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Calculation of spectra of turbulence in the energy-containing and inertial ranges
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A statistical theory for the power law stage of freely decaying homogeneous and isotropic developed
turbulence is proposed. Attention is focused on the velocity field statistics in the energy-containing and inertial
scales. The kinetic energy spectrumE(k,t) and energy transfer spectrumT(k,t) are calculated as functions of
wave numberk and decay timet. The scaling properties of the spectra of the stationary model of the randomly
stirred fluid have been chosen as the starting point for the approximate derivation of time-dependent spectra
E(k,t) andT(k,t). The stationary model analyzed by means of the renormalization group and short-distance
expansion methods has provided the spectraE(k)5CK«2/3k25/3F(kl) @whereCK is the Kolmogorov constant
and F(kl) is a function# and T(k)}«k21c$F%(kl) @where c$F%(kl) is functionally dependent onF#. The
characteristic length scale of these spectra defined from the mean square root velocityu and mean energy
dissipation« is the von Kármán scalel 5u3/«. We have assumed thatl , u, and« as well asE(k) andT(k) are
no longer constants but unknown functions oft. Scaling forms constructed in this way are consistent with the
basic assumption of George’s closure@W. M. George, Phys. Fluids A4, 1492~1992!#. Power decay laws for
«(t), l (t), u(t) and the constituent integro-differential equation for the scaling functionF„kl(t)…
5E(k,t)/CK«2/3k25/3 have been obtained using the equation of the spectral energy budget. The equation for
F„kl(t)… has been investigated numerically for the three-dimensional system with Saffman’s invariant@P. G.
Saffman, J. Fluid Mech.27, 581 ~1967!; Phys. Fluids10, 1349 ~1967!#. The calculated longitudinal energy
spectrum has been compared with the available experimental data.@S1063-651X~98!00210-4#

PACS number~s!: 47.27.Gs, 47.27.Jv, 11.10.Gh
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I. INTRODUCTION

The Kolmogorov’s universality hypothesis@1# supposing
that the inertial range statistics of strongly developed tur
lence is independent of the geometry of boundary conditi
and the dynamics of dissipation scales has received rem
able experimental support@2,3#. To establish the validity of
the phenomenologically obtained2 5

3 law of the kinetic en-
ergy spectrum the renormalization group~RG! method has
been applied@4# in the framework of Wyld’s statistica
model of the randomly stirred fluid@5#. Later development of
the different RG variants applied to the stochastic hydro
namics @6–8# was stimulated by the effort to find a wel
founded calculation of the Kolmogorov constant.

It is a widespread opinion@2# that spectral properties o
the energy-containing scales are nonuniversal, i.e., the lo
bound of a spectrum evolves under the action of anisotr
and finite-size effects. Even the classic works have indica
that it is only a very crude assumption ignoring the scal
features of the statistics of the energy-containing range
more profound understanding of the universality was dev
oped by George@9#. His analysis is based on the properti
of the spectra measured at the intermediate distances be
the stirring grid~i.e., at the intermediate decay stages!, where
integral quantities such as the kinetic energy or dissipa
rate satisfy power laws in time. By indicating the presence
a variety of possible scaling forms depending on the ini
form of the spectrum, George has postulated a more gen
picture of the universality. The theory@10# based on the eddy
damped quasinormal Markovian~EDQNM! approximation
PRE 581063-651X/98/58~4!/4511~13!/$15.00
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also supports the idea of the self-similarity within th
energy-containing range. The remarkable difference betw
the above and the calculation presented here is that non
versal initial and late time stages of decay are fully inhibit
in our theory. This property is a direct consequence of
fact that self-similarity of the spectra@see Eq.~4.2! below# is
expected from the initial stages of the model formulation

At the starting point of the study we shall employ th
results accumulated previously for the randomly forc
Navier-Stokes equation. In the stochastic formulation the
ditive Gaussian forcing is applied to model the unpredicta
evolution of strong turbulent flows. In comparison with th
variants of the stationary stochastic models exclusively
cused on the statistics of the inertial scales, a modified d
nition of the pair correlation function of the random force
presented in our formulation. The main motivation for th
generalization is our goal to study the scaling behavior of
spectra within the energy-containing range.

The present paper is organized as follows. In Sec. II
review the equations of the past grid turbulence. In Sec.
we summarize the quantum-field RG results obtained pr
ously for the energy spectrum and energy transfer of
inertial range. The extension of their forms towards t
energy-containing range is considered.

These forms represent the starting point of the de
analysis. In Sec. IV the model of decay is introduced and
integro-differential equation for the scaling function is d
rived. The numerical method for calculation of the scali
function with special emphasis on the asymptote of the in
tial scales is discussed in Sec. V. Two different parametr
4511 © 1998 The American Physical Society
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4512 PRE 58ADZHEMYAN, HNATICH, HORVÁ TH, AND STEHLIK
tions of the scaling function in Sec. VI are suggested for
three dimensional decay with Saffman’s invariant@see Eq.
~4.36! below#. The limitations of the model are discussed
Sec. VII. In Appendix A the form of the energy transf
function is derived. In Appendix B details necessary to ov
come the problems of the numerical integration are p
sented.

II. BASIC EQUATIONS OF THE PAST GRID EVOLUTION

The equation for the energy spectral budget plays a c
tral role in the description of the strongly developed turb
lence. If isotropy of the statistics, incompressibility of th
fluid, and the absence of the external energy sources
supposed, the energy current conservation in the wa
number space is expressed by the equation

] tE~k,t !5T~k,t !22n0k2E~k,t !, ~2.1!

where

E~k,t !5
1

2
kd21SdE ddx1

~2p!d e2 ik•x12̂ v~x1 ,t !•v~x2 ,t !&,

T~k,t !52kd21SdE ddx1

~2p!d e2 ik•x12

3^v~x1 ,t !@v~x2 ,t !•“x2
#v~x2 ,t !& ~2.2!

are the energy spectrum and energy transfer, respectiv
Sd52pd/2/G(d/2) is the area of thed-dimensional sphere o
unit radius,G(x) is the Gamma function,x12[x12x2 , and
n0 is the kinematic viscosity. The angular brackets den
the statistical average over the realizations of the velo
fluctuations at the fixed timet. One can easily verify that the
energy transfer fulfills the integral identity

E
0

`

dk T~k,t !50, ~2.3!

which leads to the equation for total energy conservation

] tE52«. ~2.4!

Here the mean kinetic energyE(t) and mean energy dissipa
tion rate«(t) are defined by the integrals

E~ t !5E
0

`

dk E~k,t !, «~ t !52n0E
0

`

dk k2E~k,t !.

