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Instability and controllability of linearly coupled oscillators: Eigenvalue analysis
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The stability and controllability of synchronous chaos of linearly coupled oscillators are investigated in
detail, based on eigenvalue analysis. The complicated coupled problem is reduced to two independent prob-
lems: clarifying the unstable regions of a modified single-site system and specifying the eigenvalue distribution
of the linear coupling and control matrix; both problems can be easily solved. Local injections~pinnings! are
suggested to synchronize chaos. The dependence of the controllability on pinning density and the diffusive and
gradient couplings is studied. It is shown that high control efficiency can be achieved in the strong gradient
coupling case for certain classes of unstable region distributions.@S1063-651X~98!14410-0#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Recently, the investigation of spatiotemporal systems
attracted much attention@1–5#. The instabilities, patterns
and chaos, and the controllabilities of these systems h
become a very hot topic in the field of nonlinear science.
one hand, this topic is a natural extension of the well dev
oped investigation of low-dimensional chaos and nonlin
dynamics@6–9#; on the other hand, the great potential
practical applications of nonlinear spatiotemporal syste
has become more well known and accepted@10–16#.

Let us consider a very popular system ofN identical
coupled nonlinear oscillators with linear couplings

u̇j5 f ~uj !1 (
k51

m

$~ek2r k!G~uj 1k2uj !

1~ek1r k!G~uj 2k2uj !%, j 51,2, . . . ,N ~1.1!

whereujPRn, and the functionf is nonlinear and capable o
producing rich solutions, including fixed points, periodic o
bits, and chaotic states.ek andr k arek-distance scalar diffu-
sive and gradient coupling parameters, respectively,m is the
length of the couplings, andG is an n3n constant matrix
linking coupled variables. Throughout the paper, the perio
boundary conditionuN1 j5uj is applied. Equations~1.1! can
be found in many practical systems, such as coupled l
beams and coupled Josephson junctions, or can represe
ased reaction-diffusion equations ofn species with dis-
cretized space variables. This system can exhibit extrem
rich dynamic behavior. In this paper we focus on the follo
ing problem. Assume the single-site system accepts a cha
solutions(t),

ṡ~ t !5 f @s~ t !#, ~1.2!

then the synchronous chaotic state

u1~ t !5u2~ t !5¯5uj~ t !5¯5uN~ t !5s~ t ! ~1.3!
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must be a solution of Eqs.~1.1!. We ask~i! when this syn-
chronous solution loses its stability and how its instability
related to the diffusive and gradient couplingse and r; and
~ii ! how one can stabilize this synchronous state via inj
tions when it becomes unstable. The second problem i
great practical importance. Generically, the dimension of
unstable manifold of an unstable state of an extended sys
is huge if the system size is very large. An intuitive idea
that we can control a state if we can control all its unsta
directions, and each unstable direction needs a control
rameter to be adjusted. Thus one expects to use contro
rameters, of which the number equals that of the posit
Lyapunov exponents of the reference state, for controlling
synchronizing chaos. It is interesting to ask whether we
reach high control efficiency, i.e., to control states with m
tiple positive Lyapunov exponents by using control para
eters of much lower number, and in what situations this c
be done if the possibility exists. In the following sections w
will answer the above problems via eigenvalue analysis
verify this theoretical analysis through direct numeric
simulations. This paper is a substantial extension of R
@17#.

In Sec. II we specify modifiedn-dimensional equations o
a single site from (N3n)-dimensional Eqs.~1.1! of N-
coupled oscillators, from which the instability regions f
arbitrary couplings are identified. Various essentially diffe
ent structures of unstable regions are clearly shown. In S
III eigenvalue distributions of different coupling matrices a
investigated. In Sec. IV, by comparing the eigenvalue dis
butions with the unstable regions of the modified one-s
equations, one can easily characterize the instability feat
of the synchronous state~1.3! in Eqs.~1.1!. For instance, we
can clearly illustrate two kinds of characteristic bifurcation
short wave and fast wave bifurcations~which have attracted
much interest recently@18–22#!. In Sec. V we discuss the
possibility to stabilize the synchronous chaotic state by
jecting local feedback signals when this state is unsta
without control. The dependence of the controllability on t
two coupling coefficientse and r is investigated, based o
both eigenvalue analysis and numerical simulation. The
section will give a few remarks for conclusion.
4440 © 1998 The American Physical Society
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II. STABLE AND UNSTABLE REGIONS

The stability of the synchronous state~1.3! can be ana-
lyzed by settinguj5s(t)1h j and linearizing Eq.~1.1! about
s(t). This leads to

ḣ5@D f ~s! Î 1BG#h, B5A

~AGh! j5 (
k51

m

$~ek2r k!G~h j 1k2h j ! ~2.1!

