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Globally coupled maps with asynchronous updating
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We analyze a system of globally coupled logistic maps with asynchronous updating. We show that its
dynamics differs considerably from that of the synchronous case. For growing values of the coupling intensity,
an inverse bifurcation cascade replaces the structure of clusters and ordering in the phase diagram. We present
numerical simulations and an analytical description based on an effective single-element dynamics affected by
internal fluctuations. Both of them show how global coupling is able to suppress the complexity of the
single-element evolution. We find that, in contrast to systems with synchronous update, internal fluctuations
satisfy the law of large numberS1063-651X%98)15110-3

PACS numbegs): 05.45+b, 05.90+m

[. INTRODUCTION systemg12-15. As discussed, for instance, for neural net-
works[16], an independent choice of the times at which the
Introduced by Kaneko in 198fL], coupled map lattices elements of a given complex system update their respective
have proved to be a powerful tool in the study of spatiotem-states should provide a closer approximation to reality. How-
poral chaos and pattern formation in complex systEPrs/]. ever, it has to be mentioned that, in systems with local cou-
They have found applications as models in differentpling, asynchronous update has been shown to lead to trivial
branches of sciencg8—11]. Globally coupled mapg3], behavior[6]. Here we present a first analysis a$ynchro-
which bear similarity to the Sherrington-Kirkpatrick model, nous globally coupled maps, and find their behavior to be
constitute a kind of mean-field extension of coupled mapcompletely different from that of the usual synchronous
lattices. In an ensemble of globally coupled maps, the elemodels. We have analyzed two possible asynchronous
ments are seen to form clusters of synchronized activity. Aschemes.
the coupling increases, a variety of phases can be (8 At each time step, update the elements according to
identified—from coherent, through ordered and partially or-
dered, to turbulent—depending on the number of clusters in

the system. For sufficiently large coupling intensities, the 1.0

generic behavior consists of full synchronization of the 08 &~~~

whole population, with all the elements having identical evo- 06 / ]

lution. * 04 D ]
In usual models of globally coupled maps the elements 0'2 (a)

update their state at the same time, namely, their evolution is
synchronous. For an ensemble Mfelements whose indi-
vidual dynamics is given by the nonlinear magt+1)
=f[x;(t)], a typical scheme for global coupling is given by

N
€
Xi(t+1)=(1—e)f[x(t)]+ NE fix;(0], i=1,...N,
=1 :
(1) 0.8
x 06
wheree[0,1] is the coupling intensity. Equatiofi) is ap- 0.4 (c)i
plied synchronously to all the maps of the system, with the 0.2 1
values of all the sites at the previous time as inputs. 0.0 &

0.0 0.1 0.2 0.3 04 0.5

From a realistic viewpoint, however, synchronous updat- e

ing does not seem to be very plausible in models of real
FIG. 1. Bifurcation diagrams of a system bf= 1000 logistic
maps, as a function of the coupling intensiy The diagrams are
*Electronic address: abramson@mpipks-dresden.mpg.de constructed following the evolution of a single element taken at
TElectronic address: zanette@cab.cnea.edu.ar random, with(a) A=3.5, (b) A=3.84, and(c) A=4.
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the sequence given by a prescribed “list” that contains everysystem.

element once. The order of the elements in the list is chosen For the sake of clarity, let us mathematically formulate

at random at each step. the second scheme. Lej(t) be a stochastic process that
(b) Divide each time step intd substeps. At each sub- takes an integer valug=1,2, ... N at each substep, with a

step, update one element chosen at random. Aftembsteps  uniform probability. The dynamics proceeds in the following

the map operates, on average, once over each element in thay:

A= a1+ 3 fx ] i i=n(0

X;(t) if i+ p(t).

xi(t+1/N)= 2

In the first schemep(t) takes the values 1,2.. ,N atran-  diagrams are constructed as usual. For given valuesaoid
dom, but only once within each time step. It can be seen that, the system is let to evolve until transients have elapsed.
in this dynamics, the mean field(t)=N"'=;f[x;(t)] has  Then the state of the chosen element is recorded and plotted
different values when acting over different elements, as timeit some successive time steps.

