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Turing instability in a boundary-fed system
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The formation of localized structures in the chlorine dioxide-idodine-malonic @C@IMA) reaction-
diffusion system is investigated numerically using a realistic model of this system. We analyze the one-
dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to
symmetry-breaking perturbatiori$uring instability) in the plane transverse to these gradients. We establish
that an often-invoked simple local linear analysis that neglects longitudinal diffusion is inappropriate for
predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure
of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a
function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor
in the dimension along the gradients. The results from this investigation are compared with existing experi-
ments.[S1063-651X98)15009-2

PACS numbeps): 47.54+r, 82.20.Wt, 82.20.Mj

[. INTRODUCTION tial to become an archetype for the study of nonequilibrium
pattern formatior{10] in chemical systems, in principle al-
Recent experimental developments have made possiblewing numerical and theoretical investigations to be com-

the study of asymptotic spatiotemporal behavior in chemicapared directly with experiments.

systems in a controlled and reproducible manner, allowing In practice, however, this has not been fully realized for
predictions from theoretical and numerical studies of thesewo reasons. First, numerical investigations of reaction-
systems to be compared quantitatively with experiments, inliffusion equations using realistic chemical parameters is a
the same way that fluid systems have been studied. Indeedemanding computational task. In addition, the algebraic
the understanding of spatial pattern formation in nonequilibtomplexity of the realistic nonlinear reaction terms renders
rium systems has greatly benefited from careful and conthese models unsuitable for analysis by standard analytical

trolled experiments on fluid systens]. Unlike fluid sys-  tgols. As a result, the theoretical work on reaction-diffusion
tems, which at high nonlinearity break down to a turbulentg

) { ] - 6listems has been mostly based on abstract models. Second,
state characterized by a wide range of spatial scales, spati spite the existence of the realistic CDIMA chemical

patterns in chemical systems can be studied at high non"r}hodel
earity [2], thus providing an opportunity to study rich and !
new phenomena that complement our knowledge from pa
tern formation in fluid systems.

The symmetry-breaking instability of a system from a ho-

which has similar pattern-forming and dynamical

roperties to the related CIMA system, experimental work
q[:)uas continued to be based on the CIMA reaction, making
direct comparisons of numerical and analytical work with

mogeneous state to a patterned state, predicted in 1952 per@ments difficult. Cons_equently, uqlike in ﬂL."d systems,
Turing [3], was observed for the first ime nearly 40 years perimental and theoretical efforts in chemical systems
later, in the chlorite-iodide-malonic acikCIMA) reaction-  have not been closely coupled.
diffusion system{4—6]. The Turing instability is character- N this paper, we use the realistic LRE model of the
ized by an intrinsic wavelength resulting solely from reactionCPIMA reaction-diffusion system to investigate the Turing
and diffusion processes. For this reason, it has particular reibstability numerically[11]. Contrary to the case originally
evance to pattern formation in biological systefii$ considered by Turing and subsequently by others, the experi-
In contrast to hydrodynamic systems for which the gov-mental conditions under which Turing patterns form are not
erning equations and parameter values are well understoodpiform, as required by the continuous feed of reservoir
how to model complex chemical systems is often not wellchemicals. We study the formation and stability of one-
known[1]. A realistic model of the simpler chlorine dioxide- dimensional structures in the presence of boundary feed gra-
iodine-malonic acidCDIMA) reaction, which is similar to dients. We first briefly review the Turing mechanism in Sec.
the CIMA reaction in terms of its stationary pattern-forming Il. To facilitate comparisons with our numerical investiga-
and dynamical behavior, has been proposed by Lengyel, Raions, we describe the geometry and setup employed by the
bai, and Epstein(henceforth referred to as LRES,9]. relevant experiments in Sec. lll. The LRE chemical model is
Hence, the CDIMA reaction-diffusion system has the potendescribed in Sec. IV. In Sec. VA, we obtain the one-
dimensional steady state chemical concentration profiles for
a particular set of boundary conditions, and explore several
* Author to whom correspondence should be addressed. Presedifferent approaches to determine the linear stability of these
address: Physics Department, Northeastern University, Bostorprofiles to transverse symmetry-breaking patterns. In Sec.
MA 02115. FAX: 617-373-2943.  Electronic  address: V B, the patterns along the gradients and their linear stability
simas@masto.physics.neu.edu are further explored as a function of two control parameters.
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We summarize our results and consider prospects for furthé¢th mode, and QUE,&;E) is the corresponding constant ei-

progress in Sec. VI. genvector. The resulting linear eigenvalue problem
2
II. TURING INSTABILITY CONDITIONS (an—k9lo  aplo (5UE B (5113) ©)
azl a22_Ck2 5UE k 51)8

In his original papei3], Turing suggested that the reac-
tion and diffusion of chemicals could account for the i”Sta'yieIds
bility of an originally homogeneous steady state to a stablé
steady pattern when triggered by random disturbances. These
instability conditions, which are derived and discussed in A=
detail in the text by Murray7] are presented here for the
purpose of introducing the notation for the rest of the paper. 1
Consider the general governings end equations for the +— \[(oc+ 1)k?— (ay,+ oayy) 12— 4h(k?),
reaction-diffusion mechanism of two chemical species: 20

- %[(UC"‘ 1)k?—(ay+oay)]

(7)
Ju N 2
o =fuwiu)+ Ve, (1) where
o h(k?)= o[ ck®— (az+cag)k?+ (ap180— a1,821)]. (8)
9 _ o 2
ot 9(uuip) eV, @ The quantitiesa;;=f,, a;,=f,, an=0,, anday,=g, are

the elements of the Jacobian of the reaction terms with re-
wheref andg represent thénonlineaj reaction kineticsu spect to the concentrations, evaluated at the uniform steady
and v are chemical concentrationg, is a set of reaction state\, has a rich behavior depending on the values.df,
parameters that may include concentrations of other cheminda;; . The conditions for the Turing instability are that this
cal speciess=D, /D, is the ratio of diffusion constants, and uniform steady state be linearly) stable to homogeneous
o=1 is a constant separating the characteristic time scalggerturbation andii) unstable to inhomogeneous perturba-
for changes in the concentrations of theand v species. tions. Hence, this is aymmetry-breakingnechanism, since
Turing’s idea was as followE7]: If in the absence of diffu- it breaks the homogenous spatial symmetry of the uniform
sion (u(F,t),v(F,t)) tend to a linearly stable uniform steady state. For the general reaction-diffusion system given in Eqs.

state, then under certain conditions, the addition of diffusioril) @nd (2), these conditions are derived in the Appendix.

leads to the development of spatially inhomogeneous palBelow, we refer to the relevant results for the purpose of

terns. Although these conditions were originally considered!iScussion. Stability of the uniform steady state to homoge-
for a spatially uniform system, where the parametérare neousk=0 perturbations requires the following inequalities

; ot . be satisfied:
constant, the actual experimental realization of the Turing

instability occurs in the presence of externally imposed feed aj+ 0a,<0, (9)
gradients, wherew=p(z). In this section, we derive the
Turing linear instability conditions for both uniform and aqq@g,— a12a51>0. (10

nonuniform parametergy. . .
P H In order for the uniform steady state to be simultaneously

unstable to inhomogeneous#0 perturbations, we must
have

The uniform background case is realized experimentally
in batch reactors where there are no externally imposed gra- axp+ca; >0, (13)
dients from continuous feed of chemical reactants, and Tur-

ing patterns are necessarily transient. The paraméteise
constants independent of position. The homogeneous steal

A. Uniform background

(@gy+cayy)®—4c(ag8y— 1281 =0. (12

@'omparing Egs(9) and (11) we conclude that;; anda,,

statec,= (u”,v4’) is obtained as the solution to must have opposite sign. In the standard terminology, the
- - activator species has a positive sign and the inhibitor has a
f(uv;u)=9g(u,v;u)=0. () negative sign in the Jacobian. Thus, takimg>0 anda,,

. . . . . ... <0 identifiesu as the activator and as the inhibitor. Ifo
The linear stability of this state is obtained by substltutmg:1 then Eqs(9) and (11) are simultaneously satisfied only
into the governing reaction-diffusion equations: '

for c>1. In fact, given values of other parameters; 1 is
required. Since diffusion constants of ions in aqueous solu-
tions are all nearly the samed(10 %) cn?s 1], for the
instability conditions to be satisfied; must be greater than
se(r,y=>, (5u8,5vg)e“2":e)‘kt' (5 1. In Sec. IV, the requirememnt> 1 will be put in the context
k of the fortuitous role of the starch color indicator in the pat-
R tern formation itself by providing the mechanism for slowing
wherec=(u,v) is a vector of concentrationk,is the spatial the activator reaction and diffusion with respect to those of
wave number of the perturbation, is the growth rate of the the inhibitor.