1~ek1r k!G~h j 2k2h j !%,

where D f (s) is the Jacobian off on s(t), and h
5(h1 ,h2 ,...,hN)T. Î is an N3N unit matrix. A is an N
3N matrix for couplings. It is an easy matter to diagonali
matrix B as

Bfn5Afn5lnfn , n50,1,...,N21. ~2.2!

By expandingh on the eigenvector basisfn , we haveh
5(n50

N21vn(t)fn . Herevn(t) (n50,1,...,N21) are complex
coefficients which obey the following equations@19#:

v̇n~ t !5@D f „s~ t !…1lnG#vn~ t !, n50,1,...,N21. ~2.3!

Now we have reduced theN-site coupled equations~2.1! to
much simplerN independent modified one-site equation
and then the stability problem can be analyzed inn-
dimensional space rather than in (N3n)-dimensional space

The significance of Eq.~2.3! is that the stability problem
of Eqs. ~1.1! can be separated into two independent pr
lems: one is to analyze the stable regions of Eq.~2.3!, this
depends on the single-site parameters only@such as the ref-
erence orbits(t), the JacobianD f (s), and the inner linking
structureG#, and is independent of the coupling matrixA and
the system sizeN; the other is to analyze the eigenvalu
distribution of the linear couplingA, that depends on the
couplingsek , r k , and the system sizeN only, and is inde-
pendent of the inner dynamics@including s(t), D f (s), and
G#. Both problems can be solved in a simple manner, and
solutions of these two problems can be put together to
tirely answer the more complicated stability problem of t
coupled system~1.1!. In the rest of this section we focus o
the first problem: to characterize the unstable region of
synchronous state~1.3! by studying Eqs.~2.3!.

Let b represent the Lyapunov exponents of Eqs.~2.3!.
The criterion that all the Lyapunov exponents of Eqs.~2.3!
should be negative,b,bc50, provides the stability bound
ary in the Re(2l)-Im(l) parameter plane~note ln can be
complex for asymmetric couplings!. Of course, this stability
boundary depends on the nonlinear dynamicsf (u) and the
reference states(t). Moreover, it also depends on the linkin
matrix G. Now we specify the following models as our e
amples.

~1! Lorenz model,u5(x,y,z)T,

ẋ5s~y2x!,

ẏ5rx2y2xz,

ż5xy2z. ~2.4!
,

-

e
n-

e

~2! Rossler model,u5(x,y,z)T,

ẋ52~0.5y10.05x1z!,

ẏ5x1ay,

ż5 H15~x23!2z
2z

~x.3!

~x,3!. ~2.5!

~3! Duffing equations,u5(x,y)T,

ẋ5y,

ẏ5gy2x31E cosvt. ~2.6!

For each model we focus on a chaotic state which is
attractor in the single-site systems. The chaotic orbits of
three models are shown in Figs. 1~a!, 1~b!, and 1~c!, respec-
tively. All the states in Fig. 1 will be used for studying th
instability and controllability problems of synchronous ch
otic states.

In Fig. 2 we plot the stable region of the synchrono
chaotic state of Fig. 1~a! in the Re(2l)-Im(l) plane for dif-
ferent linking matricesG. The curves represent the critica
condition at which the largest transverse Lyapunov expon
of Eqs.~2.3! is equal to zero. In the region marked by ‘‘S’’
~stable!, the largest Lyapunov exponent of~2.3! is negative,
while it is positive in the region marked by ‘‘U’’ ~unstable!.
In Figs. 3 and 4 we do the same as in Fig. 2 with the ref
ence chaotic state replaced by Figs. 2~b! and 2~c!, and the
model replaced by the Rossler~2.5! and Duffing ~2.6!, re-
spectively.

