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Instability and controllability of linearly coupled oscillators: Eigenvalue analysis
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The stability and controllability of synchronous chaos of linearly coupled oscillators are investigated in
detail, based on eigenvalue analysis. The complicated coupled problem is reduced to two independent prob-
lems: clarifying the unstable regions of a modified single-site system and specifying the eigenvalue distribution
of the linear coupling and control matrix; both problems can be easily solved. Local inje@pionings are
suggested to synchronize chaos. The dependence of the controllability on pinning density and the diffusive and
gradient couplings is studied. It is shown that high control efficiency can be achieved in the strong gradient
coupling case for certain classes of unstable region distributj@i€63-651X98)14410-Q

PACS numbd(s): 05.45+b

I. INTRODUCTION must be a solution of Eq$1.1). We ask(i) when this syn-
chronous solution loses its stability and how its instability is
Recently, the investigation of spatiotemporal systems haeelated to the diffusive and gradient couplingandr; and
attracted much attentionl—5]. The instabilities, patterns, (i) how one can stabilize this synchronous state via injec-
and chaos, and the controllabilities of these systems havgons when it becomes unstable. The second problem is of
become a very hot topic in the field of nonlinear science. Oryreat practical importance. Generically, the dimension of the
one hand, this topic is a natural extension of the well develunstable manifold of an unstable state of an extended system
oped investigation of low-dimensional chaos and nonlineafs huge if the system size is very large. An intuitive idea is
dynamics[6-9]; on the other hand, the great potential of that we can control a state if we can control all its unstable
practical applications of nonlinear spatiotemporal systemslirections, and each unstable direction needs a control pa-

has become more well known and accejted—16. rameter to be adjusted. Thus one expects to use control pa-
Let us consider a very popular system Nfidentical rameters, of which the number equals that of the positive
coupled nonlinear oscillators with linear couplings Lyapunov exponents of the reference state, for controlling or
synchronizing chaos. It is interesting to ask whether we can
m reach high control efficiency, i.e., to control states with mul-
Uj:f(uj)_l,- > {(e—T T (U1 —u)) tiple positive Lyapunov exponents by using control param-
k=1 eters of much lower number, and in what situations this can

be done if the possibility exists. In the following sections we
will answer the above problems via eigenvalue analysis and
verify this theoretical analysis through direct numerical
whereu; e R", and the functiorf is nonlinear and capable of simulations. This paper is a substantial extension of Ref.
producing rich solutions, including fixed points, periodic or-[17].
bits, and chaotic states, andr, arek-distance scalar diffu- In Sec. Il we specify modified-dimensional equations of
sive and gradient coupling parameters, respectivalis the @ single site from K n)-dimensional Egs(1.1) of N-
length of the couplings, anll is annxn constant matrix ~coupled oscillators, from which the instability regions for
linking coupled variables. Throughout the paper, the periodi@rbitrary couplings are identified. Various essentially differ-
boundary conditiony , ;= u; is applied. Equationgl.1) can ent structures of unstable regions are clearly shown. In Sec.
be found in many practical systems, such as coupled lasdH eigenvalue distributions of different coupling matrices are
beams and coupled Josephson junctions, or can represent Hlvestigated. In Sec. 1V, by comparing the eigenvalue distri-
ased reaction-diffusion equations of species with dis- butions with the unstable regions of the modified one-site
cretized space variables. This system can exhibit extremel§quations, one can easily characterize the instability features
rich dynamic behavior. In this paper we focus on the follow-Of the synchronous staté.3) in Egs.(1.1). For instance, we
ing problem. Assume the single-site system accepts a chaot@@n clearly illustrate two kinds of characteristic bifurcations,
solutions(t), short wave and fast wave bifurcatiofhich have attracted
much interest recently18—22). In Sec. V we discuss the
() =f[s(D)] (1.2 pos_sibility to stabilize the_ synchronous _Chaotic state by in-
' jecting local feedback signals when this state is unstable
without control. The dependence of the controllability on the

+(etrl(uj—up}, j=12,...N (1.1

then the synchronous chaotic state two coupling coefficients andr is investigated, based on
both eigenvalue analysis and numerical simulation. The last
Up()=uy(t)=---=uj(t)=---=uy(t)=s(t) (1.9 section will give a few remarks for conclusion.
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Il. STABLE AND UNSTABLE REGIONS

