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Turing instability in a boundary-fed system

S. Setayeshgar* and M. C. Cross
Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125

~Received 26 February 1998!

The formation of localized structures in the chlorine dioxide-idodine-malonic acid~CDIMA ! reaction-
diffusion system is investigated numerically using a realistic model of this system. We analyze the one-
dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to
symmetry-breaking perturbations~Turing instability! in the plane transverse to these gradients. We establish
that an often-invoked simple local linear analysis that neglects longitudinal diffusion is inappropriate for
predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure
of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a
function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor
in the dimension along the gradients. The results from this investigation are compared with existing experi-
ments.@S1063-651X~98!15009-2#

PACS number~s!: 47.54.1r, 82.20.Wt, 82.20.Mj
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I. INTRODUCTION

Recent experimental developments have made pos
the study of asymptotic spatiotemporal behavior in chem
systems in a controlled and reproducible manner, allow
predictions from theoretical and numerical studies of th
systems to be compared quantitatively with experiments
the same way that fluid systems have been studied. Ind
the understanding of spatial pattern formation in nonequi
rium systems has greatly benefited from careful and c
trolled experiments on fluid systems@1#. Unlike fluid sys-
tems, which at high nonlinearity break down to a turbule
state characterized by a wide range of spatial scales, sp
patterns in chemical systems can be studied at high non
earity @2#, thus providing an opportunity to study rich an
new phenomena that complement our knowledge from
tern formation in fluid systems.

The symmetry-breaking instability of a system from a h
mogeneous state to a patterned state, predicted in 195
Turing @3#, was observed for the first time nearly 40 yea
later, in the chlorite-iodide-malonic acid~CIMA ! reaction-
diffusion system@4–6#. The Turing instability is character
ized by an intrinsic wavelength resulting solely from reacti
and diffusion processes. For this reason, it has particular
evance to pattern formation in biological systems@7#.

In contrast to hydrodynamic systems for which the go
erning equations and parameter values are well underst
how to model complex chemical systems is often not w
known@1#. A realistic model of the simpler chlorine dioxide
iodine-malonic acid~CDIMA ! reaction, which is similar to
the CIMA reaction in terms of its stationary pattern-formin
and dynamical behavior, has been proposed by Lengyel,
bai, and Epstein~henceforth referred to as LRE! @8,9#.
Hence, the CDIMA reaction-diffusion system has the pot
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tial to become an archetype for the study of nonequilibriu
pattern formation@10# in chemical systems, in principle al
lowing numerical and theoretical investigations to be co
pared directly with experiments.

In practice, however, this has not been fully realized
two reasons. First, numerical investigations of reactio
diffusion equations using realistic chemical parameters
demanding computational task. In addition, the algebr
complexity of the realistic nonlinear reaction terms rend
these models unsuitable for analysis by standard analy
tools. As a result, the theoretical work on reaction-diffusi
systems has been mostly based on abstract models. Se
despite the existence of the realistic CDIMA chemic
model, which has similar pattern-forming and dynamic
properties to the related CIMA system, experimental wo
has continued to be based on the CIMA reaction, mak
direct comparisons of numerical and analytical work w
experiments difficult. Consequently, unlike in fluid system
experimental and theoretical efforts in chemical syste
have not been closely coupled.

In this paper, we use the realistic LRE model of t
CDIMA reaction-diffusion system to investigate the Turin
instability numerically@11#. Contrary to the case originally
considered by Turing and subsequently by others, the exp
mental conditions under which Turing patterns form are
uniform, as required by the continuous feed of reserv
chemicals. We study the formation and stability of on
dimensional structures in the presence of boundary feed
dients. We first briefly review the Turing mechanism in Se
II. To facilitate comparisons with our numerical investig
tions, we describe the geometry and setup employed by
relevant experiments in Sec. III. The LRE chemical mode
described in Sec. IV. In Sec. V A, we obtain the on
dimensional steady state chemical concentration profiles
a particular set of boundary conditions, and explore sev
different approaches to determine the linear stability of th
profiles to transverse symmetry-breaking patterns. In S
V B, the patterns along the gradients and their linear stab
are further explored as a function of two control paramete

ent
n,
4485 © 1998 The American Physical Society
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4486 PRE 58S. SETAYESHGAR AND M. C. CROSS
We summarize our results and consider prospects for fur
progress in Sec. VI.

II. TURING INSTABILITY CONDITIONS

In his original paper@3#, Turing suggested that the rea
tion and diffusion of chemicals could account for the ins
bility of an originally homogeneous steady state to a sta
steady pattern when triggered by random disturbances. T
instability conditions, which are derived and discussed
detail in the text by Murray@7# are presented here for th
purpose of introducing the notation for the rest of the pap
Consider the general governings end equations for
reaction-diffusion mechanism of two chemical species:

s
]u

]t
5 f ~u,v;mW !1¹2u, ~1!

]v
]t

5g~u,v;mW !1c¹2v, ~2!

where f andg represent the~nonlinear! reaction kinetics,u
and v are chemical concentrations,mW is a set of reaction
parameters that may include concentrations of other che
cal species,c5Dv /Du is the ratio of diffusion constants, an
s>1 is a constant separating the characteristic time sc
for changes in the concentrations of theu and v species.
Turing’s idea was as follows@7#: If in the absence of diffu-
sion „u(rW,t),v(rW,t)… tend to a linearly stable uniform stead
state, then under certain conditions, the addition of diffus
leads to the development of spatially inhomogeneous
terns. Although these conditions were originally conside
for a spatially uniform system, where the parametersmW are
constant, the actual experimental realization of the Tur
instability occurs in the presence of externally imposed fe
gradients, wheremW 5mW (z). In this section, we derive the
Turing linear instability conditions for both uniform and
nonuniform parameters,mW .

A. Uniform background

The uniform background case is realized experiment
in batch reactors where there are no externally imposed
dients from continuous feed of chemical reactants, and T
ing patterns are necessarily transient. The parametersmW are
constants independent of position. The homogeneous st
statecs

W5(us
0,vs

0) is obtained as the solution to

f ~u,v;mW !5g~u,v;mW !50. ~3!

The linear stability of this state is obtained by substituti
into the governing reaction-diffusion equations:

cW~rW,t !5cs
W1dcW ~rW,t !, ~4!

dcW ~rW,t !5(
k

~duk
0 ,dvk

0!eikW•rWelkt, ~5!

wherecW5(u,v) is a vector of concentrations,k is the spatial
wave number of the perturbation,lk is the growth rate of the
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kth mode, and (duk
0 ,dvk

0) is the corresponding constant e
genvector. The resulting linear eigenvalue problem

S ~a112k2!/s a12/s

a21 a222ck2D S duk
0

dvk
0D 5lkS duk

0

dvk
0D ~6!

yields

lk
~6 !52

1

2s
@~sc11!k22~a111sa22!#

6
1

2s
A@~sc11!k22~a111sa22!#

224h~k2!,

~7!

where

h~k2!5s@ck42~a221ca11!k
21~a11a222a12a21!#. ~8!

The quantitiesa115 f u , a125 f v , a215gu , anda225gv are
the elements of the Jacobian of the reaction terms with
spect to the concentrations, evaluated at the uniform ste
state.lk has a rich behavior depending on the values ofs, c,
andai j . The conditions for the Turing instability are that th
uniform steady state be linearly~i! stable to homogeneou
perturbation and~ii ! unstable to inhomogeneous perturb
tions. Hence, this is asymmetry-breakingmechanism, since
it breaks the homogenous spatial symmetry of the unifo
state. For the general reaction-diffusion system given in E
~1! and ~2!, these conditions are derived in the Append
Below, we refer to the relevant results for the purpose
discussion. Stability of the uniform steady state to homo
neousk50 perturbations requires the following inequalitie
be satisfied:

a111sa22,0, ~9!

a11a222a12a21.0. ~10!

In order for the uniform steady state to be simultaneou
unstable to inhomogeneouskÞ0 perturbations, we mus
have

a221ca11.0, ~11!

~a221ca11!
224c~a11a222a12a21!>0. ~12!