It is interesting to notice that the structure of the sta
regions in Figs. 2–4 can be classified into three groups. C
~i!, including Figs. 2~c!, 3~a!, and 3~c!: the critical curves
form closed circles, and then stable regions are localize
certain finite Re(2l)-Im(l) regions. Too large and too sma
Re(l) and too largeuIm(l)u can definitely destroy the stabil
ity of the synchronous reference states. Class~ii !, including
Figs. 2~b! and 4~b!: one observes, practically,V-shaped criti-
cal curves, then larger Re(2l) and smalleruIm(l)u are favor-
able for stabilizing the reference synchronous states. C
~iii ! @see Figs. 2~a! and 4~a!#: the critical curves are inversel
V shaped, and then larger Re(2l) and largeruIm(l)u are
favorable for stable synchronization of the reference sta
Figure 3~b! is a kind of mixture of classes~ii ! and~iii !. It is
interesting to find a sharp central peak in its unstable reg
A significant implication is that for larger and smallN syn-
chronization may be achieved more easily when the num
of oscillators is odd than when it is even. In the followin
sections we will find that these observations are extrem
important for classifying different kinds of instabilities an
for designing suitable controlling schemes to fulfill the co
trollabilities of different states of coupled oscillators.

III. EIGENVALUE DISTRIBUTION OF
COUPLING MATRIX

Let us now study the eigenvalue distribution of the co
pling matrixA. This task is independent of the local dynam
cal function f (u), the reference states(t), and the linking
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FIG. 1. Some examples of reference chaotic orbits.~a! Lorenz model,s510,r523. ~b! Rossler model,a50.133.~c! Duffing equations,
g50.3, v51, E511.
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matrix G, and then is completely different from what we d
in Sec. II. A given in Eqs.~1.1! and ~2.1! is an order-one
circulant matrix, and its eigenvalues can be computed as

lk522(
j 51

m

e j1(
j 51

m F ~e j1r j !expS 2p i
jk

N D
1~e j2r j !expS 22p i

jk

N D G . ~3.1!

Obviously, ln5lN2n* . As r 50, ln5lN2n and Im(lv)50.
From Eqs.~3.1!, it is obvious that the real part oflk depends
only on the values ofek and not ofr k , on the other hand, an
imaginary part oflk appears only for nonzeror k . In Fig. 5
we show several eigenvalue distributions atm52 for differ-
entek , r k , andN. From the plots some regular relations c
be observed.~a! For symmetric couplings (r k50,k51,2), all
the eigenvalues are real, and the distances between adj
eigenvalues~apart from possible degeneracies! increase asek
increases.~b! Asymmetric couplings~nonzeror k! produce
imaginary parts of eigenvalues, which can yield additio
stability and instability absent in symmetric coupling cas
~c! Increasing the system size does not change the eigenv
distribution curves, and can increase the density of the eig
ent

l
.
lue
n-

value distributions on the curves only. This point can
conveniently used to explain the so-called system-size in
bility in the next section. The above three points can also
observed for different coupling distancem. In Figs. 6~a!–
6~d!, we plot some eigenvalue distributions form53,4,5 and
long range coupling, respectively, and find features simila
Fig. 5. In Fig. 6~d! the eigenvalues~except the one located a
the origin! are located at larger values of Re(2l) than for
local couplings~a!–~c!. This suggests that a global couplin
can be more efficient to achieve synchronization for syste
with stable regions of class~ii ! or ~iii !.

For m51 ~nearest coupling!, the real and imaginary part
of eigenvalues satisfy the elliptic relation

S Re~ln!12e

2e D 2

1S Im~ln!

2r D 2

51. ~3.2!

The vertical axis and the position of the ellipse center dep
on the diffusive couplinge while the horizontal axis depend
on the gradient couplingr. It is interesting to see that th
whole ellipse is independent of the system sizeN, large N
only corresponds to denser distribution of eigenvalues in
given ellipse. In Fig. 7 we plot various eigenvalues distrib
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FIG. 2. Distributions of stable~‘‘ S’’ ! and unstable~‘‘ U’’ ! regions of the synchronous chaotic state of Fig. 1~a! for the Lorenz model. The
solid lines represent the zero maximum Lyapunov exponent.
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tions atm51 for different e, r, andN. All the above three
conclusions are further verified.

IV. VARIOUS INSTABILITIES OF SYNCHRONOUS
CHAOTIC STATES OF COUPLED OSCILLATORS

The problem of the stability of synchronous chaotic sta
of Eqs.~1.1! can be conveniently solved, based on the eig
value analysis in Secs. II and III. The key point for the re
erence state to be stable is that all eigenvalues of the m
B ~see Sec. III! except the one withln50 ~corresponding to
the spatially homogeneous state! are well located in the
stable region of Sec. II. Moreover, various instabilities,
they occur, can be classified according to how the first
stable transverse eigenvalue crosses the critical bound
The following are some examples of well known bifurc
tions.

