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Calculation of spectra of turbulence in the energy-containing and inertial ranges
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A statistical theory for the power law stage of freely decaying homogeneous and isotropic developed
turbulence is proposed. Attention is focused on the velocity field statistics in the energy-containing and inertial
scales. The kinetic energy spectriiitk,t) and energy transfer spectruh(k,t) are calculated as functions of
wave numbek and decay timeé. The scaling properties of the spectra of the stationary model of the randomly
stirred fluid have been chosen as the starting point for the approximate derivation of time-dependent spectra
E(k,t) andT(k,t). The stationary model analyzed by means of the renormalization group and short-distance
expansion methods has provided the speEffid) = Ce?°k~>3F(kl) [whereCy is the Kolmogorov constant
and F(kl) is a functio and T(k)<ek™ {7} (kl) [where ¢**}(kl) is functionally dependent otF]. The
characteristic length scale of these spectra defined from the mean square root velacdymean energy
dissipatione is the von Kaman scald =u%/e. We have assumed thigtu, ande as well asE (k) andT(k) are
no longer constants but unknown functionst oScaling forms constructed in this way are consistent with the
basic assumption of George's closii#. M. George, Phys. Fluids A, 1492(1992]. Power decay laws for
e(t), I(t), u(t) and the constituent integro-differential equation for the scaling funclidil(t))
=E(k,t)/Cxe?%>? have been obtained using the equation of the spectral energy budget. The equation for
F(kl(t)) has been investigated numerically for the three-dimensional system with Saffman’s injari&ht
Saffman, J. Fluid Mech27, 581 (1967; Phys. Fluids10, 1349(1967]. The calculated longitudinal energy
spectrum has been compared with the available experimental[841263-651X98)00210-4

PACS numbgs): 47.27.Gs, 47.27.Jv, 11.10.Gh

[. INTRODUCTION also supports the idea of the self-similarity within the
energy-containing range. The remarkable difference between
The Kolmogorov’s universality hypothesj4] supposing the above and the calculation presented here is that nonuni-
that the inertial range statistics of strongly developed turbuversal initial and late time stages of decay are fully inhibited
lence is independent of the geometry of boundary conditiongé our theory. This property is a direct consequence of the
and the dynamics of dissipation scales has received remarkact that self-similarity of the spectfaee Eq(4.2) below] is
able experimental suppoi2,3]. To establish the validity of expected from the initial stages of the model formulation.
the phenomenologically obtained law of the kinetic en- At the starting point of the study we shall employ the
ergy spectrum the renormalization grodRG) method has results accumulated previously for the randomly forced
been applied4] in the framework of Wyld's statistical Navier-Stokes equation. In the stochastic formulation the ad-
model of the randomly stirred fluid]. Later development of ditive Gaussian forcing is applied to model the unpredictable
the different RG variants applied to the stochastic hydrody-evolution of strong turbulent flows. In comparison with the
namics[6—8] was stimulated by the effort to find a well- variants of the stationary stochastic models exclusively fo-
founded calculation of the Kolmogorov constant. cused on the statistics of the inertial scales, a modified defi-
It is a widespread opiniof2] that spectral properties of nition of the pair correlation function of the random force is
the energy-containing scales are nonuniversal, i.e., the loweptesented in our formulation. The main motivation for this
bound of a spectrum evolves under the action of anisotropgeneralization is our goal to study the scaling behavior of the
and finite-size effects. Even the classic works have indicatedpectra within the energy-containing range.
that it is only a very crude assumption ignoring the scaling The present paper is organized as follows. In Sec. Il we
features of the statistics of the energy-containing range. Aeview the equations of the past grid turbulence. In Sec. llI
more profound understanding of the universality was develwe summarize the quantum-field RG results obtained previ-
oped by Georg¢9]. His analysis is based on the propertiesously for the energy spectrum and energy transfer of the
of the spectra measured at the intermediate distances behimtkrtial range. The extension of their forms towards the
the stirring grid(i.e., at the intermediate decay stageghere  energy-containing range is considered.
integral quantities such as the kinetic energy or dissipation These forms represent the starting point of the decay
rate satisfy power laws in time. By indicating the presence ofanalysis. In Sec. IV the model of decay is introduced and an
a variety of possible scaling forms depending on the initialintegro-differential equation for the scaling function is de-
form of the spectrum, George has postulated a more generdled. The numerical method for calculation of the scaling
picture of the universality. The theof$0] based on the eddy function with special emphasis on the asymptote of the iner-
damped quasinormal MarkoviafEDQNM) approximation tial scales is discussed in Sec. V. Two different parametriza-
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tions of the scaling function in Sec. VI are suggested for thelll. STOCHASTIC MODEL OF STATIONARY ISOTROPIC
three dimensional decay with Saffman’s invarijsee Eq. TURBULENCE

(4.36 below]. The limitations of the model are discussed in Statistical information straightforwardly obtainable from

Sec. VII. In Appendix A the form of the energy transfer g

function is derived. In Appendix B details necessary to over-.IE_ﬂ' (2.I1) IS mlco?:plet? tdue tlo thfh_standsz closure_ pt)rob][etrt?.

come the problems of the numerical integration are pre- € classical attempt 0 Solve thiS problem consists ot the

sented. search for an appropriate phenomenollog|cal relation bgtv_veen
T andE [2] or the search for the relation between statistical
moments of interest. The relations evaluated indirectly

[l. BASIC EQUATIONS OF THE PAST GRID EVOLUTION within the stochastic mode[&—8] are considered less phe-

r{”n_omenological due to significant elimination of empirical in-

puts, which are used to adjust the model parameters.

