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Nonlinear dynamics of a solid-state laser with injection
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We analyze the dynamics of a solid-state laser driven by an injected sinusoidal field. For this type of laser,
the cavity round-trip time is much shorter than its fluorescence time, yielding a dimensionless ratio of time
scalesos<1. Analytical criteria are derived for the existence, stability, and bifurcations of phase-locked states.
We find three distinct unlocking mechanisms. First, if the dimensionless detanargl injection strengtk
are small in the sense thiat O(A)< o2, unlocking occurs by a saddle-node infinite-period bifurcation. This
is the classic unlocking mechanism governed by the Adler equation: after unlocking occurs, the phases of the
drive and the laser drift apart monotonically. The second mechanism occurs if the detuning and the drive
strength are largek=0O(A)> a2 In this regime, unlocking is caused instead by a supercritical Hopf bifur-
cation, leading first to phase trapping and only then to phase drift as the drive is decreased. The third and most
interesting mechanism occurs in the distinguished intermediate rdgime=O(a?). Here the system ex-
hibits complicated, but nonchaotic, behavior. Furthermore, as the drive decreases below the unlocking thresh-
old, numerical simulations predict a self-similar sequence of bifurcations, the details of which are not yet
understood[S1063-651X98)05510-X]

PACS numbgs): 05.45:+hb, 42.65.Sf, 42.60.Mi, 42.55.Rz

[. INTRODUCTION fore be treated as a constant in the subsequent analysis. But if
the driving is not weakin some appropriate dimensionless
The Adler equation sensg the dynamics can become complicated. In this paper
we revisit a classic problem—the mathematical analysis of a
do . solid-state laser with external injectigfi—11]—and explore
—=A—-ksin® (1) o . . .
dt it in regimes where amplitude effects become important and

the Adler approximation breaks down.
provides the simplest model of phase locking between a non- Our work was inspired by recent theoretical and experi-
linear oscillator and an external periodic drive. Hdrét) is  mental studies of amplitude effects in two mutually coupled
the phase difference between the oscillator and the dfive, solid-state Nd:YAG laser§12,13. In those studies, the la-
is the frequency detuning, arklis the coupling strength. sers were equally coupled and identical, except for a slight
This equation first arose in connection with the phase lockingelative detuning of their frequencies from some common
of microwave oscillator§l], and has since found application cavity mode. For coupling strengths well above or below the
in many other settings, including the depinning of chargedocking threshold, the lasers were found to exhibit the simple
density waved?2], the entrainment of biological oscillators behavior expected from the Adler approximation. However,
[3,4], and the onset of resistance in superconducting Josephs the coupling approached the locking threshold from be-
son junctiony5,6]. low, the lasers showed a series of amplitude instabilities,
A system governed by the Adler equation can displayculminating in a period-doubling route to chaos. These insta-
only two types of long-term behavid6]. If [A/k|<1, all  bilities could not be explained by the Adler approximation.
solutions tend to a phase-locked state, where the responggstead the authors proposed the following mechanism. Be-
oscillator maintains a constant phase difference relative tiow the locking threshold, the lasers exhibit phase drift. If
the driver. On the other hand, [iA/k|>1, all solutions ex- the time required for one full cycle of phase slip happens to
hibit phase drift, where the phase difference grows monobe an integer multiple of the lasers’ relaxation period, the
tonically, with one oscillator periodically overtaking the resulting subharmonic resonance might account for the ob-
other. served instabilities. For the highly symmetrical case where
The main limitation of the Adler equation is that it treats the two lasers are assumed to have identical intensities and
the response oscillator as a system with only one degree @fains, this argument was proven to be correct by reducing
freedom, namely, its phase. Possible variations in its amplithe governing equations to those for a single, periodically
tude (and any other degrees of freedpare ignored. This modulated laser, where the subharmonic resonance mecha-
approximation is reasonable in the limit of weak driving; in nism was already known to occ[t4,15.
that case, the amplitude of the response oscillator typically We wondered whether similar amplitude instabilities and
equilibrates much more rapidly than its phase, and can therehaos would occur in two coupled Nd:YAG lasers withi-
directional coupling (or equivalently, in a single Nd:YAG
laser with external injection On the one hand, the qualita-
* Author to whom correspondence should be addressed. Electrontive argument about subharmonic resonances should still
address: yeung@tam.cornell.edu work. On the other hand, the equally coupled case enjoys
"Electronic address: strogatz@cornell.edu special symmetries that are not present in the unidirectional
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case. Given the crucial role of the symmetry in the earlieradiabatically eliminated. Following Ref16] with straight-