Comparing Eqs.~9! and ~11! we conclude thata11 and a22
must have opposite sign. In the standard terminology,
activator species has a positive sign and the inhibitor ha
negative sign in the Jacobian. Thus, takinga11.0 anda22
,0 identifiesu as the activator andv as the inhibitor. Ifs
51, then Eqs.~9! and~11! are simultaneously satisfied onl
for c.1. In fact, given values of other parameters,c@1 is
required. Since diffusion constants of ions in aqueous so
tions are all nearly the same@O(1025) cm2 s21#, for the
instability conditions to be satisfied,s must be greater than
1. In Sec. IV, the requirements.1 will be put in the context
of the fortuitous role of the starch color indicator in the pa
tern formation itself by providing the mechanism for slowin
the activator reaction and diffusion with respect to those
the inhibitor.
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PRE 58 4487TURING INSTABILITY IN A BOUNDARY-FED SYSTEM
Equations~9!–~12! constitute the Turing conditions. I
will be useful for future comparison of the local stabili
analysis with the full stability analysis of the nonunifor
steady state to consider the Hopf bifurcation of the unifo
system. For reaction parameters such that

~a112sa22!
214sa12a21,0, ~13!

there will be a complex conjugate pair of eigenvalues

wave numbers in the range 0,k2,k1
(H)2

, where k1
(H)2

is
given in Eq. ~A12!. With the above inequality satisfied,
Hopf bifurcation of the uniform system occurs when (a11
1sa22).0. Beyond the Hopf bifurcation point, there will b
an unstable complex conjugate pair of eigenvalues for w
numbers in the range given by Eq.~A17!.

B. Nonuniform background

In this case, the parametersmW , which depend on the con
centrations of background chemicals fed through the bou
aries, are not constant but rather are functions of the vari
z along the direction perpendicular to the feed boundar
The steady state solution will now be a function ofz, satis-
fying

f „us~z!,vs~z!;mW ~z!…1
d2us

dz2
50, ~14!

g„us~z!,vs~z!;mW ~z!…1c
d2vs

dz2
50, ~15!

with Dirichlet boundary conditions atz50 andz5Lz . The
stability of „us(z),vs(z)… is given by linearizing about this
state:

cW~rW,t !5cs
W ~z!1dcW ~rW,t !, ~16!

dcW ~rW,t !5(
k'

@duk'
~z!,dvk'

~z!#eikW'•rW' elk'
t, ~17!

wherekW' is the wave vector perpendicular to the direction
the gradients. For simplicity of notation, we will drop th
subscript ‘‘',’’ taking k to be the transverse wave numbe
The resulting eigenvalue problem is

S S a11~z!1
]2

]z2
2k2D Y s a12~z!/s

a21~z! a22~z!1c
]2

]z2
2ck2D

3S duk~z!

dvk~z! D5lkS duk~z!

dvk~z! D , ~18!

with @duk(z),dvk(z)# satisfying the same Dirichlet boundar
conditions as the steady state. As Pearson and Bruno@12#
have noted, this is an infinite-dimensional eigenvalue pr
lem for eachk, which is formally similar to the Schro¨dinger
equation. However, the Jacobian of the reaction terms is
symmetric, rendering the linear operator non-Hermiti
r

e
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le
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Hence, it must be solved numerically, by discretizing thez
spatial direction intoNz mesh points and solving the resul
ing 2Nz32Nz matrix eigenvalue problem for eachk. This
method of solution is described in Sec. V A 3.

C. Locally uniform background

In the presence of ramps in control parameters, a na
assumption is that a structure will form in the region of spa
where the local value of the control parameter allows it to
stable in the corresponding uniform problem@15#. This ‘‘lo-
cally uniform’’ approach amounts to treating each locati
along the gradients in thez direction to be an independen
and uniform quasi-two-dimensional system in thex-y plane.
The corresponding locally uniform steady state that depe
parametrically onz is given by the solution to

f „u,v;mW ~z!…5g„u,v;mW ~z!…50. ~19!

The Turing instability conditions can then be examined
each point inz to determine whether or not a linear analys
predicts the formation of transverse Turing patterns in a
interval alongz.

Since the resulting eigenvalue problem for the stability
the locally homogeneous steady state to a symme
breaking instability requires only a 232 analysis at eachz,
it is computationally simple. The validity of this local analy
sis is assessed in Sec. V A 2, by comparing the result w
that from the fully nonuniform analysis@Eq. ~18!# of the
steady state along the gradients.

III. EXPERIMENTAL GEOMETRY

The first experimental realization of the steady-state T
ing patterns predicted in 1952 was made in 1990 by Cas
et al. @4#, and was subsequently confirmed by others@5,6#.
This was made possible by the development of open sp
reactors, which allowed experimentalists to maintain a re
tion far from equilibrium through a continuous supply
reactants, while avoiding convective transport. These s
tained patterns have been obtained in only one contro
experimental system to date, the chlorite-iodide-malonic a
~CIMA ! chemical reaction-diffusion system. The principl
of operation of these reactors have been discussed elsew
in detail @4,5,13,14#.

In this section, we introduce the thin-strip reactor that
investigated numerically in this work, since a geometric
description of the experimental setup is useful in the und
standing of our results. A detailed description of the chem
cal model is presented later in Sec. IV, and is not neces
for the discussion presented here. The thin strip reacto
comprised of a thin rectangular gel strip, such thatL@w
.h, as in Fig. 1. Typically,h,1 mm, L;25 mm, andw
;3 mm. The gels are water based, acting as essentially w
in a loose polymer grid. The gel core of the reactor is
contact with two continuously stirred reservoirs of chem
cals. Components of the reaction are distributed in the
reservoirs in such a way that neither is separately reactive
the CIMA experiments, these reservoir species are malo
acid @CH2~COOH!2 or MA#, iodide (I2), and chlorite
(ClO2

2). The LRE model of the CDIMA system takes a
input malonic acid, iodine (I2) and chlorine dioxide (ClO2).
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As the reservoir species diffuse and react through the gel
two dynamical species, iodide and chlorite, which take p
in the pattern-forming instability, are produced. The gel
preloaded with a soluble starch that acts as an indicato
changing color from yellow to purple with changes
triiodide concentration. The large starch molecules are
mobilized in the gel matrix, and for this reason actually pl
a role in the pattern formation itself.

Observations are made in the direction perpendicula
thex-z plane~alongOy), which allows viewing of the mul-
tifront patterns that develop along the boundary feed gra
ents~in thez direction!, as well as patterns that form parall
to the boundaries~in thex direction!, breaking the boundary
feed symmetry~single or multiple layers of spots!. The
symmetry-breaking patterns form in a thicknessD alongz. If
the gel is thin enough (h;l of the Turing patterns!, these
patterns are one or two dimensional, depending on whe
D is of the order of one or more wavelengthsl of the struc-
ture. Withh@l, for example,h;L as is the case with disk
reactors, the patterns are quasi-two-dimensional~referred to
as ‘‘monolayers’’! for D;l, or three dimensional forD
>l ~referred to as ‘‘bilayers’’ forD;2l).

A modified thin-strip reactor, where the feed surfacesL
3h) are no longer parallel but make an angle, has b
developed and used by Duloset al. @14#, where h
50.2 mm,L525 mm, and thew ranges from 1.75 to 3.5
mm. The variation inw causes a gradual change in the re
ervoir concentration ramps across the gel, the effect of wh
can be studied on the patterns that form along and transv
to the gradients.

IV. CHEMICAL MODEL OF THE CDIMA SYSTEM

Lengyel, Epstein, and Rabai have proposed a model
the temporal oscillations in the chlorite-iodide-malonic ac
reaction, ClO2

2-I2-MA, which is based on the simpler chlo
rine dioxide-iodine-malonic acid reaction, ClO2-I2-MA, re-
ferred to as CDIMA@8,9#. They have shown experimentall
that the CDIMA system also exhibits the Turing instability
both closed and open systems@16,21#. By monitoring the
CIMA reaction in a closed system spectrophotometrically

FIG. 1. Sketch of open reactor geometries, adapted from R
@10,14#: A block of gel, with dimensionsL@w.h is in contact
with two reservoirs I and II. The reservoirs are continuously stir
and fed with fresh supplies of reactants, such that each is separ
nonreactive. A gradient in the reservoir species forms perpendic
to the feed boundaries in thez direction. The symmetry-breaking
patterns form transverse to this gradient. The thicknessD of the
finite region alongz where they form is equal to at least one wav
lengthl of the Turing patterns.
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was determined that after an initial fast consumption of2

and ClO2
2 during a preoscillatory period to produce I2 and

ClO2 , the reaction of ClO2 , I2 , and MA accounts for the
oscillations. The LRE CDIMA model consists of three rea
tions for MA, I2 , ClO2 , I2, ClO2

2, and H1 @17#, with em-
pirically determined rate laws:

MA1I2→IMA 1I21H1,

2
d@ I2#

dt
5

k1a@MA #@ I2#

k1b1@ I2#
[r 1 , ~20!

