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Density probability distribution in one-dimensional polytropic gas dynamics
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We discuss the generation and statistics of the density fluctuations in highly compressible polytropic turbu-
lence, based on a simple model and one-dimensional numerical simulations. Observing that density structures
tend to form in a hierarchical manner, we assume that density fluctuations follow a random multiplicative
process. When the polytropic exponentis equal to unity, the local Mach number is independent of the
density, and our assumption leads us to expect that the probability density fu(Riéh of the density field
is a log-normal. This isothermal case is found to be special, with a disperé,iscaling as the square turbulent
Mach numbeiM?2, wheres= In p andp is the fluid density. Density fluctuations are stronger than expected on
the sole basis of shock jumps. Extrapolating the model to the g&sk we find that as the Mach number
becomes large, the density PDF is expected to asymptotically approach a power-law regime at high densities
when y<1, and at low densities whep>1. This effect can be traced back to the fact that the pressure term
in the momentum equation varies exponentially vetlthus opposing the growth of fluctuations on one side of
the PDF, while being negligible on the other side. This also causes the dispefsiorgrow more slowly than
M2 wheny# 1. In view of these results, we suggest that Burgers flow is a singular case not approached by the
high-M limit, with a PDF that develops power laws on both sid&1063-651X98)16909-X]

PACS numbg(s): 47.27.Ak, 47.40.Ki, 95.30.Lz

[. INTRODUCTION sen to use 1D simulations in order to perform a large number
of experiments at a sufficiently high resolution, integrated
The formation of density structures by the velocity field over very long time intervals, allowing us to collect large
of highly compressible turbulence is of great interest in asstatistical samples.
trophysics. The determination of their typical amplitude, size The simulations have three governing parameters: the
and volume filling factor poses significant difficulties since it Polytropic indexy, the Mach numbeM, and the Reynolds
requires a knowledge of the full statistics. In this paper wehumberR. We keep the Reynolds number fixed and explore
shall concentrate on one-point statistics and more specificall{fi€ effects of varyingy andM on the resulting density PDF.
on the probability density functioPDP of the density fluc- anapon of vy mduces a clear qualitative v_ar|at|on of the
tuations in one-dimension&lD) turbulent flows. densny PDE, which a}t'large Mach number displays a power-
It is well known that the density jump in a shock dependsIaW tail at high densities for € y<1, becomes log-normal

directly on the cooling ability of the fluid. Thus, for an adia- ©° ¥~ 1, and develops a power-law tail at low densities for
batic flow the maximum density jump is 4, for an isothermal y>1.This suggests a symmetry about the cpsel that we
also explore. Variation of the Mach number, on the other

2

flow it is ~ Mi_[l]’ and for nearly isobaric flows itis-ea — pony only appears to induce a quantitative change, the width
[2], whereM, is the Mach number ahead of the shock. Thet he PDF increasing witiV.

net cooling ability of a flow can be conveniently param-  The plan of the paper is as follows. In Sec. Il we describe

etrized by the polytropic exponent, so that the thermal he equations solved and the numerical method. In Sec. I
pressureP is given byP=Kp?”, wherep is the fluid density  \ye describe the statistics of the various fields, in terms of

[3]. Isothermal flows have/=1, and isobaric flows have  their PDFs, together with a tentative model and a discussion
=0. Note thaty<<0 corresponds to the isobaric mode of the of the Burgers case. Section IV is devoted to a discussion on

thermal instability(see, e.g.[4]). Thus, in general, the am- the choice of the forcing, together with a summary of our
plitude of the turbulent density fluctuations will be a function yagits.

of y.

Previous work with isothermal flows had suggested that
the PDF is log-normal5,6], while for Burgers flows a
power-law PDF has been reportgd]. More recently, evi- e choose to concentrate on one-dimensional forced
dence that flows with effective polytropic indices<'<<1  polytropic gas dynamics, governed by the following nondi-
also develop power-law tails at high densities has been prenensionalized equations:
sented 8]. In order to resolve this discrepancy, we present a
series of 1D numerical simulations of polytropic gas turbu-

. . . . . 1 o 1
lence with random forcing, in which the polytropic exponent AU+Udu=— — + =dyuta, (1)
y parametrizes the compressibility of the flow. We have cho- ymM2 p R

II. EQUATIONS AND NUMERICAL METHOD
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dp+ dy(pu)=0, (2 unforced case, using the variable=(1—v) In p when vy