The basic equation that mimics the statistics of strong

}grbulence is the randomly forced Navier-Stokes equation

The equation for the energy spectral budget plays a ce
tral role in the description of the strongly developed turbu-
lence. If isotropy of the statistics, incompressibility of the
fluid, and the absence of the external energy sources a

supposed, the energy current conservation in the wave- d
number space is expressed by the equation Ij= VOVZUj _2 Pis(V)(V-V)ve+f;, V.v=V.f=0,
S
HE(K,t)=T(k,t)— 2vok?E(K,1), (2.1 3.1
wherePjs(k) = 6js—kjks/ k? is a transverse projection opera-
where tor ensuring the incompressibility of the fluid. Two different

time variables { and 7) were introduced to distinguish be-
tween formulas corresponding to the stationary and decay
case, respectively.
Following the tradition of the stochastic models of the
dox, turbulence, we assume that the statistics of the external ran-
T(k,t)= —kdflsdf —— e ke dom forcef(x,7) is isotropic and Gaussian. It is completely
(2m) determined by the averages

1 d9x .
E(k.t)= E"dflsdf (2—7T)ld ek v(xy,t) - v(xp,1)),

XQV(X, [V(Xa,1) - Vi JV(Xp, 1)) (2.2 (f,(x, 7)) =0,

are the energy spectrum and energy transfer, respectively;  (f,(x;,7;)f<(Xp,72))= 8(712) Pis( Ve )C|%47), (3.2
Sq=2m%2T'(d/2) is the area of thel-dimensional sphere of 1

unit radius,I'(x) is the Gamma functiorx;,=X;—X,, and  wherer;,= r;— 7, and

vg is the kinematic viscosity. The angular brackets denote

the statistical average over the realizations of the velocity B d% ik xm ()
fluctuations at the fixed time One can easily verify that the Clxh= (2ma © D (k)

energy transfer fulfills the integral identity
x(2= 2 o

- = ——ap | dk K23 4_5)s(kx) D (k).
J dk T(k,t)=0, 2.3 (2m)™ Jo
0 (3.3

which leads to the equation for total energy conservation Here J is the Bessel function. The forcing spectrum
D}(k) is defined by
hé=—e. (2.9 _
DV (k)=DF(kl)k ™9, (3.9

Here the mean kinetic energyt) and mean energy dissipa- _

tion ratee(t) are defined by the integrals whereD is the amplitude of the forcing correlations propor-
tional to the mean injection rate of energy, which is equal to
the mean energy dissipation rate

The combinationD/vg plays the role of the coupling con-

(2.5 stantin the perturbative approaph12] andl is the typical
length of the energy-containing range. In Sec. IV we will

It is well known that Egs.(2.1), (2.4), and (2.5 may be Show that this scale can be associated with the vonmia

transferred to the experimentally most easily accessible cadength scale. We assume that the regienl/l corresponds

of the past grid turbulence if Taylor's concept of frozen tur- to the inertial range. The explicit form of the functigf(kl)
bulence[2,11] is well justified. In accord with this concept, is not specified yet and the forcing extension caused by the
in the statistically homogeneous regions of the past gridntroduction of 7(kl) requires some additional remarks. The
flow, the time of decay can be simply related to the distance Single point correlation functiofi” .dr;(f(x,7) - f(x, 7)) is
measured in a streamwise direction from the position of thgroportional to the energy injection rateC(0)
stirring grid. « [odk KI1D(k). The argument of the integrd(0) rep-

5(t)=fowdk E(k,1), s(t)=2v0f;dk ICE(K,1).
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resents the contributions of the separate velocity modes iformula. In Appendix A the reader can find the salient details
the full energy supply of the forcing. For the scales that areof its derivation for the extended forcing. The resulting form
comparable td the functionF(kl) reflects the details of the of T(k) is given by

forcing mechanism. In spite of this ambiguity, it is reason-

able to expect that a maximum kf D7 (k) =D F(kl)/k T(K) = c; DK~ L7 (k) 94 S 3.9

should be located at>x1/1. The definition of the forcing cr 2(2m)¥
correlator(3.4) can be regarded as a relation generalizing the

basick 9 form of the forcing spectruni6,13] or its exten- Where

sionk*[k?+ (11)2]~ %k~ Y [see also Eq(6.3) in Sec. VI in- s,
troduced in4,8]. The term 1/ from the last expression plays (F) =& J' . = _ -1

the role of the infrared massvhen using the terms of the yr0=cr Adq dp Ra.pix). - cr 297 1(2m)d"
quantum field mode)s The corresponding energy contribu- (3.10

tion k971D (k)ock =Y (k)¥/[1+ (k1)?]? has a maximum at , , , _ _ _ ,
the wave numbew3/l. In Refs.[6,13], the use of forcing IS the dimensionless scaling function of dimensionless vari-
with the correlator~k ¢ [which is the massless limit of Eq. aPlex=kl and

(3.4] was motivated by the intention to apply the RG o _d-273

method to describe the inertial range statistics. Therefore, the R(a,p:x)=K(p. )1 F(px) F(ax)(Pa)

additional limitation to the form ofF(kl) is the assumption X[Q(p,q)+Q(d,p)]—F(x)
that within the inertial rangek>1) the spectrunD/}(k) o
approaches the taii~9. This assumption is compatible with X[F(px)p *Q(p.a)
the normalization +Fax)q 4"2°Q(q,p) 1} (3.11
m I 39 [2(%+q2p?+ p?) — (L+ g+ pt)) @7
“~ K(p,a)= pa(1+ o251 p25) ,
The system of the velocity correlation functions is com- (3.12
pletely determined by the stochastic model represented by
Egs.(3.1), (3.3, and(3.4). Naturally, the information imple- Q(p,q)=p*—p?+(d—1-p?q-. (3.13

mented byF(kl) will be reflected in the properties of the
correlation functions. Only in the special cage=1 is the In the integral(3.10 A denotes the domain of integration
pure inertial range statistics generated.

To solve the complicated problem of the calculation of A={(q,p);q=0/1—-q|<p<1+q}. (3.19
the spectral characteristiegk) andT(k), advanced theoret-
ical tools utilizing the quantum field R@!,14] and so-called
short-distance expansiotechniqueg12,15 have been ap-
plied. The application was inspired by the general ap
proaches developed in the quantum field theory and th
theory of critical phenomenfl6].