analyses of Erneux, Kuske, and C4ir2] and Thornburg forward modifications, we can write the following equations

et al. [13], it seemed possible that some new effects mighfor two lasers coupled through transverse overlap of their

occur if the symmetry were broken. electric fields, assuming single-mode operation and neglect-
As we will show below, the system with one-way cou- ing spatial variations within the lasers:

pling can indeed display some fascinating behavior near theOIE

unlocking threshold, but it differs from that seen in the 1 1 R

equally coupled case. In particular, we do not see a period-g* ~ "eil(C17 @Bt uKE; [ +iw B+ Verdy(T%),

doubling route to chaos, nor any evidence of chaos at all.

Instead, in a certain distinguished regime of parameters, we dG; 5

find a self-similar cascade of periodic windows and bifurca- aT* -~ Tia (P1—=G1—Gy|E4?),

tions. To the best of our knowledge, this bifurcation scenario @)
is novel.

It will be interesting to see whether this cascade can be %: 7o o[ (Go— ap) Ep+ KE{]+i 0B+ Verbo(T),
detected experimentally for a laser in the appropriate param-
eter regime, as specified by our theory. It would also be
gratifying to have a better theoretical understanding of the &
cascade itself. daT*

This paper is organized as follows. The governing equa-
tions are given in Sec. II. In Sec. lIl, we reduce the numbetiere T* is time, and forj=1,2, E; is the complex electric
of parameters by nondimensionalizing the equations and exield, G; is the gain,7;; is the cavity round-trip timery; is
ploiting certain symmetries. By choosing a frame that corothe fluorescence time of the lasing ioms, is the pump co-
tates with the phase of the driver, we reduce the system tefficient, «; is the cavity loss coefficienty; is the detuning
three coupled autonomous ordinary differential equationsof the laser from some common cavity mode, dds a
one ford(t), the phase difference between the laser and theomplex coupling coefficient witiKE; representing the de-
drive, and one each for the dimensionless gain and amplitudgree of overlap of the two lasers, with possible attenuation
of the response laser. Fixed points of this reduced systemand dispersion taken into account. The noise te/F}fi(T*)
correspond to injection-locked states of the original systemmodels spontaneous emission, but for simplicity, we will
Section IV dispenses with the limiting cases of zero couplingconsider only the noiseless cage-0. Also, we will assume
or zero detuning where the dynamics can be analyzethe media are linear, nonabsorbing and nondispersive and the
straightforwardly. coupling is dissipative so th&; =E; andK is real.

The analysis begins in earnest in Sec. V, where we derive The parameteru in the first equation above is a
criteria for the existence and stability of injection-locked symmetry-breaking coefficient measuring the extent of the
states, and compare our criteria to those obtained in the usufledback from the second laser to the first. The case of sym-
Adler approximation. In Secs. VI and VII, we start to inves- metric coupling(u=1, Te1= Teos Tf1=Tr2) has been ana-
tigate what happens when locking is lost. We show perturtyzed in[13]. In this paper, we focus instead on the case of
batively that for a broad range of parameters, the phase ditinidirectional coupling, i.e.x=0. Whenu =0, the first la-
ferenced(t) oscillates periodically, but the precise nature of ser is unaffected by the second, and hence we may regard it
those oscillations depends on the relative sizes of the dimers a driver. Assuming that this driving laser is pumped above
sionless coupling, detuning, and stiffness of the system. its lasing threshold;>a,), it is easy to show that its am-