proceeds by steps of lengthNL/ This feature, and the fact Figure Xa) shows the bifurcation diagram for=3.5,

that a-SynChronous-Updating incorporates a StOCh-aSti(.: ComMp@mere the(uncoup]ed |ogistic map evolves in a period_4
nent in the evolution, contrast with the deterministic syn-gpit. As e grows, the four initial branches collapse into two
chronous schemél). branches which, in turn, merge into a single branch. Increas-

Evolution under the two asynchronous schemes introy,g the coupling intensity leads thus the evolution of a single

duced above displays the same global properties. Howeve&emem to display an inverse bifurcation cascade. The same

in the second scheme one or more elements may fail to bgcenario occurs for other valuesof For A = 3.8, where the

updated in some time step. As a consequence, $ihap- o SR o o )
dates have to be made during a time step, some other e||é3_9'5t'c map is within its largest period-3 stability window,

ments will be updated more than once. This has nontrivia|ncreasmg€ leads the evolution to successively exhibit cha-

consequences in the dynamics, to be discussed below. fiC regimes of one and two bands and, eventually, stable
addition, the second scheme has the advantage of beirgj@nches that finally collapse into a single stable dtaig.
much faster computationally. Tb)]. For)\=4_, in the_ extreme ch_aotlc regime of the qulsnc
In this paper, we analyze an ensemble of globally coupledhap. the full bifurcation diagram is run over backwaBay.
logistic maps. We show that the dynamics under asynchrol(c)]-
nous updating substantially differs from that of the synchro- It is apparent from Fig. 1 that the evolution of a single
nous case. The structure of clustered phases completely diglement in the ensemble is subject to the action of noise.
sapears. In its place, an inverse bifurcation cascade developweed, the branches of nonchaotic evolution are not per-
as the coupling intensity is increased. In the following, wefectly defined—except in the case of a single stable state—
analyze this phenomenon from numerical simulations, anénd high-order bifurcations, close to the onset of chaos, are
construct a phase diagram for the different regimes displayedearly suppressed. This noise, which is produced internally
by the dynamics. Then we propose an analytical explanatiofh the system via the asynchronous updating, induces spread-
for the bifurcation cascade, whose results compare succesgy of the states visited during the evolution when the cou-
fully with the numerical data. Finally, we discuss how the pling is different from zero.
fluctuations generated in the internal dynamics are reflected The branches of nonchaotic evolution, with their small
in the average evolution. but noticeable dispersion, are what remains of the stable pe-
riodic orbits of the deterministic map under the effect of the
Il INVERSE BIFURCATION CASCADE internal noise. In these br_anches, th_e evolution drive_n by the
AND PHASE DIAGRAM two schemes _prgsente_d in Sec. | differ. Sche{a)e_dgflnes
true noisy periodic orbits, where each element visits the set
In this section we present extensive numerical simulationsf available states following the same periodic sequence as
of the evolution given in Eq(2) for the standard logistic the deterministic map. On the contrary, schethg allows
map, f(X) =Ax(1—X). We concentrate on the values »f some elements to skip the update in a time step. Conse-
where this map displays its bifurcation cascade;N3<4, quently, some other elements are updated more than once.
leading through period doubling from a stable fixed-pointAs a result, the observed successive states do not follow a
state to a completely developed chaotic regime. For reasongeriodic sequence. To simplify the discussion, in the follow-
that will become evident later, we restrict the coupling inten-ing we will call these regimes of noisy nonchaoferiodic
sity € to the interval 6<e<0.5. or nonperiodi¢ evolution “periodn” orbits, referring rather
In Fig. 1 we show the bifurcation diagrams for the evolu-to the set of states visited by each element.
tion of a single element, chosen at random from a population The chaotic bands, meanwhile, are also blurred by the
of 10° maps, as a function af, for three values ok. These internal noise. We will thus refer to a regime where a noise-
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crease in the usual self-averaging way &5 Y>—as
predicted by the so-called law of large numbers—but in a
much slower mannef17,18. In Sec. IV we analyze this
aspect for asynchronous evolution, finding that the law of
large numbers is recovered in these systems.

Note finally that if, in contrast with Fig. 1, the bifurcation
diagram would be plotted for fixee as a function of\, the
bifurcation cascade would proceed forward. For large values
of the coupling intensity, however, higher-order bifurcations
and chaos would not be reached evenXer4.