c(r,t)=cq+ 5¢(r,t), (4)



PRE 58 TURING INSTABILITY IN A BOUNDARY-FED SYSTEM 4487

Equations(9)—(12) constitute the Turing conditions. It Hence, it must be solved numerically, by discretizing the
will be useful for future comparison of the local stability spatial direction intdN, mesh points and solving the result-
analysis with the full stability analysis of the nonuniform ing 2N,X 2N, matrix eigenvalue problem for ead¢h This
steady state to consider the Hopf bifurcation of the uniformmethod of solution is described in Sec. V A 3.
system. For reaction parameters such that

C. Locally unif back d
(811~ TAy) 2+ 40 a;,851<0, (13) ocally uniform backgroun

In the presence of ramps in control parameters, a naive
there will be a complex conjugate pair of eigenvalues forassumption is that a structure will form in the region of space
wave numbers in the range<0<2<k(+H)2, where |<(+H)2 is  where the local value of the control parameter allows it to be
given in Eq.(A12). With the above inequality satisfied, a Stable in the corresponding uniform probl¢i®]. This “lo-
Hopf bifurcation of the uniform system occurs whea,{ Cally uniform” approach amounts to treating each location
+ 0ray,) >0. Beyond the Hopf bifurcation point, there will be @long the gradients in the direction to be an independent

an unstable complex conjugate pair of eigenvalues for wav@nd uniform quasi-two-dimensional system in g plane.
numbers in the range given by E@\17). The corresponding locally uniform steady state that depends

parametrically ore is given by the solution to

B. Nonuniform background

R f(u,v;1(2))=9(u,v;u(2))=0. (19
In this case, the parametets which depend on the con- o . . ]
centrations of background chemicals fed through the boundln€ Turing instability conditions can then be examined at
aries, are not constant but rather are functions of the variab/@ach point irz to determine whether or not a linear analysis
z along the direction perpendicular to the feed boundaries_‘?red'CtS the formation of transverse Turing patterns in any

The steady state solution will now be a functionzofsatis-  intérval alongz.

fying Since the resulting eigenvalue problem for the stability of
the locally homogeneous steady state to a symmetry-
N d2u, breaking instability requires only aX22 analysis at each,
f(us(2),v4(2); u(2))+ e =0, (14  itis computationally simple. The validity of this local analy-

sis is assessed in Sec. V A 2, by comparing the result with
that from the fully nonuniform analysifEq. (18)] of the

2 steady state along the gradients.

- N devg
9(us(2),v4(2);(2)) ¢ 2

=0, (15

Ill. EXPERIMENTAL GEOMETRY
with Dirichlet boundary conditions a=0 andz=L,. The
stability of (ug(z),v¢(2)) is given by linearizing about this
state:

The first experimental realization of the steady-state Tur-
ing patterns predicted in 1952 was made in 1990 by Castets
et al. [4], and was subsequently confirmed by othg$].

6(?,t)=5§(z)+ SC(F 1), (16) This was made possible by th_e develppment of open spatial
reactors, which allowed experimentalists to maintain a reac-
o tion far from equilibrium through a continuous supply of
sc(r) = [duy (2),6v, (z)]€*e L et (17)  reactants, while avoiding convective transport. These sus-
k. B - tained patterns have been obtained in only one controlled
. experimental system to date, the chlorite-iodide-malonic acid
wherek, is the wave vector perpendicular to the direction of (CIMA) chemical reaction-diffusion system. The principles
the gradients. For simplicity of notation, we will drop the of operation of these reactors have been discussed elsewhere
subscript “L,” taking k to be the transverse wave number. in detail[4,5,13,14.
The resulting eigenvalue problem is In this section, we introduce the thin-strip reactor that is
investigated numerically in this work, since a geometrical
9 9 / description of the experimental setup is useful in the under-
an(z)+ E_ K o a142)/ o standing of our results. A detailed description of the chemi-
cal model is presented later in Sec. IV, and is not necessary
for the discussion presented here. The thin strip reactor is
comprised of a thin rectangular gel strip, such thatw
>h, as in Fig. 1. Typically,h<1 mm, L~25 mm, andw
Su(2) ~3 mm. The gels are water based, acting as essentially water
v (2))’ (18) in a loose polymer grid. The gel core of the reactor is in
contact with two continuously stirred reservoirs of chemi-
with [ du,(z), dv(z)] satisfying the same Dirichlet boundary cals. Components of the reaction are distributed in the two
conditions as the steady state. As Pearson and BfLBp reservoirs in such a way that neither is separately reactive. In
have noted, this is an infinite-dimensional eigenvalue probthe CIMA experiments, these reservoir species are malonic
lem for eachk, which is formally similar to the Schoinger  acid [CH,(COOH), or MA], iodide (I"), and chlorite
equation. However, the Jacobian of the reaction terms is ndCIO, ). The LRE model of the CDIMA system takes as
symmetric, rendering the linear operator non-Hermitian.input malonic acid, iodine ¢) and chlorine dioxide (CIg).

(92
ay(2) a,(z)+c Pl ck?
z

— Mk

5Uk(2))
( ovi(2)




4488 S. SETAYESHGAR AND M. C. CROSS PRE 58

(a) was determined that after an initial fast consumption of |

‘ w , and CIG ™~ during a preoscillatory period to producgdnd
; ' CIO,, the reaction of CIQ, I,, and MA accounts for the
oscillations. The LRE CDIMA model consists of three reac-
tions for MA, 1,, CIO,, 17, CIO,™, and H" [17], with em-
pirically determined rate laws:

R ’T MA +1,—IMA +17+H",
dllp] ke[ MAT[IL]

RESERVOIR 1

- .>

= =rq, (20
. dt kip+[12]
FIG. 1. Sketch of open reactor geometries, adapted from Refs.
[10,14: A block of gel, with dimensiond.>w>h is in contact ClO,+1~—=CIO, +1/21,,
with two reservoirs | and Il. The reservoirs are continuously stirred
and fed with fresh supplies of reactants, such that each is separately d[CIO,]
nonreactive. A gradient in the reservoir species forms perpendicular - =Kk,[CIO, J[I7]=T15, (21
to the feed boundaries in ttedirection. The symmetry-breaking dt
patterns form transverse to this gradient. The thicknkess the _ _ i _
finite region along where they form is equal to at least one wave- ClO;™ +4I" +4H" > CI" +21,+2H,0,
length\ of the Turing patterns. _ B B
d[CIO, ]_k (o, T H 1+ kap[CIO, ][1][17]
As the reservoir species diffuse and react through the gel, the dt 3a 2 h+[1"1?
two dynamical species, iodide and chlorite, which take part
in the pattern-forming instability, are produced. The gel is =r3. (22)

preloaded with a soluble starch that acts as an indicator by
changing color from yellow to purple with changes in
triiodide concentration. The large starch molecules are im
mobilized in the gel matrix, and for this reason actually play
a role in the pattern formation itself.

Observations are made in the direction perpendicular t

Lengyelet al.[18] have modeled the effect of unreactive
starch-complex formation on the CDIMA system, where the
complexing agent is (6l,). Although formation of the
starch-triiodide complex (§T) is a complicated process, it
gan nevertheless be described as a single reaction:

the x-z plane(alongOy), which allows viewing of the mul- [Sl] k.,
tifront patterns that develop along the boundary feed gradi- S+HI™+1,=S8l;7, K= SR TR (23
ents(in the z direction), as well as patterns that form parallel (ST 101] -

to the boundariegin thex direction), breaking the boundary \hereK is the equilibrium constant, and the reaction rate is
feed symmetry(single or multiple layers of spots The given by

symmetry-breaking patterns form in a thicknésalongz. If

the gel is thin enoughh(~\ of the Turing patterns these ra=K,[S][l2][1"]-k_[Sl5"]. (24)

patterns are one or two dimensional, depending on wheth

A is of the order of one or more wavelength®f the struc-

ture. Withh>\, for exampleh~L as is the case with disk

reactors, the patterns are quasi-two-dimensidrederred to

as “monolayers’) for A~\, or three dimensional foA IMA]

=\ (referred to as “bilayers” forA~2\). at
A modified thin-strip reactor, where the feed surfackes (