ClO21I2→ClO2
211/2 I2 ,

2
d@ClO2#

dt
5k2@ClO2#@ I2#[r 2 , ~21!

ClO2
214I214H1→Cl212I212H2O,

2
d@ClO2

2#

dt
5k3a@ClO2

2#@I2#@H1#1
k3b@ClO2

2#@I2#@I
2#

h1@ I2#2

[r 3 . ~22!

Lengyelet al. @18# have modeled the effect of unreactiv
starch-complex formation on the CDIMA system, where t
complexing agent is (S1I2). Although formation of the
starch-triiodide complex (SI3

2) is a complicated process,
can nevertheless be described as a single reaction:

S1I21I2
SI3
2, K5

@SI3
2#

@S#@I2#@I2#
5

k1

k2
, ~23!

whereK is the equilibrium constant, and the reaction rate
given by

r 4[k1@S#@I2#@I
2#2k2@SI3

2#. ~24!

Using the above, the full reaction-diffusion model for th
CDIMA system, with the addition of the reaction with starc
is given by@17#

]@MA #

]t
52r 11DMA¹2@MA #, ~25!

]@ I2#

]t
52r 11

1

2
r 212r 32r 41D I2

¹2@ I2#, ~26!

]@ClO2#

]t
52r 21DClO2

¹2@ClO2#, ~27!

]@ I2#

]t
5r 12r 224r 32r 41D I2¹2@ I2#, ~28!

]@ClO2
2#

]t
5r 22r 31DClO2

2¹2@ClO2
2#, ~29!

]@SI3
2#

]t
5r 4 , ~30!

]@H1#

]t
5r 124r 31DH1¹2@H1#. ~31!
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The rate and diffusion constants used in the numerical
culations here are taken from Refs.@17,19,20# and are given
in Table I.

Lengyel et al. @8# have shown that these reactions su
cessfully simulate the temporal behavior of@MA #,
@ I2#, @ClO2#, @ I2#, and @ClO2

2# in a batch experimenta
system. Their numerical results show that while the interm
diates@ I2# and@ClO2

2# vary by several orders of magnitud
during an oscillation,@MA #, @ I2#, and @ClO2# vary more
slowly. In addition, the contribution of@H1# to the reaction
terms is relatively small, and this species can be neglec
This suggests a reduction of the full model to a thre
variable system (@ I2#, @ClO2

2#, and@SI3
2#) by treating the

concentrations of the@MA #, @ I2#, and @ClO2# reactants as
constants, making the model mathematically and numeric
more tractable. This procedure illustrates the adiabatic el
nation of fast modes in dynamical systems, which redu
the full dynamics to only a few degrees of freedom.

It is further assumed that there is a large excess of st
uniformly distributed so that its concentration is always ve
close to its initial value@S#o , and that the complex formatio
and dissociation is fast. Then,

@SI3
2#'K@S#@I2#•@I

2#'K8@ I2#, ~32!

whereK8[K@S#o@ I2#o . Adding Eqs.~28! and ~30!, and us-
ing Eq. ~32!, a two-component reaction-diffusion system
obtained:

s
]u

]t
5k182k28u2

4k3b8uv

h1u2
1Du¹2u, ~33!

]v
]t

5k28u2
k3b8uv

h1u2
1Dv¹2v, ~34!

TABLE I. Kinetic constants for the CDIMA system.

Rate or diffusion constant Dimensions Value

k1a (s21) 931024 a

k1b (M ) 531025 a

k2 (M 21s21) 13103 a

k3a (M 22 s21) 1.23102 a

k3b (s21) 1.531024 a

h (M2) 1.0310214a

k1 (M 22 s21) 6.03105 b

k2 (s21) 1.0b

D I2 (cm2 s21) 7.031026 c

DClO22 (cm2 s21) 7.031026 c

D I2
(cm2 s21) 6.031026 a

DMA (cm2 s21) 4.031026 a

DClO2
(cm2 s21) 7.531026 a

DH1 (cm2 s21) 1.031025

K@S#o (M 21) 6.253104 d

aFrom @19# at 7 °C.
bFrom @17# at 4 °C.
cFrom @16# at 4 °C.
dFrom @20# at 4 °C.
l-

-

-

d.
-

ly
i-
s

ch

where k185k1a@MA #o@ I2#o /(k1b1@ I2#o), k285k2@ClO2#o ,
k3b85k3b@ I2#o , and s511K8.1. The subscript ‘‘o’’ re-
fers to the concentrations of species that are taken to
constant, andu andv represent the concentrations of I2 and
ClO2

2 species. The role of the immobile starch color ind
cator in providing the relative slowdown of the reaction a
diffusion of the activator with respect to that of the inhibit
enters through the parameters.1.

V. ANALYSIS

In this section, we use the LRE chemical model to inve
tigate several aspects of the experimental CIMA system.
focus is to demonstrate the potential for quantitative analy
of experimental results using the realistic CDIMA chemic
model. In Sec. V A, we investigate numerically the form
tion of one-dimensional multifront localized structures alo
the gradients of imposed boundary feeds. We study the lin
stability of these structures to transverse symmetry-break
perturbations using the two-variable reduction of the LR
model. We compare our results from a local analysis to t
from a fully nonuniform analysis. We review a propose
modification to the local analysis and show that it does
successfully account for the presence of gradients. In S
V B, we further explore the structure and linear stability
the one-dimensional patterns along the boundary feeds
function of two control parameters: the malonic acid res
voir concentration and gel width. We map out the line
instability intervals in each case. We discuss the qualita
agreement of our results with relevant experiments.

A. Linear analysis of one-dimensional patterns along gradients

1. Stationary solution along the z direction

The full seven-component LRE model equations given
Eqs. ~25!–~31! were evolved forward in time to obtain th
steady state solution in one dimension along the gradie
The boundary conditions,@MA #L5131022M at the left
boundary, and@ I2#R5131023M and @ClO2#R5631024M
at the right boundary, were chosen so as to be consistent
a previous numerical investigation of the LRE model in o
dimension by Lengyelet al. @19#. Since the boundary condi
tions giving a transverse instability werea priori unknown,
we used these values as our starting point. The spatiz
direction was discretized on an irregularly spaced mesh
allow a greater number of mesh points in the regions wh
there was more structure in the solution, without excessiv
increasing the overall number of mesh points in the proble
A five-point finite-difference approximation to the diffusio
operator was used on the variable mesh. The numer
scheme employed for the time evolution was Cran
Nicholson implicit time stepping for the linear terms, an
Adams-Bashford explicit time stepping for the nonline
terms. A banded solver@22# was used at each time step
solve for the solution at the next time step. The initial co
centrations were uniform in thez direction ~and equal to 5
310213M ). The time evolution was continued until ther
was no appreciable change in the solution.

The results are displayed in Fig. 2. The steady state s
tion for the starch-triiodide complex (SI3

2) plotted in Fig.
2~f! represents the experimentally observable profile. As
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pected, it tracks the iodide (I2) steady state solution in Fig
2~d!. It corresponds to a~non-symmetry-breaking! pattern of
stripes parallel to the feed boundaries~in thex-z plane, with
x being the uniform direction!, such as those observed b
Perraudet al. @15#, although the boundary species are diffe
ent in their experiments on the CIMA reaction from tho
considered here. Upon increasing the@ClO2

2# reservoir con-
centration, they observe a breakup of the stripes to row
spots parallel to the feed surfaces. This is a symme
breaking instability, since the boundary feed symmetry of
system is broken. In the following, we will investigate th
linear stability of our numerical steady state along the gra
ents to such a transverse pattern-forming instability.