Ill. MEAN-FIELD APPROACH

0.0 .
3.0 3.2 34 T 3.6 T 3.8 4.0

A, ‘period 8 period 5

It is possible to describe analytically some features of the
bifurcation cascade by performing a kind of mean-field ap-
proximation to Eq.(2). From the viewpoint of a single ele-

FIG. 2. Phase diagram of a system N 1000 logistic maps. ment, updating of its state occurs, on average, once per time
The two lines are the analytic curves given by E@.and(8). step. At the successive times where a given element is up-

dated, the sequence of values of the mean field)
free map would exhibit deterministic chaotic evolution as an=N""Z;f[x;(t)] fluctuates due to the evolution of the indi-
“n-band” chaotic region. vidual states of all the elements, effeqnvely resembling a

To summarize the variety of behavior observed for aStochastic process. In such a way, the single-element dynam-
single element as and\ vary, we have constructed a phase iCS can be though of as given by a deterministic map subject
diagram in the plane spanned by these two parameters fortq the action of an effectlvg “extgrnal” stophastlc fprcmg.
population of 18 elements. For each value efand \ the In order to characterize this effective forcing, we
evolution has been calculated with schethe during 1¢ ~ @Ssume—as suggested by the numerical simulations—that
time steps. After a transient oP&10° steps, a 500-column the evolution of the syster®) determines, at long times, a
histogram over the states visited by a single element in th¥ell-defined measurg(x) on the space. At any time step
remaining 5< 10° steps has been produced to identify thethe value of the elements will d|§tr|bute apcordmg to this
kind of evolution corresponding to those values of the pa/meéasure and, fdl— o, the mean field=(t) will approach a
rameters. The phase diagram is shown in Fig. 2. Each regigtPnstanto=[f(x) u(x)dx. For finiteN, however, the field
in this diagram corresponds to a different kind of attractor. F(t) will fluctuate aroundro, so that we can write

The large upper-left region corresponds to a fixed point. ]

In this zone of the parameter space, from any initial condi- limF(t)~Fo+&(1), ©)

tion, all the elements are attracted to the same stable fixed o

point. Without coupling—i.e., fore=0, on the horizontal
axis of the plot—such behavior would be observed only fo
A <3. At larger values ok and, notably, even up to the fully
developed chaotic regime. € 4), there always exists a cou-
pling intensity able to suppress the complex behavior of the
uncoupled system. As mentioned above, in this fixed-point
regime internal noise is also suppressed. L . )

Below the fixed-point region, there is a series of zonesThe_ effectlve |nd|_v|dual evcg!funon is thus given by a deter-
shown, alternately, with black squares and empty space iAnistic renormalized map®(x) =(1—¢€)f(x)+Fo upon
Fig. 2. In this phases the evolution of single elements display'hich an additive noisy force of zero mean acts. It has to be
“periodic” and “chaotic” noisy orbits, as indicated in the noticed that the constarity, being determined by the col-
plot. Due to the noise, the limits between these regions arlective dynamics, prevents the population from complete de-
not sharply defined, and some of the zones—such as tHPUPIiNg. o ,
period-8 and period-5 regions—are truncated at certain val- 't i well known that a deterministic map subject to the
ues of\ and e. Between the zones of period-4 orbits and _actlon_of a moderate additive noise of zero mean preserves
two-band chaotic evolution, higher-order periodic orbits adtS critical behavior, the only effect of noise being the sup-
well as chaotic evolution in more than two bands are missPression of high-order bifurcations. Within this picture, we
ing. The period-3 stability window is instead clearly de- €a&n then explicitely calculate the first bifurcation points as
tected, immersed in the one-band chaotic regime. ollows. _ ; _ _

Since blurring of boundaries between zones and suppres- SUPPOse, first, that the mdf(x) has a stable fixed point
sion of higer-order periodic and chaotic orbits are a directto @S its only attractor. Since—in the absence of noise—all
consequence of the internal noise, it is expected that—ife elements are attracted to it, we hame) = 5(x—X,) and
noise decreases upon increasing the number of elements frn=f(Xo). The effective single-element evolution thus be-
the ensemble—the phase diagram becomes more sharply d&@mesx;(t+1)=(1—e€)f[xi(t)]+ ef(xo). The equation
fined for higherN. It is, however, known that, in synchro-
nous globally coupled maps, the internal noise does not de- Xo=(1—€)f(Xo) + ef(Xo) = f(Xo) 6)

rwhereg(t) is a stochastic process of zero mean.
Within this approximation, the dynamics of a single ele-
ment is

