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Density functional approximations for confined classical fluids
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A density functional approximation, which is based on both the density functional Taylor series expansion
of the one-particle direct correlation function and the exact contact value theorem for a hard wall, has been
proposed to study the structural properties of confined classical fluids. The approximation has been applied to
calculate the density profiles of sticky hard-sphere fluids confined in structureless hard walls. The calculated
density profiles have shown that the present approximation compares very well with the results from the
computer simulation. Furthermore, a density functional perturbative approximation, which is based on both the
weighted-density approximation for the repulsive part of potential and the present approximation for the
attractive part of potential, has been developed to predict the density profiles of model fluids with the attractive
part of potential and has been applied to calculate the density profiles of hard-sphere Yukawa fluids near a
planar slit. The calculated results also show that the proposed perturbative approximation is a significant
improvement upon those of the modified version of the Lovett-Mou-Buff-Wertheim, and compares very well
with the computer simulatiodS1063-651X98)04210-X]

PACS numbegps): 61.20.Gy, 61.20.Ne

[. INTRODUCTION For model systems with the attractive part of the potential,
the most successful class of approximate theories both from
The structural properties of fluid confined in special sym-the point of view of numerical accuracy and of intuitive ap-
metrical systems have been a subject of long-standing the@eal is the density functional perturbative approximations
retical and practical intere$l,2]. Many theoretical methods based on the liquid theory. Among many different approxi-
have been proposed to describe the structural properties efations, Kim and Suh10] have recently developed the den-
confined model fluids. It is known that the density functionalsity functional perturbative approximation, which can be
approximations simulate the structural properties of confinedonsidered as the extended Choudhury-Ghosh approximation
fluids reasonably well compared with the standard integrafg 9], to study the structural properties of confined model
equations. However, at the lower temperature the weightedktyids. They[10,11] have shown that the proposed approxi-
density approximations fail to describe the structural propermation well describes the structural properties of confined
ties Qf the rgal systems with the_ attractive potgntial such as 8quare-well and hard-sphere Yukawa fluids with the attrac-
confined sticky hard-sphere fluid. Thus, relatively few stud-jye notential compared with the computer simulation. In this
ies have yet been considered for the structural properties Ofé’pproximation, the constantB” appearing in the density

confined sticky hard-sphere fluid. Jamnek al. [3,4] had . O . . .
. . : ; .__profile equation is determined to satisfy the equation of state
studied the wall-fluid correlations on the basis of the squnorEf a model system. Here, one interesting thing is that the

to the Percus-Yevick—Ornstein-Zernike equation to study the

density profiles of sticky hard-sphere fluids confined in harofax"’lct cpntact value theolr’em for a hard wall can.be used to
determine the constantB” appearing in the density func-

dional perturbative approximation. Another is whether or not

hybrid weighted-density approximation of Leidl and Wagnerthe density functional perturbative approximatipn based on
[6] and the higher-order weighted-density approximation Oithe_ contact value theorem fpr a hard wall descnbes_well_ma-
Denton and Ashcrof7], to calculate the density profiles of chinery results compared with those of other approximations.
confined sticky hard-sphere fluids. They have shown that the The purpose of the present paper is to develop the density
Kim-Suh approximation is better than the Choudhury-GhosHunctional approximation and the density functional pertur-
approximatior(8,9], which is based on both the higher-order bative approximation, which are based on both the density
weighted-density approximation for the reference term andunctional Taylor series expansion of one-particle direct cor-
the density functional Taylor series expansion of one-particlgelation function and the contact value theorem for a hard
direct correlation function for the remaining contribution. wall, to study the density profiles of confined sticky hard-
However, for the strong adhesiveness the agreement with trephere and hard-sphere Yukawa fluids. In Sec. Il, we propose
computer simulation is slightly unsatisfactory. Thus, we herehe density functional approximation for simple fluids and
address these problems and propose a simple density funihte density functional perturbative approximation for model
tional approximation based on the contact value theorem fofluids with the attractive potential. We apply, in Sec. llI, the
a hard wall to study the structural properties of confinedproposed approximations to calculate the density profiles of
sticky hard-sphere fluids. confined sticky hard-sphere and hard-sphere Yukawa fluids,
and compare their results with those of other approximations.
Finally, we briefly discuss the strengths and weaknesses of
*Electronic address: sckim@anu.andong.ac.kr the proposed approximations in actual applications.
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Il. THEORY DCF. In the density functional approximation proposed by
Rickayzenet al. [12,13, it appeared that the three-patrticle
DCFc®)(r,5,f,py,) is not very sensitive when the separation
In the density functional theory, the grand canonical po-of any two of the coordinate$f —§|, is greater than a mo-
tential [ p] and intrinsic(Helmholtz free energy functional |ecular diameterR. Following the Rickayzen’s argument