2. Locally uniform stability analysis

To examine the stability of the stationary patterns t
form along the gradients of boundary feeds (z direction!, the
simplest approach is to treat each locationz as being inde-
pendent and locally uniform in the transverse plane~see Sec.
II C!, thereby neglecting diffusion along thez direction~lon-
gitudinal diffusion!. The locally homogeneous stationa
state in the dynamical species, I2 and ClO2

2, at eachz can
be constructed either from the linear~diffusion only! profiles
of the reservoir species, MA, I2 , and ClO2 , or more cor-
rectly, from their reaction1diffusion profiles, obtained by
evolving the full model, Eqs.~25!–~31!. In either case, using
the two-variable activator-inhibitor reduction of the LR
model, Eqs.~33! and ~34!, the resulting eigenvalue problem
for the stability of the locally homogeneous steady state t
symmetry-breaking instability requires a simple 232 analy-

FIG. 2. One-dimensional steady state solutions: The bound
conditions are@MA #L5131022M at the left boundary, and@ I2#R

5131023M and @ClO2#R5631024M at the right boundary. All
other boundary conditions are zero. Thez axis has been normalize
with respect to the thickness of the gel in thez direction, w
50.3 cm. We note that the steady state profiles for the reser
variables malonic acid~MA !, iodine (I2), and chlorine dioxide
(ClO2) vary considerably from diffusion-only linear profiles. Th
series of peaks in the starch-triiodide (SI3

2) profile correspond to
experimentally observed stripes parallel to the feed boundaries@15#.
-

of
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e

i-

t

a

sis. Hence, it is desirable to use such a local approach
can be shown that it accurately describes the physical p
lem. In that case, a transverse instability would occur in
region of widthD along the gradients that is linearly unstab
to akÞ0 instability. Indeed, even though Turing patterns a
obtained under experimental conditions that by neces
lead to nonhomogeneous parameter ramps, a local lin
analysis is most commonly used to predict the formation o
transverse symmetry-breaking instability. In this section,
examine in the context of the two-variable LRE model t
locally uniform approach to determining the stability of th
stationary patterns that form along the gradients of bound
feeds.

The locally uniform steady state in the variables I2 and
ClO2

2 at each point inz along the gradients of the back
ground chemicals is shown in Fig. 3. This solution is o
tained according to Eqs.~33! and ~34! using the numerical
reaction1diffusion profiles of Fig. 2 for the MA, I2 , and
ClO2 species, but neglecting the diffusion terms. The dep
dence onz in this plot is parametric.

The stability of the local steady state at eachz is obtained
from Eq. ~6!. This analysis predicts the existence of a fin
instability region. The curves in Fig. 4 represent the Turi
instability condition boundaries, Eqs.~9!–~12!, for each lo-
cally uniform steady state. We have also plotted the bou

ry

ir

FIG. 3. The value of the steady state solution, locally uniform
the x-y plane, is plotted at each pointz for the two dynamical
variables iodide (I2) and chlorite (ClO2

2) using the
reaction1diffusion profiles of the reservoir variables given in Fi
2.
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ary that, when less than zero, gives the interval inz where
the locally uniform steady state has a complex conjugate
of eigenvalues for a range ink given by Eq. ~A12!. The
vertical axis has no labels since we have plotted quant
that have different dimensions and only their signs are
interest. The shaded region denotes the interval over w
the locally uniform steady state in thex-y plane is linearly
stable to homogeneous perturbations and unstable to i
mogeneous perturbations. The widthD of this region is ap-
proximately 0.15 mm, which is within the 0.13–0.33 m
range of experimentally observed Turing wavelengths@23#.

Figure 5 shows the gain curves for the locally unifor
steady states at selected points along thez axis, consistent
with the above linear stability boundaries. Note that Fi
5~d!–5~i! illustrate the role of the complexing agent (S1I2)
in suppressing the oscillatory instability, since the concen
tion of I2 ~and therefore the complexing strength! sharply
increases as the right boundary is approached.

3. Fully nonuniform stability analysis

To assess the validity of the locally uniform stabili
analysis presented above, we have carried out a fully n
uniform analysis, as described in Sec. II B. The eigenva
problem given in Eq.~18! was discretized on the same va

FIG. 4. Boundaries from locally uniform stability analysis: A
each locationz, the Turing instability conditions have been plotte
for the corresponding uniform steady state. The plotted quant
have different dimensions, and since only the sign of each qua
is of interest, the vertical axis has no scale. When the light solid
corresponding to (a111sa22) is less than zero, the complex conju
gate pair of eigenvalues fork50 has a negative real part. Th
dotted line is (a11a222a12a21), which is additionally required to be
greater than zero for stability of a realk50 mode. We note that this
quantity is everywhere greater than zero. The long-dashed line
responds to (ca111a22), and the heavy solid line is (ca111a22)

2

24c(a11a222a12a21), both of which must be greater than zero
order to have akÞ0 instability. The dashed line is@(a112sa22)

2

14sa12a21#, and where it is less than zero, a complex conjug
pair of eigenvalues exists for a finite range ink. The shaded region
indicates where the locally uniform steady state is stable to ho
geneous perturbations and unstable to inhomogeneous pert
tions. At z50.354, the light solid (a111sa22) and long-dashed
(ca111a22) lines go through zero, while the heavy solid, dotte
and dashed lines remain positive.
ir
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able mesh as that on which the nonuniform steady state
obtained, and was solved for all eigenvalues and eigenv
tors at each value of transverse wave numberk using
EISPACK @24#. Since we have a general real matrix, with n
special features such as symmetry, the most general rou
were used. Figure 6 shows the real part of successive ei
values with largest real parts. This result shows the ste
state to be stable to all transverse perturbations. The eig
vector with slowest decaying~real! growth rate at k
581.6 cm21 is plotted in Fig. 7. It is localized roughly in the
region alongz where the locally uniform stability analysis
predicts the corresponding uniform steady state to be
stable to a transverse instability.

Since we are generally interested in the most unsta
mode, in this case, we checked the numerical validity of
gain curve for the slowest decaying eigenvector~topmost
continuous curve in Fig. 6! against two different numerica
methods. First, the linear system for 2Nz variables~eigen-
vector!, whereNz is the number of mesh points, was solve
as a nonlinear root finding problem in (2Nz11) variables,
including the eigenvalue. Second, starting with the eige
value and eigenvector based on the previous two metho
inverse iteration was used to verify the results. Both che
agree with the results from EISPACK.

s
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e

o-
ba-

,

FIG. 5. Gain curves for locally uniform steady states: The so
line denotes the eigenvalue with the larger real part,l1 , and the
dashed line denotes the one with the smaller real part,l2 . At ~a!
z50.20, both eigenvalues are real and negative for allk; ~b! z
50.50, both eigenvalues are real and peaked atk50, with l1.0
in the range 0,k2,k1

2 and l2.0 in the range 0,k2

,k2
2 (k6

2 are given in the Appendix!; ~c! z50.62, both eigenval-
ues are still real, but atk50, we have a real degenerate pair, givin
the boundary of the Hopf bifurcation;~d! z50.70, complex conju-
gate pair of eigenvalues with positive real part for 0,k2,(a11

1sa22)/(sDv1Du), and kÞ0 instability for k2
2,k2,k1

2; ~e!
z50.72, same as~d!, except that the real part of the complex co
jugate pair is peaked at zero growth rate;~f! z50.74, same as~d!
with the real part of the complex conjugate pair less than zero
k50; ~g! z50.76, same as~f!, except that the maximum growth
rate for kÞ0 is zero; ~h! z50.80, same as~g!, except that the
maximum growth rate forkÞ0 is negative;~i! z50.85, both eigen-
values are real and negative.
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The convergence of the slowest decaying gain curve
function of the variable mesh was also investigated. Star
with a particular distribution of mesh points, the mesh s
was successively halved, the corresponding steady state
tained, and the eigenvalues and eigenvectors found. B
cally, the number and distribution of mesh points must
sufficient to well resolve both the structure of the steady s
and its most unstable eigenvectors for numerical conv
gence. All numerical calculations were performed on an IB
RS6000 workstation, with the exception of eigenvalu
eigenvector determination using EISPACK with greater th
approximately 500 mesh points, which was done on a CR
C90.