X h) are no longer parallel but make an angle, has been al,]

developed and used by Dulostal. [14], where h ot

=0.2 mm,L=25 mm, and thewv ranges from 1.75 to 3.5

mm. The variation inv causes a gradual change in the res- J[ClO,]

ervoir concentration ramps across the gel, the effect of which =—r,+Dgo,VCIO,], (27)

can be studied on the patterns that form along and transverse at 2

to the gradients. i

Efjsing the above, the full reaction-diffusion model for the
CDIMA system, with the addition of the reaction with starch,
is given by[17]

=—r;+DyaVIMA], (25)

1
=—I’1+ §r2+2r3—l’4+D|2V2[|2], (26)

Tzrl—r2—4r3—r4+D,7V2[I’], (28)
IV. CHEMICAL MODEL OF THE CDIMA SYSTEM
Lengyel, Epstein, and Rabai have proposed a model for JLCIO, ]: _ 2 -
the temporal oscillations in the chlorite-iodide-malonic acid ot f2=r3+Deio, V[ CIO ], 29
reaction, CIQ-1"-MA, which is based on the simpler chlo- B
rine dioxide-iodine-malonic acid reaction, GiO-MA, re- I Sly ]=r (30)
ferred to as CDIMA[8,9]. They have shown experimentally at 4
that the CDIMA system also exhibits the Turing instability in
both closed and open systerfis6,21]. By monitoring the d[H"]
CIMA reaction in a closed system spectrophotometrically, it at

=r;—4rz+Dy+VIH"]. (31
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TABLE I. Kinetic constants for the CDIMA system. where k;' =k [MAT[ 1210/ (Kip+[1210), ko' =ks[ClO,],,
ksp' =ksp[12]o, and o=1+K’'>1. The subscript b” re-
Rate or diffusion constant Dimensions Value  fers to the concentrations of species that are taken to be
Ky (s} 9x10-42 const_ant, an_ah andv represent th_e conc_entrations of anq _
Ky (M) 5% 1052 ClO,™ species. The role of the immobile starch color indi-

cator in providing the relative slowdown of the reaction and

“lg7t x10°2 g ) . L
ll(z ((&A,zss,l)) 112>< iga diffusion of the activator with respect to that of the inhibitor
k:: (s 1:5>< 10-4a enters through the parameter-1.
h (M?) 1.0x 1042
k+ (M -2 S—l) 6.0X 10‘5 b V. ANALYSIS
- b . . . .
k- (s 1)_1 Lo” In this section, we use the LRE chemical model to inves-
Di- (en? Sil) 7.0x 1075 tigate several aspects of the experimental CIMA system. The
Dcio,- (en?s™) 7.0610°°°  focus is to demonstrate the potential for quantitative analysis
Dy, (en?s™ 6.0<10°°*  of experimental results using the realistic CDIMA chemical
Dwa (enfs™) 4.0x10°°%  model. In Sec. V A, we investigate numerically the forma-
Dcio, (cn?s™? 7.5x10°%2  tion of one-dimensional multifront localized structures along
Dy+ (cnPs™Y 1.0x10°° the gradients of imposed boundary feeds. We study the linear
K[Sl, (M~h 6.25x 10%d stability of these structures to transverse symmetry-breaking

perturbations using the two-variable reduction of the LRE
model. We compare our results from a local analysis to that
from a fully nonuniform analysis. We review a proposed
modification to the local analysis and show that it does not
successfully account for the presence of gradients. In Sec.
V B, we further explore the structure and linear stability of
The rate and diffusion constants used in the numerical Calrhe one-dimensional patterns a|ong the boundary feeds as a
culations here are taken from Ref47,19,2Q and are given  function of two control parameters: the malonic acid reser-
in Table I. voir concentration and gel width. We map out the linear
Lengyel et al. [8] have shown that these reactions suc-instability intervals in each case. We discuss the qualitative

cessfully simulate the temporal behavior dMA],  agreement of our results with relevant experiments.
[15], [CIO,], [17], and[CIO,™ ] in a batch experimental

system. Their numerical results show that while the interme-A Linear analysis of one-dimensional patterns along gradients
diateg[ 1~ ] and[ CIO, ] vary by several orders of magnitude "~

during an oscillation[MA], [I,], and[CIO,] vary more 1. Stationary solution along the z direction

slowly. In addition, the contribution dfH" ] to the reaction
terms is relatively small, and this species can be neglecte
This suggests a reduction of the full model to a three
variable system[( ], [CIO, ], and[ Sl; " ]) by treating the

concentrations of th¢MA], [1,], and[CIO,] reactants as boundary, andl,]z=1x 10 3M and[CIO,]=6x10"*M

constants, making'the model mqthematically anq numeric'all'&t the right boundary, were chosen so as to be consistent with
more tractable. This procedure illustrates the adiabatic elimi-:

. : . . a previous numerical investigation of the LRE model in one
nation of fast modes in dynamical systems, which reduce

he full d ; v & fow d t froed dimension by Lengyett al.[19]. Since the boundary condi-
the full dynamics to only a few degrees of freedom. ions giving a transverse instability weaepriori unknown,

GWe used these values as our starting point. The spatial
Ydirection was discretized on an irregularly spaced mesh to
allow a greater number of mesh points in the regions where
there was more structure in the solution, without excessively
increasing the overall number of mesh points in the problem.
[Sls™ J=K[S]llo]-[I"]=K'[17], (32 A five-point finite-difference approximation to the diffusion
operator was used on the variable mesh. The numerical
whereK’=K[S],[l,],. Adding Egs.(28) and(30), and us- scheme employed for the time evolution was Crank-
ing Eq. (32), a two-component reaction-diffusion system is Nicholson implicit time stepping for the linear terms, and
obtained: Adams-Bashford explicit time stepping for the nonlinear
terms. A banded solvdi22] was used at each time step to
solve for the solution at the next time step. The initial con-

8 rom[19] at 7 °C.
From[17] at 4 °C.
‘From[16] at 4 °C.
dFrom[20] at 4 °C.

The full seven-component LRE model equations given in
%qs. (25—(31) were evolved forward in time to obtain the
‘steady state solution in one dimension along the gradients.
The boundary conditions;MA], =1x10"?2M at the left

uniformly distributed so that its concentration is always ver
close to its initial valu¢ S],, and that the complex formation
and dissociation is fast. Then,

Uﬁ_u:kl/ —K,' u— MJF D, VZu, (33  centrations were uniform in the direction (and equal to 5
ot +u? X107 13M). The time evolution was continued until there
was no appreciable change in the solution.
, The results are displayed in Fig. 2. The steady state solu-
dv . ksp'uv

=k, +D,V?%, (34) tion for the starch—triiodide complex (1) plotted in Fig.
ot h+u? 2(f) represents the experimentally observable profile. As ex-
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ox 10 T T T T 3x10°% T T T T 75 X 10-3 T T T T T T T T T
B 3 (f) R
S extot B8 axtw05t g = 1.0x 1074 S aAAmanaann L
a = =
o L O
£ < [t
8 3x1074 % 1x10°5 | — E
5 & J\ S 50x103 ¢ j
. i >
0 0 P = 0.5 x 1074 1
4]
(b) (e) Q
101078 [ o 6x105} 4 o
> asens
2 osarod | 1 o 3x10°5 | g -oq_—')- 25x107 r i
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FIG. 2. One-dimensional steady state solutions: The boundary 10x 106 |
conditions ar§ MA], =1x10"2M at the left boundary, anfl,]r 8 ’
=1%x103M and[CIO,]g=6x10"*M at the right boundary. Al =
other boundary conditions are zero. Thaxis has been normalized
with respect to the thickness of the gel in tlkedirection, w 8 05x1078 |
=0.3 cm. We note that the steady state profiles for the reservoiro
variables malonic acidMA), iodine (L), and chlorine dioxide —
(CIOy) vary considerably from diffusion-only linear profiles. The

series of peaks in the starch-triiodide {S) profile correspond to 0
experimentally observed stripes parallel to the feed bounddrigs

pected, it tracks the iodide () steady state solution in Fig. FIG. 3. The value of the steady state solution, locally uniform in
2(d). It corresponds to énon-symmetry-breakingpattern of the_x-y plar_we,_is plotted at each pqirztfor the two dynamical
stripes parallel to the feed boundar{@sthe x-z plane, with ~ variables iodide (T) and chlorite (CIQ™) using the

x being the uniform direction such as those observed by reactiontdiffusion profiles of the reservoir variables given in Fig.
Perraucet al.[15], although the boundary species are differ- 2:

ent in their experiments on the CIMA reaction from those _. - . -
sis. Hence, it is desirable to use such a local approach if it

ggztsr':t?éﬁd tzzre'ogggg,éng%?g:fumi?fhe] rstiﬁe‘ra\go![rocrc;r:ﬂ-/s can be shown that it accurately describes the physical prob-
» they P > Strip 9em. In that case, a transverse instability would occur in a
spots parallel to the feed surfaces. This is a symmetry-