. . - . #1 ands=In p wheny=1. Fory#1, we get
whereu is the velocity of the fluid in units olJ, p the P Y 4 g

density in units ofpy, 7y the polytropic index, and the Du 1 P

Mach number of the unit velocity at the unit density,. —_— = @7V, 3
The equations are driven by an acceleratarwith zero Dt (1-y)Mm2 X

mean. The Reynolds number B=UL/v, wherelL is the

size of the domain and the kinematic viscosity chosen Dv d

constant to ensure the conservation of the mean velocity ﬁ=—(l—y)5u, )

(u)y=1/Lfu dx. The viscous term is kept as small as pos-

sible and is only included to prevent numerical blowup. Noteand fory=1,

that the “correct” form of the viscous term is obtained after

replacingv with the ratiow/p, where the dynamical viscos- Du 1 9

ity w is usually considered independent of the density. The Dt W &S, ()
equations then conserve the moment(u dx if the accel-

erationa in Eq. (1) is also replaced by the ratio of a for€e Ds P

to the densityp. The dynamics that results in this case is - —u, (6)

very different due to the dependence of the driving term with Dt 2
respect to the density, as discussed in the last section. ) o .
For large Mach number simulations, it was found necesyvhereD/Dt stands for t.h_e convective denvatwe_. The vari-
sary to smooth density gradients using a mass diffusion terriP!€ v i, up to an additive constant, the logarithm of the
of the form u,d,p in the right-hand side of Eq2). Total ~ Square of the sound speed, and whenl, it becomes iden-
mass is still conserved in the presence of this term, apg if tcally zero. _ o .
is taken sufficiently small, it has been tested that mass diffu- These equations can be rewritten in Riemann invariant
sion does not affect the dynamics in a way that could modify/@rm- Fory#1, they read
our conclusions.
It was also convenient to solve Eq4) and(2) using the [8t+(UiC)<9x](
variables= In p. The numerical code uses a standard pseu-
dospectral method with periodic boundary conditions. Time
advance is performed using a Crank-Nicholson scheme f
the linear terms and an Adams-Bashforth scheme for th
nonlinear ones. For all the runs presented in this paper, the
kinematic viscosity has been fixed a&3x 10" 3. For runs
with M=3, we haveu,=5x10"4.
tru;hﬁ;scgelc%rr?gt(z);tlZE:SISitCurcldg%%g E,Ogrggﬁpﬁg\e,élfusrﬁ_ec A numb_er of interesting remarks can be made regarding
. the preceding equations.
bers 1=<k=19 and phases chosen randomly with a correla- (i) When y=1, Egs.(5) and (6) are invariant upon the

tion time t o, =0.003. Resolution ranges froM=3072 10 nanses .s+b, whereb is an arbitrary constant. Indeed,

N=6144 grid points for_ the ru_ns_witM =6. . . the sound speed does not depend on the local density of the
We perform one-point statistics of the simulations, forﬂuid in this case

both the density and the velocity derivatives, keeping the (i) In the general case, if we replagewith 2— y andp
forcing and the viscosity constant. All simulations start WlthWith 1/p, we observe that the Riemann invariamt$=u

zerlchl m:galr\;elocl:)l'iyiﬁnrd conr?t%rllt derrLsnly.d histoarams of th *[2c/(y—1)] are exchanged, while their speeds c re-
dc') erto OI ? Id easc;]_ah y Sat ipied his ogt_al 3 ctJ fnain unchanged. We shall now explore the implications of
one-dimensional fields, which contain only spatial-aata  y,iq remark on the statistics of the density fluctuations in the
points, we sum the_h|st_ograms_ over time, sampling at '.mer\'/veakly compressible regime. For small values of the Mach
val_s of 0.1 time units, integrating over a total of _150 time | \mber. a reductive perturbation expansion can be per-
units. However, we have found that, since the .'5|mulat|on§0rmed ,on the viscous equations and it has been sHON
Ztart V\gthdun!formtﬁensk:'gy, t?ﬁ f'(;St S(f,tvelrlgltsamplesg:st b?see alsd10]) that one-dimensional compressible turbulence
IScarded, SInce they bias the density histogram peat. o q,,ceg essentially to the superposition of the solutions of

W(_et typ%iﬁalllg/Ds'I:(iptr;the first 2? '([jemp(:re_ll samrrJ]Il(ats:cvo tim_tlal_ two Burgers equations describing nonlinear wave propaga-
units). The S thus computed contain rougnly Tour mition 4, i, opposite directions. More precisefconsidering

data points. Note that longer integration times are needed @qs (1) and (2), with M=1 anda=0], if we denote the

avlarr]?er nl\f alch tﬂumbe:lén ;)rdeirn totirn(:acr} 31 Sti?]tt'sufatlilynrzl'_erturbations of the basic state<£€1, u=0) by p’ andu’,
evant sample, the sound crossing time of the integratio okunaga obtainefd]

main being larger aM increases.