F[p], both the unique functional of the one-particle density[12,13, we chose a practically simple form as
p(r), are related as

A. Density functional approximation

7,5, tpy) =8 [ dd a(lr—a)a(ls—a)a(l - )
Q[p]=F[p]+f dr p(N)[Uex(F) — p1, D ©)
whereu is the equilibrium chemical potential of the system with

and ug,(F) is an external potentidll]. The intrinsic free

energy functionaF[ p] can be generally written as the ideal 6 R

contribution Fi4[ p] plus the excess free energy functional a(r)= —R® B E_r : (7

Feod p] originating from the particle interaction
where the strengtlB is an unknown constant ang(x) the

Flpl=Fidp]l+Felpl, (2 Heaviside step function. In this case, the density profile
whereBE [ p]= [dF p(F){IN[A%p()] -1}, B=1ksT, andA equation becomes, from Eg8), (5), and(6),
is the thermal de Broglie wavelength. p(F)

The equilibrium particle density distribution of the inho- In
mogeneous fluid corresponds to the minimum of the grand
canonical potential satisfyingQ[ p]/8p(F) =0, which leads B -
to the Euler-Lagrange equatiop,— Ue(F) = SF[ p]/ 8p(F). ts f ds a(|r—s])sp(s)?, (8
For an inhomogeneous fluid in contact with a homogeneous
bulk fluid, its chemical potentiak is equal to that of the ith
homogeneous bulk fluid and hence the Euler-Lagrange equa-

tion leads to an expression for the density profile equation — R 2
given by P Y PETE e s0er=| [ atas-tipn-pl| . @

_}:_ﬂuext(r)‘FJ ds C<2)(|F_§|1Pb)[P(§)_Pb]

Po

p(r) . N To determine a constaB;, we use the exact contact value
I”[?} == Buex(N TP (LpD=cPp), B theorem for a structureless hard walkzat — R/2, whereR is
the diameter of a model fluijd] Due to the planar symme-
where p, is the homogeneous bulk density of the system{ry, the density distribution varies only along theirection:
c(r:[p]) the one-particle direct correlation function p(F)=p(z). The contact value theorem states that
(DCF) for an inhomogeneous fluid, and*)(p,) the one-
particle DCF for a homogeneous bulk flJid]. BP=p(z=0), (10)
Since the exact form o€Y)(:[p]) for a model fluid is
unknown, some kinds of approximations must inevitably be
introduced. For this, we use the density functional Taylor
series expansion of the one-particle DER)(f:[p]) with

where P is the pressure of the system. For a structureless
planar slit the density profilp(z=0) at a hard wall be-
comes, from Eq(8),

respect to the bulk density,. Then, we obtain p(z=0) 2 ,
B In e |~ Jo dz'c'(z',pp)[p(2') = pp]
1
L=+ S e [ s [ aren )
n=2 (n=1)! B —
+§f dz'a(z')ép(z')7, (11
X(8, ... .Lpp)p(F) = ppl - [p() = pp](4) 0
2 — o 2 2 211/2
wherec™(F, ... f.p,) is then-particle DCF of the system. Where ct )(Z’Pb)_zgfogFi/zRé ([R*+2°]"%p;)  and
If we retain terms only up to the second order in the densﬂy”‘(Z) 27[dR RE[R"+2°]"%,py). Then, Egs.(10) and
functional Taylor series expansion, we obtain 12) yield
W, " e e A B In(BP/py)—[5dZ' c¢?(z',pp)[p(Z')— po]
LD =P py) + [ dS D=5 p0)p(S)~ - - 2 a2
JodZ" a(z’)dp(z")
1
+3 j d§f dt c®(F,8,t,pp)[p(3) — po] Taken together, Eqg8) and (12), constitute the density
profile equation for the density functional approximation,
X[p(f) = ppl. (5)  and provide an exact route to calculating the density profiles
of model fluids provided the two-particle DCE®(|F
However, the three-particle DCE®)(F,§,f,p,) is not  —8§|,pp) is known. It is noted that in the density functional

