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Globally coupled maps with asynchronous updating
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We analyze a system of globally coupled logistic maps with asynchronous updating. We show that its
dynamics differs considerably from that of the synchronous case. For growing values of the coupling intensity,
an inverse bifurcation cascade replaces the structure of clusters and ordering in the phase diagram. We present
numerical simulations and an analytical description based on an effective single-element dynamics affected by
internal fluctuations. Both of them show how global coupling is able to suppress the complexity of the
single-element evolution. We find that, in contrast to systems with synchronous update, internal fluctuations
satisfy the law of large numbers.@S1063-651X~98!15110-3#

PACS number~s!: 05.45.1b, 05.90.1m
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I. INTRODUCTION

Introduced by Kaneko in 1984@1#, coupled map lattices
have proved to be a powerful tool in the study of spatiote
poral chaos and pattern formation in complex systems@2–7#.
They have found applications as models in differe
branches of science@8–11#. Globally coupled maps@3#,
which bear similarity to the Sherrington-Kirkpatrick mode
constitute a kind of mean-field extension of coupled m
lattices. In an ensemble of globally coupled maps, the
ments are seen to form clusters of synchronized activity.
the coupling increases, a variety of phases can
identified—from coherent, through ordered and partially
dered, to turbulent—depending on the number of cluster
the system. For sufficiently large coupling intensities,
generic behavior consists of full synchronization of t
whole population, with all the elements having identical ev
lution.

In usual models of globally coupled maps the eleme
update their state at the same time, namely, their evolutio
synchronous. For an ensemble ofN elements whose indi
vidual dynamics is given by the nonlinear mapxi(t11)
5 f @xi(t)#, a typical scheme for global coupling is given b

xi~ t11!5~12e! f @xi~ t !#1
e

N(
j 51

N

f @xj~ t !#, i 51, . . . ,N,

~1!

whereeP@0,1# is the coupling intensity. Equation~1! is ap-
plied synchronously to all the maps of the system, with
values of all the sites at the previous time as inputs.

From a realistic viewpoint, however, synchronous upd
ing does not seem to be very plausible in models of r
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systems@12–15#. As discussed, for instance, for neural ne
works @16#, an independent choice of the times at which t
elements of a given complex system update their respec
states should provide a closer approximation to reality. Ho
ever, it has to be mentioned that, in systems with local c
pling, asynchronous update has been shown to lead to tr
behavior@6#. Here we present a first analysis ofasynchro-
nous globally coupled maps, and find their behavior to
completely different from that of the usual synchrono
models. We have analyzed two possible asynchron
schemes.

~a! At each time step, update the elements according

FIG. 1. Bifurcation diagrams of a system ofN51000 logistic
maps, as a function of the coupling intensitye. The diagrams are
constructed following the evolution of a single element taken
random, with~a! l53.5, ~b! l53.84, and~c! l54.
4454 © 1998 The American Physical Society



er
s

-

n

te
at

g
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the sequence given by a prescribed ‘‘list’’ that contains ev
element once. The order of the elements in the list is cho
at random at each step.

~b! Divide each time step intoN substeps. At each sub
step, update one element chosen at random. AfterN substeps
the map operates, on average, once over each element i
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For the sake of clarity, let us mathematically formula

the second scheme. Leth(t) be a stochastic process th
takes an integer valueh51,2, . . . ,N at each substep, with a
uniform probability. The dynamics proceeds in the followin
way:
xi~ t11/N!5H ~12e! f @xi~ t !#1
e

N(
j

f @xj~ t !# if i 5h~ t !

xi~ t ! if iÞh~ t !.

~2!
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In the first scheme,h(t) takes the values 1,2, . . . ,N at ran-
dom, but only once within each time step. It can be seen t
in this dynamics, the mean fieldF(t)5N21( j f @xj (t)# has
different values when acting over different elements, as t
proceeds by steps of length 1/N. This feature, and the fac
that asynchronous updating incorporates a stochastic com
nent in the evolution, contrast with the deterministic sy
chronous scheme~1!.

Evolution under the two asynchronous schemes in
duced above displays the same global properties. Howe
in the second scheme one or more elements may fail to
updated in some time step. As a consequence, sinceN up-
dates have to be made during a time step, some other
ments will be updated more than once. This has nontri
consequences in the dynamics, to be discussed below
addition, the second scheme has the advantage of b
much faster computationally.