The stability of the synchronous staf®.3) can be ana-
lyzed by settingu;=s(t) + »; and linearizing Eq(1.1) about
s(t). This leads to

7=[Df(s)|+Bl']ly, B=A

m

(A= 2, {(ardl (=) (2D
+ (e 1)L (n-k— 7))},
where Df(s) is the Jacobian off on s(t), and 7

=(71,72,...,7n) . | is an NXN unit matrix. A is an N
X N matrix for couplings. It is an easy matter to diagonalize
matrix B as

Bé,=Ad,=N\,9,,

By expanding» on the eigenvector basi$,, we haven
=3N"2 (1) ¢, . Herev,(t) (»=0,1,..N—1) are complex
coefficients which obey the following equatiof9]:

»=0,1,..N—1. (2.2

v, ()=[Df(s(t))+\, v, (t), »=01,.N—-1. (2.3
Now we have reduced th¥-site coupled equation®.1) to
much simplerN independent modified one-site equations,
and then the stability problem can be analyzed nin
dimensional space rather than iN X n)-dimensional space.
The significance of Eq2.3) is that the stability problem
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(2) Rossler modelu=(x,y,2)T,
x=—(0.5y+0.05+2),
y=X+ay,
S ((;zs?)). 29
(3) Duffing equationsu=(x,y)",
X=Yy,
y=7yy—x>+E cosot. (2.6

For each model we focus on a chaotic state which is an
attractor in the single-site systems. The chaotic orbits of the
three models are shown in Figda], 1(b), and Xc), respec-
tively. All the states in Fig. 1 will be used for studying the
instability and controllability problems of synchronous cha-
otic states.

In Fig. 2 we plot the stable region of the synchronous
chaotic state of Fig. (&) in the Re(-\)-Im(\) plane for dif-
ferent linking matriced”. The curves represent the critical
condition at which the largest transverse Lyapunov exponent
of Egs. (2.3 is equal to zero. In the region marked bg*
(stablg, the largest Lyapunov exponent (#.3) is negative,
while it is positive in the region marked byU” (unstable.

In Figs. 3 and 4 we do the same as in Fig. 2 with the refer-
ence chaotic state replaced by Figgh)2and Zc), and the

of Egs. (1.1) can be separated into two independent probymggel replaced by the Rosslé.5 and Duffing (2.6), re-

lems: one is to analyze the stable regions of &§3), this
depends on the single-site parameters ¢alych as the ref-
erence orbis(t), the Jacobia f(s), and the inner linking
structurel’], and is independent of the coupling matfxand
the system sizeN; the other is to analyze the eigenvalue
distribution of the linear couplindd, that depends on the
couplingsey, ry, and the system sizd only, and is inde-
pendent of the inner dynami¢scluding s(t), Df(s), and

spectively.

It is interesting to notice that the structure of the stable
regions in Figs. 2—4 can be classified into three groups. Class
(i), including Figs. 2c), 3(a), and 3c): the critical curves
form closed circles, and then stable regions are localized in
certain finite Ref-\)-Im(\) regions. Too large and too small
Re(\) and too largdlIm(\)| can definitely destroy the stabil-
ity of the synchronous reference states. Cl@igs including

. B_oth problems can be solved in a simple manner, and thﬁigs_ 2b) and 4b): one observes, practically-shaped criti-
solutions of these two problems can be put together to engg| curves, then larger Ref) and smalletim(\)| are favor-
tirely answer the more complicated stability problem of thegpje for stabilizing the reference synchronous states. Class
coupled systentl.1). In the rest of this section we focus on jii) [see Figs. @) and 4a)]: the critical curves are inversely

the first problem: to characterize the unstable region of thg/ shaped, and then larger ReX) and larger|Im(\)| are
synchronous statél.3) by studying Eqs(2.3).