known so we need an approximation for the three-particlepproximation of Rickayzewet al. [12,13, the authors had
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used the equation of statgP=— B (p)/V, for the homo-  pansion of the one-particle D& (F;[p]) with respect to
geneous phase to determine the consBeappearing in their  the pulk densityp;, and retain terms only up to the second
approximations. order in the density functional Taylor series expansion.
Then,c{(F;[p]) becomes
B. Density functional perturbative approximation
It is generally known that for model systems with an at- 1), . ) e (D a R
tractive part of the potential the density functional perturba- Catt(ri[p])_catt(Pb)""f dscgi (IF—8[,pp)[p(8) — pp]
tive approximations well describe the structural properties of L
confined model fluids compared with the standard integral = 3> 2 =
equations. Following the density functional perturbative T3 f dsf dTeg (78, C.po)[p(S) ~ po]
theory, the pair interaction potentialr) of a model fluid
can be divided into the hard-sphere pagt(r) and the at- X[p(6) = pol. (17)
tractive partug(r) such as
Since the exact form of the three-particle DCF corresponding
U(r)=Undr) + Uar(r), (13 {5 the attractive contribution is unknown, we chose a simple
where the attractive pari(r) is treated as the perturbative form as
term for a hard-sphere part. Then, the one-particle DCF

c(r:[p]) can be written as o . - R
C§(r.5.Cpy) =B [ dd ar—a)a(|s—d)ya(|e—ul).

cU(Flp)=cid (BlpD +ew(Filp)), (14 19
where c{V(F:[p]) and c{)(F;[p]) denote the one-particle
DCFs corresponding to the hard-sphere and the attractiv€hen, the density profile equation becomes, from Es.

contributions, respectively. For a homogeneous fluid, Eq(16), and(17),
(14) becomes

¢ (pp) =iy (po) +Ci (pp), 15
sincep(r) = py, for a homogeneous state. In this approxima-

%}: — BUgy(F) + (T3 p])

tion, the density profile equation becomes, from E, R L R
(14), and (15), _wals)(Pb)+f d3ciy (I7—3].p)[p(3) — py]
p() (D) B S
Inh—t}—ﬁuexxrwcas)(r,[p]) +3 j dsa(|F—3§|)op(5)2. (19)

—cie(pp) + (TP — i (pp).  (16) , o
Since the constarB is still unknown, we use the exact
As the approximation for an attractive contribution contact value theorem for a hard walP=p(z=0). Then,
cg}t)(r*;[p]), we use the density functional Taylor series ex-the constanB is simply given as, after some manipulations,

B/2=|In(BP/py) — i (z=0;[p]) +cie(pp) — f:dz' c;%2<z',pb>[p<z'>—pb]} / { fomdz' a(z')ép(z')?|, (20)

wherec((z,pp) =27 [5dR REN[R?+2%112 pp). R .

Taken together, Eq$19) and (20) constitute the density exf —Bu(r)]= 127 S(r—=R7)+06(r—R),  (21)
profile equation for the density functional perturbative ap-
proximation. Once again, Eq&l9) and(20) provide an exact

route to calculate the density profiles of model fluids pro-ywhereris the stickiness parameter related to the strength of
vided c{(F;[p]) andc{R(|7—3|.pp) are known. adhesion and to the temperature of the systerthe diam-
eter of sticky hard sphere, anf{x) Dirac’s delta function.
For a confined sticky hard-sphere fluid, it is known that at
ll. RESULTS AND DISCUSSION lower 7 values the weighted-density approximatiofisb]
yield very poor results compared with the computer simula-
tion.

As an application of the density functional approximation Let us consider the fluid confined in planar slits consisting
proposed in Sec. Il A, we consider a sticky hard-sphere fluicf two walls located az= —R/2 andz=L + R/2, where the
confined in structureless planar slits. For a sticky hard-spherealls are parallel to the planey,0). In this case, the fluid-
fluid, the intermolecular potentigdu(r) [14] is given as wall interactionBu.,(z) is given by a hard core one;

A. Sticky hard-sphere fluids in planar slits
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FIG. 1. Density profiles of sticky hard-sphere fluids confined in

the gap of withL=6R hard walls at different bulk density,R®

(=0.6 and 0.4) with the adhesiveness0.5. The open circles are
taken from the computer simulati¢d]. The solid lines correspond

to the proposed approximation.