Xj(t+1)=(1—e€)f[x;j(t)]+ eFo+ €&(t). (4)
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determines,, which results to coincide with the fixed point B

of the original magf(x). The evolution equation can be now 6x10 -~ s |
readily linearized to find thak, is stable if the coupling ﬁ
intensity satisfies A

e>ec=1-|f"(xo)| % (6) X107 |

For the logistic map, that has a stable fixed poinkat %ﬁ

=1—-\"1 for 1<A<3, Eq. (6) implies that the state; d"k
=X, is stable ife>1—|2—\|"1. That is, for 2<\<3 the oo™ | _/“".
state is stable for alé and, forA>3 it is stable fore large 7
enough. In Fig. 2 we draw the cur\eé()\) that defines the
boundary between the fixed point and the period-2 regions. oo

This analytical result is in full agreement with simulations.

—4 1
A similar argument can be applied to period-2 orbits. Due 0x10 0.0 0.1

0.2
to the randomness of the updating scheme, at each time ste| |, —2x,|
practically one half of the elements will be at one of the two
states of the orbit, say, , and the other half at the otheq; . FIG. 3. The standard deviation of the fluctuations of the mean
The corresponding invariant measure gx) =[ 5(X—Xa) field, A&, as a function of the the separation between the two states
+ 8(x—xg) /2 and Fo=[f(x,)+f(xg)]/2. Therefore, the of the period-2 orbit. The system sizes &fe-10* and\=3.4; €

equations which determine the valuesx@fandxg are approachesg from below. The abscissas used to plot the data cor-
respond to the values af, andxg provided by Eq(7) as a function
Xa=(1—e)f(xp) + e[ f(xa) +f(xp)]/2, (78 ofe.
Xg=(1—€)f(xa) + e[ f(xa) +f(xp)]/2. (7b)  tions. In order to illustrate our arguments, let us restrict our-
selves to the period-2 orbit, whepe(x) =[ 6(x—Xa) + (X
These equations are equivalent tg=f(xg) and xg —xg)]/2.
=f(Xa), so thatF,=(xa+Xg)/2 andx, g are also the two Due to the fluctuations arising at finite valuesNf the

states correspoqding to the period-2 qrbit of the original magpumber of elements in each state will not¥&, but rather
f(x). For the logistic map these equations can be solved, and fluctuating numben,(t) at x4 and ng(t)=N—n,(t) at

the stability condition implies xg . Since the mean fiel® (t) will consequently differ from
Fo=[f(Xa) + f(Xg) /2= (Xa+Xg)/2, this implies that the in-

> 2= — 1-20+A2—J1-6A+3)\? ) dividual states will spread around the valugsandxg . At a
¢ ANA—2) ’ given time, therefore, the elements n&ar will have states

Xi. .=Xapt X, (t). The fluctuating mean field will thus
The line€X(\) is also shown in Fig. 2, separating the regions,5® AB
of period-2 and -4 orbits. This result is again in good agree-
ment with simulations, though a slight deviation is observed
for large values ok, i.e., nearn=4. This deviation can be 1
ascribed to the increasing effect of noise for growingcf. Fi=g > fxat 5XiA)+Z f(xg+oxi) 9
Eq. (4)], that blurs the boundaries where bifurcations occur. 'A 's
Analogous reasoning may be used to determine the

boundaries between other zones. For higher-order periodic, . .\ <im&  andS. run over the elements nea
orbits, however, the equations cannot be explicitly solved in 'a 's R

the case of the logistic map. For chaotic evolution, moreoverdNdXg, respectively.