In [4,8,14 it was shown that the forcin@k ¢ induces

The inertial range critical exponents3 for E(k) [and the
exponent—1 for thek dependence of (k)] were perturba-
tively calculated exactly12,14 using thee-expansion tech-
ique (see, e.g.}16]). The stationary form of (k) as given
y Egs.(3.9—(3.13 is consistent with the EDQNM model
[7,17,18. The principal difference between the form of en-
ergy transfer resulting from the Markovian nature and the

the energy spectrum of the form similar form given by Eqs(3.9—(3.13) is the presence of the
_ function 7 and the presence of the constant parameter
E(k)=ceD#% %", (3.60  which is fixed by the RG flow. Since the final treatment of
the model needs the support of the numerical analysis, in
where Appendix B some of the details are discussed that allow for
the efficient calculation of two dimensional integrals of the
. (d=1)(g,) s _16(d+2)(2m)° @7 (YPeE10.
ES T 22m9 0 T T 3d-ns,
IV. MODEL OF THE TURBULENCE DECAY:
The dimensionless parametgr occurring here was fixed by POWER FORM OF THE TIME EVOLUTION
the RG transformation. The presence of the extended forcing
(3.4) is reflected in the energy spectrum The decay of the freely evolving turbulence can be mod-
_ eled by assuming that the role of the energy input is played
E(k)=ceD?3F(kl)k 53 (3.8 by the termg,E. Since we are looking foE(k,t) and T(k,t)

in the restricted region of the inertial and energy-containing
of the inertial and energy-containing scales. The only differscales, the viscous effects can be neglected and the equation
ence between Eq<3.6) and (3.8 is the presence of the for the spectral budget is applicable in the truncated form
function F. Unfortunately, already in the simplest case of thed,E=T.
pure inertial ranggwhere F(x) =1V x], problems appear in Assuming low speed of the time variations and partial
the analysis of the triple velocity correlation functiphs]. persistence of the distribution of the spatial turbulent struc-
This function is related to the energy transfer via an integratures, the decay spectra can be constructed using modified
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stationary formgsee Eqs(3.8) and(3.9)]. Applying the sub- i.e., when the energy spectrum acquires the pure Kolmog-
stitutions orov form. This finding is consistent with the weakened vari-
ant of Eq.(4.7),

F—F, 1=lI(t), D—D(), (4.1) X
lim [LF(x) = ¢iF(x)]=0. (4.10
we have obtained X—
E(k,t)=cE[B(t)]m‘F(kl(t))k‘5’3, A more restrictive condition
_ lim Y LF(x)—¢F(x)]1=0 4.1
T(k,t) = cD (k1P kI (1)). 4.2 m X LRG0 = P 00] @11

To distinguish between the stationary and decay situationss used in Sec. V to control the coincidence of the leading
two different symbols7 and F [as well as the functionals asymptotic behavior offi"}(x) and next to leading order
7H(kI(t)) and 4 {FH(kI(t))] have been introduced; the sym- asymptotics ofF(x). In accord with the assumptiofi9]

bol F(kl) plays the role of the scaling function. The under- Egs.(4.4)—(4.6) have the solution

lying problem associated with our approximate construction o

is estimating the bounds of the admissible domain in the D(t)=Dgt®, I(t)=It*. (4.12
wave-number time or parametric spag¢ese Sec. VI Re-

gardless of the detailed structure ¢fF!(x), Eq. (4.2 is  The amplitudesDy,l, and exponentsy, ,ap are related to
compatible with the self-similar relations postulated by vonthe separation constants,c, via the relations

Karman and Howarti{19] and Georgé9].

In this section we present the derivation of the time de- _ z(ZCEaD)S _ 6¢; - 9
pendence®(t),I(t) as well as the derivation of a system of o 0 3crey ) ' 4c,-3 P 4c,-3°
equations for the scaling functioi(y). If the time- (4.13

dependent scaling form@l.2) are inserted into the inviscid

variant of Eq.(2.1), the following equation can be obtained: When Egs.(3.8), (4.12, and (4.13 are inserted into Egs.

(2.4) and (2.5 one can obtain the decay laws of the kinetic

d energy and energy dissipation
$a(OX % 1+ da(t)x d—} Foo=vP0, (43
X 2(apt+ay)
8(t):(€ota5, A= 3 ) (414)
where
4ciadl?
2 — — _“CeAplo
$1(0)= 2 £ (DO (02D, (44 f0= g7z I (419
3ct ™1
3 alﬂl(t) s(t)=—ag€0t“5_l, (41@
()= > . (4.5 .
adnD(t) 11Fl= JO dx X 53F(x). (4.1

The differentiation of Eq(4.3) with respect td gives rise to
the auxiliary equation that allows us to determine the condiSimilarly, for the mean square root velocityt) one obtains
tions of its solubility. The comprehensive analysis taking

into account the auxiliary equation and E¢.3) shows that 2 — ]2
the most informative physical solution is obtained when u(t)= d S =Uot™™,  Up= d &. (418
p1(t)=c1, ¢a(t)=cy (4.6)  Now we demonstrate how the separation constanintro-
_ ' duced in Eq(4.6) reflects the structure ¢f(y) for y—0. At
(c; andc; are some integration constangnd the end of the section, the connection betwegrand Kol-
d mogorov constanC is provided.
- _ {F) C 203 4 Following [3], the assumption about the large-scale struc-
LFOO =9, L=cox 7 1+ Cox dx | 47 ture of the turbulence has been supplemented
From th lizatior3. d Eq.(4. lude that E(k,t
From the norma |.za ioni3 5). and Eq.(4.7) we conclude tha im ( - ) —A,=const-0, a>0, 4.19
LF |-, asymptotically vanishes, o K
I:F|F:1=c1,\/‘2’3 for c;#0, x>1, (4.9  whereA, and « are new parameters. The choice @im-
plies the selection of the flow invariark,, [see Eqs(4.31)
wheread 3] and(4.32 below]. From Eqs(3.8) and(4.19 it follows that

JF()=0 for F=1, (4.9 F(x)=cpx3etR as y<1, (4.20
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A,= CFCE52/3| (3a+5)/3,

(4.20)

wherecg is a constant. The requirement of the time invari-
ance ofA , and Egs(4.12 and(4.21) lead to the connection
of the exponentsyp=—(«,/2)(3a+5). Then, using Egs.