Let B represent the Lyapunov exponents of E(A3).
The criterion that all the Lyapunov exponents of E(&3)
should be negative3<8.=0, provides the stability bound-
ary in the Ret-\)-Im(\) parameter planénote A\, can be
complex for asymmetric couplingsOf course, this stability
boundary depends on the nonlinear dynanfigs) and the
reference stats(t). Moreover, it also depends on the linking
matrix I'. Now we specify the following models as our ex-
amples.

(1) Lorenz modelu=(x,y,z)",

x=a(y=x),
y=pX—y—Xz

Z=Xy—2Z. (2.9

favorable for stable synchronization of the reference states.
Figure 3b) is a kind of mixture of classe@i) and (iii). It is
interesting to find a sharp central peak in its unstable region.
A significant implication is that for large and smallN syn-
chronization may be achieved more easily when the number
of oscillators is odd than when it is even. In the following
sections we will find that these observations are extremely
important for classifying different kinds of instabilities and
for designing suitable controlling schemes to fulfill the con-
trollabilities of different states of coupled oscillators.

Ill. EIGENVALUE DISTRIBUTION OF
COUPLING MATRIX

Let us now study the eigenvalue distribution of the cou-
pling matrix A. This task is independent of the local dynami-
cal functionf(u), the reference statg(t), and the linking
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FIG. 1. Some examples of reference chaotic orlisL.orenz modelg= 10, p=23. (b) Rossler modelg=0.133.(c) Duffing equations,
y=0.3,0=1,E=11.

matrix I', and then is completely different from what we did value distributions on the curves only. This point can be
in Sec. Il. A given in Egs.(1.1) and (2.1) is an order-one conveniently used to explain the so-called system-size insta-
circulant matrix, and its eigenvalues can be computed as bility in the next section. The above three points can also be
observed for different coupling distanee In Figs. Ga)—
6(d), we plot some eigenvalue distributions for=3,4,5 and
long range coupling, respectively, and find features similar to
Fig. 5. In Fig. &d) the eigenvaluegexcept the one located at
jk the origin are located at larger values of ReX) than for
+(ej—rj)exp< —2mi W” (3.))  local couplings(a)—(c). This suggests that a global coupling
can be more efficient to achieve synchronization for systems
with stable regions of clas@) or (iii).
Form=1 (nearest coupling the real and imaginary parts
of eigenvalues satisfy the elliptic relation

m m
)\k=—22 6]"‘2
j=1 j=1

Kk
(€j+r;)exp 2i N

Obviously,N ,=\{_,. Asr=0, \,=\y_, and Im{,)=0.
From Eqgs.(3.1), it is obvious that the real part af, depends
only on the values o§, and not ofr,, on the other hand, an
imaginary part of\,, appears only for nonzemq,. In Fig. 5
we show several eigenvalue distributionsrat 2 for differ- Re(\,) +2¢
ente,, r, andN. From the plots some regular relations can ( 2¢

be observeda For symmetric couplingsr¢=0k=1,2), all

the eigenvalues are real, and the distances between adjacent

eigenvaluegapart from possible degeneragie@xrease ag,  The vertical axis and the position of the ellipse center depend
increases(b) Asymmetric couplings(nonzeror,) produce on the diffusive coupling while the horizontal axis depends
imaginary parts of eigenvalues, which can yield additionalon the gradient coupling. It is interesting to see that the
stability and instability absent in symmetric coupling caseswhole ellipse is independent of the system dielarge N

(c) Increasing the system size does not change the eigenvaloaly corresponds to denser distribution of eigenvalues in this
distribution curves, and can increase the density of the eigergiven ellipse. In Fig. 7 we plot various eigenvalues distribu-