This result contradicts that from the locally unifor
analysis, which predicts a linear instability for these react

FIG. 6. Gain curve for the one-dimensional steady state al
the gradients: The real parts of the first fourteen eigenvalues
largest real parts have been plotted. The eigenvalues are real, e
at points~or along intervals! where two curves intersect. The eige
value crossings appear imperfect due to the coarse selectionk
values. All eigenvalues are less than zero, with the heavy line
responding to the slowest decaying mode at eachk.

FIG. 7. Eigenvector corresponding to slowest decaying mod
a fully nonuniform analysis: The eigenvector atk581.6 cm21 with
the largest real eigenvalue has been plotted.
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parameters and boundary conditions. Below, we review
proposed modification to the locally uniform analysis, a
determine whether it is sufficient to bring the local analy
closer to the fully nonuniform one.

In the above analysis and in those discussed in S
V A 2, we have used the two-variable reduction of the LR
model. We have directly verified the two-variable reducti
of the full 7-variable~including H1) model by performing a
7-variable linear stability analysis of the nonuniform statio
ary state using inverse iteration. By comparing the 7-varia
and 2-variable linear stability results, we have implicit
verified the assumption that the reservoir species, MA,2 ,
and ClO2 , do not play a role in determining the patter
forming instability of the stationary states@11#.

4. Modified local stability analysis

The locally uniform analysis neglects diffusion alongz,
which couples quasi-two-dimensional uniform slice
Lengyel, Kadar, and Epstein~LKE! @16# have proposed a
modification to account for this diffusion, assuming that d
fusion alongz is relevant only on a length scale of the ord
of the Turing wavelength. The basic idea behind the LK
modification is simple. In the presence of gradients in thz
direction, the Turing unstable mode is ‘‘split’’ between i
‘‘longitudinal’’ ~alongz) and ‘‘transverse’’ dependence:

kc
25kz

21k'
2 , ~35!

wherekc is the critical wave number in the~narrow! Turing
unstable region alongz, depending only on the local value
of reaction and diffusion parameters. A transverse instab
can occur provided the width of this region is not smal
than a Turing wavelength.

This modified local analysis is used to better predict
region along the gradients where a transverse instability
curs, and to obtain more accurately parameter values for
vestigating~transient! Turing patterns in batch reactors. Th
mechanics of the modification consist of adding an appro
mate term to the governing equations for the diffusion of
steady state alongz, which does not alter the composition o
locally uniform steady state but does affect its stability. Th
approximation to the diffusion operator is given by

]2u

]z2
'

u~z2D/2!22u~z!1u~z1D/2!

~D/2!2
'

8@ ū2u~z!#

D2
,

~36!

ū is the average value of the locally uniform steady state
the two sides of the region of widthD, which is characteristic
of the longitudinal variation of the steady state. The valid
of this estimate relies on the smallness of this width. T
reaction termsf andg are modified:

f 8„u,v;mW ~z!…5 f „u,v;mW ~z!…18Du@ ū2u~z!#/D2,
~37!

g8„u,v;mW ~z!…5g„u,v;mW ~z!…18Dv@ v̄2v~z!#/D2,
~38!
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and the Jacobian of the reaction terms,ai j , in the linear
stability analysis is modified accordingly. The Turing cond
tions can be rewritten as

K8~z!.H1~z!.H2~z!, ~39!

where

H1[2a11/a2221, ~40!

H2[2
a11

2Ac~a11a222a12a21!2ca11

21. ~41!

The range of the Turing instability is given by the cro
points ofK8 andH1 and ofH1 andH2 . Sinceai j depend on
D, which is a priori unknown, H1 and H2 are evaluated
iteratively from an initial estimate forD until convergence is
achieved.

Figure 8 shows that the effect of this modification is
extend thez range of the transverse instability from approx
mately one to two Turing wavelengths. The boundaries gi
by the functionsK8(z), H1(z), andH2(z) are combinations
of the boundaries given in Fig. 4, which resulted direc
from the linear instability conditions. Therefore, although t
representation of the boundaries in Fig. 4 differs from tha
Fig. 8, the instability region is the same in the unmodifi
case.

The proposed modification increases the range of the T
ing instability by suppressing the homogeneous oscillat
instability ~moving the left boundary to the left!, while not
affecting the right boundary corresponding to the inhomo
neous instability. Identifying the left boundary of thez range
in which transverse patterns would form with the homog
neous instability is unphysical, since there is no mixing

FIG. 8. Modified local stability analysis:K8, H1 , and H2 are
given by the solid, long-dashed, and dotted lines, respectively
~a!, these boundaries have been modified to take into account
fusion of the steady state alongz, whereas in~b! they are un-
changed. The Turing instability region is indicated by the shad
The shaded region in~b! is identical to that in Fig. 4. Note that th
right boundary of the Turing region, which denoteskÞ0 criticality,
remains unchanged under the modification.
n

n

r-
y

-

-
f

modes at the linear level. Instead, it seems more approp
to identify the left boundary of the Turing region with thez
location where an inhomogeneous instability ceases to e
(ca111a2250).

An alternate modification to the local analysis is to ca
out the linear stability analysis about the nonuniform stea
state alongz, such that the diffusion operator in the gover
ing equations acts only on the steady state and not on
instability eigenvector in thez direction. This ‘‘local’’ analy-
sis incorporates the effect of diffusion alongz through the
nonuniform steady state, but the instability eigenvectors
‘‘local’’ and depend only parametrically onz. The resulting
eigenvalue problem becomes

S ~a11~z!2k2!/s a12~z!/s

a21~z! a22~z!2ck2D S duk~z!

dvk~z! D
5lk~z!S duk~z!

dvk~z! D , ~42!

where ai j (z) are evaluated at the nonuniform steady sta
and„duk(z),dvk(z)… andlk(z) depend parametrically onz.
The stability boundaries are very irregular and not shown
this case. Except at the sharp edges of the nonuniform ste
state and over a region roughly equal to the width of
sharp edge~much smaller than a Turing wavelength!, this
analysis predicts nokÞ0 instability.

5. Discussion

We conclude that to accurately predict the formation a
location of the Turing instability region, at least the on
dimensional steady state along the gradients must be so
for numerically using the full model including longitudina
diffusion. A ‘‘local’’ stability analysis about this steady stat
does reproduce the result from the fully nonuniform stabil
analysis. However, a local analysis neglecting longitudi
diffusion of the stationary state does not correctly descr
the linear stability of this state. We have presented her
first direct demonstration of this point by carrying out a ful
nonuniform as well as a local linear stability analysis. As h
been suggested@20#, two-dimensional~nonlinear! time evo-
lution of the model is the definitive method for predicting
transverse instability. We have accomplished this for
LRE model, and the results will be published elsewhere@29#.

The locally uniform steady state profiles for the two d
namical variables I2 and ClO2

2 ~Fig. 3! do not include dif-
fusion along thez direction and are qualitatively differen
from the numerical solution including diffusion@Figs. 2~d!,
2~e!#. Hence, it is not surprising that the local stability ana
sis about this steady state does not agree with the fully n
uniform one. In particular, at the left boundary, the loca
uniform ClO2

2 profile is several orders of magnitude grea
than the corresponding numerical solution including diff
sion. This large discrepancy is accounted for by the diffus
of this species in a region extending over approximately
left half of the gel, as can be seen from the almost lin
~diffusive! profile for ClO2

2 over this region@Fig. 2~e!#. The
LKE modification to the locally uniform analysis, whic
corrects for this diffusion of the steady state alongz, as-
sumes that it is relevant only on the length scale of the or
of the Turing wavelength. For the parameter values inve
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4494 PRE 58S. SETAYESHGAR AND M. C. CROSS
gated here, this assumption is not valid, and the modi
stability analysis does not correctly predict the stability
the structures along the gradients.