(4.13, with the help of Eq(4.7) we obtain

(4.22

Co=— m, LF|F:CFX(3a+5)/3:O.

From the relationg4.13), (4.14), and(4.22) it follows that

2 _ 3a+5 B B 2Aa+1)
W=z W= iz @e=ltao=-— oan
(4.23
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Aa: CFCKSZ/SI (Bat5)/3 CFCKU2| Tra- CFCKUSI é+a .

(4.3)

The characteristics that are essential for the construction of
the decay phenomenology are the dimensional inte2dls

Ia: jwdx XaBLL(X,t). (432
0

Here B, (x,t) is the longitudinal velocity pair correlation
function defined by

d
B 0= 3 (vy0 st ) 2

J.s X1

(4.33

In analogy with the stationary case, the Kolmogorov constanf; js connected to th&(k,t) spectrum by means of the rela-

has been defined by the relation

- E(k,t)
CK_[S(t)]2/3k75/3F(k|) .

(4.29

The normalization3.5) implies that the inertial range spec-

trum Ce?3 >3 is achieved fok>1/. Equationg4.2) and

(4.24) can be understood as two different representations
the samee(k,t) spectrum. Their comparison and application

of Egs.(3.9), (4.4), (4.6), (4.13, and(4.14) yield
o (D 2’3_ Do 2/3_ 2ap 2/3
K_CE ; _CE B (1550 _CE B 3a'gC-|—Cl|{F )
(4.25

The time independence & stems from Eq(4.23. From
Egs.(2.5 and(4.24) we have

E=Cyl1Flg2q2R (4.26)
By the use of Egs(4.18 and(4.26) we obtain
u3 2CK|{F} 3/2
=— ) (4.27
€ d

tion
BLL(x,t)=f:dk E(k,t)BE(kx), (4.39

where B{(y) =2(siny—y cosy)/y® in the cased=3. The

0?ubstitution of Eq(4.249) into Eq. (4.34) gives

~ [ x
B L(x,t)= [U(t)]zBL(W) ,

~BL(y)=CKf dx BE(xy)x%FF(x). (4.35
0
From Egs.(4.32 and(4.35 we have
T,=cultre, c|=f dy yBu(y). (4.3
0

The exclusion ou?,11** terms from Eqgs(4.31) and(4.36
yields

C A
a_CFCK a:

(4.37

The last formula resembles the established definition of the

von Karman length scale

Therefore, it is convenient to suggest the calibratien - to
give rise to the connection

o9

Ck

(4.29

Substitution of this form into Eq(4.25 relatesc, andCy :

G here s, - M1 as)(ce)?
cl—\/C_K, where ¢;= 3da.cr

From Eqgs.(4.29, (4.28, and(4.23 we rewrite Eq.4.2]) in
terms ofe, u, andl:

(4.30

From the last connection it follows that time invariance of
A k% implies the invariance of integrdl, . Due to analytic-

ity arguments, the most relevant for study are the choices
a=24,... . The value of\, is associated with the so-called
Saffman invarianfZ, [20], whereasA , is proportional to the
Loitsyanski integralZ, [2]. The special case al=3, and
a=2 is studied in detail in Sec. VI.

It might also be interesting to ask about the initial condi-
tion of decay. Since the self-similarity makes the time and
wave-number asymptotics interconnected, the initial condi-
tion lim,_ oE(k,t)=A ,k® stems simply from the asymptotic
constraint(4.19. From this it follows that the inertial range
is not formed fort— 0 [sincel (t)— 0]. Whent increases, the
lower bound of the inertial range moves towards the larger
spatial scales and theg(k,t) spectrum attains the shape typi-
cal for the three-dimensional developed turbulence.

The remarkable property of th&,_,;k% ! energy spec-
trum is that it describesi®-correlated(in the real space
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representation velocity fluctuations. In addition, any in- where
crease ofa (a>d—1) in the spectrum\ _k* induces more

pronounced pushing of the energy towards the smaller ~

scales, which means that the spectrum mentioned should be Ynlan)=cr Adq dp Ri(q.p.an), (5.4
able to model the response of the system on the variety of the

stirring regimes. In agreement with thg p_roposed model,_th.e Rn(Q, P, ) =K (p,q){(q*+ p)(pg) ~ 239
presence of strong stirring near the grid is the characteristic

feature of the initial stages of the past grid evolution. X[Q(p,9)+Q(a,p)]

—(1+pmp~2379Q(p,q)
V. NUMERICAL METHOD OF THE CALCULATION
OF THE SCALING FUNCTION —(1+g*nqg~ #379Q(q,p)}.

At this stage the formulation of the problem of findifg  pye to Eq.(4.9), the zeroth-order termA¥!(x)|¢_, is not

is mathematically completed. Nevertheless, the structure Qiresent in the serie.3). Substitution of Eq(5.2) into the
Egs.(4.7), (4.17), (4.29, and(4.30 is beyond the scope of |eft-hand side of Eq(4.7) gives

standard approaches, especially due to the nonlocal character

of the termsF(qyx),F(px). In addition, the problem is as- L(l_bhxah)zclx—m_ C1bp(1+ Cpay,) y@n 22
sociated with the asymptotic condition8.5 and (4.22), (5.5
which make attempts to find an exact solution untractable.

Direct application of the standard numerical approachesor y>1 Eq. (4.7) acquires the form—byg(ap)x®

seems to be impossible as well. =c,x~ 23, leading to the connections
Our procedure consists in the numerical least-squares
minimization of the functional c; ch C, )
b = - = y Ch=— ’ apn=—5.
B o N "on(=213) o, " (=23 "3
Wb)= 2 X ALFpalbix) = yiFal®012, (5.1 (5.6
XEM

VI. PARAMETRIZATION OF THE SCALING FUNCTION

which sums up the weighted squared differenf:&(g;x) FOR a=2 AND D=3

— yiF®X} calculated for the set of the mesh pointgl

={X1.X2,...} and vectorb constructed from the variational

parameters. The parametrizati(ﬁba,(g; Xx) approximating

the unknown functiorF(y) [see Eqs(6.3) and(6.4) below]

is suggested to satisfy the asymptotical requiremé¢aits 2 11 6 3

and(4.2®. . a|=§, a’DZ—g, ag=—§, sz_ﬁ’ (61)
The form of the)/(b) stems simply from a more general