For a distinguished limit of parameters, described in Secplitude and phase velocity settle down to constant values.
VIIl, the reduced system has complicated dynamics and unspecifically, the long-term state of the drive is given By
dergoes the self-similar cascade of periodic windows and-\/p, /o, —1 exfi(®;o+ w,T*)], where ®,, is an arbi-
bifurcations mentioned above. In Sec. IX, we consider thgrary constant, with constant ga®; = ;..
system in the singular limit of zero stiffness. Again, the cas- e assume these forms f& and G, in the rest of the
cade persists. Based on the distinctive helical structure of thgna|ysis. Thus, although we have formulated our study in
periodic orbits, we propose a mathematical mechanism Unerms of one solid-state laser driving another, the arguments
derlying the cascade. It apparently stems from agnd results we present hold for more general situations, such
codimension-two bifurcation in which a supercritical Hopf as a solid-state laser subjected to optical injection by other
bifurcation combines with a saddle-node infinite-period glo-ggyrces.
bal bifurcation. We have no proof of this mechanism, but |p a typical experimental setup using Nd:YAG lasgt3],
show that it correctly predicts the scaling laws found numeri—Tfj andr,; are both positive and are of the orders 1@ and
cally in the bifurcation diagram. We conclude with a discus-15-10 g yespectively. Thus we have two vastly different
sion of open questions. time scales in the system. The detuning—w, and the
couplingK are control parameters. The detuning has values
typically of order 18 Hz, while the coupling can be varied
over several orders of magnitude. In the symmetrically

For solid-state lasers, as well as other CIBdasers with  coupled systeni13], values ofK ranging fromO(10 8) to
negligible linewidth enhancement factors, such as,@@  O(10 2) have been used. The purpp and the lossy; are
ruby (NMR) lasers[8], the polarization relaxes rapidly com- both positive,0(10~2) and their ratiop; / a; is typically an
pared to the electric field and the gain, and can therefore b&(1) quantity.

=15 (P2— Gy~ Gy|Eyl?).

II. FORMULATION OF THE MODEL
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lll. SCALING AND SYMMETRIES we will assume from now on th&t, A=0. Also, o, B=0 by

We scale the equations governing the response laser bc{/eflnmon.' .

introducing the following dimensionless quantities: There is a slight catch ‘h?‘t one should be aware Of'.AI'
' though we can assunke=0 without any loss of mathemati-

cal generality, there can still be physical consequences. For

example, the symmetrip) allows us to change the sign kof

but at the cost of transforming an in-phase solution to an

antiphase one. In fact, for certain systems of coupled lasers,

okf can be negativl6].

a’zT* _%

1
Tc,2

_ T2
- ]
ATt 2

p= P2

- [
ar

C(Z.

Hereo is a stiffness parameter, typical(10~ %) in experi-
ments, characterizing the vast difference in the time scales
the cavity round trip and fluorescence times in the response
laser. The smallness of will be important in the subsequent
analysis. The parameteB is the dimensionless pump  Thg gpecial cask=0 with generalA is trivial: the driver
strength of the response laser; it often plays the role of & the response laser are decoupled. The reduced s{@tem
control parameter in what follows. The variableandF, 55 5 global attractor that is typically a periodic orbit, corre-
represent dimensionless time and gain, respectively. sponding to phase drift between the laser and the drive. In

Next we change variables by going into a reference framejegenerate cases, the attractor can be a fixed point for Eq.
rotating with the driver. LeX,=0 be the amplitude of the (3), e.g., if there is also no detuning, or if the pump for the

IV. SPECIAL CASES

complex fieldE,, defined by
E2:X2eiq>2,

and defined by ®=®,—d,, whered, is the phase of the
driving laser and®~®,—® 15— (w7 o/ a,) 7 for suffi-

response laser lies below the lasing threshold.