2 2
+(Im(h”)) =1. (3.2

2r
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FIG. 2. Distributions of stablé‘ S’ ) and unstablé“ U” ) regions of the synchronous chaotic state of Fig) for the Lorenz model. The
solid lines represent the zero maximum Lyapunov exponent.
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tions atm=1 for differente, r, andN. All the above three chaotic state is stable for this combination of parameters.
conclusions are further verified. Keeping all parameters unchanged except increasing the sys-
tem size by onelN=5, two nonzero eigenvalues move to the
unstable regiorfFig. 8b)], and then the synchronous state
becomes unstable. From the figures, the mechanism of the
size instability of the synchronous chaotic state can be easily
The problem of the stability of synchronous chaotic statesinderstood. Since the reference state is chaotic,vth@®
of Egs.(1.1) can be conveniently solved, based on the eigenmode (\,=0) is certainly in the unstable regiofi.e.,
value analysis in Secs. Il and Ill. The key point for the ref- 8,,.{\o)>0]. Then there must be an arc of the ellig8e2?)
erence state to be stable is that all eigenvalues of the matrtkat falls into the unstable region. Whet increases, the
B (see Sec. Il except the one with ,=0 (corresponding to  eigenvalue distribution becomes denser. For sufficiently
the spatially homogeneous statare well located in the largeN, this unstable arc should be occupied by some eigen-
stable region of Sec. Il. Moreover, various instabilities, if values other thai,, and it leads to desynchronization of the
they occur, can be classified according to how the first unsynchronous state, i.e., system-size induced instability takes
stable transverse eigenvalue crosses the critical boundarylace. In Fig. &) [8(d)], we numerically compute Edq1.1)
The following are some examples of well known bifurca- with parameters given in Fig(8 [8(b)] by starting from the
tions. synchronous chaos of Fig(d. Slightly perturbed by a very
(1) System-size bifurcation.It is well known that in- small nonhomogeneous noise, synchronization and desyn-
creasing system size may make the synchronous chaotic statRronization are clearly observed in Figgc)8and §d), re-
unstable. This kind of bifurcation can be understood pictori-spectively[in Fig. 8(d) the system evolves from the synchro-
ally. In Fig. 8@ we consider the case of local dynamics Fig.nous chaos to a stationary pattern asymptoti¢alsrom
1(a) and takem=1, e=4,r=2, andN=4. The synchronous Figs. §a) and &b), the mechanism of instability is apparent:

IV. VARIOUS INSTABILITIES OF SYNCHRONOUS
CHAOTIC STATES OF COUPLED OSCILLATORS
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FIG. 5. Eigenvalue distribution of the coupling matAxm=2, (a) N=12. Squares¢;=1, e,=1, r;=0, andr,=0. Circles and disks:
€,=1,e,=1,r,=1, andr,=1. (The empty squares and circles represent single eigenvalues while the black squares and disks represent
multiple eigenvalues; these notations are valid for all the following figutbse; =1, e,=1,r,=0, andr,=1.(c) ;,=1,€,=1,r,=1, and
r,=0. (d) The same aga) with N=30.

though both eigenvalue distribution ellipses of Figa)&nd  so if class(i) structure is encountered.

8(b) are the same, increasing system size in Fi{g) éhakes In Fig. 10@) we consider the case Fig(2 and takeN
the eigenvalue distribution denser and moves the eigenvalues4, m=1, e= 1.5, andr =0. Then, synchronization of chaos
A1 andAy_; down to the unstable region, leading to a long can be kept between all sites. In Fig.(h0we keep all pa-
wave instability. rameters unchanged from Fig.(&Dexcept that the diffusive

(2) Asymmetric coupling induced instabilityWe would  coupling € is increased t&=1.7. The obvious consequence
like to emphasize that the gradient coupling can dramaticallpf increasinge is that all eigenvalues of (except\y=0)
change the stability nature of the reference state. Not enoughove up, and then the top eigenvalug, (or Ay« if Nis
attention has been paid to this point in previous investigatiorodd) first crosses the upper critical curve and enters the un-
of spatiotemporal instabilities. stable region. This is the so-called short wave bifurcation

In Fig. Aa) we consider the case Fig(l and fix matrix  (v=N/2 mode is the shortest mode in the tangent space of
B by N=4, m=1, e=5, andr=0. Then the homogeneous the synchronous stat¢18-20. In Fig. 10c) we directly
chaos is stable since all eigenvalues exagpt 0 are located simulate Eqs(1.1) by taking the parameters of Fig. (1),
in the stable region. In Fig.(B) we do the same as Fig(#®  and an apparent spatial short wageationary wave with the
except taking nonzero gradient coupling:4. Now two ei-  shortest wave lengjtbifurcation phenomenon is indeed ob-
genvalues\; and\y_; move to right and left, respectively, served.
and both cross the critical line and enter the unstable region, It is concluded that short wave bifurcation can always be
so an asymmetric coupling induced long wave instabilityfound in the systems with clag§ structure of unstable re-
takes place. gion distribution by increasing the diffusive coupling.