P S region of widthA along the gradients that is linearly unstable
breaking instability, since the boundary feed symmetry of th ; - .
system is broken. In the following, we will investigate theeto ak# 0 instability. Indeed, even though Turing patterns are

linear stability of our numerical steady state along the gradi—Obt"’"m_:‘d under experimental conditions that by necessity

ents to such a transverse pattern-forming instabilit lead to nonhomogeneous parameter ramps, a local linear
P 9 Y analysis is most commonly used to predict the formation of a

transverse symmetry-breaking instability. In this section, we

examine in the context of the two-variable LRE model the
To examine the stability of the stationary patterns thafocally uniform approach to determining the stability of the

form along the gradients of boundary feeddfrection, the  stationary patterns that form along the gradients of boundary

simplest approach is to treat each locatimas being inde- feeds.

pendent and locally uniform in the transverse plésee Sec. The locally uniform steady state in the variablésdnd

Il C), thereby neglecting diffusion along teairection(lon-  CIO,™ at each point inz along the gradients of the back-

gitudinal diffusion. The locally homogeneous stationary ground chemicals is shown in Fig. 3. This solution is ob-

state in the dynamical species, &nd CIGQ~, at eaclz can  tained according to Eq$33) and (34) using the numerical

be constructed either from the line@iffusion only) profiles  reactiontdiffusion profiles of Fig. 2 for the MA, 4, and

of the reservoir species, MA, | and CIGQ, or more cor- CIO, species, but neglecting the diffusion terms. The depen-

rectly, from their reactionrdiffusion profiles, obtained by dence orz in this plot is parametric.

evolving the full model, Eqs.25—(31). In either case, using The stability of the local steady state at eadk obtained

the two-variable activator-inhibitor reduction of the LRE from Eq. (6). This analysis predicts the existence of a finite

model, Eqs(33) and(34), the resulting eigenvalue problem instability region. The curves in Fig. 4 represent the Turing

for the stability of the locally homogeneous steady state to dnstability condition boundaries, Eqé)—(12), for each lo-

symmetry-breaking instability requires a simplx 2 analy- cally uniform steady state. We have also plotted the bound-

2. Locally uniform stability analysis
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FIG. 4. Boundaries from locally uniform stability analysis: At k (1/cm)

each locatiorg, the Turing instability conditions have been plotted . . .
for the corresponding uniform steady state. The plotted quantities F!C- 5 Gain curves for locally uniform steady states: The solid
have different dimensions, and since only the sign of each quantit)"€ denotes the eigenvalue with the larger real part, and the

is of interest, the vertical axis has no scale. When the light solid lind#ashed line denotes the one with the smaller real part, At (&)
corresponding tod;;+ o-ay) is less than zero, the complex conju- 2= 0-20, both eigenvalues are real and negative forkallb) 2
gate pair of eigenvalues fk=0 has a negative real part. The —0-50, both elgenvzalueszare real and peakeki=20, with )‘+>02
dotted line is @118~ a;,8,;), which is additionally required to be "M tr;e range &k"<k,” and A_>0 in the range &k
greater than zero for stability of a reie0 mode. We note that this <K~ (K=" are given in the Appendjx(c) z=0.62, both eigenval-
quantity is everywhere greater than zero. The long-dashed line col€S are still real, but &=0, we have a real degenerate pair, giving

responds to ¢a,,+a,,), and the heavy solid line ischy;+ ay)> the boundary qf the Hopf biflurcatio!(’u.;i) z=0.70, complex conju-
—4c(ay,850—a558,7), both of which must be greater than zero in 9at€ pair of eigenvalues with positive real p&zll’t fg’(@zj(all
order to have &#0 instability. The dashed line [{a;;— 0a,)? T 9222/(¢D,+Dy), andk+0 instability fork_“<k“<k.? ()
+40a,ay], and where it is less than zero, a complex conjugate?=0-72, Same agd), except that the real part of the complex con-
pair of eigenvalues exists for a finite rangekinThe shaded region 1Ugate pair is peaked at zero growth rafh;z=0.74, same agd)

indicates where the locally uniform steady state is stable to homo¥ith .the real part of the complex conjugate pair less than zero at
geneous perturbations and unstable to inhomogeneous perturts=0; (9 2=0.76, same agf), except that the maximum growth
tions. At z=0.354, the light solid 4,,+ 0a,,) and long-dashed

rate for k#0 is zero;(h) z=0.80, same asg), except that the
(caj;tayy) lines go through zero, while the heavy solid, dotte

d. maximum growth rate fok# 0 is negative(i) z=0.85, both eigen-
and dashed lines remain positive. values are real and negative.

ary that, when less than zero, gives the intervat iwhere able mesh as that on which the nonuniform steady state was
the locally uniform steady state has a complex conjugate pawbtained, and was solved for all eigenvalues and eigenvec-
of eigenvalues for a range ik given by Eq.(A12). The tors at each value of transverse wave numBeusing
vertical axis has no labels since we have plotted quantitieEISPACK[24]. Since we have a general real matrix, with no
that have different dimensions and only their signs are otpecial features such as symmetry, the most general routines
interest. The shaded region denotes the interval over whicyere used. Figure 6 shows the real part of successive eigen-
the locally uniform steady state in they plane is linearly  values with largest real parts. This result shows the steady

stable to homogeneous perturbations and unstable to inh@tate to be stable to all transverse perturbations. The eigen-
mogeneous perturbations. The widthof this region is ap-

) 1T VVILATN vector with slowest decayingrea) growth rate atk

proxma}:tely 0.15 mtml’l Wht')Ch IS (\le_It_hlr) the 01?‘%5’% MM —81.6 cmi ! is plotted in Fig. 7. It is localized roughly in the

ranlgieu()ree;pserlrl)wvintﬁey Oaizeé\l:?vesli‘gr:%hvgal\:)iglrll Litorm F€gion alongz where the locally uniform stability analysis

steag states at selectegd oints along Zhaxis cor):sistent predicts the corresponding uniform steady state to be un-
cady . PC 92 ' . __stable to a transverse instability.

with the above linear stability boundaries. Note that Figs. : . .

5(d)-5(i) illustrate the role of the complexing agent«8) Since we are generally interested in the mos_t_unstable

in suppressing the oscillatory instability, since the concentra[n;ge&';vg"?o?iiee’ VSVI?)V(\:/ZE'? IfjeedC;hiennug;egr(]:slevlalldgqyogz the

tion of I, (and therefore the complexing strengtharply 9 ying €ig

increases as the riaht boundary is approached continuous curve in Fig.)6against two different numerical
9 y P ' methods. First, the linear system foNg variables(eigen-
. . . vecton, whereN, is the number of mesh points, was solved
3. Fully nonuniform stability analysis

as a nonlinear root finding problem in 2+ 1) variables,
To assess the validity of the locally uniform stability including the eigenvalue. Second, starting with the eigen-

analysis presented above, we have carried out a fully norvalue and eigenvector based on the previous two methods,

uniform analysis, as described in Sec. Il B. The eigenvaluénverse iteration was used to verify the results. Both checks
problem given in Eq(18) was discretized on the same vari- agree with the results from EISPACK.
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parameters and boundary conditions. Below, we review a
proposed modification to the locally uniform analysis, and
determine whether it is sufficient to bring the local analysis
closer to the fully nonuniform one.

In the above analysis and in those discussed in Sec.
V A 2, we have used the two-variable reduction of the LRE
model. We have directly verified the two-variable reduction
of the full 7-variable(including H") model by performing a
7-variable linear stability analysis of the nonuniform station-
ary state using inverse iteration. By comparing the 7-variable
and 2-variable linear stability results, we have implicitly
verified the assumption that the reservoir species, MA, |
and CIQ, do not play a role in determining the pattern-
045 ‘ . ‘ ‘ ‘ ‘ | forming instability of the stationary staté1].