+_C)_O .
ERCEET ™

herec=p(*"Y'2/M is the sound speed, while in the singu-
r casey=1 these equations become

uale

d;+
t M

=0. (8)

1
Uim (9)(

2€

lll. A MODEL FOR THE DENSITY PDF p' = i lFalér, )~ Faléa, 7)) 9)
Y
A. Properties of the governing equations
Before describing our model for the density PDF, it is ,_ 2¢
. . . . . . R =——[F ,7)+F 7)1, 10
instructive to rewrite the governing equations in the inviscid, U=oF pLFa(en )+ P&, 7] (10
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where € is the order of magnitude of the nonlinear waves.to —4,s, and thus never becomes negligible. We expect a

The new coordinate§, and r are defined by
&= e[ x—rit=gi(x,1)], (11
7= €4, (12)

wherer,;=1 andr,=—1 and the phase functions obey

13—y (&

¢1:§1Tyf Fo(é m)dé+ 6y, (13
13- £

¢2=—§1TZJ 1F1(§,T)d§+02, (14

with 6; arbitrary constants determined by the initial condi-

tions. Finally, the functiond=; (simply related to the Rie-
mann invariantg™) satisfy the Burgers equations

14

0.F i+ Fidg Fi=2 0 ¢ Fi (15

The fieldsF; evolve almost independently with the same
dynamical equation, except for phase shifts, which are high
order effects that are most important during shock wave cols

lisions. Given initial conditions fop’ andu’, the substitu-
tions p—1/p (or p’——p’) and y—2— v lead to the re-
placement ofF; and F, by F,(3—y)/(1+vy) and F,(3

—y)/(1+v), respectively. For a vanishingly small viscosity

symmetry in the PDF o, positive and negative values sf
being equally created, by shocks and expansion waves, re-
spectively.

(v) It is also useful to discuss the shock jump relations for
the polytropic equations. Denoting Bythe ratio of the post-
shock to the pre-shock density, we hagee[2])

XYY —(1+ ym?) X+ ym?=0, (16)
where m is the upstream Mach number in the reference
frame of the shock. This equation shows that for1, X
=m?, and that the jumX increases more slowly than? for
y>1, while it increases faster than? for y<1 with, asy
.0, X~e™. For weak shocks, we geiX~1+(m?
—1)[2/(1+ y)]. In this case, with the shock velocity close
to the sound speed, we can write= 1+ (u/2c), whereu is
the velocity in the simulation frame, leading t8=1
+Ap/p=1+(u/c)[2/(1+ y)]. We thus getAp/p~m2/(1
+ ), with mg=u/c denoting the Mach number in the simu-
lation frame.

(vi) Additional insights into the level of density fluctua-

t}ons can be obtained by studying the balance between the

Sarious terms in the equations. For almost incompressible

urbulence, the balance between the pressure gradient and the
nonlinear term in the momentum equation ensures that typi-

cal pressure fluctuations scale lik&?, where the turbulent
Mach number is defined dd = U ;¢/C (hereu,y, is mostly

in a rescaling of the variableg . Except for this stretching

where it stands for purely compressible modds entropy

of space and time variables, the dynamics obtained after thiductuations are not allowetas with a polytropic state law
substitution leads to the same fluctuations occurring at difthe resulting density fluctuations also have to scalsasIn
ferent locations. As a consequence, we can expect that tiibermally forced turbulence, however, a Boussinesg-like bal-

probability density functions of the casesand 2— vy for

ance occurs between temperature and density fluctuations,

small values ofM will be closely related after the change maintaining pressure fluctuations of ordé?, while allow-
p— 1lp. The case of higher Mach numbers is more delicaténg for much larger values of density and temperature fluc-
due to the additional problem of mass conservation, rendetuations[11].

ing a symmetry betweep and 1p impossible. This question

is addressed below.