the measurg:(x) should be obtained numerically. In the lowest-order approximation, we havE(t)
=[naf(xa)+ngf(xg) [/N=(naxg+ngxa)/N that can be re-
IV. FLUCTUATIONS OF THE MEAN FIELD written as
A key ingredient in the analysis presented in Sec. Il is the _XatXg 1 N
assumption that, for large populations, systéndefines a F(t)= 5 TN na(t) > |(Xs Xa)- (10)

measure in the one-element state spacsuch that for suf-
ficiently long times the elements exhibit a well-defined dis-In this expression we identify the fluctuations Bf{t) as
tribution in x. It is implicit in that assumption that the am- &(t)=[na(t) —N/2](xg—Xa)/N. Since updating is applied
plitude of internal noise decreaseshigrows. As mentioned at random in the ensembla,(t) is expected to have a bi-
above, however, previous work has shown that fluctuationsomial distribution around\/2. This readily shows thaj(t)
in deterministic synchronous globally coupled systems doeis a stochastic process with zero mean, whose mean square
not self-average in the usual wdy7,18. It is therefore dispersionA¢ depends orN as Aé~N~Y2 We also note
worthwhile to analyze this point in some detail for the that the amplitude of fluctuations depends linearly on the
present case of asynchronous update. difference|x,—xg| between the two states of the period-2
The fluctuating part of the mean fielg(t) in Eq.(3), can  orbit. As a byproduct, this indicates that the fixed-point state
also be analytically studied within some further approxima-exhibits no fluctuations. In Fig. 3 we pldt¢ as a function of
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N FIG. 5. Temporal average & as a function ofe. The system

hasN=1000 elements and=4. Inset: a detailed view of the re-
FIG. 4. The standard deviation of the mean fielr, as a  gjon of smalle, with N=50 000.

function of the system size. The double logarithmic plot shows the

decaying behavioN ~** for system sizes ranging froM=300 {0 5 getaj| of the same function in the region of small coupling
10F for \=4 and €=0.1. A line of slope—3 is also shown for  jntensity (for an ensemble of & 10* elements The average
comparison. mean field exhibits a complex dependenceeotits features
are probably reflecting the presence of higher-order stability
|xa—xg| for a fixed value oh in a population of 1(‘)Iogistic windows in the chaotic regime. For large valueseothe
maps. The coupling intensity runs over the region of gystem abandons the chaotic state and,efe.2, it enters
period-2 orbits, makingxa—Xxg| vary from small values the regime of periodic orbits. Corresponding{f) behaves
neare= e}: to larger values as decreases. A large region in |ess erratically.
which A¢ varies linearly with|x,—xg| is clearly observed. For lower values of a similar picture can be observed.
Remarkably, the proportionality of the mean-field fluctua-|n such cases, of course, the average mean field does not start
tions with N~ 2 is also numerically verified in the regions at F=0.5 for €=0, since the values of; do not cover the
with more complex dynamics. The validity of the law of interval (0,1) with a symmetric distribution. As the coupling
large numbers proves thus to be a generic feature in thgytensity grows, at the critical value! , the entire population

fluctuations of the asynchronous ensemble of globally:g|iapses into the fixed point ar(éF) reaches a fixed maxi-
coupled maps. In Fig. 4 we show a double logarithmic plotyz] value.

of the mean square deviatiohF of the mean field as a  Finally, we have studied how the fluctuations Bft)

chaotic regime. Thé&~ ' dependence is apparent. sity. In Fig. 6 we plot the mean square dispersionFof
AF={((F—(F))?), as a function ofe, for several system
V. MEAN-FIELD DEPENDENCE sizes. These plots show a rather uniform background, that
ON THE COUPLING INTENSITY disappears a¢=0.5 when the whole system is attracted to

the fixed point(the nonlinear parameter }s=4). This fluc-

In order to complete our discussion, it is worthwhile to tuyation level is reduced by enlarging the system. Superim-
investigate how the collective behavior varies as the couppsed to this background, some sharp spikes of enhanced
pling intensity is modified. In this section we present numeri-flyctuations are seen for low values@f They coincide with
cal results on the dependencef(ft) on € for a given value  the downward peaks df) in Fig. 5, and correspond to the
of X in an ensemble of logistic maps. stability windows in the chaotic regime. As illustrated in the