~2.5!

It is well known that Eqs.~2.1!, ~2.4!, and ~2.5! may be
transferred to the experimentally most easily accessible
of the past grid turbulence if Taylor’s concept of frozen tu
bulence@2,11# is well justified. In accord with this concep
in the statistically homogeneous regions of the past g
flow, the time of decayt can be simply related to the distanc
measured in a streamwise direction from the position of
stirring grid.
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III. STOCHASTIC MODEL OF STATIONARY ISOTROPIC
TURBULENCE

Statistical information straightforwardly obtainable fro
Eq. ~2.1! is incomplete due to the standard closure proble
The classical attempt to solve this problem consists of
search for an appropriate phenomenological relation betw
T andE @2# or the search for the relation between statisti
moments of interest. The relations evaluated indirec
within the stochastic models@5–8# are considered less phe
nomenological due to significant elimination of empirical i
puts, which are used to adjust the model parameters.

The basic equation that mimics the statistics of stro
turbulence is the randomly forced Navier-Stokes equatio

]tv j5n0¹2v j2(
s

d

Pjs~“ !~v•“ !vs1 f j , “•v5“•f50,

~3.1!

wherePjs(k)5d js2kjks /k2 is a transverse projection opera
tor ensuring the incompressibility of the fluid. Two differe
time variables (t and t! were introduced to distinguish be
tween formulas corresponding to the stationary and de
case, respectively.

Following the tradition of the stochastic models of th
turbulence, we assume that the statistics of the external
dom forcef(x,t) is isotropic and Gaussian. It is complete
determined by the averages

^ f j~x,t!&50,

^ f j~x1 ,t1! f s~x2 ,t2!&5d~t12!Pjs~“x12
!C~ ux12u!, ~3.2!

wheret125t12t2 and

C~ uxu!5E ddk

~2p!d eik•xD $F%~k!

5
x~22d!/2

~2p!d/2 E
0

`

dk kd/2J~d22!/2~kx!D $F%~k!.

~3.3!

Here J is the Bessel function. The forcing spectru
D $F%(k) is defined by

D $F%~k!5D̄F~kl !k2d, ~3.4!

whereD̄ is the amplitude of the forcing correlations propo
tional to the mean injection rate of energy, which is equa
the mean energy dissipation rate«.

The combinationD̄/n0
3 plays the role of the coupling con

stant in the perturbative approach@4,12# and l is the typical
length of the energy-containing range. In Sec. IV we w
show that this scale can be associated with the von Ka´rmán
length scale. We assume that the regionk@1/l corresponds
to the inertial range. The explicit form of the functionF(kl)
is not specified yet and the forcing extension caused by
introduction ofF(kl) requires some additional remarks. Th
single point correlation function*2`

` dt1^f(x,t1)•f(x,t2)& is
proportional to the energy injection rateC(0)
}*0

`dk kd21D $F%(k). The argument of the integralC(0) rep-
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resents the contributions of the separate velocity mode
the full energy supply of the forcing. For the scales that
comparable tol the functionF(kl) reflects the details of the
forcing mechanism. In spite of this ambiguity, it is reaso

able to expect that a maximum ofkd21D $F%(k)5D̄F(kl)/k
should be located atk}1/l . The definition of the forcing
correlator~3.4! can be regarded as a relation generalizing
basick2d form of the forcing spectrum@6,13# or its exten-
sion k4@k21(1/l )2#22k2d @see also Eq.~6.3! in Sec. VI# in-
troduced in@4,8#. The term 1/l from the last expression play
the role of the infrared mass~when using the terms of th
quantum field models!. The corresponding energy contribu
tion kd21D $F%(k)}k21(kl)4/@11(kl)2#2 has a maximum a
the wave number)/ l . In Refs. @6,13#, the use of forcing
with the correlator;k2d @which is the massless limit of Eq
~3.4!# was motivated by the intention to apply the R
method to describe the inertial range statistics. Therefore
additional limitation to the form ofF(kl) is the assumption
that within the inertial range (kl@1) the spectrumD $F%(k)
approaches the tailk2d. This assumption is compatible wit
the normalization

lim
x→`

F~x!51. ~3.5!

The system of the velocity correlation functions is co
pletely determined by the stochastic model represented
Eqs.~3.1!, ~3.3!, and~3.4!. Naturally, the information imple-
mented byF(kl) will be reflected in the properties of th
correlation functions. Only in the special caseF51 is the
pure inertial range statistics generated.

To solve the complicated problem of the calculation
the spectral characteristicsE(k) andT(k), advanced theoret
ical tools utilizing the quantum field RG@4,14# and so-called
short-distance expansiontechniques@12,15# have been ap-
plied. The application was inspired by the general a
proaches developed in the quantum field theory and
theory of critical phenomena@16#.

In @4,8,14# it was shown that the forcingD̄k2d induces
the energy spectrum of the form

E~k!5cED̄2/3k25/3, ~3.6!

where

cE5
~d21!~g* !1/3Sd

4~2p!d , g* 5
16~d12!~2p!d

3~d21!Sd
. ~3.7!

The dimensionless parameterg* occurring here was fixed by
the RG transformation. The presence of the extended for
~3.4! is reflected in the energy spectrum

E~k!5cED̄2/3F~kl !k25/3 ~3.8!

of the inertial and energy-containing scales. The only diff
ence between Eqs.~3.6! and ~3.8! is the presence of the
functionF. Unfortunately, already in the simplest case of t
pure inertial range@whereF(x)51;x#, problems appear in
the analysis of the triple velocity correlation function@15#.
This function is related to the energy transfer via an integ
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l

formula. In Appendix A the reader can find the salient deta
of its derivation for the extended forcing. The resulting for
of T(k) is given by

T~k!5cTD̄k21c$F%~kl !, cT5
g* Sd

2~2p!d , ~3.9!

where

c$F%~x!5 c̃TE
D
dq dp R~q,p;x!, c̃T5

Sd21

2d11~2p!d ,

~3.10!

is the dimensionless scaling function of dimensionless v
ablex5kl and

R~q,p;x!5K~p,q!$F~px!F~qx!~pq!2d22/3

3@Q~p,q!1Q~q,p!#2F~x!

3@F~px!p2d22/3Q~p,q!

1F~qx!q2d22/3Q~q,p!#%, ~3.11!

K~p,q!5
@2~q21q2p21p2!2~11q41p4!#~d21!/2

pq~11q2/31p2/3!
,

~3.12!

Q~p,q!5p42p21~d212p2!q2. ~3.13!