0 100 200 300 400 500 600

k (1/cm) 4. Modified local stability analysis

FIG. 6. Gain curve for the one-dimensional steady state along The locally uniform analysis neglects diffusion along
the gradients: The real parts of the first fourteen eigenvalues withvhich  couples  quasi-two-dimensional  uniform  slices.
largest real parts have been plotted. The eigenvalues are real, excégngyel, Kadar, and Epstei(LKE) [16] have proposed a
at points(or along intervalswhere two curves intersect. The eigen- modification to account for this diffusion, assuming that dif-
value crossings appear imperfect due to the coarse selectikn of fusion alongz is relevant only on a length scale of the order
values. All eigenvalues are less than zero, with the heavy line coref the Turing wavelength. The basic idea behind the LKE
responding to the slowest decaying mode at dach modification is simple. In the presence of gradients inzhe

direction, the Turing unstable mode is “split” between its

The convergence of the slowest decaying gain curve as ‘dongitudinal” (alongz) and “transverse” dependence:
function of the variable mesh was also investigated. Starting
with a particular distribution of mesh points, the mesh size k§=k§+ ki, (35)
was successively halved, the corresponding steady state ob-

tained, and the eigenvalues and eigenvectors found. Bas\;\—/herekc is the critical wave number in th@arrow Turing

cally, the number and distribution of mesh points must be . .
nstable region along, depending only on the local values

sufficient to well resolve both the structure of the steady stat%'f reaction and diffusion parameters. A transverse instabilit
and its most unstable eigenvectors for numerical conver- P j y

gence. All numerical calculations were performed on an IBMfﬁ;nC;C%%rriﬁgowgsgletzgﬂ\:wdth of this region is not smaller
RS6000 workstation, with the exception of eigenvalue/ This modified local analysis is used to better predict the

eigenvector determination using EISPACK with greater than

approximately 500 mesh points, which was done on a CRA\;egion along the gradients where a transverse instability oc-
C90 ’ curs, and to obtain more accurately parameter values for in-

This result contradicts that from the locally uniform vestigati_ng(transienl Tt_Jr_ing_patterns_ in batch_reactors. The_
analysis, which predicts a linear instability for these reactionmeChanICS of the mod|f|pat|on consist of addln_g an approxi-
mate term to the governing equations for the diffusion of the

steady state alongy which does not alter the composition of

-0.03

-0.06 -

A (1/sec)

-0.09 r

0.12

8 % 1070 e locally uniform steady state but does affect its stability. This
A 105 approximation to the diffusion operator is given by
:‘q__)' X
g 0 Ju  u(z—A2)—2u(z)+u(z+A/2) 8u—u(z)]
O oSt ] 922 (A/2)2 Az
(36)
4105 u is the average value of the locally uniform steady state on
° x 107y the two sides of the region of width, which is characteristic
o 0 of the longitudinal variation of the steady state. The validity
E of this estimate relies on the smallness of this width. The
_4x10°5[ h reaction termg andg are modified:
-8x 10 e} B , .o .o - 2
0 0.2 04 0.6 0.8 1.0 f'(u,v;u(2)=Ff(,v;u(2))+8D [u—u(z)]/A%
z (37)
FIG. 7. Eigenvector corresponding to slowest decaying mode in . . _
a fully nonuniform analysis: The eigenvectorkat 81.6 cm * with g’ (u,v; u(2))=9(u,v;u(2))+8D,[v—v(2)]/A2,

the largest real eigenvalue has been plotted. (39
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30 e A modes at the linear level. Instead, it seems more appropriate
25| (a) / ] to identify the left boundary of the Turing region with the
location where an inhomogeneous instability ceases to exist
(captay=0).

157 1 An alternate modification to the local analysis is to carry
o 10 out the linear stability analysis about the nonuniform steady
§ 5 ’ N { state along, such that the diffusion operator in the govern-
> ey N ing equations acts only on the steady state and not on the
o N VA instability eigenvector in the direction. This “local” analy-
LE 25 (b) ; \ / 1 sis incorporates the effect of diffusion aloagthrough the
< ) ‘ \ ] nonuniform steady state, but the instability eigenvectors are

] “local” and depend only parametrically on The resulting
\ eigenvalue problem becomes

(an(2) =KAo a(2)lo )( 5uk(z))
a(2) ay(z)—ck?)\ dv(2)

0 02 04 06 o8 o
ouy(2)

=\(2) 8v(2)

: (42

FIG. 8. Modified local stability analysiK’, H,, andH, are

given by the solid, long-dashed, and dotted lines, respectively. In .
(a), these boundaries have been modified to take into account dif- here aii(z) are evaluated at the nonuniform steady state,

fusion of the steady state alorg whereas in(b) they are un- and(duy(2), 6v((2)) andi(z) depend parametrically an

changed. The Turing instability region is indicated by the shading.The stability boundaries are very irregular and not shown in

The shaded region ifb) is identical to that in Fig. 4. Note that the thiS case. Except at the sharp edges of the nonuniform steady

right boundary of the Turing region, which denotes0 criticality, ~ State and over a region roughly equgl to the width Qf the
remains unchanged under the modification. sharp edggmuch smaller than a Turing wavelengtlthis

analysis predicts nk+# 0 instability.
and the Jacobian of the reaction ternas; , in the linear

stability analysis is modified accordingly. The Turing condi- 5. Discussion
tions can be rewritten as We conclude that to accurately predict the formation and
, location of the Turing instability region, at least the one-
K'(2)>H1(2)>H2(2), (39 dimensional steady state along the gradients must be solved

for numerically using the full model including longitudinal
diffusion. A “local” stability analysis about this steady state
Hy=—ay /a1, (40) does r_eproduce the result from the_fully nonu_niform s_tabi_lity
analysis. However, a local analysis neglecting longitudinal
diffusion of the stationary state does not correctly describe
- an -1 (41) the linear stability of this state. We have presented here a
2\c(ag@m—a1801) —Cayy first direct demonstration of this point by carrying out a fully
nonuniform as well as a local linear stability analysis. As has
The range of the Turing instability is given by the crossbeen suggestel®0], two-dimensionalnonlineaj time evo-
points of K" andH; and ofH; andH,. Sincea;; depend on lution of the model is the definitive method for predicting a
A, which is a priori unknown,H; and H, are evaluated transverse instability. We have accomplished this for the
iteratively from an initial estimate faA until convergence is LRE model, and the results will be published elsewH&es.
achieved. The locally uniform steady state profiles for the two dy-
Figure 8 shows that the effect of this modification is to namical variables1 and CIGQ~ (Fig. 3) do not include dif-
extend thez range of the transverse instability from approxi- fusion along thez direction and are qualitatively different
mately one to two Turing wavelengths. The boundaries giverirom the numerical solution including diffusidrrigs. 2d),
by the functionsK'’(z), H,(z), andH,(z) are combinations 2(e)]. Hence, it is not surprising that the local stability analy-
of the boundaries given in Fig. 4, which resulted directlysis about this steady state does not agree with the fully non-
from the linear instability conditions. Therefore, although theuniform one. In particular, at the left boundary, the locally
representation of the boundaries in Fig. 4 differs from that inuniform CIO,™ profile is several orders of magnitude greater
Fig. 8, the instability region is the same in the unmodifiedthan the corresponding numerical solution including diffu-
case. sion. This large discrepancy is accounted for by the diffusion
The proposed modification increases the range of the Turef this species in a region extending over approximately the
ing instability by suppressing the homogeneous oscillatoryeft half of the gel, as can be seen from the almost linear
instability (moving the left boundary to the lgftwhile not  (diffusive) profile for CIO,™ over this regiorfFig. 2(e)]. The
affecting the right boundary corresponding to the inhomogetKE modification to the locally uniform analysis, which
neous instability. Identifying the left boundary of theange  corrects for this diffusion of the steady state alangas-
in which transverse patterns would form with the homoge-sumes that it is relevant only on the length scale of the order
neous instability is unphysical, since there is no mixing ofof the Turing wavelength. For the parameter values investi-

where
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gated here, this assumption is not valid, and the modified B. Parameter dependence of the Turing instability
stability analysis does not correctly predict the stability of in the CDIMA system

the structures along the gradients. As discussed in the previous section, by adopting a locally
The dependence of the locally uniform steady state pro:

) , ; ’ uniform approach, existing numerical studies of the stability
files for the intermediate species on the background concenys e stationary patterns along feed gradients have not fully

tration gradients is through the reaction terms. The result§;an into account the reactisuliffusion feed gradients,
presented here are for background profiles obtained from réry, ;5 the parameter range for the occurrence of a transverse
action and diffusion of gll six species. We have Chec"ed_tha*'éymmetry-breaking instability in a gradient system within
these background stationary profiles do not vary considefgg context of the LRE model is essentially unknown. Hence,
ably from those obtained by setting the intermediate SPeCiefe nave undertaken a systematic search, using the concen-
"’!?”t'ca”y equal_to ZE€ro. In this way, We_rule out t.he POSSIration of one of the reservoir species and the gel width as the
bility that the diffusion of the intermediate species feedSyqnio| parameters. Variation of either of the control param-
back into the profiles of the background variables, thereb.y(e\ter‘,3 changes the nonlinear reactiatiffusion profile of the

accounting for the large discrepancy between the locally unip . qround species, however, they are not equivalent opera-
form steady state profiles of the intermediate species angyns™ |n the following sections, we present our numerical

those including diffusion. In particular, the large left bound-agyits and make connection with relevant experimental
ary value of the locally uniform CI© species results from ork.

the strong suppression of lelative to CIQ at this boundary,

which becomes even more pronounced with backgrounds ob- 1. Variable malonic acid boundary condition

tained from the intermediate species set identically equal to 1,4 parameter search for the Turing instability in the

Z€ro. _ _ _ _ _ CDIMA reaction-diffusion system as a function of the mal-

It is desirable to obtain semianalytical solutions t0 thegpnic acid concentration at the left boundary was performed
stationary structures along the gradients, which could then bg), [MA], in the range 0.00Ml to 0.03%V. The concentra-
used in (semianalytical linear stability analyses of these tions[ I,]r and[ CIO,] at the right boundary were held fixed
states. This has been done, for example, for the Brusselatgt 0.0081 and 0.0081, respectively. These values were
model in the presence of slow spatial gradients using &hosen so as to lie within the range of the initial concentra-
WKB-like approach[25,26. The localized structures along tions of these species used in experiments on this system in
the gradients are obtained as marginally stable perturbationgatch reactor§17], and therefore should also be experimen-
to the locally uniform steady state. However, in the caseally accessible in open reactors.
presented here, it is not possible to carry out a similar analy- First, we numerically obtained steady state solutions of
sis. First, there is a large discrepancy at the boundaries béie full 7-variable governing equations as a function of
tween the locally uniform solution and the desired solutionf MA], , as described in Sec. V A 1. The analysis described
including diffusion satisfying Dirichlet boundary conditions. in Sec. V A 3 of the linear stability along the gradients to
Even if the boundaries are ignored and an approximate soldtansverse symmetry-breaking perturbations was repeated for
tion in the interior of the gel is sought, our numerical results€ach stationary state. This was performed using the reduction
show that the steady state including diffusion is not a weakhPf the full LRE model to the two dynamical variables &nd
nonlinear perturbation to the locally uniform steady state €102 . The eigenvalue and eigenvector corresponding to the
Therefore, seeking a correction given by marginally unstabldastest growindor slowest decayingmode at each value of
modes is not justified. For small gel widtkee Sec. V B 2 the transverse wave numbk&rwere obtained numerically

where the background concentration profiles are almost lintSing inverse iteration, and confirmed for select valuek of

ear, such a WKB-like description relying on the slowness Ofusing EISPACK[ZA']'
the parameter ramps can perhaps be sought. In Fig. 9, we have plotted the value of the control param-

Numerical calculations based on the two-variable LREGter[MA]L versus wave number, with the solid boundaries

model with uniform background have shown the transition todenoting marginally stable wave numbers. The shading indi-
| backgroun ... cates the Turing-unstable regions. We note that the unstable
a symmetry-breaking instability to be strongly subcritical

o regions are disjoint, corresponding to the following scenario:
[27,28. Although it is not clear how the range of parameters,<ihe control parameter is continuously varied, the stable

investigated in these works compares with their local valuegyationary state along the gradients first becomes unstable to
in the actual ramped experimental system or in our numericglansverse Turing patterns at a critical value of the control
example, these results imply thalimear stability analysis of  narameter, and initially remains unstable as the control pa-
the locally homogeneous steady states would not predict theymeter continues to increase. It becomes stable again once
existence of a finite amplitude instability in the subcritical the control parameter exceeds a second and h|gher critical
regime. The nature of the transition of the fully nonuniformvalue. This is qualitatively consistent with the experimental
stationary structures along the ramps to a transversebservations of Perrauet al. [15] on the CIMA reaction-
symmetry-breaking instability has not been determined yetdiffusion system. Their results show that as the concentration
Should this transition be supercritical, or even weakly sub-of [CIO,™ |g at the right boundary is increased, the number
critical, the fully nonuniform linear stability analysis would of alternating dark and bright bands parallel to the feed
well predict the formation of quasi-one-dimensional boundaries increases, and several layers break up into rows
symmetry-breaking spots in the thin-strip experiments. Thi®f spots. As[CIO,™ ]z continues to be increased, the spot
is currently under investigatiof29]. patterns develop along more bright bands, until they eventu-
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FIG. 9. Malonic acid concentrationM) at the left boundary » z
versus the wave numbérof the transverse instabilitfi/cm): The ~ %0'0] s
. . =
crosses represent the marginally stable wave numbers determine 0.0105 S
from the stability analysis of the one-dimensional steady states cor g g190 =
responding to the given malonic acid feed concentration. A trans-ooogs’
verse instability occurs for values of malonic acid feed concentra-

tion in the shaded regions, with the range of linearly unstable mode.(P) 0-000 0.075 0.150 0.225 0.300

limit th lid i f h val AlL. . . .
delimited by the solid lines for each value [MA], FIG. 11. Density plots of the stationary solution along the gra-

. . dients and the fastest-growing instability eigenvector for region II:
ally disappear and the parallel stripes are recovered. White and black correspond to large and small values of the solu-

In Fig. 10, we have plotted the stationary solutions for theijon, respectively. The top plot shows the variation of the stationary
experimentally observed §1 species from our numerical state in region Il with increasingMA], . The bottom plot shows
calculation, at various values pPMA]_. We observe thatthe how the most linearly unstable eigenvector is singly peaked and
number of peaks in the steady state solution increases witiiacks the next-to-last minimum in the solutighlote: It is difficult
increasind MA ], , while the characteristic “wavelength” of to discern thdast minimum in the top plo). The “staircase” struc-
the patterns along the gradients remains relatively constamgre is due to the discrete sampling[®flA], .

(excluding the leftmost peakThe transition from one un-
stable region to another corresponds roughly to the appeathe gradient: instability region | corresponds to a steady state
ance of an additional peak in the stationary solution alongvith three peaks, region Il corresponds to four peaks, and
region Il corresponds to five peaks. As an example, for the
instability region I, we show in Fig. 11 density plots of the
steady state and the fastest growi{stpwest decayingwave
] i i ] vector. This eigenvector is localized at and roughly tracks
axst £ i : one of the minima in the steady state solution. This is also
ﬂf‘\ 2l . i . ] the case for regions | and Ill. Specifically, the unstable vector
_ wnoooewm b — mAooisM o wmacooesm f appears to be approximately localized at the next-to-last
ex0s | i i ] minimum of the S}~ solution. The appearance of the
symmetry-breaking instability at a minimum of the starch-

o N\M: M\\ ] triiodide is consistent with the above experimental observa-
. , : AW ; Ay : tions.

F MA-oooaM T MA=0OTM 3 —— MA0o2M : To better quantify this trend, in Fig. 12, we plot the value
Bxay i i ] of all six chemical species at successive minima of thg Sl
s i i ] stationary solution as a function @1A ], . In this figure, the

3 £ E circles, triangles, squares, and diamonds correspond to the
T B (R - B 1 second, third, fourth, and fifth minima, respectively. The
z {cm) points corresponding to criticAMA ], values are filledtwo
points for each unstable regipnVe note that the relevant
various values of malonic acid feed concentration at the left boundghemlc"’lI speples_for tracklng the msta_tnhty_ are the two dy-
ary: This series of plots shows how the stationary state along thQam'Cal speC|?s, I and C'Q , plotted in Figs. 1&) and
gradients changes &MA], is varied. The number of peaks in the 12()- (The Sk~ concentration depends on the product of the
solution increases with increasing malonic acid concentration, whild  @nd b concentrationg.The concentration of 1 remains
the left most peak becomes smaller. The minima correspond to lightithin the range of approximately (1-(2.2)x 10" 'M, and
bands in the experimental results. Instability region | corresponds téhe concentration of CIO" remains approximately constant
stationary states with three peaks, region Il with four peaks, an@t 1X 10 ® in each of the instability regiongNote that the
region Il with five peaks. concentration of SI' does not stay within a more-or-less

121078

T T T T T T
' —— MA=0.008M 3 —— MA=0.018M 1 —— MA=0.03M

8x1075

0

Starch Triiodide (M)