A more important special case is that of zero detuning:
A=0 with k#0. Then ®=0 (in-phas¢ and ®== (an-
tiphase are invariant manifoldgl8], the former attracting all
initial conditions except those on the latter, which is repel-
ling. Hence, so far as long-time behaviors are concerned, we

ciently larger. Assuming[17] X, 0, we obtain the reduced can confine our attention to the flow restricted to the mani-

system fold d=0.
dX On ®=0, Eq.(3) simplifies to the planar vector field
—2 —(F,—1)X,+k cos®, (3a)
dT dx2
FZ(Fz—l)XzﬂL K,
do k
—=A—-sind, (3b) @)
dT X2 sz 5
F:U(B_FZ_FZXZ)
dF,
——=0(B—F,—F,X3), (30
dr ( 2 e The nullclines[6] are
where k
Fo=1- X, (8a)
A:(wZ_wl)Tc,Z’ K= K\/pl/al_l. @
@2 a3 B
Fz_mz. (8b)

Here, A is a dimensionless measure of the frequency detun-
ing of the two lasers, an& can be interpreted as either a ) ) ] .
dimensionless coupling strength or injection amplitude. ~ Since Eq.(8a) represents an increasing functionf while

By choosing the phase differensk as a variable, we Eq. (8b) represents a decreasing one, there can be at most
have eliminated the explicit time dependence in the originaPne real intersection. On the other hand, we may combine
system by rotating with the phase of the driver. In this rotat-the two equations into a cubic polynomial equatiorfit
ing reference frame, a steady state now means a state in
which the phase difference between the two lasers, and not
the phaseb, of the second laser itself, is constant. Such a . o .
state is said to be phase locked. The particular case in whicid see that there is at least one real solution in the interval
d=0 (which is possible if and only i =0) is called the (0.min(1B)), by the intermediate value theorem. Hence
coherent or in-phase state. there is preC|ser.one s_olu'uon .fGrz in (O,ml_n(lﬁ)), corre-

The analysis of the reduced systé& will occupy most spondmg to a unique f[xed point. An application of Dulac’s
of this paper. As Eq(3) is invariant under criterion and the PoincarBendixson theorerf6] to Eq. (7)
then reveals that this fixed point is actually globally stable
with respect to perturbations on th&F, plane. Hence, in
physical terms, a globally stable in-phase state exists if and
only if there is no relative detuning between the two lasers.

Having exhausted the possibilities for these special cases,
we will assumek,A+#0 from now on.

Fol(F,—1)%+K2]~B(F,—1)2=0

As—A, d-—0, (5)

as well as under
k— —k,

O—-7+d, (6)
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V. LOCKED STATES

A. Existence and stability for general parameter values
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To analyze the local stabilities of these fixed points, we
apply the Routh-Hurwitz criterifl9,20 to the characteristic
equation of Eq(3), and deduce that the fixed point is locally

A locked state of the laser system corresponds to a fixedtable if and only if

point of Eq.(3), which must satisfy
(Fo—1)X5+k cos®=0,

k
A—X—23|n d=0, (9
B—F,—F,X3=0.
In the limiting caseB=0 (i.e., the response laser is not

pumped Eg. (9) can be readily solved to yield

F2:0, XZ: q):tanilA.

k
Vi+A?

The eigenvalues of the Jacobian at this fixed point are

)\1:

all having negative real parts. This meansdass the phase

H.(F,):=(B+2)F2—2F3—B(1+A?)<0,

Ha(Fo):=20(F;—B) —Fol (Fo—1)*+A%]<0,

(12)
H2/(F2):=2F2(F2_1)_0'B<0,

3 ) 20B
H3(F)=2(F,—1)°+2A%(F,—1)— F—Z(Fz—l)(Fz—Z)

,. 20°B?
_20F2(F2_1)+20' B_ F2 <O,
2

whereF, is evaluated at the fixed point in question. When
H,,H3<0, the two inequalitiesH,<0 and H,,<0 are
equivalent and so we only need to check one of them.