In the integral~3.10! D denotes the domain of integration

D[$~q,p!;q>0,u12qu<p<11q%. ~3.14!

The inertial range critical exponents2 5
3 for E(k) @and the

exponent21 for thek dependence ofT(k)# were perturba-
tively calculated exactly@12,14# using thee-expansion tech-
nique ~see, e.g.,@16#!. The stationary form ofT(k) as given
by Eqs.~3.9!–~3.13! is consistent with the EDQNM mode
@7,17,18#. The principal difference between the form of e
ergy transfer resulting from the Markovian nature and
similar form given by Eqs.~3.9!–~3.13! is the presence of the
function F and the presence of the constant parametercT ,
which is fixed by the RG flow. Since the final treatment
the model needs the support of the numerical analysis
Appendix B some of the details are discussed that allow
the efficient calculation of two dimensional integrals of t
type ~3.10!.

IV. MODEL OF THE TURBULENCE DECAY:
POWER FORM OF THE TIME EVOLUTION

The decay of the freely evolving turbulence can be mo
eled by assuming that the role of the energy input is pla
by the term] tE. Since we are looking forE(k,t) andT(k,t)
in the restricted region of the inertial and energy-contain
scales, the viscous effects can be neglected and the equ
for the spectral budget is applicable in the truncated fo
] tE5T.

Assuming low speed of the time variations and part
persistence of the distribution of the spatial turbulent str
tures, the decay spectra can be constructed using mod



n

-
r-
io
th

on

e

of

d:

d
ng

og-
ri-

ing
r

.
tic

uc-

4514 PRE 58ADZHEMYAN, HNATICH, HORVÁ TH, AND STEHLIK
stationary forms@see Eqs.~3.8! and~3.9!#. Applying the sub-
stitutions

F→F, l→ l ~ t !, D̄→D̄~ t !, ~4.1!

we have obtained

E~k,t !5cE@D̄~ t !#2/3F„kl~ t !…k25/3,

T~k,t !5cTD̄~ t !k21c$F%
„kl~ t !…. ~4.2!

To distinguish between the stationary and decay situatio
two different symbolsF and F @as well as the functionals
c$F%

„kl(t)… andc$F%
„kl(t)…# have been introduced; the sym

bol F(kl) plays the role of the scaling function. The unde
lying problem associated with our approximate construct
is estimating the bounds of the admissible domain in
wave-number time or parametric spaces~see Sec. VII!. Re-
gardless of the detailed structure ofc$F%(x), Eq. ~4.2! is
compatible with the self-similar relations postulated by v
Kármán and Howarth@19# and George@9#.

In this section we present the derivation of the time d

pendencesD̄(t),l (t) as well as the derivation of a system
equations for the scaling functionF(x). If the time-
dependent scaling forms~4.2! are inserted into the inviscid
variant of Eq.~2.1!, the following equation can be obtaine

f1~ t !x22/3F11f2~ t !x
d

dxGF~x!5c$F%~x!, ~4.3!

where

f1~ t !5
2cE

3cT
@D̄~ t !#21/3@ l ~ t !#2/3] tlnD̄~ t !, ~4.4!

f2~ t !5
3

2

] tln l ~ t !

] tlnD̄~ t !
. ~4.5!

The differentiation of Eq.~4.3! with respect tot gives rise to
the auxiliary equation that allows us to determine the con
tions of its solubility. The comprehensive analysis taki
into account the auxiliary equation and Eq.~4.3! shows that
the most informative physical solution is obtained when

f1~ t !5c1 , f2~ t !5c2 ~4.6!

(c1 andc2 are some integration constants! and

L̂F~x!5c$F%~x!, L̂[c1x22/3F11c2x
d

dxG . ~4.7!

From the normalization~3.5! and Eq.~4.7! we conclude that
L̂FuF51 asymptotically vanishes,

L̂FuF515c1x22/3 for c1Þ0, x@1, ~4.8!

whereas@3#

c$F%~x!50 for F51, ~4.9!
s,

n
e

-

i-

i.e., when the energy spectrum acquires the pure Kolm
orov form. This finding is consistent with the weakened va
ant of Eq.~4.7!,

lim
x→`

@ L̂F~x!2c$F%~x!#50. ~4.10!

A more restrictive condition

lim
x→`

x2/3@ L̂F~x!2c$F%~x!#50 ~4.11!

is used in Sec. V to control the coincidence of the lead
asymptotic behavior ofc$F%(x) and next to leading orde
asymptotics ofF(x). In accord with the assumption@19#
Eqs.~4.4!–~4.6! have the solution

D̄~ t !5D0taD, l ~ t !5 l 0ta l. ~4.12!

The amplitudesD0 ,l 0 and exponentsa l ,aD are related to
the separation constantsc1 ,c2 via the relations

D05 l 0
2S 2cEaD

3cTc1
D 3

, a l5
6c2

4c223
, aD5

9

4c223
.

~4.13!

When Eqs.~3.8!, ~4.12!, and ~4.13! are inserted into Eqs
~2.4! and ~2.5! one can obtain the decay laws of the kine
energy and energy dissipation

E~ t !5E0taE, aE5
2~aD1a l !

3
, ~4.14!

E05
4cE

3aD
2 l 0

2

9cT
2c1

2 I $F%, ~4.15!

«~ t !52aEE0taE21, ~4.16!

I $F%[E
0

`

dx x25/3F~x!. ~4.17!

Similarly, for the mean square root velocityu(t) one obtains

u~ t !5A2

d
E~ t !5u0taE/2, u05A2

d
E0. ~4.18!

Now we demonstrate how the separation constantc2 intro-
duced in Eq.~4.6! reflects the structure ofF(x) for x→0. At
the end of the section, the connection betweenc1 and Kol-
mogorov constantCK is provided.

Following @3#, the assumption about the large-scale str
ture of the turbulence has been supplemented

lim
k→0

E~k,t !

ka 5La5const.0, a.0, ~4.19!

whereLa and a are new parameters. The choice ofa im-
plies the selection of the flow invariantLa @see Eqs.~4.31!
and~4.32! below#. From Eqs.~3.8! and~4.19! it follows that

F~x!5cFx~3a15!/3 as x!1, ~4.20!
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La5cFcED̄2/3l ~3a15!/3, ~4.21!

wherecF is a constant. The requirement of the time inva
ance ofLa and Eqs.~4.12! and~4.21! lead to the connection
of the exponentsaD52(a l /2)(3a15). Then, using Eqs
~4.13!, with the help of Eq.~4.7! we obtain

c252
3

3a15
, L̂FuF5cFx~3a15!/350. ~4.22!