(3) Short wave bifurcation. Among all the structures of (4) Fast wave bifurcation. Recently, a strange bifurca-
Figs. 2—4, the clas8) structureg[Figs. 4c), 3(a), and 3c)]is  tion has been found that the mode after bifurcation has sur-
particular. In Figs. 8 and 9, with claé$) and(iii ) structures, prisingly high frequency, which is several orders higher than
one can definitely stabilize the reference states by sufficientlyhe natural frequency of the synchronous system. From the
increasing the diffusive coupling However, one cannot do analysis of Secs. Il and Ill, the reason for this seemingly
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strange behavior can be readily understood. The system oépresent the theoretical predictions and numerical plots, re-
Fig. 1(a) is just that used for showing fast wave instability. spectively. Agreement between both results is perfect. For
By increasing (in Ref.[21], the authors used one-way cou- full synchronization M=1), the critical valuee, is a non-
pling r=¢) the synchronous state can be destabilized at aonotonous function of, a maximume. appears at an in-
certainr (e.g., see Fig. @ The frequency of the coming termediater; that can be explained from the curve shape of
mode is mainly determined by Im{) where\, is thex,  Fig. 4@).

value when it crosses the instability boundary. Am(de-

pends on the coupling matri% only and does not have any V. SYNCHRONIZATION OF CHAOS BY LOCAL

relation with the natural frequency of the synchronous state. INJECTIONS

The former can be much higher than the latter, and it is just . N
Now we come to the point of chaos synchronization. Sup-

the case of Fig. 9 as we can readily verify. X .
(5) The number of positive Lyapunov exponents of Syn_posmg a synchronous chaotic state unstable, our central task

chronous state. The above eigenvalue analysis cannot Omyls to make this reference state stable by using local feedback

reveal the instability of the reference state but also predicféctions(pinnings. For simplicity, we consider in the fol-
the dimension of the unstable manifold of the synchronoud2Wing only the case of nearest coupling; the control scheme
state when it becomes unstable. The number of positivéS defined as

Lyapunov exponentor say, the number of the unstable di- :

rectiong, M, of the reference state can be identified by count- ~ Uj= f(uj) +(e+r)I'(Uj 1 —uj) +(e—r)I'(uj_1—u;)

ing the number of the eigenvalues of matgiXalling into the N/I
unstable regiorilike what is shown in F|gs: 8—3)0The syn- +cl“[s(t)—uj]2 8k (5.1)
chronous state becomes stable Ms=J with J being the k=1

number of positive exponents of the corresponding single-

site chaos. In Fig. 11 we take Duffing equations as an exwherel is the distance between two neighbor pinnings. Since
ample, and show how the number of unstable eigenvalues dhe system has spatial translation symmétrg., Eqgs.(1.1)

the synchronous orbit Fig.(d) changes by varying the cou- and (2.1) are invariant by translationsj—j+u, ]
plings e andr and keepind\=20. The solid lines and circles =1,2,...N, u=1,2,...N], it is reasonable to use uniform pin-
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FIG. 7. The same as Fig(&® with nearest couplingmi=1) being considereda) N=12, e=1. Circles:r=1. Squaresr =0. (b) The
same aga) with r=0.5.(c) The same aa) with e=2, r=2 (circles. (d) The same ag) with N=30.

nings.s(t) is the reference synchronous state, and is now ouFigs. 2—4 remain unchanged for the given parameters. For

target state for the feedbaokis the pinning strengths; ;,  stabilizing the reference state, the key point is to move all the