. 2 . . . .
functional [dk(¢,E—T)", attaining the minimum fo\E j accord with the earlier resul21] and coinciding with the
=T and Eq.(4.2). To reach the minimum numerically, the o, herimental finding§3]. Due to various remarkable prop-

steepest-descent minimization procedure has been utilized o of thek? spectrum(2,3,13,22 the choice of the ,k?
The minimization of) must take into account also Egs. asymptote oE(k.t) is not motiveless. 2

(4.17), (4.29, and(4.30. For this reason, the basic numeri- Using Egs. 3.7 and (3.9, we calculate cgly_s

cal procedure has been supplemented by iterative steps tak- = -

ing into account the additional equatiofis Sec. VI we dis- 0:162329 andes|q-3=6.66. Hence, from Eqs(4.29,

cuss the effect of further conditions improving thg,|. The (4.30, (5.3, (5.6, and(6.1) we obtain

convergence of the method towards the minimum is not vio- ~

lated owing to the low sensitivity dft™!, C,, andc; to the C;=—0.007 994, y(~2/3)[4-3=0.009 904,

changes irb. 15 (6.2
To improve the coincidence df ,(b;x) and F(x) at ¢,=0.8071, CKzl{—'F}.

x>1 Eq. (4.11) has been considered. The asymptote of

F(x) is assumed to be in the form

In this section we examine the evolution of decay and
scaling behavior in the special case®f2 andd=3. For
these parameters Eqgl.23 give the exponents

As the simplest one-parameter approximationFdgfy) we

— have chosen the von Kaan spectrum having the form

F(x)=Fpa(b;x)=1—bpx* as y>1, anda,<0,
(5.2 Fpa(bo:X) = M2+ b(z))—n/e, 1{F' =1 261 %)62/3_

6.3
which is compatible with the normalizatig.5). This form ©.3

includes the unknown parametdriganday,. From Eq.(3.9  The minimization of the functional(b,) with respect td,

we obtain provides the valudy,=1.35 and correspondinG=1.45.
. ) Since the parametrization involving the single variational pa-
PO k0 —1-byxen= — Pnihn(an) x ™+ O(x?*h), rameterb, ignores Eq.(5.6), it plays only the role of a pre-

(5.3 liminary estimate of~(x) (see Fig. 1
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0.00 . 0.60 T T T T T T T
""" -0.02 |-
-0.02 |- .
-0.04 |
0.04 |- i
-0.06 :
-0.06 |- |
symbol{function o8 symbol|function i
-0.08 - B .0.10 F * X—l w(Fpar(bl,bmbaybhiX)} =
* x 1 p{Frarlbox)}
010 1% § -0.12 — X—‘l i’Fpar(blsb% b3, bh; X) B
— X7 LFpar(bo; x)
-0.12 - B 0.14 - .
_0 14 1 1 | | [ i 1 _016 I 'l | 1 1 L 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
X
FIG. 1. Functions x~ LFpar(bO y) and T(x/I,t) FIG. 2. Coincidence of the functions

oy~ LyiFeaP0:0} for the parametrizatiorFP(by:x) [Eq. (6.3] X “LFpa(b1.bz.bs.bp;x) and x~ tyiFealbeb2.05.00:0} calculated
with by=1.35. We see thaF ,,(bo; x)} represents only the crude for the parameter§5.5) and the setM involving 50 mesh points.
approximation of the solution of the equatitifr = yiF!.
Figure 3 shows a comparison of the experimental data with
To account for the discrepancy between the functionsur theoretical prediction utilizing the approximatiéi(y)
X~ LFpa,(bcJ x) and y ~tytFralPoix)}t which is obvious near —Fpa,(bl,bz bs,bn;x). We see that theoretical dependence
the function minima, and to |mprove the quality of approxi- E;(kI)/u?l exhibits particular agreement with the data from
mation at very largey, the refined form of the parametriza- the wave-number range between 0.Hnd 10/, where
tion has been proposed. We have found that problems fdg,/u®l changes approximately two orders of magnitude. In-
X~ 2 can be overcome when the vonrngan form (6.3) is  creasing deviations of the data from Kolmogorov's asymp-
replaced byy*™/3(x*+ 2b§X2+ b‘l‘)*11/12_ In addition, the re- tote at high wave numbers should be associated with the
quirement(5.2) with a,=—2/3 from Eq.(5.6) leads us to Viscosity effect.
the suggestion of the asymptotically correct prefadtbr
+bp(b3+x?) "3~ with bs#0 preserving the analyticity VII. LIMITATIONS OF THE MODEL
for y—0. Consequently, the improved parametrization
The determination of the consequences of the quasista-
Fpa(b1.,b2,b3,bp 5 x) = x ™ x4+ 2b2x%+bf)~ 112 tionary approach is substantial for model applications. We
2, o131 assume that the model introduced should be able to describe
X[1+bn(b3+x*) 7" (6.9 a free decay of the turbulence whénthe von Kaman scale
I(t) is the principal and unique length scale determining the

contains the variational parametdrs- (b;,0;,b3,bp). The  ggjt gimilar part of the spectfahe occurrence of the scaling

minimization of )(b,,b,,bs,by,) carried out forM involv-
ing 50 mesh points uniformly distributed within the interval
0<x=<14 leads to the numerical estimates logyo (244)

0.0 T T T T T T T T

b,=1.578, b,=0.677, bs=2.906, b,=0.642,
(6.5

The coincidence of both sides of E@L.7) is illustrated in
Fig. 2. Both Figs. 1 and 2 show two different approximations

of T(k,t) in the energy-containing range. Using E§.2) we 20 |0240 op
find that the lowest infrared correction to the leading Kol- %385
mogorov asymptotics Ce?%k %% is of the form PN —