In weakly nonlinear acoustics, the pressure term is bal-
anced by the velocity time derivative and we recover the

(iii) The substitutiony—2—y can also be examined at gcajingsp/p~M obtained for weak individual shocks.

the level of Egs(3) and(4). Its effect is simply to change the

sign of the right-hand sides. Far<1, Eq. (4) shows that

positive values ofv (in this case associated with density
peak$ are mostly created by shockassociated with nega-

tive velocity gradients Looking at Eq.(3), we see that as

B. The casey=1

The main idea of our model is that density fluctuations are
built up by a hierarchical proced®]. After a shock(or,

increases, the pressure term becomes exponentially sma#ispectively, an expansion waveasses through a given re-
and thus cannot prevent the formation of very strong peakgion of mean density,, the density reaches a new value

Negative values of (associated here with density vojagee

p1, larger(or, respectively, smallgthanpg. In this region

created by expansion waves, but in that case the pressunew fluctuations can be created, changing the local vajue

increases exponentially with decreasing values ¢éading

to p,, and so on. Of course the dynamical equations con-

to a rapid saturation of this process. As a consequence, Wstrain this process. For example, due to mass conservation,

expect that fory<<1 the PDF ofv will be significantly more

arbitrarily high values of the density can only be reached in

populated at positive rather than at negative values.jor very localized and thin peaks. We thus expect this hierarchi-

larger than unity the PDF af will be similar, the formation

of positive values oty (now associated with density voids

cal process to saturate at some vasye>-0. A similar satu-
ration should occur for low densities at some vatue<0,

being still unhindered by the pressure. It follows that thewith probably|s_|>|s.|, since larger voids can be created

PDF of s=In p for y>1 will appear similar to that fory
<1 after we changs— —s.

without violating the mass conservation constraint. In the
case of the voids, the filling factor is bounded indirectly be-

(iv) When y=1, the behavior is very different since the cause, in order to create voids, it is necessary to have peaks,
acceleration due to the pressure term is simply proportionalvhose filling factor is limited by mass conservation.
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The buildup of these density fluctuations is a random mul- ?E E
tiplicative process which, at the level of the varialsleis 1E E
additive. Since fory=1 the equations are invariant under the ¢ °
changes—s+sy, the random variable is the sum of iden- w OF 3

olo

tical random variables, with the individual density jumps all 5 _4 , ,
having the same average magnitude, related to the Mach = 3

number of the flow, but independent of the local density. The a3 E
sum of identical random processes is known to have a 3t . , , , E
Gaussian distribution, due to the central limit theorem, no -3 -2 -1 0 1 2
matter what the distribution of the individual processes is. log6(Mins )
The PDF ofs is thus expected to follow a normal distribu-
tion. 2F

The variance of the random varialdecan be estimated . 3 o DﬁhﬁjE 3
from the strength of the typical shocks and expansion waves. g -
The case of shock waves has been discussed above. At smaks 0f E
values of M, pi+1/ej~lj-|\/|, so that §s=In(p;,1/p) 290_1_ _
=In (1+ 8p/p)=~In (1+M)~M. At high Mach numbers, indi- - 2;
vidual jumps obeyAs~ In M2 For expansion waves, the -
balance of the time derivative sfand of the positive veloc- -3 3 '2 '1 (') 1 2

ity gradient in Eq(6) givess~M, regardless of the value of
M. Indeed,us, is smaller thars, because between shocks
has a plateau, in whic§, is nearly zero, whiles; is of order FIG. 1. (Top) Variance ofs=Inp vs the mean square Mach
unity (note that the decrease pfis exponential in timg The  number M2, .=M? for various simulations withy=1 and M
density thus decreases in the center of expansion waveso.5, 1, 2, 3, 4.5, and 6. Every point in this plot gives the variance
while it increases on the edges, until pressure blocks thgndi over sets of 100 consecutive outpd® time units of any
process. In the casg= 1, the effect of pressure is symmetric given simulation. The simulations were typically run for 150 time
in s so that positive and negative fluctuations are of the samgjts. (Bottom) Variance ofp vs M.

order of magnitude, which itself is much larger than those

due to shocks. We thus expee{~M for a large range of obeys a log-normal distribution. The relatisg= — o2 is

S
values of the Mach number. also well verified numerically as can be seen from Fig. 2.

From the previou; discussion we can expect the PDF of \y/o now display in Fig. 3 the logarithm of the histo-
the variables to be given by grams for three runs wity=1 andM =0.5, 2, and 6. Fits
9 with parabolas are shown in dashed lines and show that, to a
ex;( — ﬂ) ds, (17 very good approximation, the density PDFs are log-normals

log,o(M;

Tms )

P(s)ds=

202 in all three cases. An estimation of the widths and maxima of

with o2=8M?2, and B as a proportionality constant. The
maximum of this distributiors, is simply related tars due
to the mass conservation constraint. Writingp)
=[*Ze’P(s)ds=1 we finds,= — 3 o2 [see Eq(23) below].
Note that the PDF o is related to that ofs by P,(p)
=P(In p)/p.