For B<B., we can verify by direct substitution into con-
dition (12) that the fixed point withF,<1 is stable. As we
increaseB throughB_, this fixed point crosseB,=1. The
stabilities for the fixed points witk,>1 are not so clear. In
fact, atB=B, we can solve the fixed-point equatigf0)
exactly and find that eithef,=1 or

difference between the two lasers, that the response laser is

passively driven into stable periodic motion

E2: tan™ 1A+CD10+

wW1Tc2
r

k .
mex‘{'

with a constant phase-lead tdiA ahead of the driver, even
though it is not pumped.

ForB>0 so that~,# 0 at a fixed point, we may eliminate
@ from Eq.(9) and get

B
X5=——1,

= (108

k2

2__
XZ_(FZ— )2+A%

(10b)

Consider the graphs of, versusF, corresponding to Egs.

(10a,10b. The intermediate value theorem reveals the fol-

k? k* 5 o
F2=1+Wi W_A —ke,
where the last pair exist if and only K*/4A%=A2+Kk?. Di-
rect substitution into conditiorf12) reveals that the fixed
point with F,=1 is stable(while the stabilities of the other
two fixed points remain unclepand hence there is no bifur-
cation atB=B.. Hence, the conditioB<B, is sufficient
but not necessary for a stable locked state to exist. In fact, for
o=0(1), we have found numerical examples of stable
locked states even wheB>B_.. However, these examples
are not of much physical interest, given tha&1 for real
lasers. In the next subsection, we will show thatdez 1, the
locking conditionB<B; is indeed tight, with a correction
term that approaches zero agloes.

B. Location and stability of locked states foro<1

From now on we will assume< 1. For definiteness, con-
sider the scaling,A=0(c?), and write

lowing. (i) If 0<B=<1, there is only one fixed point, with
F,e(0B)C(0,1). (ii)If 1<B<B,, depending on param-
eter values, there may be one or three fixed points. There is

always one in the intervét,  (0,1), and there may be a pair For a>0, the graph of Eq(10b) has a narrow peak, with
in F,e(1,B). (iii) If B>B., again depending on param- O(c®) width, atF,=1, and we can show that there are three
eter values, there may be one or three fixed points, all ofixed points of Eq.(3) if B<B,, while there is only one
which lie in F,e (1,B). Here fixed point if B>B, and B—B.>0?2. As we increases,
somewhere in the regioB,<B<B.+0(¢??), two of the
fixed points collide. To better understand what is going on,
we will employ the Routh-Hurwitz criteri@l?2).

For B>1, we can find the location of the fixed points
represents a special value for the dimensionless pumperturbatively ifa>0. There is always a fixed point with
strength. In Sec. V B we will show th&., with a small
correction, is the critical value at which locked states lose
stability.

A= 60°.

k= ko?,

k2

BCE:L'F wi

A 11

2aK2

F,=F§=B— ————>+0(o™).
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For 1<B=<B_, there are a pair of fixed poinf21] with <0O(0), with £4,e3 given by Egs.(15 and (16), and B
=B.+ ¢ is the parameter value at which the unlocking tran-

2 .

F.—F*=1+ g2 kS 2+ 0(02%) 14 sition occurs. .
2= =220 (B—1) o) Taking advantage of the symmetri€s and(6), we may
rewrite the locking conditionB<B.+e&e in terms of the