From the relations~4.13!, ~4.14!, and~4.22! it follows that

a l5
2

a13
, aD52

3a15

a13
, aE511aD52

2~a11!

a13
.

~4.23!

In analogy with the stationary case, the Kolmogorov const
has been defined by the relation

CK5
E~k,t !

@«~ t !#2/3k25/3F~kl !
. ~4.24!

The normalization~3.5! implies that the inertial range spec
trum CK«2/3k25/3 is achieved fork@1/l . Equations~4.2! and
~4.24! can be understood as two different representation
the sameE(k,t) spectrum. Their comparison and applicati
of Eqs.~3.9!, ~4.4!, ~4.6!, ~4.13!, and~4.14! yield

CK5cES D̄

«
D 2/3

5cES 2
D0

aEE0
D 2/3

5cES 2
2aD

3aEcTc1I $F%D 2/3

.

~4.25!

The time independence ofCK stems from Eq.~4.23!. From
Eqs.~2.5! and ~4.24! we have

E5CKI $F%«2/3l 2/3. ~4.26!

By the use of Eqs.~4.18! and ~4.26! we obtain

l 5
u3

« S 2CKI $F%

d D 3/2

. ~4.27!

The last formula resembles the established definition of
von Kármán length scale

lK5
u3

«
. ~4.28!

Therefore, it is convenient to suggest the calibrationl 5 lK to
give rise to the connection

I $F%5
d

2CK
. ~4.29!

Substitution of this form into Eq.~4.25! relatesc1 andCK :

c15
c̃1

ACK

, where c̃15
4~12aE!~cE!3/2

3daEcT
. ~4.30!

From Eqs.~4.25!, ~4.28!, and~4.23! we rewrite Eq.~4.21! in
terms of«, u, and l :
-

nt

of

e

La5cFCK«2/3l ~3a15!/35cFCKu2l 11a5cFCKu0
2l 0

11a .
~4.31!

The characteristics that are essential for the constructio
the decay phenomenology are the dimensional integrals@2#

Ia5E
0

`

dx xaBLL~x,t !. ~4.32!

Here BLL(x,t) is the longitudinal velocity pair correlation
function defined by

BLL~ ux12u,t !5(
j ,s

d

^v j~x1 ,t !vs~x2 ,t !&
~x12! j~x12!s

ux12u2
.

~4.33!

It is connected to theE(k,t) spectrum by means of the rela
tion

BLL~x,t !5E
0

`

dk E~k,t !BL
E~kx!, ~4.34!

where BL
E(y)52(siny2y cosy)/y3 in the cased53. The

substitution of Eq.~4.24! into Eq. ~4.34! gives

BLL~x,t !5@u~ t !#2B̃LS x

l ~ t ! D ,

B̃L~y!5CKE
0

`

dx BL
E~xy!x25/3F~x!. ~4.35!

From Eqs.~4.32! and ~4.35! we have

Ia5cIu
2l 11a, cI5E

0

`

dy yaB̃L~y!. ~4.36!

The exclusion ofu2,l 11a terms from Eqs.~4.31! and ~4.36!
yields

Ia5
cI

cFCK
La . ~4.37!

From the last connection it follows that time invariance
Laka implies the invariance of integralIa . Due to analytic-
ity arguments, the most relevant for study are the choi
a52,4,... . The value ofL2 is associated with the so-calle
Saffman invariantI2 @20#, whereasL4 is proportional to the
Loitsyanski integralI4 @2#. The special case ofd53, and
a52 is studied in detail in Sec. VI.

It might also be interesting to ask about the initial con
tion of decay. Since the self-similarity makes the time a
wave-number asymptotics interconnected, the initial con
tion limt→0E(k,t)5Laka stems simply from the asymptoti
constraint~4.19!. From this it follows that the inertial range
is not formed fort→0 @sincel (t)→0#. Whent increases, the
lower bound of the inertial range moves towards the lar
spatial scales and theE(k,t) spectrum attains the shape typ
cal for the three-dimensional developed turbulence.

The remarkable property of theLd21kd21 energy spec-
trum is that it describesd (d)-correlated~in the real space
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representation! velocity fluctuations. In addition, any in
crease ofa (a.d21) in the spectrumLaka induces more
pronounced pushing of the energy towards the sma
scales, which means that the spectrum mentioned shoul
able to model the response of the system on the variety o
stirring regimes. In agreement with the proposed model,
presence of strong stirring near the grid is the character
feature of the initial stages of the past grid evolution.

V. NUMERICAL METHOD OF THE CALCULATION
OF THE SCALING FUNCTION

At this stage the formulation of the problem of findingF
is mathematically completed. Nevertheless, the structur
Eqs. ~4.7!, ~4.17!, ~4.29!, and ~4.30! is beyond the scope o
standard approaches, especially due to the nonlocal char
of the termsF(qx),F(px). In addition, the problem is as
sociated with the asymptotic conditions~3.5! and ~4.22!,
which make attempts to find an exact solution untracta
Direct application of the standard numerical approac
seems to be impossible as well.

Our procedure consists in the numerical least-squa
minimization of the functional

Y~ b̄![ (
xPM

x22@ L̂Fpar~ b̄;x!2c$Fpar~ b̄;x!%#2, ~5.1!

which sums up the weighted squared differencesL̂F(b̄;x)
2c$F(b̄;x)% calculated for the set of the mesh pointsM
5$x1 ,x2 ,...% and vectorb̄ constructed from the variationa
parameters. The parametrizationFpar(b̄;x) approximating
the unknown functionF(x) @see Eqs.~6.3! and~6.4! below#
is suggested to satisfy the asymptotical requirements~3.5!
and ~4.20!.

The form of theY(b̄) stems simply from a more gener
functional *dk(] tE2T)2, attaining the minimum for] tE
5T and Eq.~4.2!. To reach the minimum numerically, th
steepest-descent minimization procedure has been utili
The minimization ofY must take into account also Eq
~4.17!, ~4.29!, and~4.30!. For this reason, the basic nume
cal procedure has been supplemented by iterative steps
ing into account the additional equations@in Sec. VI we dis-
cuss the effect of further conditions improving theFpar#. The
convergence of the method towards the minimum is not v
lated owing to the low sensitivity ofI $F%, CK , andc1 to the
changes inb̄.