(1) System-size bifurcation.It is well known that in-
creasing system size may make the synchronous chaotic
unstable. This kind of bifurcation can be understood picto
ally. In Fig. 8~a! we consider the case of local dynamics F
1~a! and takem51, e54, r 52, andN54. The synchronous
tes
en-
f-
trix

if
un-
ary.

a-

state
ri-
g.

chaotic state is stable for this combination of paramet
Keeping all parameters unchanged except increasing the
tem size by one,N55, two nonzero eigenvalues move to t
unstable region@Fig. 8~b!#, and then the synchronous sta
becomes unstable. From the figures, the mechanism o
size instability of the synchronous chaotic state can be ea
understood. Since the reference state is chaotic, then50
mode (l050) is certainly in the unstable region@i.e.,
bmax(l0).0#. Then there must be an arc of the ellipse~3.2!
that falls into the unstable region. WhenN increases, the
eigenvalue distribution becomes denser. For sufficie
largeN, this unstable arc should be occupied by some eig
values other thanl0 , and it leads to desynchronization of th
synchronous state, i.e., system-size induced instability ta
place. In Fig. 8~c! @8~d!#, we numerically compute Eq.~1.1!
with parameters given in Fig. 8~a! @8~b!# by starting from the
synchronous chaos of Fig. 1~a!. Slightly perturbed by a very
small nonhomogeneous noise, synchronization and de
chronization are clearly observed in Figs. 8~c! and 8~d!, re-
spectively@in Fig. 8~d! the system evolves from the synchr
nous chaos to a stationary pattern asymptotically#. From
Figs. 8~a! and 8~b!, the mechanism of instability is apparen
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FIG. 3. The same as Fig. 2 with the reference orbit Fig. 1~b! and the Rossler model considered.

~a! G5S 1 0 0

0 0 0

0 0 0
D . ~b! G5S 0 0 0

0 1 0

0 0 0
D . ~c! G5S 0 0 0

0 0 0

0 1 0
D .

FIG. 4. The same as Fig. 2 with reference orbit Fig. 1~c! and the Duffing equations considered.

~a! G5S 0 0

0 1D . ~b! G5S 0 0

1 0D .
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FIG. 5. Eigenvalue distribution of the coupling matrixA. m52, ~a! N512. Squares:e151, e251, r 150, andr 250. Circles and disks:
e151, e251, r 151, andr 251. ~The empty squares and circles represent single eigenvalues while the black squares and disks r
multiple eigenvalues; these notations are valid for all the following figures.! ~b! e151, e251, r 150, andr 251. ~c! e151, e251, r 151, and
r 250. ~d! The same as~a! with N530.
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though both eigenvalue distribution ellipses of Figs. 8~a! and
8~b! are the same, increasing system size in Fig. 8~b! makes
the eigenvalue distribution denser and moves the eigenva
l1 andlN21 down to the unstable region, leading to a lo
wave instability.

(2) Asymmetric coupling induced instability.We would
like to emphasize that the gradient coupling can dramatic
change the stability nature of the reference state. Not eno
attention has been paid to this point in previous investiga
of spatiotemporal instabilities.

In Fig. 9~a! we consider the case Fig. 2~b! and fix matrix
B by N54, m51, e55, andr 50. Then the homogeneou
chaos is stable since all eigenvalues exceptl050 are located
in the stable region. In Fig. 9~b! we do the same as Fig. 9~a!
except taking nonzero gradient couplingr 54. Now two ei-
genvaluesl1 andlN21 move to right and left, respectively
and both cross the critical line and enter the unstable reg
so an asymmetric coupling induced long wave instabi
takes place.

(3) Short wave bifurcation. Among all the structures o
Figs. 2–4, the class~i! structure@Figs. 2~c!, 3~a!, and 3~c!# is
particular. In Figs. 8 and 9, with class~ii ! and~iii ! structures,
one can definitely stabilize the reference states by sufficie
increasing the diffusive couplinge. However, one cannot do
es

ly
gh
n

n,

ly

so if class~i! structure is encountered.
In Fig. 10~a! we consider the case Fig. 2~c! and takeN

54, m51, e51.5, andr 50. Then, synchronization of chao
can be kept between all sites. In Fig. 10~b! we keep all pa-
rameters unchanged from Fig. 10~a! except that the diffusive
couplinge is increased toe51.7. The obvious consequenc
of increasinge is that all eigenvalues ofA ~exceptl050!
move up, and then the top eigenvaluelN/2 ~or lN/261 if N is
odd! first crosses the upper critical curve and enters the
stable region. This is the so-called short wave bifurcat
~n5N/2 mode is the shortest mode in the tangent space
the synchronous state! @18–20#. In Fig. 10~c! we directly
simulate Eqs.~1.1! by taking the parameters of Fig. 10~b!,
and an apparent spatial short wave~stationary wave with the
shortest wave length! bifurcation phenomenon is indeed ob
served.