Direct substitution into Eq(12) shows that only the fixed Physical parameters defined in H@):
point with F,=F* is stable. So we will concentrate on this
fixed point and study the mechanism through which it loses
stability. We expect that it will undergo a bifurcation By,
<B=<B+0(0?).
Bifurcation occurs if one of the functions in EQL2) van-  with 0<e<O(7.,/ a,7;,). In physical terms, stable locking
ishes [22]. Specifically, the Routh-Hurwitz conditiom;  occurs if the couplingK and the injection intensitycon-
=0 corresponds to a zero eigenvalue, and is therefore gérolled by the pump strengtp,) are sufficiently strong to
nerically associated with a saddle-node bifurcation, whereasvercome the relative detuning between the drive and the
H;=0 indicates pure imaginary eigenvalues and a Hopf bi+tesponse laser.
furcation.(These results follow immediately from the obser- It is also noteworthy that the right-hand side of the lock-
vation that the characteristic polynomial is cubic with realing condition depends on the pump strength of the re-
coefficients) sponse laser. In applications involving injection locking, a
We solve Eq.(12) in conjunction with the fixed-point laser with a low power output but very accurate frequency is
equation(10) by the method of dominant balan¢23]. Let  often used to control a strong but sloppy one. The criterion
B=B.+&. ThenH(F,)=0 if (17) indicates that locking is more difficult if the response
laser has a stronger punp .

P1 P2
IN a_1_1>|w1_w2|7c,2 a_z_l_s' 17)

0?2 5°B} »
eT&1= 4(B,—1) +0(0™), C. Discussion
98 2 (15 The condition for locking is commonly derived in the
F.=1+ o c +0(0%) limit of small injection intensity(which equalgp;/a@;—1 in
2 ] . . . . . .
2(Bc—1) our notation. This derivation relies on the slowly varying
envelope approximation, along with the further assumptions
andHjz(F2) =0 if that the intensity of the response laser is at the free-running
o 2am2 ) - output level and that the gain has saturated. Then the system
e=gg=0" “Bi(B.—1)/5°+0(a” "), of governing equations is reduced to a phase model equiva-
(16)  lent to Adler’s equatiori7,11. The traditional result for the
Fo=1+ 02 22B,(B,—1)/8?+0(c% %) for a<1/2. locking condition is, in terms of our symbolgy<k/ /1,

where |, is the free-running intensity of the driven laser.

There is no self-consistent solution, with<@<1, for Sincel,=B—1, this condition reduces to our conditidh
H3(F,)=0 if a>1/2. If a<1/2, theng3<e; and soH3 be-  <B,.
comes zero beforél; does, indicating a Hopf bifurcation. We have rederived this well known result in a more gen-
(Whether it is subcritical or supercritical is undetermined ateral context. In particular, we have shown that a sufficient
this stage in the calculation. But see Sec. VIl B.a>1/2,  condition for locking isSB<B,, even whenrk is not small
then H; becomes zero at=e,, indicating a zero- and the phase model no longer holfRecall thatk is the
eigenvalue bifurcation, which, given the absence of any apdimensionless product of the coupling strength and the injec-
propriate symmetry, is expected to be a saddle-node bifurcaion amplitude; see Eq4).] Moreover, our approach allows
tion [18]. We have confirmed these bifurcation scenariosus to calculate the correction terms in the formulas for the
numerically, using the bifurcation packageTo [24]. locking threshold, namely, Eg&l5) and(16), in the limit of

The argument above leaves a gapatl/2, in which case  small o= 7,/ (a,75).
H,; andHj3 both vanish wherz =0(0o), corresponding to a To see why a simple phase model can give the correct
bifurcation of higher codimension, and potentially leading tolocking condition, consider the least-stable eigendirection of
a complicated outcome. We will look into this case sepathe locked state. Suppose the coupling is weak, in the sense
rately in Sec. VIII. But as far as the fixed point is concernedthatk=0(A)< o2 At the bifurcation point, the soft mode
it loses stability aB=B_.+ O(o). Hence, no matter whether (the eigenvector associated with the zero eigenyasugiven
the scaling exponerd is greater than, less than, or equal to by
1/2, we can conclude thd, is a tight estimate of the un- a
locking threshold, with an error at most 6f( o). (X,,®,F,)=| — o2 2(B;—1) 20°%

To sum up, foro<1 we have shown the following: (i) 22 ' kB, ' 6B,
If B<B.+e, there is one locally stable fixed point. This
corresponds to a stable injection-locked state, with a nonzerBor smallo, the first and third components of this eigenvec-
phase difference unless there is no detunin@.) If B>B,  tor are small, indicating that the soft mode lies nearly along
+¢&, then there may be one or three fixed points, all in thethe phase direction. Hence when the coupling is weak, the
regionF, e (1,B), and they are all saddles. Hence there is ngphase direction alone determines the locking condition, to a
stable locked state in this case. Here<&=min(e,,e5)  good approximation.