The dependence of the locally uniform steady state p
files for the intermediate species on the background con
tration gradients is through the reaction terms. The res
presented here are for background profiles obtained from
action and diffusion of all six species. We have checked t
these background stationary profiles do not vary consid
ably from those obtained by setting the intermediate spe
identically equal to zero. In this way, we rule out the pos
bility that the diffusion of the intermediate species fee
back into the profiles of the background variables, there
accounting for the large discrepancy between the locally u
form steady state profiles of the intermediate species
those including diffusion. In particular, the large left boun
ary value of the locally uniform ClO2

2 species results from
the strong suppression of I2 relative to ClO2 at this boundary,
which becomes even more pronounced with backgrounds
tained from the intermediate species set identically equa
zero.

It is desirable to obtain semianalytical solutions to t
stationary structures along the gradients, which could the
used in ~semianalytical! linear stability analyses of thes
states. This has been done, for example, for the Brusse
model in the presence of slow spatial gradients usin
WKB-like approach@25,26#. The localized structures alon
the gradients are obtained as marginally stable perturbat
to the locally uniform steady state. However, in the ca
presented here, it is not possible to carry out a similar an
sis. First, there is a large discrepancy at the boundaries
tween the locally uniform solution and the desired solut
including diffusion satisfying Dirichlet boundary condition
Even if the boundaries are ignored and an approximate s
tion in the interior of the gel is sought, our numerical resu
show that the steady state including diffusion is not a wea
nonlinear perturbation to the locally uniform steady sta
Therefore, seeking a correction given by marginally unsta
modes is not justified. For small gel width~see Sec. V B 2!,
where the background concentration profiles are almost
ear, such a WKB-like description relying on the slowness
the parameter ramps can perhaps be sought.

Numerical calculations based on the two-variable LR
model with uniform background have shown the transition
a symmetry-breaking instability to be strongly subcritic
@27,28#. Although it is not clear how the range of paramete
investigated in these works compares with their local val
in the actual ramped experimental system or in our numer
example, these results imply that alinear stability analysis of
the locally homogeneous steady states would not predict
existence of a finite amplitude instability in the subcritic
regime. The nature of the transition of the fully nonunifor
stationary structures along the ramps to a transve
symmetry-breaking instability has not been determined
Should this transition be supercritical, or even weakly s
critical, the fully nonuniform linear stability analysis woul
well predict the formation of quasi-one-dimension
symmetry-breaking spots in the thin-strip experiments. T
is currently under investigation@29#.
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B. Parameter dependence of the Turing instability
in the CDIMA system

As discussed in the previous section, by adopting a loc
uniform approach, existing numerical studies of the stabi
of the stationary patterns along feed gradients have not f
taken into account the reaction1diffusion feed gradients.
Thus, the parameter range for the occurrence of a transv
symmetry-breaking instability in a gradient system with
the context of the LRE model is essentially unknown. Hen
we have undertaken a systematic search, using the con
tration of one of the reservoir species and the gel width as
control parameters. Variation of either of the control para
eters changes the nonlinear reaction1diffusion profile of the
background species, however, they are not equivalent op
tions. In the following sections, we present our numeri
results and make connection with relevant experimen
work.

1. Variable malonic acid boundary condition

The parameter search for the Turing instability in t
CDIMA reaction-diffusion system as a function of the ma
onic acid concentration at the left boundary was perform
for @MA #L in the range 0.004M to 0.035M . The concentra-
tions@ I2#R and@ClO2#R at the right boundary were held fixe
at 0.008M and 0.006M , respectively. These values we
chosen so as to lie within the range of the initial concent
tions of these species used in experiments on this syste
batch reactors@17#, and therefore should also be experime
tally accessible in open reactors.

First, we numerically obtained steady state solutions
the full 7-variable governing equations as a function
@MA #L , as described in Sec. V A 1. The analysis describ
in Sec. V A 3 of the linear stability along the gradients
transverse symmetry-breaking perturbations was repeate
each stationary state. This was performed using the reduc
of the full LRE model to the two dynamical variables I2 and
ClO2

2. The eigenvalue and eigenvector corresponding to
fastest growing~or slowest decaying! mode at each value o
the transverse wave numberk were obtained numerically
using inverse iteration, and confirmed for select values ok
using EISPACK@24#.

In Fig. 9, we have plotted the value of the control para
eter @MA #L versus wave number, with the solid boundari
denoting marginally stable wave numbers. The shading in
cates the Turing-unstable regions. We note that the unst
regions are disjoint, corresponding to the following scena
as the control parameter is continuously varied, the sta
stationary state along the gradients first becomes unstab
transverse Turing patterns at a critical value of the con
parameter, and initially remains unstable as the control
rameter continues to increase. It becomes stable again
the control parameter exceeds a second and higher cri
value. This is qualitatively consistent with the experimen
observations of Perraudet al. @15# on the CIMA reaction-
diffusion system. Their results show that as the concentra
of @ClO2

2#R at the right boundary is increased, the numb
of alternating dark and bright bands parallel to the fe
boundaries increases, and several layers break up into
of spots. As@ClO2

2#R continues to be increased, the sp
patterns develop along more bright bands, until they even
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ally disappear and the parallel stripes are recovered.
In Fig. 10, we have plotted the stationary solutions for

experimentally observed SI3
2 species from our numerica

calculation, at various values of@MA #L . We observe that the
number of peaks in the steady state solution increases
increasing@MA #L , while the characteristic ‘‘wavelength’’ o
the patterns along the gradients remains relatively cons
~excluding the leftmost peak!. The transition from one un
stable region to another corresponds roughly to the app
ance of an additional peak in the stationary solution alo

FIG. 9. Malonic acid concentration (M ) at the left boundary
versus the wave numberk of the transverse instability~1/cm!: The
crosses represent the marginally stable wave numbers determ
from the stability analysis of the one-dimensional steady states
responding to the given malonic acid feed concentration. A tra
verse instability occurs for values of malonic acid feed concen
tion in the shaded regions, with the range of linearly unstable mo
delimited by the solid lines for each value of@MA #L .

FIG. 10. Stationary solution for@SI3
2# along feed gradients fo

various values of malonic acid feed concentration at the left bou
ary: This series of plots shows how the stationary state along
gradients changes as@MA #L is varied. The number of peaks in th
solution increases with increasing malonic acid concentration, w
the left most peak becomes smaller. The minima correspond to
bands in the experimental results. Instability region I correspond
stationary states with three peaks, region II with four peaks,
region III with five peaks.
e

ith

nt

r-
g
the gradient: instability region I corresponds to a steady s
with three peaks, region II corresponds to four peaks,
region III corresponds to five peaks. As an example, for
instability region II, we show in Fig. 11 density plots of th
steady state and the fastest growing~slowest decaying! wave
vector. This eigenvector is localized at and roughly trac
one of the minima in the steady state solution. This is a
the case for regions I and III. Specifically, the unstable vec
appears to be approximately localized at the next-to-
minimum of the SI3

2 solution. The appearance of th
symmetry-breaking instability at a minimum of the starc
triiodide is consistent with the above experimental obser
tions.

To better quantify this trend, in Fig. 12, we plot the valu
of all six chemical species at successive minima of the S3

2

stationary solution as a function of@MA #L . In this figure, the
circles, triangles, squares, and diamonds correspond to
second, third, fourth, and fifth minima, respectively. T
points corresponding to critical@MA #L values are filled~two
points for each unstable region!. We note that the relevan
chemical species for tracking the instability are the two d
namical species, I2 and ClO2

2, plotted in Figs. 12~d! and
12~e!. ~The SI3

2 concentration depends on the product of t
I2 and I2 concentrations.! The concentration of I2 remains
within the range of approximately (1.022.2)31027M , and
the concentration of ClO2

2 remains approximately constan
at 131026 in each of the instability regions.~Note that the
concentration of SI3

2 does not stay within a more-or-les
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FIG. 11. Density plots of the stationary solution along the g
dients and the fastest-growing instability eigenvector for region
White and black correspond to large and small values of the s
tion, respectively. The top plot shows the variation of the station
state in region II with increasing@MA #L . The bottom plot shows
how the most linearly unstable eigenvector is singly peaked
tracks the next-to-last minimum in the solution.~Note: It is difficult
to discern thelast minimum in the top plot.! The ‘‘staircase’’ struc-
ture is due to the discrete sampling of@MA #L .
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constant range for each of the instability regions due to
drift in the I2 concentration.! A simple interpretation of these
numerical results is that an instability occurs when the c
centrations of the dynamical species I2 and ClO2

2 lie within
a certain range. As the stationary solution changes with
creasing@MA #L , the instability vanishes when the value
the concentration of the steady state falls outside of t
range, and reappears when the concentration at thenextmini-
mum is within this range again.