=1 for j—1k=0 and 6; =0 otherwise. Largd corre- unstable eigenvalues @ to the stable regions by adding

sponds to low pinning density, and then represents high coruitable control matrixC. Together with couplingsA and

trol efficiency. local injectionsC, B becomes af-circulant matrix. We shall
The stability of the reference state after control can beMake use of transfer matri to obtain the eigenvalues of

analyzed exactly in the same way as E@sD)—(2.3) except  |-circulant matrixB, NN transfer matrixSis defined as

that the matrixB should include the control matri as O 1 0 --- 0
n=[Df(s)1+Bl]7, 0 0 1 - 0
B=A+C, 0 0 0o - 1
(A7) ={(e—n)I'(nj 11— n) +(e+)(nj_1— n)}, 1 0 0 - 0
N/I and its eigenvalues and eigenvectors age= exp(2mik/N)
CT ) =cl(—n St 5.2 and ¢} =exp(2mikj/N), wherek=1,...N and j=1,..N. In
(CLm), ( 7]’)21 LIk 52 general, we hav8S =S'B for an I-circulant matrixB; it is

known that the eigenvalues & have a certain relationship
and the diagonalized equations read with those ofS'. The eigenvalues & can be computed as
Mc=exp(2mikl/N) and any one id-fold degeneracy, so the
B eigenvectors of-circulant matrixB may be obtained by lin-
at v [Df(s()+, o, (1), (5.3 early combining eigenvectors belonging to the same eigen-
value together, that is
where\,, v=0,1,...N, are the eigenvalues of the matix | ip ki
which is the sum of the coupling matrik and the control i ck ex;{z i _) exp(Z i _) 5
matrix C. Now all the stable and unstable regions shown in P pzl P ™ TN/ ®9
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FIG. 8. System-size bifurcation for the case of Fip)2f the Lorenz model(a) e=4,r =2, N=4. The synchronous chaos is staljl®.
The same a$a) with N=5. Desynchronization occurs due to the fact that two transverse eigenvalues enter the unstablécydgji@tt
simulation of Eqs(1.1) for the parameters df), starting from the vicinity of the reference state. The synchronous state is approabhed.
The same agc) with N=5, desynchronization is justified, and a stationary and spatially inhomogeneous pattern is approached asymptoti-

cally.
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nous state is stabléh) The same a&) with r =4. Instability of the synchronous state occurs since two transverse eigenvaliesighr the

unstable region.
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FIG. 10. Short wave bifurcation, case FigcR and the Lorenz model are considerdid=4, r =0. (a) e=1.5. Synchronization of chaos
Fig. 1(a) is attractive(b) By increasinge to e=1.7, the top eigenvalue & (the short wavelength mogerosses the upper boundary of the
critical loop, and enters the unstable region, and short wave bifurcation apf®arke parameters are the same(ls Direct simulation
of Egs.(1.1) shows the asymptotic stationary pattern with short wavelength.

For Bo=\dy, we can obtain the followind-order alge-

braic equation:

|
E CI;[ Erei[pr(sf /1 ]ei[Zwk(sf 2)/N]
p=1

+ eel 2P/ gil27k(s—1)/N]

+ 6( 1— r)ei[pr(S+ 1)/|]ei(27TkS/N) _ )\kei(ZﬂTpSII): 0’

> Cg[erei(—Zw/l)ei[ZﬂTk(l—2)/N]+(6+C)ei[27rk(l—1)/N]

p=1

+ E(l— r)ei(pr/I)ei(ZwkslN)_ )\k] =0,

wheres=1,2,...| — 1. Due to the fact thatj¢, is the eigen-
vector of B if ¢, is the eigenvector oB, we may Ietc'fEl
without the loss of generality. So we havequations for
unknown quantitiesc’, cf,...,c_; and\,) for anyk. Then
there ard sets of solutiongevery set includes the solutions
of ¢k, c&,....ck_;, and\,) that satisfy Eqs(5.6) for a given

k. Moreover, we can obtain all eigenvalues by setting
=0,1,...N/I —1. It is emphasized that for Eq&.1) (without

contro) the real and imaginary parts &f depend only ore
andr, respectively, while for Eq¥5.6) (with control) both e
and r influence both the real and imaginary parts Xqof
though the nonzero imaginary part &f appears only for
nonzeror; this point is of great importance for understanding
the influence of the gradient coupling on the controllability.

