similar efficiencies for both methods even at high
values of the applied field. It is noted, however, that the work
6.390 ‘ ' ' T ] of Petravic and Evans was performed on only a two-particle
i ] system, whereas all simulations done for this paper were for
a system of 108 particles. It thus appears that direct averag-
ing is still more efficient than the TTCF method for a suffi-
ciently large number of particles at high field strengths. Nev-
ertheless, TTCF is certainly shown to be more efficient than
direct averaging at low values of the strain rate, and it is in
this region where its superiority is clearly evident for gener-
alized flows. While time-dependent TTCF is computationally
intensive, it is highly suited for straightforward paralleliza-
tion, in which it would be expected to become as computa-
o365 | . ‘ L tionally efficient as time-independent TTCF calculations are
0 02 04 06 08 ] on a single processor machine. Furthermore, as the time-
time dependent TTCF method spans the entire set of extended
FIG. 5. (@) D and T values of(PsJI'(t;¢,=0)]) for a PEF  phase space, an enormous amount of information is con-
simulation with an applied strain rate of,=—0.002, &y,  tained within a single set of simulations. Within the current
=0.002,&,,=0, and a frequency ob»=12.566. (b) Direct and  range of computational power available, the time-dependent
TTCF pressures for the system (. TTCF method could be extremely valuable for studying
) small systems, in which the limitations of statistical noise are
=0.002, &,,=0. The frequency is the same as before, butsubstantially reduced in comparison to the traditional NEMD
now the total simulation time per NEMD trajectory i$.2t  procedure of direct time averaging of phase variables.
is clear from these figures that for such a low value dhe Note added in proofRecently, a new method that guar-
TTCF method is able to generate data that does not suffefntees unrestricted duration NEMD simulation of time inde-
from the scatter of the direct results, in agreement with theyendent planar elongational flow has been implemented. For
results of Petravic and Evaf%l]. Note that on the magni- details see Ref13].
fied scale of Fig. &), (P (t=0))=(P,(t=0))# (P, At
=0)) due to averaging over the phase-space mappings used.
These zero-timgequilibrium) pressures are within error lim-
its of each otheKat equilibrium all pressures should be the The author wishes to thank Dr. Janka Petravic for valu-

6.380

=0)

6.375

P.(®,

6.370

6.365

6.360 P L Lo

6.385 &

6.380

88

6.375 1

6.370 |

ACKNOWLEDGMENT

same in the limit of infinite averaging time able discussions related to this work.
[1] D. M. Heyes, Chem. Phy®8, 15 (1985. [8] P. J. Daivis and B. D. Todd, Int. J. Thermophy® be pub-
[2] M. W. Evans and D. M. Heyes, Mol. Phy89, 241(1990. lished.
[3] M. N. Hounkonnou, C. Pierleoni, and J.-P. Ryckaert, J. Chem. [9] B. D. Todd, Phys. Rev. 56, 6723(1997).

Phys.97, 9335(1992. [10] G. P. Morriss and D. J. Evans, Mol. Phys4, 629 (1985;
[4] A. Baranyai and P. T. Cummings, J. Chem. PHy@3 10 217 Phys. Rev. A35, 792(1987); D. J. Evans and G. P. Morriss,
(1995. Mol. Phys.61, 1151(1987; Phys. Rev. A38, 4142(1988.

[5] M. Kroger, C. Luap, and R. Muller, Macromoleculds, 526  [11] J. Petravic and D. J. Evans, Phys. Rev. Le8. 1199(1997;
(1997. J. Petravic and D. J. Evans, Phys. Re\s@& 1207(1997).

[6] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phyi.lz] D. J. Evans and G. P. MorrisStatistical Mechanics of Non-
54 5237(19’7]) ’ ' equilibrium Liquids(Academic, London, 1990

[13] B. D. Todd and P. J. Daivis, Phys. Rev. Lé1, 1118(1998;

7] B. D. Todd and P. J. Daivis, J. Chem. Ph$67, 1617(1997. .
7] ¥ (1997 and (unpublished