In this paper, we analyze an ensemble of globally coup
logistic maps. We show that the dynamics under asynch
nous updating substantially differs from that of the synch
nous case. The structure of clustered phases completely
sapears. In its place, an inverse bifurcation cascade deve
as the coupling intensity is increased. In the following,
analyze this phenomenon from numerical simulations,
construct a phase diagram for the different regimes displa
by the dynamics. Then we propose an analytical explana
for the bifurcation cascade, whose results compare succ
fully with the numerical data. Finally, we discuss how t
fluctuations generated in the internal dynamics are refle
in the average evolution.

II. INVERSE BIFURCATION CASCADE
AND PHASE DIAGRAM

In this section we present extensive numerical simulati
of the evolution given in Eq.~2! for the standard logistic
map, f (x)5lx(12x). We concentrate on the values ofl
where this map displays its bifurcation cascade, 3,l,4,
leading through period doubling from a stable fixed-po
state to a completely developed chaotic regime. For reas
that will become evident later, we restrict the coupling inte
sity e to the interval 0,e,0.5.

In Fig. 1 we show the bifurcation diagrams for the evo
tion of a single element, chosen at random from a popula
of 103 maps, as a function ofe, for three values ofl. These
t,
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diagrams are constructed as usual. For given values ofe and
l the system is let to evolve until transients have elaps
Then the state of the chosen element is recorded and plo
at some successive time steps.

Figure 1~a! shows the bifurcation diagram forl53.5,
where the~uncoupled! logistic map evolves in a period-4
orbit. As e grows, the four initial branches collapse into tw
branches which, in turn, merge into a single branch. Incre
ing the coupling intensity leads thus the evolution of a sin
element to display an inverse bifurcation cascade. The s
scenario occurs for other values ofl. For l53.8, where the
logistic map is within its largest period-3 stability window
increasinge leads the evolution to successively exhibit ch
otic regimes of one and two bands and, eventually, sta
branches that finally collapse into a single stable state@Fig.
1~b!#. Forl54, in the extreme chaotic regime of the logist
map, the full bifurcation diagram is run over backwards@Fig.
1~c!#.

It is apparent from Fig. 1 that the evolution of a sing
element in the ensemble is subject to the action of no
Indeed, the branches of nonchaotic evolution are not p
fectly defined—except in the case of a single stable stat
and high-order bifurcations, close to the onset of chaos,
clearly suppressed. This noise, which is produced intern
in the system via the asynchronous updating, induces spr
ing of the states visited during the evolution when the co
pling is different from zero.

The branches of nonchaotic evolution, with their sm
but noticeable dispersion, are what remains of the stable
riodic orbits of the deterministic map under the effect of t
internal noise. In these branches, the evolution driven by
two schemes presented in Sec. I differ. Scheme~a! defines
true noisy periodic orbits, where each element visits the
of available states following the same periodic sequence
the deterministic map. On the contrary, scheme~b! allows
some elements to skip the update in a time step. Con
quently, some other elements are updated more than o
As a result, the observed successive states do not follo
periodic sequence. To simplify the discussion, in the follo
ing we will call these regimes of noisy nonchaotic~periodic
or nonperiodic! evolution ‘‘period-n’’ orbits, referring rather
to the set of states visited by each element.

The chaotic bands, meanwhile, are also blurred by
internal noise. We will thus refer to a regime where a noi
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free map would exhibit deterministic chaotic evolution as
‘‘ n-band’’ chaotic region.

To summarize the variety of behavior observed for
single element ase andl vary, we have constructed a pha
diagram in the plane spanned by these two parameters
population of 103 elements. For each value ofe and l the
evolution has been calculated with scheme~b! during 104

time steps. After a transient of 53103 steps, a 500-column
histogram over the states visited by a single element in
remaining 53103 steps has been produced to identify t
kind of evolution corresponding to those values of the
rameters. The phase diagram is shown in Fig. 2. Each re
in this diagram corresponds to a different kind of attracto

The large upper-left region corresponds to a fixed po
In this zone of the parameter space, from any initial con
tion, all the elements are attracted to the same stable fi
point. Without coupling—i.e., fore50, on the horizontal
axis of the plot—such behavior would be observed only
l,3. At larger values ofl and, notably, even up to the full
developed chaotic regime (l54), there always exists a cou
pling intensity able to suppress the complex behavior of
uncoupled system. As mentioned above, in this fixed-po
regime internal noise is also suppressed.