In Fig. 12 we plot the eigenvalues & at N=20, e=1,
m=1, andl =10 for differentc andr. The critical line in the
figure is drawn for Duffing equations, the reference orbit Fig.
1(c), and the linking matrix

(o )

Without control €=0) the unstable manifold of the syn-
chronous state is three dimensional in the entire range of 0
<r<e (see Fig. 11 For a given diffusive coupling, the
effects of pinnings in changing the eigenvalue distribution of
B are rather different for different. Increasingr (i.e., in-
creasing the asymmetry of the total coup)iregn consider-
ably enhance the controlling efficiency. Fr@geé) it is natu-

ral to think that with pinnings the eigenvalues of matBx
will be divided into| groups and each group contaiNgl
eigenvalues. This is the case for symmetric couplirgO
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- (o)

FIG. 11. The number of positive Lyapunov exponekitys the diffusive couplings. Case Fig. ) is consideredN=20. (a) r =¢; (b)
r=0.7¢; (c) r=0.3¢; (d) r=0. The solid lines and the circles represent the theoretical predictions and the numerical results, respectively.

[see Figs. 1@&) and 1Zc)]. However, to our surprise, we find synchronous chaotic state can be achieved at much sraaller
when the extent of asymmetry is high~t €), the eigenval- than that for =0. In Figs. 18b) and 13c) we plotM vsc at
ues are divided only into two grouphl/I eigenvalues form N=20, e=0.5 for differentl andr. It is again observed that
the pinning group, the othed—N/I eigenvalues form an- the controlling efficiency for large is much larger than that
other group[see Figs. 1&) and 12d)]. In Fig. 12d) the  of r=0. A remarkable point is that &= 0.5,1 =10, one can
small group ofN/l =2 eigenvalues still exists, and is moved never realize synchronization of the chaotic state for the
up outside of the scope of the figure. From Fig(@d2o0  symmetric coupling whatevas, while one can easily stabi-
12(c) for symmetric coupling, increasing the control strengthlize the synchronous state for the asymmetric coupling
¢ can only move the eigenvalues in each group close to eachk e for not too largec. In Fig. 13d) we plot the minimum
other without moving the center of the given group of eigen-value of pinning densityor the maximuml) required for
values. Thus, in Fig. 12) there are still two transverse ei- stabilizing the reference state versufor different c. Here
genvalues sitting in the unstable regithis situation is not  we fix e=2 andN=120. Under these parameters, the system
changed even for— ). On the contrary, from Fig. 1B) to  has 13 positive Lyapunov exponents forrailithout control.
12(d) for asymmetric coupling, increasirgalso moves the Increasingr, | monotonously increases. When the extent of
eigenvalues in the ellipse group close to each other withoutsymmetry of the system is low is smal), the controlling
moving the center of the ellipse, but here the N/m eigen-  efficiency is insensitive to the pinning strengthHowever,
values form a large ellipse, so the contraction of the ellipsavhenr is near toe, the controlling efficiency sensitively
effectively raises all low eigenvalues out of the unstable redepends on the pinning strength. From Figs. 12 and 13 we
gion, and then stabilizes the aim state well. found that in order to synchronize all sites to a given homo-
For further investigating the effects of the diffusive and geneous reference state with symmetric couplings @),
gradient couplingg, r, and the control strengit) we present the number of the pinned sitédm must not be smaller than
Fig. 13. In Fig. 18a) we plot the number of positive the number of positive Lyapunov exponents of the reference
Lyapunov exponentM vs e at N=20, | =4, c=50 for dif-  state for arbitrarily large. This conclusion is verified by all
ferentr/e. It is obvious that for large/e, the stability of the  observations in many other parameter combinations. How-
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FIG. 12. Case Fig. @ and the Duffing equations are considered. Eigenvalues after control for varamac. N=20, e=1, | =10. (a)
c=3,r=0.(b) c=3,r=e. (c) c=50,r=0. (d) c=50,r=e. By increasingc, synchronization is achieved for asymmetric coupling while
it fails for the symmetric one.

ever, in the asymmetric coupling case, one can stabilize pushed upward by the control to the unstable region. This
synchronous chaotic state by pinning sites much less than theehavior is essentially different from the one displayed in
number of the positive exponents of the reference state. Thisigs. 12—14.
point is of great importance in practice.