In Fig. 5 we show the time-averaged mean fighg as a  inset of Fig. 6 for the widest period-3 window, the behavior
function of the coupling intensity, fok=4 andN=10>. At  of any element of the ensemble in these regions is highly
€=0 the elements are completely uncoupled. In the fullyintermittent. During certain time intervals, the elements are
chaotic regime X=4), the individual states are symmetri- engaged in periodic orbits but, occasionally, they exhibit a
cally distributed in the interval (0,1) according to the invari- regime of chaotic evolution. This intermittency between two
ant measure of the logistic map. This uncorrelated state igualitatively different forms of motion, each of them having
then characterized by an average fighg = 0.5. For nonzero  specific values of F) andAF, causes the overall mean-field
values of the coupling intensity, we observe that a corre- dispersion to attain unusually large levels. These anomalous
lated state develops, characterized by valuegFof larger  fluctuations can even grow upon increasing the system size.
than 0.5. The average mean field grows, however, in a highly
nonmonotonic way. Large downward peaks can be observed,
where the collective state again approaches the véi)e
=0.5. The broadest of these peaks, near0.07, coincides In this paper we have analyzed the collective behavior of
with the period-3 stability window. The inset of Fig. 5 shows an ensemble of globally coupled maps whose dynamics is

VI. SUMMARY AND CONCLUSIONS
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a single, uncoupled map. Below the synchronization thresh-
old, those systems exhibit a regime of clustering not ob-
served in the present case of asynchronous updating.

An approximate analytical description for the asynchro-
nous ensemble can be achieved by constructing an effective
single-element dynamics, which result to be driven by the
map f¢(x) = (1—€) f(x) + eFy, wheree is the coupling in-
tensity and Fy is a constant to be determined self-
consistently from the collective evolution. For the case of
logistic maps, this approximate picture makes it possible to
calculate analytically the threshold of the lower-order bifur-
cations. These results compare successfully with numerical
: ‘ : \ simulations. Note that as increases, the weight of the non-
0.0 0.1 0.2 0.3 04 0.5 linear term in the effective dynamics decreases, explaining

€ why the bifurcation diagram develops backwards when the
coupling intensity grows.

0.00

FIG. 6. The mean square dispersidfr as a function ofe, for L 2 L .
several system sizes. Dotted lité=1C°; full thick line: N=10%: The effective individual dynamics is affected by internal

full thin line: N=10P. IncreasingN, the background is seen to fluctuations, which enter the single-element evolution as an

diminish, while the peaks are seen to grow. Kot 1000, the peaks additive noise term. As is well known for noisy maps, the
cannot be resolved from the background. Inset: The orbit of a singl@ain effect of these fluctuations consists of suppression of

element ath =4 ande=0.069, from a system with 1000 elements, higher-order bifurcation and blurring of both regular and
displaying intermittent behavior between a period-3 orbit and chachaotic motion. We have studied how the amplitude of the

otic motion. internal noise depends on the ensemble size, i.e., on the num-

ber N of elements in the population, by analyzing the tem-

poral behavior of the mean fiel(t)=N"1=,f[x;(t)]. Nu-

merical simulations show that the fluctuations B{t)
updated asynchronously. Asynchronous updating, whosdecreases with the system size MsY2 This is again in
study is motivated by the aim of realistically modeling the strong contrast with synchronous globally coupled maps, for
evolution of real systems, introduces a stochastic ingredientvhich it is known that fluctuations decrease in a much
in the dynamics, with nontrivial consequences in the behavslower manner. Here, instead, the intrinsic stochastic charac-
ior of the population. Although some of our analytical resultster of the evolution makes fluctuations to obey the usual
hold for any kind of coupled maps, we have focused ourself-average statistics, and the law of large numbers holds.
attention—in particular, in the numerical simulations—in the This result suggest that the violation of the law of large num-
case of logistic maps,(x) =Ax(1—X). bers is not a robust feature upon introduction of random

We have numerically found that, for a fixed value of the elements in the dynamics of globally coupled ensembles.

parametein, increasing the coupling intensity leads the sys- In summary, we have shown that the collective behavior
tem to simpler and simpler evolution, running backward overof globally coupled maps with asynchronous updating exhib-
the bifurcation diagram of the logistic map. For sufficiently its important differences when compared with that of syn-
large coupling, in fact, a fixed-point state is reached for thechronous dynamics. Coupling is able to suppress the com-
whole ensemble, even when corresponds to chaotic indi- plexity of individual evolution, and internal fluctuations self-
vidual motion. This is in strong contrast with the behavior of average in the usual way as the system size increases. The
globally coupled maps with synchronous updating. Indeedextension of these results to ensembles formed by more com-
large coupling intensities lead such systems to a synchrgslex maps and by continuous-time dynamical systems should
nized state where all the elements reproduce the evolution dfe the subject of further analysis.
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