+0(c%?).
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More generally, one can ask, When can the full model be ImE ImE
replaced by a phase model? We will show in the following k/A
section that this reduction is valid whénand A are small. ST ReE

fast.- E=B-1

If B>B.+¢, there is no stable fixed point of E(), so Locking Drifting
the response laser cannot lock to the drive. The desynchro- ! P —
nized dynamics then strongly depend on the relative sizes of 0 1+ k74 B=P2/ 0
the parameterk, A, ando. For definiteness we will continue FIG. 1. The dependence of the behaviors of the phase difference
to assume thatr<1 andk,A=0(c?). ® on the pump to loss ratiB, for k~A=0(c?), a>1/2.A k are
In this section, we focus on the weak coupling case as defined in Eq(4). E=X,€'® is the complex electric field. The
>1/2, and show that unlocking occurs via a saddle-nodetable(unstablé fixed point is represented 1 (O). ® is constant
infinite-period bifurcation. All solutions are then attracted toif B<B.=1+k?/A? and increases strictly B>B,, with a saddle-
a stable periodic solution for the reduced system; this perinode infinite-period bifurcation &=B. The bifurcation value for
odic solution corresponds physically to a phase-drifting stateB has O(o??) errors[Eq. (15)] and the value oX, hasO(a?)
Before we go on, a warning is in order: we will consider errors[Eg. (19)]. Contrast this with Fig. 2.
only lowest-order effects in this section for simplicity. In

VI. WEAK COUPLING BP=B-1

particular, we will not pick up the: corrections[Egs. (15) k cosd(7)
and(16)] for the locking condition. Fo~1- +0(k?),
Suppose thak=0O(A)<¢? or equivalently, B-1
P, AyTes where®(7) is governed by Eq.18). HenceX,(7) andF,(7)
IK| a__1”|“’1_“’2|7c,2< - ’ oscillate periodically, withO(k) amplitudes and the same
1 2

Fourier spectra as cag, up to overall multiplicative con-
stants. This last feature supplements the observation, noted
in terms of the physical parameters in E8). In this limit,  in [7(a)], that the laser intensity “acquires distortion at
we can reduce the full model E(B) to a phase model by the higher harmonics” as the locking threshold is approached. In
following argument. Letu=F,—1 and introduce the self- fact, by insisting on a phase model, Siegniiab)] analyzed
consistent assumptiak,=O(1) (which we find to be justi- the dynamics of a laser with external injection outside the
fied by numerick Then we observe that ii>k, the term  |ocking regime. Now we have justified this insistence by
k cos® in Eq. (33 is negligible and so th&,,u dynamics  showing that in an appropriate regime in the parameter
decouples from that ob and constitutes a two-dimensional space, namelyk=0(A)<o'?, the laser system indeed ap-
system. Next, by a phase plane analysis and diagonalizingroaches a state witk,~ B—1,F,=1, starting from arbi-
the Jacobian we can show th&— B—1 andu decreases trary initial conditions.
toward 0, with anO(o/?) spiralling frequency and a®(o) The saddle-node bifurcation found in Sec. VB far
relaxation rate. So after a®(o ') transient time,u be-  >1/2 can now be identified more specifically as a saddle-
comes comparable tk and we can no longer neglect the node infinite-period bifurcatiofs]. ForB>B_+ ¢, the phase
termk cos® in Eq. (3a). increases strictly with a nonuniform speed, with a bottleneck
As X,=0(1), Eq.(3b) indicates thatb evolves with a  neard=sin"}(AyB— 1/k). These behaviors are illustrated
characteristic rate of siz&(A,k). If this characteristic rate in Fig. 1.
is much smaller than that for the spiraling,u dynamics, The argument above clearly does not hold KfA
which is true if A k<o we can takek cos® to be a =0Q(o¥3, as then the phase dynamics has a characteristic
constant with arD(k?) error, and deduce that,,u relax to  rate comparable to that of the spiralling motion on thé,