It is concluded that short wave bifurcation can always
found in the systems with class~i! structure of unstable re
gion distribution by increasing the diffusive coupling.

(4) Fast wave bifurcation. Recently, a strange bifurca
tion has been found that the mode after bifurcation has
prisingly high frequency, which is several orders higher th
the natural frequency of the synchronous system. From
analysis of Secs. II and III, the reason for this seemin
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FIG. 6. Eigenvalue distribution ofA. N530. ~a! m53, e151, e251, e351, r 15r 25r 351. ~b! m54, e15e25e35e451, r 15r 2

5r 35r 451. ~c! m53, e15¯5e551, r 15¯5r 551. ~d! Global couplingek5r k51/k.
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strange behavior can be readily understood. The system
Fig. 1~a! is just that used for showing fast wave instabilit
By increasingr ~in Ref. @21#, the authors used one-way co
pling r 5e! the synchronous state can be destabilized a
certain r ~e.g., see Fig. 9!. The frequency of the coming
mode is mainly determined by Im(l̄1) where l̄1 is the l1

value when it crosses the instability boundary. Im(l̄1) de-
pends on the coupling matrixA only and does not have an
relation with the natural frequency of the synchronous st
The former can be much higher than the latter, and it is
the case of Fig. 9 as we can readily verify.

(5) The number of positive Lyapunov exponents of s
chronous state. The above eigenvalue analysis cannot o
reveal the instability of the reference state but also pre
the dimension of the unstable manifold of the synchron
state when it becomes unstable. The number of posi
Lyapunov exponents~or say, the number of the unstable d
rections!, M, of the reference state can be identified by cou
ing the number of the eigenvalues of matrixB falling into the
unstable region~like what is shown in Figs. 8–10!. The syn-
chronous state becomes stable asM5J with J being the
number of positive exponents of the corresponding sing
site chaos. In Fig. 11 we take Duffing equations as an
ample, and show how the number of unstable eigenvalue
the synchronous orbit Fig. 1~c! changes by varying the cou
plingse andr and keepingN520. The solid lines and circle
of

a

e.
st

n-

ct
s
e

t-

-
x-
of

represent the theoretical predictions and numerical plots,
spectively. Agreement between both results is perfect.
full synchronization (M51), the critical valueec is a non-
monotonous function ofr, a maximumec appears at an in-
termediater; that can be explained from the curve shape
Fig. 4~a!.

V. SYNCHRONIZATION OF CHAOS BY LOCAL
INJECTIONS

Now we come to the point of chaos synchronization. Su
posing a synchronous chaotic state unstable, our central
is to make this reference state stable by using local feedb
injections~pinnings!. For simplicity, we consider in the fol-
lowing only the case of nearest coupling; the control sche
is defined as

u̇ j5 f ~uj !1~e1r !G~uj 112uj !1~e2r !G~uj 212uj !

1cG@s~ t !2uj #(
k51

N/I

d j ,Ik , ~5.1!

whereI is the distance between two neighbor pinnings. Sin
the system has spatial translation symmetry@i.e., Eqs.~1.1!
and ~2.1! are invariant by translationsj→ j 1m, j
51,2,...,N, m51,2,...,N#, it is reasonable to use uniform pin
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FIG. 7. The same as Fig. 5~a! with nearest coupling (m51) being considered.~a! N512, e51. Circles:r 51. Squares:r 50. ~b! The
same as~a! with r 50.5. ~c! The same as~a! with e52, r 52 ~circles!. ~d! The same as~a! with N530.
c
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nings.s(t) is the reference synchronous state, and is now
target state for the feedback,c is the pinning strength.d j ,Ik
51 for j 2Ik50 and d j ,Ik50 otherwise. LargeI corre-
sponds to low pinning density, and then represents high
trol efficiency.