Below the fixed-point region, there is a series of zon
shown, alternately, with black squares and empty spac
Fig. 2. In this phases the evolution of single elements disp
‘‘periodic’’ and ‘‘chaotic’’ noisy orbits, as indicated in the
plot. Due to the noise, the limits between these regions
not sharply defined, and some of the zones—such as
period-8 and period-5 regions—are truncated at certain
ues ofl and e. Between the zones of period-4 orbits a
two-band chaotic evolution, higher-order periodic orbits
well as chaotic evolution in more than two bands are m
ing. The period-3 stability window is instead clearly d
tected, immersed in the one-band chaotic regime.

Since blurring of boundaries between zones and supp
sion of higer-order periodic and chaotic orbits are a dir
consequence of the internal noise, it is expected that
noise decreases upon increasing the number of elemen
the ensemble—the phase diagram becomes more sharpl
fined for higherN. It is, however, known that, in synchro
nous globally coupled maps, the internal noise does not

FIG. 2. Phase diagram of a system ofN51000 logistic maps.
The two lines are the analytic curves given by Eqs.~6! and ~8!.
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crease in the usual self-averaging way asN21/2—as
predicted by the so-called law of large numbers—but in
much slower manner@17,18#. In Sec. IV we analyze this
aspect for asynchronous evolution, finding that the law
large numbers is recovered in these systems.

Note finally that if, in contrast with Fig. 1, the bifurcatio
diagram would be plotted for fixede as a function ofl, the
bifurcation cascade would proceed forward. For large val
of the coupling intensity, however, higher-order bifurcatio
and chaos would not be reached even forl54.

III. MEAN-FIELD APPROACH

It is possible to describe analytically some features of
bifurcation cascade by performing a kind of mean-field a
proximation to Eq.~2!. From the viewpoint of a single ele
ment, updating of its state occurs, on average, once per
step. At the successive times where a given element is
dated, the sequence of values of the mean fieldF(t)
5N21( j f @xj (t)# fluctuates due to the evolution of the ind
vidual states of all the elements, effectively resembling
stochastic process. In such a way, the single-element dyn
ics can be though of as given by a deterministic map sub
to the action of an effective ‘‘external’’ stochastic forcing.

In order to characterize this effective forcing, w
assume—as suggested by the numerical simulations—
the evolution of the system~2! determines, at long times,
well-defined measurem(x) on the spacex. At any time step
the value of the elements will distribute according to th
measure and, forN→`, the mean fieldF(t) will approach a
constantF05* f (x)m(x)dx. For finiteN, however, the field
F(t) will fluctuate aroundF0 , so that we can write

lim
t→`

F~ t !'F01j~ t !, ~3!

wherej(t) is a stochastic process of zero mean.
Within this approximation, the dynamics of a single el

ment is

xi~ t11!5~12e! f @xi~ t !#1eF01ej~ t !. ~4!

The effective individual evolution is thus given by a dete
ministic renormalized mapf eff(x)5(12e) f (x)1eF0 upon
which an additive noisy force of zero mean acts. It has to
noticed that the constantF0 , being determined by the col
lective dynamics, prevents the population from complete
coupling.

It is well known that a deterministic map subject to th
action of a moderate additive noise of zero mean prese
its critical behavior, the only effect of noise being the su
pression of high-order bifurcations. Within this picture, w
can then explicitely calculate the first bifurcation points
follows.

Suppose, first, that the mapf eff(x) has a stable fixed poin
x0 as its only attractor. Since—in the absence of noise—
the elements are attracted to it, we havem(x)5d(x2x0) and
F05 f (x0). The effective single-element evolution thus b
comesxi(t11)5(12e) f @xi(t)#1e f (x0). The equation

x05~12e! f ~x0!1e f ~x0!5 f ~x0! ~5!
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determinesx0 , which results to coincide with the fixed poin
of the original mapf (x). The evolution equation can be no
readily linearized to find thatx0 is stable if the coupling
intensity satisfies

e.ec
1512u f 8~x0!u21. ~6!