To improve the coincidence ofFpar(b̄;x) and F(x) at
x@1 Eq. ~4.11! has been considered. The asymptote
F(x) is assumed to be in the form

F~x!.Fpar~ b̄;x!512bhxah as x@1, and ah,0,
~5.2!

which is compatible with the normalization~3.5!. This form
includes the unknown parametersbh andah . From Eq.~3.9!
we obtain

c$F%~x!uF~x!→12bhxah52bhch~ah!xah1O~x2ah!,
~5.3!
r
be
he
e
ic

of

ter

e.
s

es

d.

ak-

-

f

where

ch~ah!5 c̃TE
D
dq dp Rh~q,p,ah!, ~5.4!

Rh~q,p,ah!5K~p,q!$~qah1pah!~pq!2 2/32d

3@Q~p,q!1Q~q,p!#

2~11pah!p2 2/32dQ~p,q!

2~11qah!q2 2/32dQ~q,p!%.

Due to Eq.~4.9!, the zeroth-order termc$F%(x)uF51 is not
present in the series~5.3!. Substitution of Eq.~5.2! into the
left-hand side of Eq.~4.7! gives

L̂~12bhxah!5c1x22/32c1bh~11c2ah!xah2 2/3.
~5.5!

For x@1 Eq. ~4.7! acquires the form2bhch(ah)xah

5c1x22/3, leading to the connections

bh52
c1

ch~22/3!
5

ch

ACK

, ch52
c̃1

ch~22/3!
, ah52

2

3
.

~5.6!

VI. PARAMETRIZATION OF THE SCALING FUNCTION
FOR a52 AND D53

In this section we examine the evolution of decay a
scaling behavior in the special case ofa52 andd53. For
these parameters Eqs.~4.23! give the exponents

a l5
2

5
, aD52

11

5
, aE52

6

5
, c252

3

11
, ~6.1!

in accord with the earlier result@21# and coinciding with the
experimental findings@3#. Due to various remarkable prop
erties of thek2 spectrum@2,3,13,22# the choice of theL2k2

asymptote ofE(k,t) is not motiveless.
Using Eqs. ~3.7! and ~3.9!, we calculate cEud53

50.162 329 andcTud5356.66̄. Hence, from Eqs.~4.29!,
~4.30!, ~5.3!, ~5.6!, and~6.1! we obtain

c̃1520.007 994, ch~22/3!ud5350.009 904,

~6.2!

ch50.8071, CK5
1.5

I $F% .

As the simplest one-parameter approximation ofF(x) we
have chosen the von Ka´rmán spectrum having the form

Fpar~b0 ;x!5x11/3~x21b0
2!211/6, I $F%51.261 96b0

22/3.
~6.3!

The minimization of the functionalY(b0) with respect tob0
provides the valueb051.35 and correspondingCK.1.45.
Since the parametrization involving the single variational p
rameterb0 ignores Eq.~5.6!, it plays only the role of a pre-
liminary estimate ofF(x) ~see Fig. 1!.
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To account for the discrepancy between the functio
x21L̂Fpar(b0 ;x) andx21c$Fpar(b0 ;x)%, which is obvious near
the function minima, and to improve the quality of approx
mation at very largex, the refined form of the parametriza
tion has been proposed. We have found that problems
x;2 can be overcome when the von Ka´rmán form ~6.3! is
replaced byx11/3(x412b2

2x21b1
4)211/12. In addition, the re-

quirement~5.2! with ah522/3 from Eq. ~5.6! leads us to
the suggestion of the asymptotically correct prefactor@1
1bh(b3

21x2)21/3#21 with b3Þ0 preserving the analyticity
for x→0. Consequently, the improved parametrization

Fpar~b1 ,b2 ,b3 ,bh ;x!5x11/3~x412b2
2x21b1

4!211/12

3@11bh~b3
21x2!21/3#21 ~6.4!

contains the variational parametersb̄5(b1 ,b2 ,b3 ,bh). The
minimization ofY(b1 ,b2 ,b3 ,bh) carried out forM involv-
ing 50 mesh points uniformly distributed within the interv
0,x<14 leads to the numerical estimates

b151.578, b250.677, b352.906, bh50.642,

~6.5!
CK51.578.

The coincidence of both sides of Eq.~4.7! is illustrated in
Fig. 2. Both Figs. 1 and 2 show two different approximatio
of T(k,t) in the energy-containing range. Using Eq.~5.2! we
find that the lowest infrared correction to the leading K
mogorov asymptotics CK«2/3k25/3 is of the form
2bhCK(«/ l )2/3k27/3.

To compare the theory and experiment we have calcula
the longitudinal energy spectrumEi @2#. The transformation
E→Ei realized with the help of Eq.~4.24! gives

EiS x

l ~ t !
,t D5E

1

`

dz~z221!z23E~kz,t !

5@u~ t !#2l ~ t !CKx25/3E
0

1

dz~12z2!z2/3F~x/z!.

~6.6!

FIG. 1. Functions x21L̂Fpar(b0 ;x) and T(x/ l ,t)
}x21c$Fpar(b0 ;x)% for the parametrizationFpar(b0 ;x) @Eq. ~6.3!#
with b051.35. We see that$Fpar(b0 ;x)% represents only the crud

approximation of the solution of the equationL̂F5c$F%.
s

or

s

d

Figure 3 shows a comparison of the experimental data w
our theoretical prediction utilizing the approximationF(x)
.Fpar(b1 ,b2 ,b3 ,bh ;x). We see that theoretical dependen
Ei(kl)/u2l exhibits particular agreement with the data fro
the wave-number range between 0.1/l and 10/l , where
Ei /u2l changes approximately two orders of magnitude.
creasing deviations of the data from Kolmogorov’s asym
tote at high wave numbers should be associated with
viscosity effect.

VII. LIMITATIONS OF THE MODEL

The determination of the consequences of the quas
tionary approach is substantial for model applications. W
assume that the model introduced should be able to desc
a free decay of the turbulence when~i! the von Kármán scale
l (t) is the principal and unique length scale determining
self-similar part of the spectra@the occurrence of the scalin

FIG. 2. Coincidence of the function

x21L̂Fpar(b1 ,b2 ,b3 ,bh ;x) and x21c$Fpar(b1 ,b2 ,b3 ,bh ;x)% calculated
for the parameters~6.5! and the setM involving 50 mesh points.