The stability of the reference state after control can
analyzed exactly in the same way as Eqs.~2.1!–~2.3! except
that the matrixB should include the control matrixC as

ḣ5@D f ~s! Î 1BG#h,

B5A1C,

~AGh! j5$~e2r !G~h j 112h j !1~e1r !G~h j 212h j !%,

~CGh! j5cG~2h j !(
k51

N/I

d j ,Ik , ~5.2!

and the diagonalized equations read

d

dt
vn5@D f „s~ t !…1lnG#vn~ t !, ~5.3!

whereln , n50,1,...,N, are the eigenvalues of the matrixB,
which is the sum of the coupling matrixA and the contro
matrix C. Now all the stable and unstable regions show
our

on-

be

in

Figs. 2–4 remain unchanged for the given parameters
stabilizing the reference state, the key point is to move a
unstable eigenvalues ofB to the stable regions by addi
suitable control matrixC. Together with couplingsA and
local injectionsC, B becomes anI-circulant matrix. We sha
make use of transfer matrixS to obtain the eigenvalues
I-circulant matrixB, N3N transfer matrixS is defined as

S5S 0 1 0 ••• 0

0 0 1 ••• 0

••• ••• ••• ••• •••

0 0 0 ••• 1

1 0 0 ••• 0

D , ~5.4!

and its eigenvalues and eigenvectors arelk5exp(2pik/N!
and fk

j 5exp(2pikj/N!, where k51,...,N and j 51,...,N. In
general, we haveBSI5SIB for an I-circulant matrixB; it is
known that the eigenvalues ofB have a certain relationsh
with those ofSI . The eigenvalues ofSI can be computed
lk5exp(2pikI/N! and any one isI-fold degeneracy, so th
eigenvectors ofI-circulant matrixB may be obtained by lin
early combiningI eigenvectors belonging to the same eig
value together, that is

fk
j 5 (

p51

I

cp
k expS 2p i

jp

I DexpS 2p i
k j

N D . ~5.5!
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FIG. 8. System-size bifurcation for the case of Fig. 2~a! of the Lorenz model.~a! e54, r 52, N54. The synchronous chaos is stable.~b!
The same as~a! with N55. Desynchronization occurs due to the fact that two transverse eigenvalues enter the unstable region.~c! Direct
simulation of Eqs.~1.1! for the parameters of~a!, starting from the vicinity of the reference state. The synchronous state is approache~d!
The same as~c! with N55, desynchronization is justified, and a stationary and spatially inhomogeneous pattern is approached as
cally.

FIG. 9. Gradient coupling induced instability.~a! Case Fig. 2~b! and the Lorenz model are considered.N54, e55, r 50. The synchro-
nous state is stable.~b! The same as~a! with r 54. Instability of the synchronous state occurs since two transverse eigenvalues ofA enter the
unstable region.
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FIG. 10. Short wave bifurcation, case Fig. 2~c!, and the Lorenz model are considered.N54, r 50. ~a! e51.5. Synchronization of chao
Fig. 1~a! is attractive.~b! By increasinge to e51.7, the top eigenvalue ofA ~the short wavelength mode! crosses the upper boundary of th
critical loop, and enters the unstable region, and short wave bifurcation appears.~c! The parameters are the same as~b!. Direct simulation
of Eqs.~1.1! shows the asymptotic stationary pattern with short wavelength.
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For Bfk5lkfk , we can obtain the followingI-order alge-
braic equation:

(
p51

I

cp
k@erei @2pp~s21!/I #ei @2pk~s22!/N#

1eei ~2pps/I !ei @2pk~s21!/N#

1e~12r !ei @2pp~s11!/I #ei ~2pks/N!2lke
i ~2pps/I !50,

~5.6!

(
p51

I

cp
k@erei ~22p/I !ei @2pk~ I 22!/N#1~e1c!ei @2pk~ I 21!/N#

1e~12r !ei ~2pp/I !ei ~2pks/N!2lk#50,

wheres51,2,...,I 21. Due to the fact thatqfk is the eigen-
vector ofB if fk is the eigenvector ofB, we may letcI

k[1
without the loss of generality. So we haveI equations forI
unknown quantities~c1

k , c2
k ,...,cI 21

k andlk! for anyk. Then
there areI sets of solutions~every set includes the solution
of c1

k , c2
k ,...,cI 21

k , andlk! that satisfy Eqs.~5.6! for a given
k. Moreover, we can obtain allN eigenvalues by settingk
50,1,...,N/I 21. It is emphasized that for Eqs.~3.1! ~without
control! the real and imaginary parts oflk depend only one
andr, respectively, while for Eqs.~5.6! ~with control! bothe
and r influence both the real and imaginary parts oflk
though the nonzero imaginary part oflk appears only for
nonzeror; this point is of great importance for understandi
the influence of the gradient coupling on the controllabilit

In Fig. 12 we plot the eigenvalues ofB at N520, e51,
m51, andI 510 for differentc andr. The critical line in the
figure is drawn for Duffing equations, the reference orbit F
1~c!, and the linking matrix

G5S 0 0

0 1D .