For the logistic map, that has a stable fixed point atx0
512l21 for 1,l,3, Eq. ~6! implies that the statexi
5x0 is stable ife.12u22lu21. That is, for 2,l,3 the
state is stable for alle and, forl.3 it is stable fore large
enough. In Fig. 2 we draw the curveec

1(l) that defines the
boundary between the fixed point and the period-2 regio
This analytical result is in full agreement with simulations

A similar argument can be applied to period-2 orbits. D
to the randomness of the updating scheme, at each time
practically one half of the elements will be at one of the tw
states of the orbit, sayxA , and the other half at the other,xB .
The corresponding invariant measure ism(x)5@d(x2xA)
1d(x2xB)#/2 and F05@ f (xA)1 f (xB)#/2. Therefore, the
equations which determine the values ofxA andxB are

xA5~12e! f ~xB!1e@ f ~xA!1 f ~xB!#/2, ~7a!

xB5~12e! f ~xA!1e@ f ~xA!1 f ~xB!#/2. ~7b!

These equations are equivalent toxA5 f (xB) and xB
5 f (xA), so thatF05(xA1xB)/2 andxA,B are also the two
states corresponding to the period-2 orbit of the original m
f (x). For the logistic map these equations can be solved,
the stability condition implies

e.ec
25

2122l1l22A126l13l2

l~l22!
. ~8!

The lineec
2(l) is also shown in Fig. 2, separating the regio

of period-2 and -4 orbits. This result is again in good agr
ment with simulations, though a slight deviation is observ
for large values ofe, i.e., nearl54. This deviation can be
ascribed to the increasing effect of noise for growinge @cf.
Eq. ~4!#, that blurs the boundaries where bifurcations occ

Analogous reasoning may be used to determine
boundaries between other zones. For higher-order peri
orbits, however, the equations cannot be explicitly solved
the case of the logistic map. For chaotic evolution, moreov
the measurem(x) should be obtained numerically.

IV. FLUCTUATIONS OF THE MEAN FIELD

A key ingredient in the analysis presented in Sec. III is
assumption that, for large populations, system~2! defines a
measure in the one-element state spacex, such that for suf-
ficiently long times the elements exhibit a well-defined d
tribution in x. It is implicit in that assumption that the am
plitude of internal noise decreases asN grows. As mentioned
above, however, previous work has shown that fluctuati
in deterministic synchronous globally coupled systems d
not self-average in the usual way@17,18#. It is therefore
worthwhile to analyze this point in some detail for th
present case of asynchronous update.

The fluctuating part of the mean field,j(t) in Eq. ~3!, can
also be analytically studied within some further approxim
s.
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tions. In order to illustrate our arguments, let us restrict o
selves to the period-2 orbit, wherem(x)5@d(x2xA)1d(x
2xB)#/2.

Due to the fluctuations arising at finite values ofN, the
number of elements in each state will not beN/2, but rather
a fluctuating numbernA(t) at xA and nB(t)5N2nA(t) at
xB . Since the mean fieldF(t) will consequently differ from
F05@ f (xA)1 f (xB)#/25(xA1xB)/2, this implies that the in-
dividual states will spread around the valuesxA andxB . At a
given time, therefore, the elements nearxA,B will have states
xi A,B

5xA,B1dxi A,B
(t). The fluctuating mean field will thus

be

F~ t !5
1

NF(
i A

f ~xA1dxi A
!1(

i B
f ~xB1dxi B

!G ~9!

where the sums( i A
and ( i B

run over the elements nearxA

andxB , respectively.
In the lowest-order approximation, we haveF(t)

5@nAf (xA)1nBf (xB)#/N5(nAxB1nBxA)/N that can be re-
written as

F~ t !5
xA1xB

2
1

1

NFnA~ t !2
N

2 G~xB2xA!. ~10!

In this expression we identify the fluctuations ofF(t) as
j(t)[@nA(t)2N/2#(xB2xA)/N. Since updating is applied
at random in the ensemble,nA(t) is expected to have a bi
nomial distribution aroundN/2. This readily shows thatj(t)
is a stochastic process with zero mean, whose mean sq
dispersionDj depends onN as Dj;N21/2. We also note
that the amplitude of fluctuations depends linearly on
differenceuxA2xBu between the two states of the period
orbit. As a byproduct, this indicates that the fixed-point st
exhibits no fluctuations. In Fig. 3 we plotDj as a function of