FIG. 10. Stationary solution fdrSl;™ ] along feed gradients for
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Malonic Acid at Left Boundary (M)

multiply peaked while fork larger than approximately 300 crh,

FIG. 12. Values of stationary profiles of the CDIMA chemical which includes the unstable range of wave numbers, it is singly
species at successive minima of the statiori&@ ] solution as a  Peaked.
function of[MA], : The open triangles, circles, squares, and dia-
monds represent the second, third, fourth, and fifth minima, respedial profile of these eigenvectors changes continuously with
tively. The filled symbols correspond to the critical values of increasingk. Hence, their interpretation as a single physical
[MA]_; the points between the filled symbols correspond to the‘mode” is not obvious. There does not appear to be a mode
linearly unstable states. We note that the instability occurs succegrossing between the first and second branches of Fig. 14,
sively along the second, third, and fourth minima. Although thegjthough the structure of the first eigenvector changes con-
values of[MA], [I,], [CIO,] in the unstable ranges continue 10 gigerably from being multipeake@nd stablgto being sin-
increase as functions @MA], in going from one instability region gly peakedand unstable, but subsequently stable agak
e e, METe25e5. The experiments of Perrektl. could corre-
while [I‘.] varies within an 2pproximately I?:Fc))nstant ra?l/ge ’ spond to a case where, as the control parameter is varied, a

' mode with multiple peaks becomes unstable. This does not
constant range for each of the instability regions due to th@ccur in our numerical investigation, where the multiply
drift in the I, concentration.A simple interpretation of these peaked modes remain stable. The appearance of multiple in-
numerical results is that an instability occurs when the constability layers could also be a nonlinear effect, resulting
centrations of the dynamical speciesdnd CIGQ,~ lie within ~ from linear growth and nonlinear saturation of the singly
a certain range. As the stationary solution changes with in-
creasingl MA],_, the instability vanishes when the value of 0.01
the concentration of the steady state falls outside of this
range, and reappears when the concentration atekemini- 0]
mum is within this range again.

The experiments of Perraugt al. [15] show that as the
control parameter is increased, the stationary pattern o2
stripes along the gradients first becomes unstable in a singlz
stripe region and then in multiple stripes as the control pa-&
rameter continues to increase. In our numerical investiga-€
tions, the most unstable vector remains singly peaked in al\(g
cases. To further investigate this point, we have examinec
the spatial structuréalongz) of the linear instability eigen-
vectors as a function &. Figure 13 shows a density plot of
the most unstabléor least stableeigenvector, corresponding 0,06 . . . . . . . .
to the I species, as a function of transverse wave nurkber 0 100 200 300 400 500 600 700 8O0 900
for [MA],=0.023Vl. The horizontal axis represents the spa- k- (cm)
tial coordinate along the gradients, and the vertical axisisthe 5 14 Spectrum of eigenvalues fpMA], =0.02M: The

transversial wave number, ranging frok=0cm ' to k gy parts of the first fourteen eigenvalues with largest real parts
=900 cm = ] ) _have been plotted. The eigenvalues are real, except along intervals

In Fig. 14, we show the first fourteen eigenvalues withyhere two curves overlap. Some eigenvalue crossings appear im-
largest real parts as a function kf We note the eigenvalue perfect due to the coarse selectionkofalues. It appears that the
crossings that define distinct “modes” cutting across thefirst two eigenspectra do not cross but remain distinct. We note that
spectrum of eigenvalues. As an interesting aside, we hav@e eigenvalue crossings define distinct “modes” that cut across the
investigated the eigenvectors corresponding to one suckpectrum of eigenvalues. The filled triangles indicate the eigenval-
“mode,” denoted by filled triangles in this figure. The spa- ues for one such “mode.”
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FIG. 16. Gain curve corresponding to largest eigenvalue for

FIG. 15. Stationary solution fdrSl;™ ] along feed gradients for  various gel widths{b)—(d) are unstable; if{g)—(i), the largest ei-
various gel widths: This series of plots shows how the stationangenvalue now occurs &=0.
state along the gradients changes as the gel width is varied. The -~ ) ] )
horizontal axis is the scaled length along the gradients. With deboundary conditions numerically investigated here, we do
creasing gel width, we notei) shifting of the pattern to the right, Not observe the transition from an unstable monolayer to an
and (i) increase in the concentration scale by approximately arlinstable bilayer as the gel width is increased. We have fol-
order of magnitudéprimarily due to the leftmost peak lowed the most linearly unstable 0 mode as the gel width

is varied, and it remains singly peaked.

peaked unstable eigenvector, as well as growth of its side These numerical results are analogous to those presented
lobes. However, we have showf®9] that in the two- Sec. V B 1, where the parameter dependence of the Turing

dimensional evolution of the governing equations, the spatial

profile of the most linearly unstable mode is in fact preserved 038 | ' ' ' '
in the LRE model.
2. Variable reservoir length along boundary feeds 035

The experiments of Dulost al.[14] have aimed at eluci-
dating the transition from quasi-two-dimensional to three- __ %% +
dimensional Turing patterns by combining observations in & +\‘\ JZ
bevelled thin-strip and disk reactors. Motivated by these ex- L 0.29 |
periments, we have undertaken a similar numerical investi- 2
gation that does not directly address the same question, but
rather continues to focus on the localized patterns along the % 0.26
ramps. In particular, we consider the experimental results '3
from the variable-width thin-strip reactor. In these experi- g o023 |
ments, the transition between the domains with one and two &
rows of spots, and the possible influence of the feed gradi-
ents on the phase relations between the spots in the two rows %20 |
have been studied. The vanishing amplitude of the spot
modulations before this splitting occurs is not well under- 047 -
stood.

Our numerical results address the latter question. We have
reproduced the observed qualitative trend of the symmetry- 010 a00 400 500 600 700 800 00

breaking instability occurring and subsequently disappearing
in a single layer as the gel width is varied. The boundary

conditions are held fixed at[MA]'-:O'OZN'.UZ]R FIG. 17. Gel widthw (mm) as a function of wave numbérof
=O..008\/I, and [ClO,]r=0.006V, Wh'le_ the gel W'_dth IS the transverse instabilityl/cm): The crosses represent the margin-
varied from 0.14 to 0.39 cm. The stationary localized pat-yy stable wave numbers determined from linear stability analysis
terns along the gradients as a function of the scaled gel width the one-dimensional steady states corresponding to the given
are shown in Fig. 15. Figure 16 shows the linear stability ofmalonic acid feed concentration. A transverse instability occurs for
each solution to a symmetry-breaking instability. In Fig. 17,values of gel width in the shaded regions, with the range of linearly
we have plotted the value of the control parameterersus unstable modes delimited by the solid lines for each valuev.of
wave numbeik, with the solid boundary denoting the mar- The vertical plot range corresponds to the experimental range of gel
ginally stable wave numbers. For the parameter values anglidth in the bevelled thin-strip reactt4].

Wave number k (1/cm)
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4x10% - 6x10° ‘ than iodine, and chlorite, rather than chlopjiney experi-
2 a0t © ] 3 . (f) menters makes direct comparison of our numerics with their
a o -0 L i .rgr . . . .
3 perpsl £ 410 results difficult. Nevertheless, our numerical simulations dis-
g 5 2r105 ) play similar features to those present in experimental results
§ 1x10% B as control parameters are varied. These(&rehe transition
0 , 0 to patterns with progressively larger numbers of fronts, and
U (b) ] (2) the appearance and subsequent vanishing of a transverse
o N g 4x10° ) instability. Also agreeing with experimental results, the in-
g 20T . = ] stability is localized near a minimum of the starch-triiodide
= 2x10® ¢ T .
1x10% L x10 (as well as iodideunperturbed solution. For the parameters
o : o ‘ and boundary conditions we considered in our numerical in-
o Bx10% ] R (@) vestigatior)s, the multiply peaked Iipear instability eigenvec—_
2 g8l oo o [ e, ooy tors remain stable, and the experimentally observed transi-
§ ari0d | § 2x107 | eSea ] tion from a single to multiple unstable layers is not obtained.
2 el ! Overall, the agreement between trends in these experiments
. ‘ . , - seaesesisassiReieiiigit and our numerics is encouraging, and will hopefully provide
0.1 02 03 04 0.1 02 03 04  motivation for future experiments on the CDIMA system
Gel width (cm) Gel width (cm)