-10 -08 -06 -04 -02 00 02 04 06 08 10

— b, Cy(e/1)2% 3

log,o(kl)
To compare the theory and experiment we have calculated e
the longitudinal energy spectrul [2]. The transformation FIG. 3. Comparison of the theoretically predicted form of the
E—E, realized with the help of Eq4.24) gives longitudinal turbulent energy spectrulj(k) and the experimental

data in the range 0lktk=<<10/1. The experimental points corre-

spond to data taken frof®,23]. They are plotted versus the com-

binationk! in analogy with[9]. TheE,(k) spectrum(6.6) calculated

for the parametrizatiori6.4) is depicted by the continuous curve;

_ 2 et 2203 the dotted line corresponds to the pure Kolmogorov asymptotic

=[u®) ] (t) Crx o dz(1-2°)z""F(x/2). form k>3, The data were chosen at different past grid distadces
related to decay time the dimensionless rati&/M represents the

(6.6) relative distancdtime) measured in mesh length uni.

a(%,t :L dz(22— 1)z 3E(kz,t)
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should be expected whéft) is much larger than the typical v(k,t)>vg, (7.7
viscous scalep(t) and much smaller than the outer scale

Lol, (i) the spectral evolution is sufficiently slow and pre- wherev(k,t)=v(k)|p_p is the quasistationary form of the
serving the proportions in the stationary vortex size distribu-eddy turbulent viscosity. The pure stationary form

tion, and (iii) the molecular viscosity effects are negligible

compared to the effects of the vortex inertia. The scales of D s
interest lie in the energy-containing and inertial ranges. v(k)= o k=43 (7.9

In the next part of the section the impact of above as- *
sumptions will be reconsidered quantitatively. was predicted by RG theoft2,14. The condition(7.7) is

(i) The necessary condition to preserve the self-similarityequivalent to
represented by Ed4.2) is that the Kolmogorov scale "

C 3
3\ 1/4 3/4 < 34l =K —1/4
n(t)=<&) = pot(BatSMats) 2v } x<[Rea(t)] ( CE) 9 - (7.9
S(t (_ Cl’g)lo d
(7.0 For the parameter@.7) and(6.5) we obtain that the numeri-
.. i cal value of the prefactor from the last expression is
and the von Keaman scalel (t) are widely separated: (CK/CE)3/89;1/4: 0.5825. Using Eq(4.23 for a=2, we
(1) (1), (7.7 have obtained [(t)oct®4  p(t)<t®%S and Ret)oct 02

whereas the substitution af=4 yields I (t)<t%28 5(t)

«t%807 and Rgt)«t %428 Comparing these two decay re-
gimes one can conclude that the time interval where the scal-

I(t)<Lg (7.3 ing (4.2 should be expected is wider in the case of decay

) _ evolving via theA , invariant.
determines the bounds of the spectral representation. If the

Reynolds number on the scdlaés defined as

The additional conditiof2]

VIIl. CONCLUSION

Ra(t)= u(t)l(t) :(N_t)) 4/3:<|_0) 4/3t(1_0,>/(3+a> We have presented a model that enables us to calculate

2 7(t) 7o ' the scaling forms of the energy spectrum and energy transfer
(7.9 of decaying turbulence. The aim of the work has been to

o ) ) ) study the universal aspects of the isotropic and homogeneous
then the condition(7.2) is equivalent to the requirement ,rhlence of the energy-containing and adjacent inertial

Rg(t)>1. As it follows from Eq.(7.4), for a=1, Re () de-  range, where decay laws approach the power form.

creases with. Therefore, the model studied may fail to give  The initial point of the study includes the results obtained
an accurate description of the very late time stages of decaypy the stationary model of randomly forced turbulence with
From Egs.(4.12 and(4.23 it follows that both criterid7.2) e extended form of random forcing. To describe the free

and(7.3) can be fulfilled simultaneously if decay of the past grid turbulence, the results of the stationary
L\ (@32 [ | | 4at3)3a—1) model were modified in the framework of the quasistationary
t<tmax:min{ (_0) , _0) ] (7.5  approach. Ama posteriorianalysis has imposed the limita-
lo o tions t i, <t<t,ax representing the preconditions for the ap-

. i plicability of the quasistationary approach to decay statistics.

Let ke(t) denotes the coordinate of the maximumidk,t)  gince the smalk behavior of the spectrum in the Navier-
with respect to variable [i.e. E(k,t) <E(ke(t),t)]; Ke(t)  stokes turbulence has not been firmly established up to now,
can be associated with the lower bound of the inertial rangg,e nave adopted for this aim Saffman’s hypothesis. Fixing
defined by the inequalitieg(t)<k<1/5(t). Formally,  the parametew is sufficient for the determination of the
ke()=re/l()=(ke/lo)t"*, with the expectation gcaling functionF, which is free of other adjustable param-
kg=0(1). For theparametrizatior{6.4) we have found that gters.
kg=168. . n _ The computation of has been performed fat=3 and

(i) The principal dynamical characteristic of the station-,— 2 it has been recognized that the shape of the functions
ary system is the time scale:}k®. It is involved in the  £(y/1) andT(y/I,t) exhibits qualitative agreement with the
exponentials of the bare propagatfsse Eq(A5)]. The ap-  canonical expectations for the energy-containing ra&je
plication of the quasistationary approach is justified if theTphe approximately calculated longitudinal energy spectrum
free decay process does not require one to change the forghows promising agreement with the available experimental
of the stationary propagators. The precondition of the lasyata. Due to insufficient accuracy and reproducibility of the
requirement is that the viscous damping is much faster thagyrent data, the quantitative testing of the third-order statis-

the overall decay, i.e., tics is a difficult task.
2 In this paper we have done more than just derive and
>t = max [iz]zﬂ (7.6 present a model of decay; there is a proposal for further work
kn=1<kLg vok Vo towards the understanding of the universal aspects of turbu-

lence. Most importantly, the presence of the multiplicative
(iii ) To guarantee the dominance of the inertia effects, weintermittency correction to thek > asymptote ofE(k,t)
assume that could be recognized as well and the construction of the equa-
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tion for the scaling function could be studied in more detail. 1 4 5 5
In addition, one could analyze a more complex form of the Z{o,o}=ex > > f dd dr[ 5 5
parametrization for differerd (d>2) anda to obtain more m,s.n TS(X,7) Sn(X,7)