0 O<z<L

Blex(2)= [ © otherwise. 22

To calculate the density profiles of confined sticky hard-
sphere fluids, Baxter's Percus-Yevi€RY) expression for
the two-particle DCR®)(r,p,,) of a sticky hard-sphere fluid

in the homogeneous phase has been used,
Ay—A ' 77A '\’ R
~Ao— A BT 5 Aol g | —r)

n LR A -
—1—2)\2(?) 6(R—r)+1—2 S(r—R7),

e 2(r py)=

(23

where = m7p,R%6 is the packing fractionAy,=(1+27
—&21(1-n)*, Ar=—37(2+9)*+2£(1+ 77+ 7%
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FIG. 2. Same as Fig. 1, but far=3R.
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FIG. 3. Same as Fig. 1, but far=0.2.
—&2+n2(1-n)?,  E=nn(l-7n), A=6lplv—(»°

-y, v=1+9/(1-7), and y=n(2+7)/6(1-7)?
[14]. To calculate a constarB appearing in Eq(6), the
equation of stat¢16] for a sticky hard-sphere fluid, via the
compressibility equation, has been used

BP  1+n+7n* &2+7) &
— = - + .
pp  (1-73% 2(1-93 36n(1-17)°

(24)

The resulting density profiles for a confined sticky hard-
sphere fluid with the gap of widtHs=6R andL=3R have
been displayed againgfR at two different values of the
bulk densitiesp,R® (=0.4 and 0.§in Figs. 1 and 2. As can
be seen from Figs. 1 and 2, for the weak adhesiveness
=0.5 the agreement with the present approximation and the
computer simulation is excellent.

In Figs. 3 and 4, the calculated results for a sticky hard-
sphere fluid confined in a planar wall with gapslof 6R
andL = 3R have been displayed. The calculated results show
that even for the strong adhesiveness0.2 the present ap-
proximation is in excellent agreement with the computer
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PpR= 0.4
0.4 %M
o
0.0 | | | |
1.5 1.8 2.1 2.4 2.7 3.0

z/R

FIG. 4. Same as Fig. 1, but fr=3R and 7=0.2.
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simulation. The comparisons with other approximations, 6
which are the Choudhury-Gho$B] and Kim-Suh approxi-
mationg[5], also show that the present approximation is bet- 5L

ter than the Choudhury-Ghosh and Kim-Suh approximations,
even if we did not display their results in Figs. 3 and 4 for
clarity; at higher densities the Choudhury-Ghosh and Kim-
Suh approximations yield higher values of the fluid density
near the hard wall compared with the computer simulation
and the disagreement with the computer simulation deterio-
rates with decreasing thevalues. On the other hand, these
results also suggest that for a confined sticky hard-sphere
fluid the density functional approximation of Rickayzen
et al.[12,13 yields excellent results compared with the com-
puter simulation, because in this case the condBaist de-
termined to satisfy the equation of state of the system.

p(z)d®

B. Hard-sphere Yukawa fluids near a planar slit

As an application of the density functional perturbative
approximation developed in Sec. 1l B, we consider a hard- FIG. 5. DenS|ty proflles*fgr hard-sphere Yukawa fluids near a
sphere Yukawa fluid near a planar dt7]. For a hard- hard wall (p,0®=0.7 and T*=2.0). The solid lines are for a ratio

. R i ew/ec=5. The open circles and dotted lines are from the computer
sphere Yukawa fluid, the hard-sphere pai(r) is given as simulation[19] and the proposed perturbative approximation, re-

© <o spectively. The dash-dotted lines are the results of LMBYI4].
Buhs(r)=[o (> (25)

(r,pp) = wo(r) +w1(r)pp+wa(r)pp, (30
and the attractive parti,(r) is given as ) ) ) _
where detailed expressions are given in R&8§].

, <o As the excess free energy corresponding to the hard-
BUan(r) = [ Bera exp[-\(r—a)lalit], r>o, sphere contribution, f,{p), the quasiexact Carnahan-
(26) Starling equation of state has been us@f;{p)=n(4
—37)/(1—75)? where 5= 5po’l6 is the packing fraction
where the parametes: is the depth of the fluid-fluid poten- [18]. To calculate the two-particle DCE?)(|F—§,py,) for a
tial, A the range parameter, ardthe diameter of the hard hard-sphere Yukawa fluid, the mean spherical approximation

sphere. (MSA) has been used, because the MSA yields quite good
As an approximation for the hard-sphere partresults up to the higher densities

c\U(F;[p]) appearing in Eq.(19), we have used the
weighted-density approximatioWWDA) of Tarazona[15],  c®(r,pyp)
which is known to give excellent results for a hard-sphere

fluid. In the WDA of Tarazonag({2)(F;[ p]) is simply given —a—br/o—nard20®—va[1—exp —\r/a)]/Nr
as ={ —vcoshinr/o)—1]/[2Be\%exp\)], r<o
508) Becoa exd —N(r—a)lo]lr, r>o,
R =~ B1dpN)]- [ 4SBTGS e @y