Without control (c50) the unstable manifold of the syn
chronous state is three dimensional in the entire range o
<r<e ~see Fig. 11!. For a given diffusive coupling, the
effects of pinnings in changing the eigenvalue distribution
B are rather different for differentr. Increasingr ~i.e., in-
creasing the asymmetry of the total coupling! can consider-
ably enhance the controlling efficiency. From~5.6! it is natu-
ral to think that with pinnings the eigenvalues of matrixB
will be divided into I groups and each group containsN/I
eigenvalues. This is the case for symmetric couplingr'0
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FIG. 11. The number of positive Lyapunov exponentsM vs the diffusive couplinge. Case Fig. 4~a! is considered.N520. ~a! r 5e; ~b!
r 50.7e; ~c! r 50.3e; ~d! r 50. The solid lines and the circles represent the theoretical predictions and the numerical results, respe
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@see Figs. 12~a! and 12~c!#. However, to our surprise, we fin
when the extent of asymmetry is high (r'e), the eigenval-
ues are divided only into two groups;N/I eigenvalues form
the pinning group, the otherN2N/I eigenvalues form an
other group@see Figs. 12~b! and 12~d!#. In Fig. 12~d! the
small group ofN/I 52 eigenvalues still exists, and is move
up outside of the scope of the figure. From Fig. 12~a! to
12~c! for symmetric coupling, increasing the control streng
c can only move the eigenvalues in each group close to e
other without moving the center of the given group of eige
values. Thus, in Fig. 12~c! there are still two transverse e
genvalues sitting in the unstable region~this situation is not
changed even forc→`!. On the contrary, from Fig. 12~b! to
12~d! for asymmetric coupling, increasingc also moves the
eigenvalues in the ellipse group close to each other with
moving the center of the ellipse, but here theN2N/m eigen-
values form a large ellipse, so the contraction of the ellip
effectively raises all low eigenvalues out of the unstable
gion, and then stabilizes the aim state well.

For further investigating the effects of the diffusive a
gradient couplingse, r, and the control strengthc, we present
Fig. 13. In Fig. 13~a! we plot the number of positive
Lyapunov exponentsM vs e at N520, I 54, c550 for dif-
ferentr /e. It is obvious that for larger /e, the stability of the
ch
-

ut

e
-

synchronous chaotic state can be achieved at much smae
than that forr 50. In Figs. 13~b! and 13~c! we plotM vs c at
N520, e50.5 for differentI andr. It is again observed tha
the controlling efficiency for larger is much larger than tha
of r 50. A remarkable point is that ate50.5, I 510, one can
never realize synchronization of the chaotic state for
symmetric coupling whateverc, while one can easily stabi
lize the synchronous state for the asymmetric couplingr
5e for not too largec. In Fig. 13~d! we plot the minimum
value of pinning density~or the maximumI! required for
stabilizing the reference state versusr for different c. Here
we fix e52 andN5120. Under these parameters, the syst
has 13 positive Lyapunov exponents for allr without control.
Increasingr, I monotonously increases. When the extent
asymmetry of the system is low~r is small!, the controlling
efficiency is insensitive to the pinning strengthc. However,
when r is near toe, the controlling efficiency sensitively
depends on the pinning strength. From Figs. 12 and 13
found that in order to synchronize all sites to a given hom
geneous reference state with symmetric couplings (r 50),
the number of the pinned sitesN/m must not be smaller than
the number of positive Lyapunov exponents of the refere
state for arbitrarily largec. This conclusion is verified by al
observations in many other parameter combinations. H
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FIG. 12. Case Fig. 4~a! and the Duffing equations are considered. Eigenvalues after control for variousr andc. N520, e51, I 510. ~a!
c53, r 50. ~b! c53, r 5e. ~c! c550, r 50. ~d! c550, r 5e. By increasingc, synchronization is achieved for asymmetric coupling wh
it fails for the symmetric one.
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ever, in the asymmetric coupling case, one can stabiliz
synchronous chaotic state by pinning sites much less than
number of the positive exponents of the reference state.
point is of great importance in practice.