FIG. 3. Comparison of the theoretically predicted form of t
longitudinal turbulent energy spectrumEi(k) and the experimenta
data in the range 0.1/l<k<10/l . The experimental points corre
spond to data taken from@9,23#. They are plotted versus the com
binationkl in analogy with@9#. TheEi(k) spectrum~6.6! calculated
for the parametrization~6.4! is depicted by the continuous curve
the dotted line corresponds to the pure Kolmogorov asympt
form k25/3. The data were chosen at different past grid distanceX
related to decay timet; the dimensionless ratioX/M represents the
relative distance~time! measured in mesh length unitsM .
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should be expected whenl (t) is much larger than the typica
viscous scaleh(t) and much smaller than the outer sca
L0#, ~ii ! the spectral evolution is sufficiently slow and pr
serving the proportions in the stationary vortex size distri
tion, and~iii ! the molecular viscosity effects are negligib
compared to the effects of the vortex inertia. The scales
interest lie in the energy-containing and inertial ranges.

In the next part of the section the impact of above
sumptions will be reconsidered quantitatively.

~i! The necessary condition to preserve the self-simila
represented by Eq.~4.2! is that the Kolmogorov scale

h~ t !5S n0
3

«~ t ! D
1/4

5h0t ~3a15!/4~a13!, h05F 2n0

~2aE!l 0
2/3dG3/4

~7.1!

and the von Ka´rmán scalel (t) are widely separated:

l ~ t !@h~ t !. ~7.2!

The additional condition@2#

l ~ t !!L0 ~7.3!

determines the bounds of the spectral representation. If
Reynolds number on the scalel is defined as

Rel~ t !5
u~ t !l ~ t !

n0
5S l ~ t !

h~ t ! D
4/3

5S l 0

h0
D 4/3

t ~12a!/~31a!,

~7.4!

then the condition~7.2! is equivalent to the requiremen
Rel(t)@1. As it follows from Eq.~7.4!, for a>1, Rel (t) de-
creases witht. Therefore, the model studied may fail to giv
an accurate description of the very late time stages of de
From Eqs.~4.12! and~4.23! it follows that both criteria~7.2!
and ~7.3! can be fulfilled simultaneously if

t!tmax5minH S L0

l 0
D ~a13!/2

,S l 0

h0
D 4~a13!/3~a21!J . ~7.5!

Let kE(t) denotes the coordinate of the maximum ofE(k,t)
with respect to variablek @i.e. E(k,t)<E„kE(t),t…#; kE(t)
can be associated with the lower bound of the inertial ra
defined by the inequalitieskE(t)!k!1/h(t). Formally,
kE(t)5kE / l (t)5(kE / l 0)t2a l, with the expectation
kE5O(1). For theparametrization~6.4! we have found that
kE.1.68.

~ii ! The principal dynamical characteristic of the statio
ary system is the time scale 1/n0k2. It is involved in the
exponentials of the bare propagators@see Eq.~A5!#. The ap-
plication of the quasistationary approach is justified if t
free decay process does not require one to change the
of the stationary propagators. The precondition of the
requirement is that the viscous damping is much faster t
the overall decay, i.e.,

t@tmin[ max
kh<1<kL0

H 1

n0k2 J .
L0

2

n0
. ~7.6!

~iii ! To guarantee the dominance of the inertia effects,
assume that
-

of

-

y

he

y.

e

-

rm
st
n

e

n~k,t !@n0 , ~7.7!

wheren(k,t)5n(k)uD̄→D̄(t) is the quasistationary form of th
eddy turbulent viscosity. The pure stationary form

n~k![S D̄

g*
D 1/3

k24/3 ~7.8!

was predicted by RG theory@12,14#. The condition~7.7! is
equivalent to

x!@Rel~ t !#3/4S CK

cE
D 3/8

g
*
21/4. ~7.9!

For the parameters~3.7! and~6.5! we obtain that the numeri
cal value of the prefactor from the last expression
(CK /cE)3/8g

*
21/450.5825. Using Eq.~4.23! for a52, we

have obtained l (t)}t0.4, h(t)}t0.55, and Rel(t)}t20.2,
whereas the substitution ofa54 yields l (t)}t0.286, h(t)
}t0.607, and Rel(t)}t20.428. Comparing these two decay re
gimes one can conclude that the time interval where the s
ing ~4.2! should be expected is wider in the case of dec
evolving via theL2 invariant.

VIII. CONCLUSION

We have presented a model that enables us to calcu
the scaling forms of the energy spectrum and energy tran
of decaying turbulence. The aim of the work has been
study the universal aspects of the isotropic and homogene
turbulence of the energy-containing and adjacent iner
range, where decay laws approach the power form.

The initial point of the study includes the results obtain
for the stationary model of randomly forced turbulence w
the extended form of random forcing. To describe the f
decay of the past grid turbulence, the results of the station
model were modified in the framework of the quasistation
approach. Ana posteriori analysis has imposed the limita
tions tmin<t<tmax representing the preconditions for the a
plicability of the quasistationary approach to decay statist
Since the small-k behavior of the spectrum in the Navie
Stokes turbulence has not been firmly established up to n
we have adopted for this aim Saffman’s hypothesis. Fix
the parametera is sufficient for the determination of th
scaling functionF, which is free of other adjustable param
eters.

The computation ofF has been performed ford53 and
a52. It has been recognized that the shape of the functi
E(x/ l ) andT(x/ l ,t) exhibits qualitative agreement with th
canonical expectations for the energy-containing range@3#.
The approximately calculated longitudinal energy spectr
shows promising agreement with the available experime
data. Due to insufficient accuracy and reproducibility of t
current data, the quantitative testing of the third-order sta
tics is a difficult task.

In this paper we have done more than just derive a
present a model of decay; there is a proposal for further w
towards the understanding of the universal aspects of tu
lence. Most importantly, the presence of the multiplicati
~intermittency! correction to thek25/3 asymptote ofE(k,t)
could be recognized as well and the construction of the eq
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tion for the scaling function could be studied in more deta
In addition, one could analyze a more complex form of t
parametrization for differentd (d.2) anda to obtain more
comprehensive numerical results.
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APPENDIX A: STATIONARY SCALING FORM
OF THE ENERGY TRANSFER

To help the reader understand the origin of the formu
~3.9!–~3.12!, the derivation of the triple velocity correlatio
function@15# is presented in this appendix in a simplified a
shortened form. For the velocity field evolution described
Eqs. ~3.1! and ~3.3! the Martin-Siggia-Rose formalism@24#
permits us to find the functional integral expressions for
expectation values of generating functional with the effect
action

S5
1

2 (
j ,s

d E ddx1ddx2dt@ v̄ j~x1 ,t!Pjs~“x12
!

3C~ ux12u!v̄s~x2 ,t!#

1E ddx dt$v̄~x,t!•@2]tv2~v•“ !v1n0¹2v#~x,t!%.

~A1!