comprehensive numerical results. P
XVinsd —1V) —5Em(x,r)]
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APPENDIX A: STATIONARY SCALING FORM +0(X1, 71) Gji (X12, T12) 01(X2, 72) } (A4)
OF THE ENERGY TRANSFER
To help the reader understand the origin of the formuladnvolving the bare propagators
(3.9—(3.12, the derivation of the triple velocity correlation 4K
function[15] is presented in this appendix in a simplified and = _ f ik-x=0
shortened form. For the velocity field evolution described by Cus(X,7) (277)‘_:I &7 G sk, 7),
Egs. (3.1 and (3.3 the Martin-Siggia-Rose formalisii24]
permits us to find the functional integral expressions for the ddk . o
expectation values of generating functional with the effective Gus(X,7)= f 2 e* Gl (k,7),
action
— 2
. Go(k, ) =P,(K) 0(— 7)€"k,
1 —
5=5 % d%; %A v; (X1, ) Pis( V) 5 Ak 2
Gla(ki1)= 5, fawa Puslk)e 0, (A5)

XC(| Xy )vo(Xa,7)]

g — 5 and the three-point verticég,,s{p) =i(SmPn+ dmnPs) and
+f dx dr{v(x,7) - [ =3V = (V- V)V+roVV](x )} Vinsi —1V)=(Smsdx, + Smndy); 6(—7) is the usual step
function. The sequence of integrals generated in a perturba-
tive way from Eq.(A4) may be represented pictorially by the
Feynman diagrams. Superficial diagrammatic divergences
HereV is the transverse auxiliary fielindependent of), arising in them are the classical artifacts of the perturbative
which has been introduced in the description by the transforiréatment and the quantum field RG approgicH is concep-

mation of the initial stochastic proble8.1)—(3.3) in func-  tually related to their elimination. _ _

tional form. Following Ref[14], single-time triple correla- It is well known that recursive RG relations derived for
tion functions can be expressed through the functionafe action(Al) in the frame of thee-expansion scheme ex-
derivatives as hibit the infrared stable fixed point associated with the Kol-

mogorov scaling. The knowledge of the fixed point param-
eters allows us to find the leading infrared asymptotics of the
(v (X g(X2)v ,(X3)) energy spectrum and energy transfer. The complete calcula-
£z tion of F is beyond the scope of the RG theory, which is
restricted to the analysis in the massless litAity)|, .. .
00 ,(X1,7)604(X2,7) 60 ,(X3,7) This conventional analysis is based on the assumption that
the next to leading order asymptote of the functib(kl)
[see Eqs(3.5) and(5.2)] is free of terms affecting thke™ >
tail of E(k).

(A1)

1
z

1
0c=0,0=0

(A2)

where the generating functiongl2]

Z{U,E}IJ va DVexp{SJrf dx dT(U'V+E'V)<x,r>}
(A3)

can be calculated perturbatively using the functional formula FIG. 4. Sum of the lowest-order diagrams contributing in the
[25] correlation functiorZ, 4. (k,q,p).
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The explicit form of the equal-time triple correlation func- matic double linek: To Vv, TIEERS(k,TO_ 1) andk;
tion (v ,v gv,) May be more easily analyzed in Wave-vectorT Uy v, "
00—

. . ; =R — i i -
space. Due to translational invariance we assume 71=G (K, 7o~ 7,) are associated with the renor

malized propagators

<UM(X1)U,3(X2)Uy(X3)>
=g°

~R _~0 R
G G,LLS| vo— v(K) » G p,S| vo— v(K) »

us— uS

A7
d’k ddq dp (A7)

) @m?) 2m?) @2n)

gl (K-X1+q-X+p-X3)

which can be obtained from the bare propagators by replac-
X(2m) 48D (k+q+p)T,,,(K.q,p). (AB) ing v, by v(k), where (k) is the eddy viscositysee Eq.
(7.9)]. The impact of the renormalized propagators is equiva-
lent to the resummation of the relevant “self-energy” con-

The Fou”?f transforn?,,,, of the correlatlon functlo_n €an  triputions. It should be emphasized that no vertex corrections
be approximated by means of the sum of diagrams in Fig. 4.

The isotropy assumption implies that the result of the sumef the type % are needed in the expression for the correla-
mation has to be symmetric with respect to the permutation ] : o o )
tion function7'in our approximation. The justification of this

simplification was given if15], where the irrelevance of the
Up, overall effect of all the vertex loops was demonstrated within
) v_s< _ the one-loop order of thehort-distance expansiolVhen the
of k, g, and p vectors. The triple vertex X IS diagrammatic suntsee Fig. 4 written in the algebraic form
equivalent toV,s{p) in the notation used. The diagram- is modified with the help of Eq(7.8), it gives

d
Tkt = 3 [ G (k.G (A1 G (P Vannl K

+GR (K, 7)GR(A, 7GR (P, ) Vimd @) + Gly(K, 7) G (0, 7) GRr(P, ) Vinsd P) ]

d

_D? P.s(K) P ) Pym(P) Fal) Fph)
T4 & (v(k§k2+v(q)q2+v(p)p2) Vonnl k) v(q) »(p) (ap)~**
F(pl) Fkl) Cde> F(kl) Fal) 4o

.D ’
= G T 2 PadK)Pan(@)Pyn( D Vannl KA F(PI ()23

,n,m

+Vamd D) F(PD FKD (pK) ™4 23+ Vo p) F(kN) F(q) (k) ~4~ ). (A8)
|
It follows from Egs.(2.2) and (A6) that energy transfer can d Vimd @)
be simply associated with the triple correlation function via Vv _
the relation M,s,%,%m Pusl0Pn( @) Pym(P) VmS,:EE; Vg =10
sn
kd*ls d k2 k2 2—(k' )2 _Q(p/k,q/k)
=555 S | 6 V,(—K) i Qe ouarkprk)
wy ar Q(p/k,a/k)+Q(ark, p/k)
X T, 5y(K,0,P) [p= —k—q- (A9) (A10)