In Figs. 14~a! and 14~b!, we do the same as Figs. 13~a!
and 13~b! except the unstable region distribution Fig. 2~a! is
considered, i.e., the reference state Fig. 1~a!, the Lorenz local
dynamics, and the

G5S 1 0 0

0 0 0

0 0 0
D

linking matrix are taken, all the features found in Fig. 13 a
still observed in Fig. 14. It is emphasized that the synch
nization effect of local injections depends sensitively on
structure of unstable region distribution. A different case
class~i! structure@Figs. 2~c!, 3~a!, and 3~c!#, in which in-
creasing sufficiently the control strengthC definitely spoils
synchronization, because some top eigenvalues will
a
he
is

-
e
s

e

pushed upward by the control to the unstable region. T
behavior is essentially different from the one displayed
Figs. 12–14.

VI. CONCLUSION

In summary we have considered the stability and cont
lability problems of synchronous states of linearly coupl
systems by applying eigenvalue analysis. The effects of
fusive coupling, gradient coupling, and control density a
strength are investigated in detail.

The whole problem of complicated high-dimension
coupled and controlled systems can be reduced to two in
pendent problems: One is the description of stable and
stable regions of a single-site system modified by an eig
value forcinglkG @see Eqs.~2.3! and~5.3!#; the other is the
eigenvalue analysis of site coupling and controlling matrixB.
The former is independent of the coupling strength, the
interaction scheme, and the control mechanism, and the l
is independent of the inner dynamics, the reference orbit,
the inner linking matrixG. Both problems can be solve
easily, and they, together, provide definite answers to
problems of stability and controllability of the coupled osc
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FIG. 13. We consider the same model as Fig. 12.~a!, ~b!, and~c! represent the number of positive Lyapunov exponentsM versuse and
c in the presence of pinnings.N520. ~a! M vs e. c550, I 54, r 50 ~dashed line! andr 5e ~solid line!. ~b! M vs c. e50.5, I 54. The same
as ~a! for r /e. ~c! The same as~b! for c and r /e. e50.5, I 510. ~d! The maximum ofI, required to drive the system to the synchrono
chaotic state, vsr. e52, andN5120. The solid line, dashed line, and dotted line correspond toc55, 25, and 50, respectively.
th
n
;
b

es
r,

e

lators. For instance, one can easily reveal and classify
instability of the reference state by examining whether a
how some eigenvalues ofB enter into the unstable region
and one can clearly show the dimension of the unsta
e
d

le

manifold of the aim state by counting how many eigenvalu
of B fall into the unstable regions of Figs. 2–4. Moreove
one can apply control matrixC to synchronize a chaotic stat
by moving all the eigenvalues ofB into the stable region of
FIG. 14. ~a! and ~b! are the same as Figs. 13~a! and 13~b!, respectively, with the case Fig. 2~a! and the Lorenz model considered.N
520. ~a! M vs e. c550, I 54, r 50 ~dashed line!, andr 5e ~solid line!. ~b! M vs c. e55, I 54. The same as~a! for r /e.
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Figs. 2–4. Therefore, the investigation of the distribution
stable and unstable regions of the single-site system~2.3!
becomes extremely important and generally significant
the stability, synchronization, and control problems
coupled systems with large system size. In this paper
have shown that the general structures of the unstable re
distributions can be classified into three classes that are
useful for understanding various bifurcations discussed
Sec. IV. For effective controlling it would be most welcom
if one can perform successful synchronization by inject
few sites of which the number is much smaller than the nu
ber of the positive Lyapunov exponents of the target st
Our primary results are that we cannot do this for symme
coupling systems while we may be able to do this for asy
metric coupling systems and for certain classes of unst
region structures if injections are properly applied. Theref
for systems with strong gradient couplings the local inject
ce

tt
f

r
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e

ion
ry

in

g
-

e.
c
-
le
e
n

approach may be very effective. This point is very useful
practical control problems. The ideas in this paper can
applied to general coupled extended systems: by chan
f (u), G, and the reference orbits(t) we can get different
distributions of stable and unstable regions of Eq.~2.3!; by
modifying the coupling matrixA we can obtain very rich
eigenvalue distributions of the couple matrix; by adjusti
the control matrixC we can flexibly change the distributio
of matrix B; and by combining all these manipulations o
can control various instabilities. In this paper we consid
only the problem of synchronization of chaotic sites. T
reference state~1.3! can also be chosen as an unstable p
odic state embedded in a chaotic attractor. By driving
system to the periodic target state we can suppress chao
making periodic motion synchronization. Then, the a
proaches used in Secs. II–V of this paper can be applied
for the purpose of chaos and turbulence control.
tt.
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