(279 wherea, b, andv are parameters, which are defined implic-
ity [17,19. As the two-particle DCFe{2(|F—§],pp) for a

with hard-sphere fluid, we have used an analytic solution of the
_ Percus-Yevick(PY) approximation[20]. To determine a
5p(S) w(|F—8[,p(S)) (g ConstanB appearing in Eq(17); the bulk pressur@P (en-
Sp(F ) 1-fdt p(D)ew’ (|5§—t],p(8 ergy rout¢ for a hard-sphere Yukawa fluid given by

Olivares-Rivaset al. [19,21] has been used. Through these
where f,{p) is the excess free energy per particle corre-calculations, the hard-sphere Yukawa potential with a range
sponding to the hard-sphere system and the prime denot@arameten=1.8 has been used to compare with the com-
the derivative with respect to the density. The weighted denputer simulation.
sity p(F) appearing in Eq(27) is assumed as For a hard-sphere Yukawa fluid near a planar slit, two

types of wall-fluid interactiongBu.,{(z) have been consid-

— R - ered:(i) for a structureless hard wall given as
7(9)= [ dt p(vells— 159 (29 9
_ 0, 0<z
where o(|F—$§|,pp) is the weighting function for the hard- Buex(2)= ©, z>0, (32

sphere part. As the weighting function, we have here em-
ployed a simple expansion and (i) for the wall with an attractive tail
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FIG. 6. Density profiles for hard-sphere Yukawa fluigs,¢> FIG. 7. Same as Fig. 5, but f@* =1.1.

=0.7 and T* =1.25). The upper set is for a ratigy/ez=5. The
lower set is for a hard walky /e-=0. The solid and open circles attractive Yukawa wall withey,/er=5 have been displayed
are from the computer simulatidi9]. The solid and dotted lines in Figs. 5, 6, and 7. As can be seen from Fig. B* (
are from the proposed perturbative approximation. The dash-dotteet 1.25), the proposed perturbative approximation shows
lines are the results of LMBW-[119]. good agreement with the computer simulation. With increas-
ing the temperature, the contact values of the density profiles
0, 0<z decrease because of the increase of the attractive wall poten-
BUex(2)= — Bewexd —\zlo], z>0. 33 tial. This effect is much the same as that of the hard-sphere
fluid near a wall[1].

The density profiles d,0°=0.7 and T* =kgT/er In summary, we have here proposed the density func-
=0.2) for hard-sphere Yukawa fluids near a hard wall aretional approximation and the density functional perturbative
displayed in Fig. 5 with the computer simulatifh9]. At a  approximation, which are based on the exact contact value
high temperature, the proposed perturbative approximatiotheorem for a hard wall, to study the structural properties of
shows a reasonably good agreement with the computer simgticky hard-sphere and hard-sphere Yukawa fluids confined
lation. The comparison with the modified version of thein planar slits. The calculated results show that the present
Lovett-Mou-Buff-Wertheim(LMBW-1) [19] shows that the approximations yield an excellent agreement with the com-
proposed perturbative approximation is better than theuter simulation. Theory presented here can generally be
LMBW-1. It is noted that Yi and Kim[11] have recently used as a reference system for the study of a bulk sticky
used the density functional perturbative approximationhard-sphere fluid and for a perturbative analysis in the study
which is based on both the weighted-density approximatiorof a bulk hard-sphere Yukawa fluid. On the other hand, the
and the density functional approximation of Rickay=zt¢ral., present approximations can be applied to study the structural
[12], to study the density profiles of confined hard-sphereproperties of model fluids or binary mixtures confined in a
Yukawa fluids. The comparison shows that the proposed pespherical and cylindrical pore. We will leave these problems
turbative approximation yields almost the same results as thi a future study.

Yi-Kim results, even if we did not display their results in the
figures for clarity.

For lower temperaturesT¢ =1.25 andT*=1.1), ap-
proaching the liquid-vapor transition temperature, the calcu- This paper was partially supported by the Korea Science
lated results have been displayed in Figs. 6 and 7. The conand Engineering Foundatioi@rant No. KOSEF-981-0205-
parisons with the computer simulation also show an018-1), and by the Basic Science Research Institute Program
excellent agreement. Furthermore, the density profiles for atGrant No. BSRI 97-2405
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