FIG. 3. The standard deviation of the fluctuations of the me
field, Dj, as a function of the the separation between the two st
of the period-2 orbit. The system sizes areN5104 and l53.4; e
approachesec

1 from below. The abscissas used to plot the data c
respond to the values ofxA andxB provided by Eq.~7! as a function
of e.
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uxA2xBu for a fixed value ofl in a population of 104 logistic
maps. The coupling intensitye runs over the region o
period-2 orbits, makinguxA2xBu vary from small values
neare5ec

1 to larger values ase decreases. A large region i
which Dj varies linearly withuxA2xBu is clearly observed.

Remarkably, the proportionality of the mean-field fluctu
tions with N21/2 is also numerically verified in the region
with more complex dynamics. The validity of the law o
large numbers proves thus to be a generic feature in
fluctuations of the asynchronous ensemble of globa
coupled maps. In Fig. 4 we show a double logarithmic p
of the mean square deviationDF of the mean field as a
function of the system size fore50.1 andl54, i.e., in the
chaotic regime. TheN21/2 dependence is apparent.

V. MEAN-FIELD DEPENDENCE
ON THE COUPLING INTENSITY

In order to complete our discussion, it is worthwhile
investigate how the collective behavior varies as the c
pling intensity is modified. In this section we present nume
cal results on the dependence ofF(t) on e for a given value
of l in an ensemble of logistic maps.

In Fig. 5 we show the time-averaged mean field^F& as a
function of the coupling intensity, forl54 andN5103. At
e50 the elements are completely uncoupled. In the fu
chaotic regime (l54), the individual states are symmetr
cally distributed in the interval (0,1) according to the inva
ant measure of the logistic map. This uncorrelated stat
then characterized by an average field^F&50.5. For nonzero
values of the coupling intensitye, we observe that a corre
lated state develops, characterized by values of^F& larger
than 0.5. The average mean field grows, however, in a hig
nonmonotonic way. Large downward peaks can be obser
where the collective state again approaches the value^F&
50.5. The broadest of these peaks, neare50.07, coincides
with the period-3 stability window. The inset of Fig. 5 show

FIG. 4. The standard deviation of the mean field,DF, as a
function of the system size. The double logarithmic plot shows
decaying behaviorN21/2 for system sizes ranging fromN5300 to
106 for l54 and e50.1. A line of slope2

1
2 is also shown for

comparison.
-

e
y
t

-
-

y
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a detail of the same function in the region of small coupli
intensity~for an ensemble of 53104 elements!. The average
mean field exhibits a complex dependence one. Its features
are probably reflecting the presence of higher-order stab
windows in the chaotic regime. For large values ofe the
system abandons the chaotic state and, fore'0.2, it enters
the regime of periodic orbits. Correspondingly,^F& behaves
less erratically.

For lower values ofl a similar picture can be observed
In such cases, of course, the average mean field does not
at F50.5 for e50, since the values ofxi do not cover the
interval (0,1) with a symmetric distribution. As the couplin
intensity grows, at the critical valueec

1 , the entire population
collapses into the fixed point and^F& reaches a fixed maxi
mal value.

Finally, we have studied how the fluctuations ofF(t)
around its average valuêF& depend on the coupling inten
sity. In Fig. 6 we plot the mean square dispersion ofF,
DF5AŠ(F2^F&)2

‹, as a function ofe, for several system
sizes. These plots show a rather uniform background,
disappears ate50.5 when the whole system is attracted
the fixed point~the nonlinear parameter isl54). This fluc-
tuation level is reduced by enlarging the system. Super
posed to this background, some sharp spikes of enhan
fluctuations are seen for low values ofe. They coincide with
the downward peaks of^F& in Fig. 5, and correspond to th
stability windows in the chaotic regime. As illustrated in th
inset of Fig. 6 for the widest period-3 window, the behav
of any element of the ensemble in these regions is hig
intermittent. During certain time intervals, the elements
engaged in periodic orbits but, occasionally, they exhibi
regime of chaotic evolution. This intermittency between tw
qualitatively different forms of motion, each of them havin
specific values of̂F& andDF, causes the overall mean-fiel
dispersion to attain unusually large levels. These anoma
fluctuations can even grow upon increasing the system s