that could be compared quantitatively with numerical and

FIG. 18. Values of stationary profiles of the CDIMA chemical analytical results.
species at successive minima of the statioi&lyg | solution as a
function of gel width,w: The open triangles, circles, squares, and
diamonds represent the second, third, fourth, and fifth minima, re-
spectively. The filled symbols correspond to the critical values of |n this work, we have focused on the one-dimensional
gel width; the points between the filled symbols correspond to thebatterns that form in the presence of feed gradients, a neces-
linearly unstable states. sary feature of the real experimental systems. We have

shown that longitudinal diffusion along the boundary feed

instability in a ramped system was investigated as a functiogradients can be important over length scales longer than the
of the malonic acid boundary condition. Here also, we trackTuring wavelength. Therefore, the frequently invoked locally
the concentrations of the chemical species at the location afniform approach for predicting the linear instability of the
the minimum of the starch-triiodide complex where the fast-stationary patterns along the gradients to a transverse
est growing(or slowest decayinginstability eigenvector is symmetry-breaking instability is inappropriate in such cases.
localized. The results are given in Fig. 18: as before, tri- We have also explored the dependence of the Turing in-
angles, circles, squares, and diamonds represent the secoftibility of these longitudinal structures on two control pa-
third, fourth, and fifth minima, respectively. The solid rameters. The transition to patterns with a progressively
squares correspond to the critical lengths, below and abovarger number of longitudinal fronts and the appearance and
which the instability vanishes. We note the following aboutsubsequent vanishing of the transverse instability near a local
the concentrations of the chemical species in the unstabkinimum of the starch-triiodide solution are features that are
interval (at the third minimum of the stationary Sl solu-  in agreement with experimental results. We have attempted
tion): (1) the concentration of CIQ is approximately at 1 to interpret these trends by determining that a transverse in-
x 10" ®M, in agreement with the variab[@A], investiga-  stability occurs and is localized at that part of the stationary
tion, (2) the concentration of 1 is in the approximate range Solution along the gradients where the values of the concen-
of (1.8—2.2)x 10" ’M, again in agreement with the variable trations of the dynamical iodide and chlorite species are
[MA], investigation, and3) the concentrations of the back- within a certain well-defined range. For the parameters and
ground species, MA,,| and CIQ are approximately equal Poundary conditions investigated here, we do not obtain the
to those in the variableMA ], case for region Il of Fig. 9. experimentally observed transition from a single to multiple
These results support the simple interpretation that the conturing unstable layers. _
centrations of the dynamical species, the activatoard the Building on the work presented here, one can begin to
inhibitor CIO, ™, are key factors in the occurrence of a trans-2ddress many interesting questions. At the linear level, it is
verse instability. However, this picture may be overly Sim_clear. from the numerical solutions Fhat both the forma.tlon of
plified: for values of gel width larger than the upper critical localized structures along the gradients as well as their trans-
value, the concentrations of land CIQ~ remain well Verse instability are governed by the Turing mechanism. The

within the instability interval of the variabl|gMA ], analysis ~ relationship between the “longitudinal” and “transverse”
while the stationary state remains stable. pattern formation is an interesting question that so far has

only been analyzed for model systefi3®]. For the realistic
chemical description it may be more feasible to address this
question analytically in the limit where the reservoir concen-
In this section, we have explored the parameter depertrations can be approximated by linear profiles: we have
dence of the Turing instability as a function of malonic acidfound that these conditions are achieved for parameter values
boundary condition and gel width. The use of the CIMA explored in the variable gel-width numerical investigation,
reaction-diffusion systenfas opposed to the CDIMA sys- for small gel widths. A description of the longitudinal struc-
tem) and its corresponding boundary spedieslide, rather tures can perhaps be sought, in terms of wave number selec-

VI. CONCLUSIONS

3. Discussion
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tion in the presence of control parameter ranjps]. The 1

effect of the variation in background concentration profiles, }\o(i):%(all_l' Taz)

with changing gel width or malonic acid reservoir concentra-

tion (Figs. 10 and 1pf on these one-dimensional structures 5

can be investigated within this framework. Alternatively the 5y (@11t 0az)~ 4o (a11820— a1820).

symmetry breaking transition might be better understood in

terms of a fully three-dimensional periodic instability per-

turbed by longitudinal gradients. . We require Re{(,()<0. Therefore, in the case of
At the nonlinear level, the nature of the transition from Im(\g®)#0, we must have

one-dimensional non-symmetry-breaking front patterns to

symmetry-breaking transverse spots in thin-strip reactors Ao+ N T =agt 0ay,<0, (A3)

(continuous or discontinuousan be determined numerically

from the nonlinear evolution of the LRE model in two di- and additionally, in the case of Ixf*))=0:

mensions[29]. Numerical establishment of the bifurcation

(A2)

behavior for the two-dimensional “monolayers” in disk re- Mo N ) =0l agsap— a3082]>0. (A4)
actors is also a relevant topic for further investigation, and
would require extending numerical computation to three di- 2. Instability to inhomogeneous perturbations:k # 0

mensions. Dufietet al. [32] have pointed out that these . .
monolayers, which are confined by a transverse parameter We require th_a tat least one of thg roots be positive for
' . . &bmek+0. Consider the sum of the eigenvalues:

ramp, must be distinguished from what they cgéinuine
two-dimensional structures that form under uniform contro_l M AN == (oc+1)KP+(aj+oay).  (A5)
parameters. They have compared pattern selection in genuine
two-dimensional systems and in such monolayers in the cor@nce stability tak=0 perturbations is imposed according to
text of an abstract reaction-diffusion model. The advantagé&q. (A3), the above sum will bec0, and the real part of one
of using the LRE model is that results would then be directlyof the roots is necessarily negative. First, we require that the
comparable with experiments based on the CDIMA reactionproduct of the roots be<0O in order to have a positive real
An interesting feature of the work of Dufiet al.is the cou-  root:
pling of the pattern forming modes to the longitudinal dis- G () 5
placement of the pattern as a whole: it would be interesting M A =0l ck’— (ax+ ca;)k®+ (81180~ 812851
to myespgate th|§ effect using the realistic description of the —h(k?)<0. (AB)
longitudinal gradients.

Th_e SU.CCE.’SSM f_ormulat|or_1 of a realls_tlc m_ode_l of the gjnce the first and third terms im(k?) are>0, a necessary
chlorine dioxide-iodine-malonic acid reaction-diffusion sys- " 2 ;

. ; X condition forh(k)<0 is

tem has made this system an attractive paradigm for the
study of nonequilibrium pattern formaUd[r;O]. This work . Ay, + cay 0. (A7)
represents an attempt to bring theoretical and numerical

study of pattern formation in chemical systems closer to exfurthermore, we know that(k?) has a minimum, and from
perimental studies. Eq. (A4) that

h(0)=o(a120—a1,321)>0. (A8)
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+ (ag+cayy)?—4c(agagn—aan)]. (A9)

For k.2 to be real, we must have
APPENDIX: DETAILS OF THE TURING INSTABILITY

CONDITIONS (At ca)®—4c(a1@p—a12829)=0.  (A10)

1. Stability to homogeneous perturbationsk=0
y g P Equation(A10) is required for real valuek.? of the mar-
The characteristic equation fé=0 is ginal modes, and EqA7) is required fork..>=0. Equations
(A3), (A4d), (A7), and(A10) constitute the Turing conditions.
No2—(apt oan) o+ (a —-a =0, (Al
N0~ (a1t 0@z hot (2811~ A1) A1) 3. Oscillatory instability
From Eg.(7) there will be a complex conjugate pair of
with eigenvalues, ImN)#0, for
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g(k?)=(oc—1)%k*+2k*(oc—1)(a;;— ocay) 0(0)=(ay— ocay)’+4caay,. (A13)

+(ap— oayy)?+ 40a @, <0. (A11)
Therefore, fork™’=0, we must haveg(0)<0, in which

To determine the behavior @f(k?), look at its roots: "
case Im\#0 for 0<k?<k{")". The real part of the complex

)2 (a;1—oay) —4oagay conjugate pair is given by
k(i) T T g1 * oc—1 (AL2)

Rehy=—3[(oc+1)k?>—(aj+0ay)], (Ald
For Im(\)#0, requirek™’=0. Under typical experimental = zlloet D= (@utoan)l,  (Al4)

conditions, we expectrc—1>0. We note thaig(k?) pos-

sesses a minimum with and behaves as
(|) a11+0'a22<02Re)\k<0, (A15)
Re <0 for KH?s2s 211 782 (A16)
(i) A+ oa,>0 ‘ ' octl
") dut odze=t= ap+oa
ReN =0 for O<ki< % (A17)
oc+1
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