The predictions of this model can be tested against results
of numerical simulations. Figure @top panel shows a plot
of log;(os) VS log(M) obtained by combining data from @ -
several simulations witiM=0.5, 1, 2, 3, 4.5, 6, and 10.
These data were obtained by computivgand o for the
accumulated density and velocity fields over groups of 100
consecutive outputs of the simulatio(ganning a duration
of 10 time units eachfor each point in Fig. 1. This plot
shows thar2~ 8M?2, with 8~ 1, with a very good accuracy,
up to the highest Mach numbers reached in our simulations.
On the other hand, we see in the bottom panel of the same
figure, which displays logo, vs logiM, that the density
standard deviation also scales likk for small values oM, o,
while for M=0.5 the points curve up, a reflection of the 5 5 Most probable value af vs the variance of, o2, for

. 2 .
relation af):e"s—l between the two variances whegn the runs in Fig. 1. The data points are obtained as in Fig. 1.
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FIG. 3. Probability density functio@PDF) of s for three simu- FIG. 4. PDF of the velocity derivative for a run witg=1 and
lations with y=1 andM=0.5, 2, and 6. For clarity, these PDFs M =6.
have been respectively displaced in the plothg®, —1, and O units
on the vertical axis. The shift of the peak towards more negative .
values at largeM is real, due to the constraint of mass conserva-M(s;y)
tion. The dashed lines show the best fit with a log-normal to each . ]
PDF. M(s; ;) s>s,
_ ! Mupgs/c(s)=Munexd (1—1vy)s/l2] s.=s=s_
these distributions also shows a very good agreement with M(s_;y) s_>s.
the predictionsrs~M ands,=—0.502.
The distribution of the velocity derivative, is shown in (18)

Fig. 4 for y=1 andM =6. This distribution is found to be

almost independent of the Mach number. It presents a longhe cutoffss, ands_ , which, as we shall see, are necessary
exponential tail for negative values af, and a strong for convergence, are also physically meaningful, since the
dropoff for large values, analogous to the one found in theyrobability of new fluctuations arising within previous peaks
Burgers casg¢7]. or voids decreases as the amplitudes of the latter become
larger because the fraction of space they occupy decreases.
The fact that the cutoff occurs at larger values|siffor s
C. The casey#1 <0 than fors>0 is due to the larger filling factors of low
The difference between the case=1 and the casey ~ density regiongsee Figs. &) and §b) for comparison. A
#1 lies in the behavior of the pressure term as a function Opumencal check of this saturation property is p.os.S|bIe if one
the local density of the fluid, an effect that is most visible computes the scatt_er plot Of. the standa_rd devu_atlonsfus :
after comparing Eq(3) with Eq. (5). With the density- the mean value of in subregions of the integration domain

dependent rescalingl—M(s; )= Mel~ D21 the two for each snapshot. Figure 6 shows these plotsMet 6, y

equations are identical, which only means that when:_0'5' andy=1.5 in subregions of lengthi/3. Note that,

M(s.;7v) is substituted foM in Eq. (3), the small fluctua- similar to they=1 caseps 1S related toV, because the _tWO

tions arounds=s, are identical to those of the case=1. are roughly proportional at lowM, although they deviate
The argument at the origin of the PDF fn the isother- ~ from proportionality at larger rms Mach numbesee be-

mal case is based on the fact that the local Mach number dPW)- Thus, Fig. 6 can also be interpreted as giving the varia-

the flow is independent of the local density. Whe# 1 this tion of the local Mach number with the local mean density,
property is violated and there is no reason to expect a lo showing that a clear trend exists. Moreover, we see that the

normal PDF for the density. We nevertheless propose a heﬁ_alturatlfotr;] Iel\\;lel fﬁls< Obat 7t/h: 1'f5 I(icc():urs_aéz; n;llJcth h;gher
ristic model, reproducing most of the features of the ppFg/@U€ ot the Mach numberthan 1P, y=Uu.5. 7Iols Olos .
obtained in our simulations, which consists of taking thednd o, vs M for y=0.5 andy=1.5 are also presented in

functional form of the PDF of the isothermal case and re-Figs. 7 and 8. They show that increases more slowly than

placing M by M(s; ), whereM(s;y) now stands for the linearly with M for high Mach numbers. This results from
“effective” rms Mach number at the valus. This “effec- ~ the asymmetry in the fluctuations effor y# 1. While for
tive” rms Mach number is defined as v=1 the typical excursions of are of the order oM both
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FIG. 5. (a) Density field of a run withy=0.5 andM =10 at time
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log;e(o
FrTTTTIT T

|
o
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Tms )

t=34.65. Note the very thin density peaks and the shallow density FIG. 7. Variance ofs (top) and of p (bottom) vs the mean

minima. (b) Density field of a run withy=1.5 andM=6 att

=50.5. Note that the density maxima are now much shorter, whilet.5, 6, and 10. Note that§ increases more slowly thav

square Mach number for six runs witp=0.5 andM =0.5, 2, 3,
2

be-
rms

the density minima(voids) become much deeper. They are also cause only one sides-0) of the density PDF is unimpeded by the

much wider than the peaks in thg=0.5 case because of mass
conservation.