VI. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the collective behavior
an ensemble of globally coupled maps whose dynamic

e

FIG. 5. Temporal average ofF as a function ofe. The system
hasN51000 elements andl54. Inset: a detailed view of the re
gion of smalle, with N550 000.
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updated asynchronously. Asynchronous updating, wh
study is motivated by the aim of realistically modeling t
evolution of real systems, introduces a stochastic ingred
in the dynamics, with nontrivial consequences in the beh
ior of the population. Although some of our analytical resu
hold for any kind of coupled maps, we have focused o
attention—in particular, in the numerical simulations—in t
case of logistic maps,f (x)5lx(12x).

We have numerically found that, for a fixed value of t
parameterl, increasing the coupling intensity leads the sy
tem to simpler and simpler evolution, running backward o
the bifurcation diagram of the logistic map. For sufficien
large coupling, in fact, a fixed-point state is reached for
whole ensemble, even whenl corresponds to chaotic indi
vidual motion. This is in strong contrast with the behavior
globally coupled maps with synchronous updating. Inde
large coupling intensities lead such systems to a sync
nized state where all the elements reproduce the evolutio

FIG. 6. The mean square dispersionDF as a function ofe, for
several system sizes. Dotted line:N5103; full thick line: N5104;
full thin line: N5105. IncreasingN, the background is seen t
diminish, while the peaks are seen to grow. ForN51000, the peaks
cannot be resolved from the background. Inset: The orbit of a sin
element atl54 ande50.069, from a system with 1000 element
displaying intermittent behavior between a period-3 orbit and c
otic motion.
se

nt
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e
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o-
of

a single, uncoupled map. Below the synchronization thre
old, those systems exhibit a regime of clustering not o
served in the present case of asynchronous updating.

An approximate analytical description for the asynch
nous ensemble can be achieved by constructing an effec
single-element dynamics, which result to be driven by
map f eff(x)5(12e) f (x)1eF0 , wheree is the coupling in-
tensity and F0 is a constant to be determined se
consistently from the collective evolution. For the case
logistic maps, this approximate picture makes it possible
calculate analytically the threshold of the lower-order bifu
cations. These results compare successfully with numer
simulations. Note that ase increases, the weight of the non
linear term in the effective dynamics decreases, explain
why the bifurcation diagram develops backwards when
coupling intensity grows.

The effective individual dynamics is affected by intern
fluctuations, which enter the single-element evolution as
additive noise term. As is well known for noisy maps, t
main effect of these fluctuations consists of suppression
higher-order bifurcation and blurring of both regular a
chaotic motion. We have studied how the amplitude of
internal noise depends on the ensemble size, i.e., on the n
ber N of elements in the population, by analyzing the te
poral behavior of the mean fieldF(t)5N21( i f @xi(t)#. Nu-
merical simulations show that the fluctuations ofF(t)
decreases with the system size asN21/2. This is again in
strong contrast with synchronous globally coupled maps,
which it is known that fluctuations decrease in a mu
slower manner. Here, instead, the intrinsic stochastic cha
ter of the evolution makes fluctuations to obey the us
self-average statistics, and the law of large numbers ho
This result suggest that the violation of the law of large nu
bers is not a robust feature upon introduction of rand
elements in the dynamics of globally coupled ensembles

In summary, we have shown that the collective behav
of globally coupled maps with asynchronous updating exh
its important differences when compared with that of sy
chronous dynamics. Coupling is able to suppress the c
plexity of individual evolution, and internal fluctuations sel
average in the usual way as the system size increases.
extension of these results to ensembles formed by more c
plex maps and by continuous-time dynamical systems sho
be the subject of further analysis.
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@15# J. Rolf, T. Bohr, and M. Jensen, Phys. Rev. E57, R2503
~1998!; e-print chao-dyn/9706021.

@16# J. Hertz, A. Krogh, and R. G. Palmer,Introduction to the
Theory of Neural Computation~Addison-Wesley, Reading,
MA, 1991!.
@17# K. Kaneko, Phys. Rev. Lett.65, 1391~1990!.
@18# G. Perez, C. Pando-Lambruschini, S. Sinha, and H. Cerde

Phys. Rev. A45, 5469~1992!.