The experiments of Perraudet al. @15# show that as the
control parameter is increased, the stationary pattern
stripes along the gradients first becomes unstable in a si
stripe region and then in multiple stripes as the control
rameter continues to increase. In our numerical investi
tions, the most unstable vector remains singly peaked in
cases. To further investigate this point, we have exami
the spatial structure~alongz) of the linear instability eigen-
vectors as a function ofk. Figure 13 shows a density plot o
the most unstable~or least stable! eigenvector, corresponding
to the I2 species, as a function of transverse wave numbek
for @MA #L50.023M . The horizontal axis represents the sp
tial coordinate along the gradients, and the vertical axis is
transverse wave number, ranging fromk50 cm21 to k
5900 cm21.

In Fig. 14, we show the first fourteen eigenvalues w
largest real parts as a function ofk. We note the eigenvalue
crossings that define distinct ‘‘modes’’ cutting across t
spectrum of eigenvalues. As an interesting aside, we h
investigated the eigenvectors corresponding to one s
‘‘mode,’’ denoted by filled triangles in this figure. The spa

FIG. 12. Values of stationary profiles of the CDIMA chemic
species at successive minima of the stationary@SI3

2# solution as a
function of @MA #L : The open triangles, circles, squares, and d
monds represent the second, third, fourth, and fifth minima, resp
tively. The filled symbols correspond to the critical values
@MA #L ; the points between the filled symbols correspond to
linearly unstable states. We note that the instability occurs suc
sively along the second, third, and fourth minima. Although t
values of @MA #, @ I2#, @ClO2# in the unstable ranges continue t
increase as functions of@MA #L in going from one instability region
to the next, the trend for the dynamical species@ I2# and@ClO2

2# is
different: the value of@ClO2

2# remains approximately constan
while @ I2# varies within an approximately constant range.
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tial profile of these eigenvectors changes continuously w
increasingk. Hence, their interpretation as a single physic
‘‘mode’’ is not obvious. There does not appear to be a mo
crossing between the first and second branches of Fig.
although the structure of the first eigenvector changes c
siderably from being multipeaked~and stable! to being sin-
gly peaked~and unstable, but subsequently stable again! ask
increases. The experiments of Perraudet al. could corre-
spond to a case where, as the control parameter is varie
mode with multiple peaks becomes unstable. This does
occur in our numerical investigation, where the multip
peaked modes remain stable. The appearance of multipl
stability layers could also be a nonlinear effect, resulti
from linear growth and nonlinear saturation of the sing

-
c-

e
s-

FIG. 13. Density plot of the iodide eigenvector corresponding
the largest eigenvalue as a function of the transverse wave num
k and spatial distance along the gradients (@MA #L50.023M ):
Black and white correspond to low and high values of the eig
function, respectively. For small values ofk, the eigenvector is
multiply peaked while fork larger than approximately 300 cm21,
which includes the unstable range of wave numbers, it is sin
peaked.

FIG. 14. Spectrum of eigenvalues for@MA #L50.023M : The
real parts of the first fourteen eigenvalues with largest real p
have been plotted. The eigenvalues are real, except along inte
where two curves overlap. Some eigenvalue crossings appea
perfect due to the coarse selection ofk values. It appears that th
first two eigenspectra do not cross but remain distinct. We note
the eigenvalue crossings define distinct ‘‘modes’’ that cut across
spectrum of eigenvalues. The filled triangles indicate the eigen
ues for one such ‘‘mode.’’
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peaked unstable eigenvector, as well as growth of its s
lobes. However, we have shown@29# that in the two-
dimensional evolution of the governing equations, the spa
profile of the most linearly unstable mode is in fact preserv
in the LRE model.

2. Variable reservoir length along boundary feeds

The experiments of Duloset al. @14# have aimed at eluci-
dating the transition from quasi-two-dimensional to thre
dimensional Turing patterns by combining observations
bevelled thin-strip and disk reactors. Motivated by these
periments, we have undertaken a similar numerical inve
gation that does not directly address the same question
rather continues to focus on the localized patterns along
ramps. In particular, we consider the experimental res
from the variable-width thin-strip reactor. In these expe
ments, the transition between the domains with one and
rows of spots, and the possible influence of the feed gr
ents on the phase relations between the spots in the two
have been studied. The vanishing amplitude of the s
modulations before this splitting occurs is not well und
stood.

Our numerical results address the latter question. We h
reproduced the observed qualitative trend of the symme
breaking instability occurring and subsequently disappea
in a single layer as the gel width is varied. The bound
conditions are held fixed at@MA #L50.023M , @ I2#R
50.008M , and @ClO2#R50.006M , while the gel width is
varied from 0.14 to 0.39 cm. The stationary localized p
terns along the gradients as a function of the scaled gel w
are shown in Fig. 15. Figure 16 shows the linear stability
each solution to a symmetry-breaking instability. In Fig. 1
we have plotted the value of the control parameterw versus
wave numberk, with the solid boundary denoting the ma
ginally stable wave numbers. For the parameter values

FIG. 15. Stationary solution for@SI3
2# along feed gradients fo

various gel widths: This series of plots shows how the station
state along the gradients changes as the gel width is varied.
horizontal axis is the scaled length along the gradients. With
creasing gel width, we note:~i! shifting of the pattern to the right
and ~ii ! increase in the concentration scale by approximately
order of magnitude~primarily due to the leftmost peak!.
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boundary conditions numerically investigated here, we
not observe the transition from an unstable monolayer to
unstable bilayer as the gel width is increased. We have
lowed the most linearly unstablekÞ0 mode as the gel width
is varied, and it remains singly peaked.

These numerical results are analogous to those prese
in Sec. V B 1, where the parameter dependence of the Tu

y
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n

FIG. 16. Gain curve corresponding to largest eigenvalue
various gel widths:~b!–~d! are unstable; in~g!–~i!, the largest ei-
genvalue now occurs atk50.

FIG. 17. Gel widthw ~mm! as a function of wave numberk of
the transverse instability~1/cm!: The crosses represent the margi
ally stable wave numbers determined from linear stability analy
of the one-dimensional steady states corresponding to the g
malonic acid feed concentration. A transverse instability occurs
values of gel width in the shaded regions, with the range of linea
unstable modes delimited by the solid lines for each value ofw.
The vertical plot range corresponds to the experimental range of
width in the bevelled thin-strip reactor@14#.
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instability in a ramped system was investigated as a func
of the malonic acid boundary condition. Here also, we tra
the concentrations of the chemical species at the locatio
the minimum of the starch-triiodide complex where the fa
est growing~or slowest decaying! instability eigenvector is
localized. The results are given in Fig. 18: as before,
angles, circles, squares, and diamonds represent the se
third, fourth, and fifth minima, respectively. The soli
squares correspond to the critical lengths, below and ab
which the instability vanishes. We note the following abo
the concentrations of the chemical species in the unsta
interval ~at the third minimum of the stationary SI3

2 solu-
tion!: ~1! the concentration of ClO2

2 is approximately at 1
31026M , in agreement with the variable@MA #L investiga-
tion, ~2! the concentration of I2 is in the approximate range
of (1.822.2)31027M , again in agreement with the variabl
@MA #L investigation, and~3! the concentrations of the back
ground species, MA, I2 , and ClO2 are approximately equa
to those in the variable@MA #L case for region III of Fig. 9.
These results support the simple interpretation that the c
centrations of the dynamical species, the activator I2 and the
inhibitor ClO2

2, are key factors in the occurrence of a tran
verse instability. However, this picture may be overly sim
plified: for values of gel width larger than the upper critic
value, the concentrations of I2 and ClO2

2 remain well
within the instability interval of the variable@MA #L analysis
while the stationary state remains stable.