Further analysis of the structure of the integrand from Egfor p= —k—q. [The functionQ is defined by Eq(3.13].
(A9) [defined by Eq.(A8)] requires the calculation of the From the structure of EJA10) it follows that Eqg.(A8) can
expressions of the type be written as a function of the argumemtsq, andk-q:
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G iFpalb1:02:03.00: 0} () by using Eq.(3.9). To explain the

- d

T(k)= 22m)% f d"q ®(k,q.k-q), (A11)  way to overcome the unfavorable numerical effects, it is use-
ful to decompose the integration domain[defined by Eq.

where (3.14)]. The decomposition introduces the elementary subdo-

d mains(see Fig. %

DKAK D= > VoK) T (K0P pe kg
(k,0.k-q) MZM sl —K) Tup (KD [p= kg A=AlUAZUA,,

(A12)

In the spherical coordinates, the integi&l 1) can be written A,={(q,p);|1—qg|<p=q},
as o1

” - Al={(q,p);0=q=1/2,1-q=p=1+g},
f ddq q)(k’q,k.q)zsd_lJ' dq qdflf dé

0 0

A2={(q,p);1/2<q<p=<1-+q}.
X (sing)®"?®(k,q,kq cosp), From the singularity formed by the kern@.12) it might be

(A13)  deduced that any numerical procedure covering the full do-
main A (3.10 has to eliminate the effects induced by poles:
(q=0, p=1) and @Q=1, p=0). Taking into account the
symmetry of the integran(3.11)

where ¢ labels the angle between the vectkrandq. Now,

to obtain the energy transfer in the form symmetric in vari-
ablesp andq, we are introducing the transformatioq, ¢)
—(q',p'), whereq’ =qg/k and

p’=+1+2(q/k)cosp+ (q/k)>.

It transforms the spherical coordinates ¢) to dimension-
less bipolar coordinategy(,p’). Using

R(q,p; x)=R(p,q;x) , (B2

we see that the overall integration domaircan be reduced
to ALUA2. After this step we obtain the formula

da ag=da dpdel 1o 01| | <daap P | dadpRapo-23 [ dadp Rapv.
a(q",p") q'sing’ A 512 Jal
1\2 12 (BS)
cos¢=(p) —(@)°-1
29’ ' in which the problem connected with the single pate=0,

p=1) remains. Further appropriate transformations

V2[(a)?+(a'p)?+(p)*1-[1+(a)*+ (p")*]

sing=

20’ ’ y 1-y+{(wy)

(A14)  a=3, p=—— —, {wy)=1+2wy for Al
we obtain (B4)

d 1 w,
f d'q Pka.k-aq) QZE, p= {(zyy) for A2 (B5)

=Sy-1237%¢
><fAdq’dp’p’q’[Z[(q’)2+(q’p’)2+(p’)2] p=1+q p=gq
P

~[1+ (@) (p) 12 l

1
XP k,kqC5[(p'k)2—(Q’k)2—k2] . (A1)

The system of equation(8.10—(3.13 can be obtained from |
Eq. (A15) by using the formal replacemenps —p andq’

APPENDIX B: NUMERICAL CALCULATION OF THE
INTEGRALS

o

ot e — —
—
=]

In this appendix algebraic manipulations are presented, FIG. 5. Schematic decomposition of the integration domgin
which were successfully applied to calculate numericallyinto its subdomaind}, A2, andA,,.
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are used to mapAl and A2 onto the unit square

(0,2)x(0,1). Taking into account the change of the integra-
tion measures we obtain

leq dp Ra,p;x)
deyd
f ,dg dp Ra,p;x)
Al}
11 1
f j dy dw—z R(
0 2y

It follows from Eq.(B6) that the effect of the transformation
(B4) is constructive since the Jacobiagefd(q,p)/a(y,w)]|

=y/2 cancels the pole ¥/ concerned with the kernel
K[ p(y,w),y/2]. The second transformatidB5) seems to be

(y 1-y+4(w,y)
- 2

oy, |

(B6)

s, |

(B7)

1 4(wy)
2y’ 2y

less useful because of the production of many apparent sin-

gularities of the integran@7). However, the potential nu-

merical complications can be simply eliminated using the

transcription

R( 1 4w, y)

2y’ 2y
The functionsR; andR, are defined by

1 —2/3
22 =Ry(W,y; x) =Y “"Ra(W,Y; x).

(B8)

Ry(w,y;x)

FO(g(W1y)X72y)FO(X12y)
[£(w,y)/2]%" 73

X [Ql(W!y) + Qz(WyY)],

Fo(f(WaY)X,ZY)
[¢(w,y)]7" 23

=yIKo(W,y)

Ra(w,y; x) = Ko(W-Y)F(X)(

X Ql(W!y) + Fo(X,ZY)Qz(W:Y)) ’
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KO(W!y)
_ 2T A-wAL(wy) +yA(wA 1) DR
- LW, {L1+(2y) P+ [ L(w,y) 173

B yd— 11/3 K(é/(w,y) i
- 27/3*d 2y !2y ’
Qi(w,y)=4 3Q(§( ),2—1;/)=(d—2+5wz)y+w
+4wy?[2w?— 1+wy(w?—1)],
1 4(wy)
Qz(w,y)=4y3Q<E, o

=(d—2-w?)y—w+4(d—1)wy?(1+wy),

X
FO(Xaxl)EFpaV( by,b,,b3,bp; X_l)

=Fpa,(blxl,ble,b3xl,th§/3;X). (Bg)

The essential property allowing the elimination of the nu-
merically difficult terms inR; and R, is the homogeneity
of the parametrization F,u(b;&,b,&,03¢,bpEY3x8)
=Fpalb1,b2,b3, bh x) V¢ [see Eq.(6.4)]. In addition, the
replacementy—y®, which eliminates the integrable singu-
larity y %2 arising in Eq.(B8), leads to the formula

1
Lidq dpz—yzR(q,p,x)

11
=[] ay duirywyin -aRotwyi01
(B10)

We conclude this appendix by noting that the convenient
way to calculatd (¥} [see Eq(4.17)] is to use the formula

1
I{F = fodx X Y Fo(1x)+x 4PF palby,by,b3,b4 %),
(B11)
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