for positive and negative values sf when y>1, for ex-
ample, pressure blocks the negative fluctuations efhile
still allowing for fluctuations of ordeM on the positive side.
The resulting variance is thus expected to be smaller than

0.5

log0,

-2
<s>

-3

FIG. 6. Standard deviation of vs the mean value o over

subregions of size 1/3 of the integration domain for two runs with,

(top) y=0.5 and(bottom y=1.5. Note the inverse trends between
the two runs and the saturation ef at large values of(s)|, espe-
cially noticeable in the case=1.5. Note also that is related to
the rms Mach number, as shown in Figs. 7 and 8.

pressure. Instead-,ﬁ increases more rapidly themrzmS because such
fluctuations ins imply very large fluctuations ip.

M. The same argument applies for>1 but then fluctua-
tions are of smaller magnitude when>0. Looking at the
plot of o, we see opposite trends for>1 and y<1. First,
note that we do not expect the specific relation mentioned
above between the variancesotndp, since the distribu-
tion of s is not Gaussian. Second, this trend is easily inter-
preted if we recall that fory<<1 the density fluctuations are
in high peaks, while fory>1 they consist of large voids. In
the former case the variance pfcan increase greatly when
M is large, while in the latter case the voids do not contribute
much to the variance, leading to a slower increase ofvith
M.

The PDF will thus read

2

S
;y)ds=C -
P(s;y)ds (V)EXD[ 225 y)

where C(y) is a normalizing constant such that
J2P(s;y)ds=1. The paramete(y) is again determined

by the constraint of mass conservation stating that the mean
value of the density should be 1f *ZeSP(s; y)ds=1. For
s_<s<s,, Eq.(19 can be written more explicitly as

—a(vy)s|ds, (19

2a(y—1)s

—a(y)s|ds. (20

P(s;vy)ds=C( y)ex;{ — W

Note that in the absence of cutoffs, the convergence of the
integrals requiresx>1 for y<1 and <0 for y>1. This
functional form of the PDF immediately allows us to make a

few predictions. Fory<1, I\7I(s; y) grows exponentially
with s for s_<s<<s, and, as a consequence, the PDF for
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FIG. 9. PDFs ofs for two simulations withM =3 andy=0.3
(top) and y=1.7 (bottom). For y=0.3 the power-law regime ap-

FIG. 8. Variance ofs (top) and of p (bottom) vs the mean Pears at large densities, while for=1.7 it appears at small densi-
square Mach number for six runs witp=1.5 andM=0.5, 2, 3, ties.
4.5, and 6. Againcompare to Fig. cr§ increases more slowly
thanM2 _ because only one side<0 of the PDF is unimpeded by . 2

[ o 5
E 2M?(

logo(Ms.

Tms )

the pressure. However, in this cas§ also increases more slowly
than Mrzms, because the density fluctuations are bounded by zero,
and are not able to contribute much to the variancg.of p(

B —[1—a(2—y)]s>ds

—8,2—)
SZ
R —AZ—'+a(2—'y)S)dS.
0<s<M(s;v) is dominated by the power-lafin p) behav- 2MA(=s;2—)
ior P(s;y)~e *™s while the Gaussian-like decay domi- (22)
nates again f0|s>l\7l(s; v). For s<0, the local turbulent
Mach number decreases wishand we expect a more rapid  For 5_<s<s,, the functionsM(s;y) and M(—s;2

dropoff of the PDF than for the casg=1 in the sames . are identical. If the cutoffs, ands_ occur at large
range. The behavior is exactly opposite whegr1. These  engugh values, i.e., when the local Mach number is either
predictions can be verified by looking at Fig. 9, which dis-yery |arge or very smalicf., Fig. 6, the contributions to the
plays the PDF o6 for y=0.3 andy=1.7 atM=3. The PDF  jntegrals of the two terms involving these two quantities will

for y=1.7 andM =3 displays a bump fos~—2 due to a pe very close and, by inspection of E¢21) and(22), we get
large, long-lasting void. In order to test whether this feature