Here v̄ is the transverse auxiliary field~independent ofv!,
which has been introduced in the description by the trans
mation of the initial stochastic problem~3.1!–~3.3! in func-
tional form. Following Ref.@14#, single-time triple correla-
tion functions can be expressed through the functio
derivatives as

^vm~x1!vb~x2!vg~x3!&

5
1

Z U d3Z
dsm~x1 ,t!dsb~x2 ,t!dsg~x3 ,t!

U
s50,s̄50

,

~A2!

where the generating functional@12#

Z$s,s̄%5E DvE Dv̄ expFS1E ddx dt~s•v1s̄• v̄!~x,t!G
~A3!

can be calculated perturbatively using the functional form
@25#
.
e

-
nd

s

y

e
e

r-

l

a

Z$s,s̄%5expF1

2 (
m,s,n

d E ddx dtH d

dss~x,t!

d

dsn~x,t!

3Vmsn~2 i“ !
d

ds̄m~x,t!J G
3expF1

2 (
j ,l

d E ddx1dt1ddx2dt2

3$s j~x1 ,t1!Gjl ~x12,t12!s l~x2 ,t2!

1s j~x1 ,t1!Ḡjl ~x21,t21!s̄ l~x2 ,t2!

1s̄ j~x1 ,t1!Ḡjl ~x12,t12!s l~x2 ,t2!%G ~A4!

involving the bare propagators

Ḡms~x,t!5E ddk

~2p!d eik•xḠms
0 ~k,t!,

Gms~x,t!5E ddk

~2p!d eik•xGms
0 ~k,t!,

Ḡms
0 ~k,t!5Pms~k!u~2t!en0k2t,

Gms
0 ~k,t!5

D̄F~kl !

2n0k21d Pms~k!e2n0k2utu, ~A5!

and the three-point verticesVmsn(p)5 i (dmspn1dmnps) and
Vmsn(2 i“)5(dms]xn

1dmn]xs
); u(2t) is the usual step

function. The sequence of integrals generated in a pertu
tive way from Eq.~A4! may be represented pictorially by th
Feynman diagrams. Superficial diagrammatic divergen
arising in them are the classical artifacts of the perturba
treatment and the quantum field RG approach@14# is concep-
tually related to their elimination.

It is well known that recursive RG relations derived f
the action~A1! in the frame of thee-expansion scheme ex
hibit the infrared stable fixed point associated with the K
mogorov scaling. The knowledge of the fixed point para
eters allows us to find the leading infrared asymptotics of
energy spectrum and energy transfer. The complete calc
tion of F is beyond the scope of the RG theory, which
restricted to the analysis in the massless limitF(x)ux→` .
This conventional analysis is based on the assumption
the next to leading order asymptote of the functionF(kl)
@see Eqs.~3.5! and~5.2!# is free of terms affecting thek25/3

tail of E(k).

FIG. 4. Sum of the lowest-order diagrams contributing in t
correlation functionTmbg(k,q,p).
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The explicit form of the equal-time triple correlation fun
tion ^vmvbvg& may be more easily analyzed in wave-vec
space. Due to translational invariance we assume

^vm~x1!vb~x2!vg~x3!&

5E ddk

~2p!d E ddq

~2p!d E ddp

~2p!d ei ~k•x11q•x21p•x3!

3~2p!dd~d!~k1q1p!Tmbg~k,q,p!. ~A6!

The Fourier transformTmbg of the correlation function can
be approximated by means of the sum of diagrams in Fig
The isotropy assumption implies that the result of the su
mation has to be symmetric with respect to the permutat

of k, q, and p vectors. The triple vertex is

equivalent toVmsn(p) in the notation used. The diagram
n
ia

q
e

r

4.
-
n

matic double linesk; t0 [Ḡms
R (k,t02t1) and k;

t1[Gms
R (k,t02t1) are associated with the reno

malized propagators

Ḡms
R 5Ḡms

0 un0→n~k! , Gms
R 5Gms

0 un0→n~k! , ~A7!

which can be obtained from the bare propagators by rep
ing n0 by n(k), wheren(k) is the eddy viscosity@see Eq.
~7.8!#. The impact of the renormalized propagators is equi
lent to the resummation of the relevant ‘‘self-energy’’ co
tributions. It should be emphasized that no vertex correcti

of the type are needed in the expression for the corre

tion functionT in our approximation. The justification of thi
simplification was given in@15#, where the irrelevance of the
overall effect of all the vertex loops was demonstrated wit
the one-loop order of theshort-distance expansion. When the
diagrammatic sum~see Fig. 4! written in the algebraic form
is modified with the help of Eq.~7.8!, it gives
Tmbg~k,q,p!5 (
s,n,m

d E
2`

`

dt@Ḡms
R ~k,t!Gbn

R ~q,t!Ggm
R ~p,t!Vsnm~k!

1Gms
R ~k,t!Ḡbn

R ~q,t!Ggm
R ~p,t!Vnms~q!1Gms

R ~k,t!Gbn
R ~q,t!Ḡgm

R ~p,t!Vmsn~p!#

5
D̄2

4 (
s,n,m

d Pms~k!Pbn~q!Pgm~p!

„n~k!k21n~q!q21n~p!p2
…

S Vsnm~k!
F~ql !

n~q!

F~pl !

n~p!
~qp!2d22

1Vnms~q!
F~pl !

n~p!

F~kl !

n~k!
~pk!2d221Vmsn~p!

F~kl !

n~k!

F~ql !

n~q!
~kq!2d22D

5
g* D̄

4~k2/31q2/31p2/3! (
s,n,m

d

Pms~k!Pbn~q!Pgm~q!@Vsnm~k!F~ql !F~pl !~qp!2d22/3

1Vnms~q!F~pl !F~kl !~pk!2d22/31Vmsn~p!F~kl !F~ql !~kq!2d22/3#. ~A8!
It follows from Eqs.~2.2! and ~A6! that energy transfer ca
be simply associated with the triple correlation function v
the relation

T~k!5
kd21Sd

2~2p!2d (
m,b,g

d E ddq Vmbg~2k!

3Tmbg~k,q,p!up52k2q . ~A9!

Further analysis of the structure of the integrand from E
~A9! @defined by Eq.~A8!# requires the calculation of th
expressions of the type
.

(
m,s,b,n,g,m

d

Pms~k!Pbn~q!Pgm~p!S Vnms~q!

Vmsn~p!

Vsnm~k!
D Vmbg~2k!

5
k2@k2q22~k•q!2#

q2p2 S 2Q~p/k,q/k!

2Q~q/k,p/k!