3. Discussion

In this section, we have explored the parameter dep
dence of the Turing instability as a function of malonic ac
boundary condition and gel width. The use of the CIM
reaction-diffusion system~as opposed to the CDIMA sys
tem! and its corresponding boundary species~iodide, rather

FIG. 18. Values of stationary profiles of the CDIMA chemic
species at successive minima of the stationary@SI3

2# solution as a
function of gel width,w: The open triangles, circles, squares, a
diamonds represent the second, third, fourth, and fifth minima,
spectively. The filled symbols correspond to the critical values
gel width; the points between the filled symbols correspond to
linearly unstable states.
n
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than iodine, and chlorite, rather than chlorine! by experi-
menters makes direct comparison of our numerics with th
results difficult. Nevertheless, our numerical simulations d
play similar features to those present in experimental res
as control parameters are varied. These are~1! the transition
to patterns with progressively larger numbers of fronts, a
~2! the appearance and subsequent vanishing of a transv
instability. Also agreeing with experimental results, the
stability is localized near a minimum of the starch-triiodid
~as well as iodide! unperturbed solution. For the paramete
and boundary conditions we considered in our numerical
vestigations, the multiply peaked linear instability eigenve
tors remain stable, and the experimentally observed tra
tion from a single to multiple unstable layers is not obtaine
Overall, the agreement between trends in these experim
and our numerics is encouraging, and will hopefully provi
motivation for future experiments on the CDIMA syste
that could be compared quantitatively with numerical a
analytical results.

VI. CONCLUSIONS

In this work, we have focused on the one-dimensio
patterns that form in the presence of feed gradients, a ne
sary feature of the real experimental systems. We h
shown that longitudinal diffusion along the boundary fe
gradients can be important over length scales longer than
Turing wavelength. Therefore, the frequently invoked loca
uniform approach for predicting the linear instability of th
stationary patterns along the gradients to a transve
symmetry-breaking instability is inappropriate in such cas

We have also explored the dependence of the Turing
stability of these longitudinal structures on two control p
rameters. The transition to patterns with a progressiv
larger number of longitudinal fronts and the appearance
subsequent vanishing of the transverse instability near a l
minimum of the starch-triiodide solution are features that
in agreement with experimental results. We have attemp
to interpret these trends by determining that a transverse
stability occurs and is localized at that part of the station
solution along the gradients where the values of the conc
trations of the dynamical iodide and chlorite species
within a certain well-defined range. For the parameters
boundary conditions investigated here, we do not obtain
experimentally observed transition from a single to multip
Turing unstable layers.

Building on the work presented here, one can begin
address many interesting questions. At the linear level, i
clear from the numerical solutions that both the formation
localized structures along the gradients as well as their tra
verse instability are governed by the Turing mechanism. T
relationship between the ‘‘longitudinal’’ and ‘‘transverse
pattern formation is an interesting question that so far
only been analyzed for model systems@30#. For the realistic
chemical description it may be more feasible to address
question analytically in the limit where the reservoir conce
trations can be approximated by linear profiles: we ha
found that these conditions are achieved for parameter va
explored in the variable gel-width numerical investigatio
for small gel widths. A description of the longitudinal stru
tures can perhaps be sought, in terms of wave number se

e-
f
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tion in the presence of control parameter ramps@31#. The
effect of the variation in background concentration profil
with changing gel width or malonic acid reservoir concent
tion ~Figs. 10 and 15!, on these one-dimensional structur
can be investigated within this framework. Alternatively t
symmetry breaking transition might be better understood
terms of a fully three-dimensional periodic instability pe
turbed by longitudinal gradients.

At the nonlinear level, the nature of the transition fro
one-dimensional non-symmetry-breaking front patterns
symmetry-breaking transverse spots in thin-strip reac
~continuous or discontinuous! can be determined numericall
from the nonlinear evolution of the LRE model in two d
mensions@29#. Numerical establishment of the bifurcatio
behavior for the two-dimensional ‘‘monolayers’’ in disk re
actors is also a relevant topic for further investigation, a
would require extending numerical computation to three
mensions. Dufietet al. @32# have pointed out that thes
monolayers, which are confined by a transverse param
ramp, must be distinguished from what they callgenuine
two-dimensional structures that form under uniform cont
parameters. They have compared pattern selection in gen
two-dimensional systems and in such monolayers in the c
text of an abstract reaction-diffusion model. The advant
of using the LRE model is that results would then be direc
comparable with experiments based on the CDIMA reacti
An interesting feature of the work of Dufietet al. is the cou-
pling of the pattern forming modes to the longitudinal d
placement of the pattern as a whole: it would be interes
to investigate this effect using the realistic description of
longitudinal gradients.

The successful formulation of a realistic model of t
chlorine dioxide-iodine-malonic acid reaction-diffusion sy
tem has made this system an attractive paradigm for
study of nonequilibrium pattern formation@10#. This work
represents an attempt to bring theoretical and numer
study of pattern formation in chemical systems closer to
perimental studies.
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APPENDIX: DETAILS OF THE TURING INSTABILITY
CONDITIONS

1. Stability to homogeneous perturbations:k50

The characteristic equation fork50 is

sl0
22~a111sa22!l01~a22a112a12a21!50, ~A1!

with
,
-
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d
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lo
~6 !5

1

2s
~a111sa22!

6
1

2s
A~a111sa22!

224s~a11a222a12a21!.

~A2!

We require Re(lo
(6)),0. Therefore, in the case o

Im(l0
(6))Þ0, we must have

l0
~1 !1l0

~2 !5a111sa22,0, ~A3!

and additionally, in the case of Im(l0
(6))50:

l0
~1 !l0

~2 !5s@a11a222a12a21#.0. ~A4!

2. Instability to inhomogeneous perturbations:kÞ0

We require that at least one of the roots be positive
somekÞ0. Consider the sum of the eigenvalues:

lk
~1 !1lk

~2 !52~sc11!k21~a111sa22!. ~A5!

Once stability tok50 perturbations is imposed according
Eq. ~A3!, the above sum will be,0, and the real part of one
of the roots is necessarily negative. First, we require that
product of the roots be,0 in order to have a positive rea
root:

lk
~1 !lk

~2 !5s@ck42~a221ca11!k
21~a11a222a12a21!#

[h~k2!,0. ~A6!

Since the first and third terms inh(k2) are.0, a necessary
condition forh(k2),0 is

a221ca11.0. ~A7!

Furthermore, we know thath(k2) has a minimum, and from
Eq. ~A4! that

h~0!5s~a11a222a12a21!.0. ~A8!

So, forh(k2),0, k2 must lie between the two rootsk2
2 and

k1
2:

k6
25

1

2c
@~a221ca11!

6A~a221ca11!
224c~a11a222a12a21!#. ~A9!

For k6
2 to be real, we must have

~a221ca11!
224c~a11a222a12a21!>0. ~A10!

Equation~A10! is required for real valuesk6
2 of the mar-

ginal modes, and Eq.~A7! is required fork6
2>0. Equations

~A3!, ~A4!, ~A7!, and~A10! constitute the Turing conditions

3. Oscillatory instability

From Eq.~7! there will be a complex conjugate pair o
eigenvalues, Im(lk)Þ0, for



l

4500 PRE 58S. SETAYESHGAR AND M. C. CROSS
g~k2![~sc21!2k412k2~sc21!~a112sa22!

1~a112sa22!
214sa12a21<0. ~A11!

To determine the behavior ofg(k2), look at its roots:

k6
~H!2

52
~a112sa22!

sc21
6

A24sa12a21

sc21
. ~A12!

For Im(lk)Þ0, requirek1
(H)2

>0. Under typical experimenta
conditions, we expectsc21.0. We note thatg(k2) pos-
sesses a minimum with
hy

s

oc

oc

er
a

o

ic

sic
g~0!5~a112sa22!
214sa12a21. ~A13!

Therefore, fork1
(H)2

>0, we must haveg(0),0, in which

case ImlkÞ0 for 0,k2,k1
(H)2

. The real part of the complex
conjugate pair is given by

Re lk52 1
2 @~sc11!k22~a111sa22!#, ~A14!

and behaves as
~ i! a111sa22,0⇒Re lk,0, ~A15!

~ ii ! a111sa22.0⇒H Re lk,0 for k1
~H!2

.k2.
a111sa22

sc11

Re lk>0 for 0,k2<
a111sa22

sc11
.

~A16!

~A17!
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