In Figs. 14a) and 14b), we do the same as Figs. (&8 VI. CONCLUSION
and 13b) except the unstable region distribution Figa)2is
considered, i.e., the reference state Fig),the Lorenz local
dynamics, and the

In summary we have considered the stability and control-
lability problems of synchronous states of linearly coupled
systems by applying eigenvalue analysis. The effects of dif-
fusive coupling, gradient coupling, and control density and
strength are investigated in detail.

The whole problem of complicated high-dimensional
coupled and controlled systems can be reduced to two inde-
pendent problems: One is the description of stable and un-
stable regions of a single-site system modified by an eigen-
value forcing\,I' [see Eqs(2.3) and(5.3)]; the other is the
linking matrix are taken, all the features found in Fig. 13 areeigenvalue analysis of site coupling and controlling maix
still observed in Fig. 14. It is emphasized that the synchroThe former is independent of the coupling strength, the site
nization effect of local injections depends sensitively on theinteraction scheme, and the control mechanism, and the latter
structure of unstable region distribution. A different case isis independent of the inner dynamics, the reference orbit, and
class(i) structure[Figs. 4c), 3(a), and 3c)], in which in-  the inner linking matrixI". Both problems can be solved
creasing sufficiently the control streng@definitely spoils easily, and they, together, provide definite answers to the
synchronization, because some top eigenvalues will bgroblems of stability and controllability of the coupled oscil-
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FIG. 13. We consider the same model as Fig.(#R.(b), and(c) represent the number of positive Lyapunov exponéhigersuse and
c in the presence of pinningbl=20. (a) M vs e. c=50,1=4,r=0 (dashed lingandr = € (solid line). (b) M vsc. e=0.5,I =4. The same
as(a) for r/e. (c) The same agh) for c andr/e. e=0.5,1=10. (d) The maximum ofl, required to drive the system to the synchronous
chaotic state, vs. e=2, andN=120. The solid line, dashed line, and dotted line corresporatb, 25, and 50, respectively.

lators. For instance, one can easily reveal and classify thmanifold of the aim state by counting how many eigenvalues
instability of the reference state by examining whether andf B fall into the unstable regions of Figs. 2—4. Moreover,
how some eigenvalues & enter into the unstable region; one can apply control matri€ to synchronize a chaotic state
and one can clearly show the dimension of the unstableéy moving all the eigenvalues & into the stable region of

16 10

@ S ()

12

FIG. 14. (a) and (b) are the same as Figs. (BB and 13b), respectively, with the case Fig(a€2 and the Lorenz model considerédd.
=20.(a) Mvse c=50,1=4,r=0 (dashed ling andr =€ (solid line). (b) M vsc. e=5, | =4. The same a&) for r/e.
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Figs. 2—4. Therefore, the investigation of the distribution ofapproach may be very effective. This point is very useful in
stable and unstable regions of the single-site syst2rd practical control problems. The ideas in this paper can be
becomes extremely important and generally significant fompplied to general coupled extended systems: by changing
the stability, synchronization, and control problems off(u), I', and the reference orbg(t) we can get different
coupled systems with large system size. In this paper wéistributions of stable and unstable regions of Exj3); by
have shown that the general structures of the unstable regianodifying the coupling matrixXA we can obtain very rich
distributions can be classified into three classes that are vesigenvalue distributions of the couple matrix; by adjusting
useful for understanding various bifurcations discussed irthe control matrixC we can flexibly change the distribution
Sec. IV. For effective controlling it would be most welcome of matrix B; and by combining all these manipulations one
if one can perform successful synchronization by injectingcan control various instabilities. In this paper we consider
few sites of which the number is much smaller than the numenly the problem of synchronization of chaotic sites. The
ber of the positive Lyapunov exponents of the target statereference statél.3) can also be chosen as an unstable peri-
Our primary results are that we cannot do this for symmetricodic state embedded in a chaotic attractor. By driving the
coupling systems while we may be able to do this for asymsystem to the periodic target state we can suppress chaos by
metric coupling systems and for certain classes of unstablmaking periodic motion synchronization. Then, the ap-
region structures if injections are properly applied. Thereforgproaches used in Secs. II-V of this paper can be applied also
for systems with strong gradient couplings the local injectionfor the purpose of chaos and turbulence control.
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