Q~p/k,q/k!1Q~q/k,p/k!
D

~A10!

for p52k2q. @The functionQ is defined by Eq.~3.13!#.
From the structure of Eq.~A10! it follows that Eq.~A8! can
be written as a function of the argumentsk, q, andk•q:
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T~k!5
kd21Sd

2~2p!2d E ddq F~k,q,k•q!, ~A11!

where

F~k,q,k•q!5 (
m,b,g

d

Vmbg~2k!Tmbg~k,q,p!up52k2q .

~A12!

In the spherical coordinates, the integral~A11! can be written
as

E ddq F~k,q,k•q!5Sd21E
0

`

dq qd21E
0

p

df

3~sinf!d22F~k,q,kq cosf!,
~A13!

wheref labels the angle between the vectorsk andq. Now,
to obtain the energy transfer in the form symmetric in va
ablesp andq, we are introducing the transformation (q,f)
→(q8,p8), whereq85q/k and

p85A112~q/k!cosf1~q/k!2.

It transforms the spherical coordinates (q,f) to dimension-
less bipolar coordinates (q8,p8). Using

dq df5dq8dp8UdetS ]~q,f!

]~q8,p8! D U5dq8dp8
p8k

q8sinf
,

cosf5
~p8!22~q8!221

2q8
,

sinf5
A2@~q8!21~q8p8!21~p8!2#2@11~q8!41~p8!4#

2q8
,

~A14!

we obtain

E ddq F~k,q,k•q!

5Sd21232dkd

3E
D
dq8dp8p8q8†2@~q8!21~q8p8!21~p8!2#

2@11~q8!41~p8!4#‡~d23!/2

3FS k,kq8,
1

2
@~p8k!22~q8k!22k2# D . ~A15!

The system of equations~3.10!–~3.13! can be obtained from
Eq. ~A15! by using the formal replacementsp8→p and q8
→q.

APPENDIX B: NUMERICAL CALCULATION OF THE
INTEGRALS

In this appendix algebraic manipulations are presen
which were successfully applied to calculate numerica
-

d,
y

c$Fpar(b1 ,b2 ,b3 ,bh ;x)%(x) by using Eq.~3.9!. To explain the
way to overcome the unfavorable numerical effects, it is u
ful to decompose the integration domainD @defined by Eq.
~3.14!#. The decomposition introduces the elementary sub
mains~see Fig. 5!

D5Dy
1øDy

2øDw ,

Dw5$~q,p!;u12qu<p<q%,
~B1!

Dy
15$~q,p!;0<q<1/2,12q<p<11q%,

Dy
25$~q,p!;1/2<q<p<11q%.

From the singularity formed by the kernel~3.12! it might be
deduced that any numerical procedure covering the full
main D ~3.10! has to eliminate the effects induced by pole
(q50, p51) and (q51, p50). Taking into account the
symmetry of the integrand~3.11!

R~q,p;x!5R~p,q;x! , ~B2!

we see that the overall integration domainD can be reduced
to Dy

1øDy
2 . After this step we obtain the formula

E
D
dq dp R~q,p;x!52 (

j 51,2
E

Dy
j
dq dp R~q,p;x!,

~B3!

in which the problem connected with the single pole (q50,
p51) remains. Further appropriate transformations

q5
y

2
, p5

12y1z~w,y!

2
, z~w,y!5112wy for Dy

1,

~B4!

q5
1

2y
, p5

z~w,y!

2y
for Dy

2 ~B5!

FIG. 5. Schematic decomposition of the integration domainD
into its subdomainsDy

1 , Dy
2, andDw .
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are used to mapDy
1 and Dy

2 onto the unit square
^0,1&3^0,1&. Taking into account the change of the integr
tion measures we obtain

E
Dy

1
dq dp R~q,p;x!

5E
0

1E
0

1

dy dw
y

2
RS y

2
,

12y1z~w,y!

2
;x D ,

~B6!

E
Dy

2
dq dp R~q,p;x!

5E
0

1E
0

1

dy dw
1

2y2 RS 1

2y
,

z~w,y!

2y
;x D .

~B7!

It follows from Eq.~B6! that the effect of the transformatio
~B4! is constructive since the Jacobianudet@](q,p)/](y,w)#u
5y/2 cancels the pole 1/y concerned with the kerne
K@p(y,w),y/2#. The second transformation~B5! seems to be
less useful because of the production of many apparent
gularities of the integrand~B7!. However, the potential nu
merical complications can be simply eliminated using
transcription

1

2y2 RS 1

2y
,

z~w,y!

2y
;x D5R1~w,y;x!2y22/3R2~w,y;x!.

~B8!

The functionsR1 andR2 are defined by

R1~w,y;x!

5ydK0~w,y!
F0„z~w,y!x,2y…F0~x,2y!

@z~w,y!/2#d1 2/3

3@Q1~w,y!1Q2~w,y!#,

R2~w,y;x!5K0~w,y!F~x!S F0„z~w,y!x,2y…

@z~w,y!#d1 2/3

3Q1~w,y!1F0~x,2y!Q2~w,y! D ,
-

in-

e

K0~w,y!

5
2d1 1/3$~12w2!@z~w,y!1y2~w221!#%~d21!/2

z~w,y!$11~2y!2/31@z~w,y!#2/3%

5
yd2 11/3

27/32d KS z~w,y!

2y
,

1

2yD ,

Q1~w,y!54y3QS z~w,y!

2y
,

1

2yD5~d2215w2!y1w

14wy2@2w2211wy~w221!#,

Q2~w,y!54y3QS 1

2y
,
z~w,y!

2y D
5~d222w2!y2w14~d21!wy2~11wy!,

F0~x,x1![FparS b1 ,b2 ,b3 ,bh ;
x

x1
D

5Fpar~b1x1 ,b2x1 ,b3x1 ,bhx1
2/3;x!. ~B9!

The essential property allowing the elimination of the n
merically difficult terms inR1 and R2 is the homogeneity
of the parametrization Fpar(b1j,b2j,b3j,bhj2/3;xj)
5Fpar(b1 ,b2 ,b3 ,bh ;x) ;j @see Eq.~6.4!#. In addition, the
replacementy→y3, which eliminates the integrable singu
larity y23/2 arising in Eq.~B8!, leads to the formula

E
Dy

2
dq dp

1

2y2 R~q,p;x!

5E
0

1E
0

1

dy dw@R1~w,y;x!23R2~w,y3;x!#.

~B10!

We conclude this appendix by noting that the conveni
way to calculateI $F% @see Eq.~4.17!# is to use the formula

I $F%5E
0

1

dx x21/3@F0~1,x!1x24/3Fpar~b1 ,b2 ,b3 ,bh ;x!#.

~B11!
.
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