is due to a rare event, we continued the run for another 150 (2= y)=1-al(y). 23
time units and performed the PDF both for the second part of
the run only and for the combined 300 time units. The PDF . -
of the second part presents a nice power law without bumg his relation is exact whey=1 sinceM(s;1)=M is inde-
(not shown, while the PDF of the full run presents a milder pendent ofs, allowing us to recover the resuit(1)=3.
bump, indicating that very long runs are indeed needed ifNote also that for large enougil, a case where Eq23)
order to obtain smooth PDF wings. holds, the symmetrg— —s is not possible but must include
It is now interesting to relate the PDF for a certain valuea translation in thes domain to account for mass conserva-
of y to that obtained for 2 y. Writing the condition(p)  tion.
=1, we get Relation (23) is verified numerically with a reasonable
precision for the runs at the highest Mach numbers. For ex-
5 ample, wherM =6, the slope of the power law is 1.2 (i.e.,
f” oxd — S [1-a(y)]s|ds a=1.2) for y=0.5, while we havea=—0.28 for y=1.5
2M2(s;y) (see Fig. 1D For smaller values dff, the absolute values of
the slopes are closer to each other, a feature due to the dif-
o s? ferent cutoffs for negative and positive valuessofsee Fig.
:f - m_a(?’)s ds,  (2)  9forM=3 andy=0.3 and 0.7). Note that the shape of the
' PDF forM =6, y=1.5 exhibits a steeper slope for values of
s slightly smaller than that of the maximum. This feature can
while the same condition for 2y reads, after making the also be reproduced with this simple model, as can be seen in
substitutions— —s in the integrals, Fig. 11, which displays the PDF obtained from E&9) for

— o0

— o0
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FIG. 10. PDFs ofs for two simulations withM=6 and y FIG. 12. PDF ofs for a Burgers run. Note the nearly flat slope

=0.5(top) andy= 1.5 (bottom). Note that at this Mach number, the at negatives values.
power-law regime for they=1.5 case appears removed from the

peak of the distribution, mediated by a regime with a steeper slopedenSiM with the same parameters as for the previous runs

and with N=6144. The resulting PDF is presented in Fig.

@=0.28, y=1.5, M(0)=1.2, and values of the cutoffs at ;, tp;g plot shows that the PDF is indeed almost flatsfor

M =10 for s<0 andM=0.1 for s>0. <0, while there is also a power law fer-0, with a negative
slope of roughly—0.5. The cutoff for large densities is due
D. The casey=0, i.e., the Burgers equation to the viscous terms, which give a minimum scale for the

Iyvidth of the shocks, and thus a maximum value for the den-
sity peaks. In the physical domain, we observe the creation

dynamics of compressible flows should be analogous to thaﬁf voids} (shrea(;:hing_ a value hOf_ 85.?1”2 64) hthit occulg;y
prescribed by the Burgers equation. While this may be tru@jOSt 0 ht e omaln],c togft er wit Very Igh pea | (.
for the velocity field, our results prove that it cannot be the~5:5). The number of peaks decreases during the simulation

case for the density. Indeed, we find that whatever the vaIu\Q’hiIe the der!sity_ in the voids decreases exponential_ly in

of y#0 and of the Mach number, there is always a range ofime. The forcing |s_unable to preak the pgaks because it acts
densities for which the pressure cannot be neglected. For that large s”calesa, \l')"h'k.a the _den_sr|rt]y flllajgtga#ons bscome as na:jr-
range of densities the PDF has no power-law tail but presenl@_W as allowed by wsg:osﬁy. IS as to be contraste

a more rapid dropoff. Foy=1, it turns out that the pressure with the one obtaln_ed 'E'7]_’ for which the _Reynolds nhumber

is never negligible. Extrapolating our results, we thus predicf"’as lO\IN andt 'Lhehs?ula!?on was dstca_lylndg.blrl ;nﬂaté:gls:e the
that for the Burgers case there should be power-law tails botROWer faw at figh densities was obtained but the pre-
for low and high densities. We have thus performed a simuSents a sharp dropoff for low densities. Two-dimensional de-

lati fthe B fi | ith Eq.(2) for th caying _simulations of the Burgers equation are also pre-
ation of the Burgers equatidieoupled wi a(2) for the sented i8] for moderate Reynolds numbers. The plateau of

the PDF at low values of the density is also obtained. Bur-
. gers simulations for the decaying infinite Reynolds number
7 case are presented[ih2]. In that case the PDF is calculated
] for the cumulated mass function and not for the density,
which is not defined after the first shock formation. A power
law is found that extends t&= —o and connects to an ex-
] ponential decay fos— +o0. Note that an exponential PDF
] for the density was predicted [A3] on the basis of a model
] that treats shocks as completely inelastic particles. The case
. of the forced Burgers equation has also been investigated
analytically using the instanton techniqgg14] and [15])
and the operator product conjectyrg6]. In these works,
special attention was devoted to the tails of the velocity dif-
ference PDF, for both positiel4] and negativé15] gradi-

FIG. 11. The theoretical PDF given by E(L9) for «=0.28,  ents. A numerical investigation aimed at testing these predic-
y=1.5,M(0)=1.2, and values of the cutoffs & =10 for s<0 tions would be of interest but deserves a separate study. It
andM =0.1 for s>0. Compare to Fig. 10. would also be interesting to use the instanton technique to

An interesting problem concerns the high Mach numbe
limit. It is often suggested that wheM is very large, the

20 T T
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study the density PDF. To conclude this section, we emphamass conservation, the peak of the distributigris related
size that the Burgers case is truly a singular limit that cannoto the variance bg,= — 302 . These predictions are verified
be reached as the high Mach number limit of a polytropicin 1D simulations of compressible turbulence. Previous
gas, withy+0. This is true even for very small values of  claims that it is thedensityvariancec? that should scale as
as confirmed by a run witly=0.001 andM =10 from which %2 1] might have been misled by lower effective Mach
we obtain a density PDF similar to that of Fig. 10 for  hmpers than those achieved in the present simulations, in
=05. which all of the kinetic energy is in compressible modes
thanks to the one dimensionality.

IV. DISCUSSION Wheny+ 1, the density jumps are not independent of the
local density anymore, and the shape of the PDF should
o change. Observing that a renormalization of the Mach pa-

The study presented in this paper has been performed f‘?émeter[Eq. (1)] M—M(s;y)=Meld=7/2s restores the
a single choice of the forcing and of the Reynolds numberym of the equations for the case=1, we proposed the

While the variation with the latter parameter can be trivially 5,54tz that the PDF may still be described by the same func-
extrapolated, we cannat priori be sure that our results are tional form as in the case/=1, but replacingM with

independent of the type of forcing. We have pgrformed deM(s; y). This prediction is confrmed by the numerical
cay runs and observed that the behaviowgfvs M is still  simulations, giving PDFs that are qualitatively in very good
the same as in the forced case. The PDFs, however, canng§reement with the model PDF, E4.9). The result is that
be computed in a single snapshot due to poor statistics, anfle PDF asymptotically approaches a power law on the side
cannot be integrated in time since the Mach number chang&ghere (y—1)s<0, while it decays faster than log-normally
by roughly 1 or 2 orders of magnitude during the run. Wegn the other side.
have also performed a run @at= 1 with a forcing of the form Upon the replacementg— (2— ) and p— 1/p we find,
f/p in Eq. (1). In that case the density PDF is not a log- using the condition of mass conservation, that the slomé
normal anymore but presents a power-law tail for low denthe power law for a given value of is related to its value at
sities (not shown. This can be attributed to the fact that the 2— y by Eq. (23) in the large Mach number limit. These
flow is stirred more vigorously at low densities so that theresults are also confirmed by the numerical simulations,
effective Mach number indeed increasespasecreases. We  which exhibit a power law as>0 wheny<1 and ats<0
nevertheless think that our results can be extrapolated to ajhen > 1, with slopes that are roughly related by E2Q),
unforced situation at a given time and possibly also to theyith better accuracy at large Mach numbers.
multidimensional case. Note that the Mach numbers we have Finally, on the basis of these results, we suggested that the
explored in this paper would correspond to even higheBuyrgers case should develop a power-law PDF at both large
Mach numbers in the multidimensional case since then onlgnd small densities, since in this case there is no pressure on
a fraction of the total kinetic energy populates the compresseither side. This result was again confirmed by a simulation
ible modes. of a Burgers flow.
We conclude this paper by pointing out that the nonu-
B. Summary nigueness of the infinite Mach number limit might have im-
We have presented an investigation of the density PDFQortant consequences for astrophy§ical applicqtion;, sych as
of a randomly accelerated polytropic gas for different valuedl coSmology. The so-called Zeldovigh7] approximation is
of the polytropic index and of the Mach number. We have!"de€d based on the Burgers equation, which, in light of the
suggested a simple model in which the density field is conPréSent work, appears as a questionable model of highly
structed everywhere by a random succession of jufBps compressible flows. This point will be addressed in future
When the flow is isothermah(=1), the jumps are indepen- WO'K-
dent of the initial density, and always have the same prob-

A. Effects of the forcing
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