their equilibrium values with a®(o/?) characteristic rate. cross sections. We will address this case in Sec. VIII.
Assuming this relaxation has happened, 8tp) becomes

VIl. STRONG COUPLING

do
—=A- sin ® +0O(k?), (18 We turn now to the case of strong coupling=0(A)

dr vB—1 > o2, The main result is that unlocking occurs via a super-
critical Hopf bifurcation, leading to a globally attracting limit

which is recognized as Adler's equatipiq. (1)]. The im-  cycle for Eg.(3) when B>B.+e. We will investigate in
portant feature is tha®d either approaches a constant or is Sec. VIl A the cas&=0(A)=0(1). Then in Sec. VII C we
strictly increasing, with® mod 27 being periodic with pe- use a rescaling argument to show that this scenario also sub-
riod 2m/\AZ—K%(B—1), depending on whetheB is  sumes the ostensibly more general cseD(A)> o2
smaller than or larger than-1k?/A2, with anO(k?) error.

So, for larger, the unlocked dynamics are given by

A. Two-timing calculations

kB cosd(7) Assume thabr<1, andk,A=0(1). By defining

X,~\B—1+ 56 T)

+O(k2)1 (19) szzei(l)
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which represents the complex electric field of the response ImE /A ImE ImE
laser as observed in a frame rotating with the driver, we can AY &
combine Eqs(3a) and(3b) into K/A A k/A
dE . ReE @ "ReE L® /ReE
a7 ~L(Fo-D)+iAJE+k. (20) e Bt - 7 |
o |IEF=B-1
. . Locking Trapping Drifting
For o<1, F, is slowly varying and so may be taken to be a | : ‘
2 y valying y YA 142K/  B=py/a,

constant except over long-time scales of or@¢t/o). If F,
were really a constant, the exact solution to &§) could be
found as

E=E.exp[(F,—1)+iA]7)— (21

(F,—1)+iA’

whereE, is a complex constant. Hendg=|E| would decay

exponentially tok/+/(F,—1)?+AZ if F,<1 and grow expo-
nentially to infinity if F,>1. In the first scenario wheré,
<1, we have

k2

(F—1)2+A?

dF,
ey

dr

B—F41+ }>o

if B>B. andF,=1. SoF, would grow for F,<1. In the
second case whefe,>1, dF,/dr=— oF,X3<0 and soF,

would decay. Hence we expect that, after initial transient

instabilities forr<O(1/0), the system will settle down to its
eventual fate, withF,=1 andE=E; exp(A7)+ik/A for all

sufficiently larger, and this is indeed what we find in our

numerics(not shown.

Now we investigate the structure of the attractor of Eq.

(3) by two timing [23]. We first define a slow tim&@=or.
Abusing notation, we have

of
ﬁ;

()=
prpe (7, )—&—TJFU

wheref denotes eitheF, or E. Assuming transients have
already decayed, we leF,=1+c¢F"+0(0?) and E
=E©@+ ¢EM+0(0?). Then we find

EO=AOT)ell¢”M+ary %

k?\ 2k
B—l—[A(O)(T)]Z—PﬁL AO(T)

Fo=f(T)+ N

X cod0O(T)+A7).

To remove the secularity so th&t") remains bounded
(which is necessary fdF, to stay close to JI we need

AQ=+/B- (22

k2
1+ P):\/B—BC.

This is well defined if and only iB=B_, which is, to lowest
order, the condition for the fixed point of E(B) to be un-
stable(Sec. \). Substituting the results f@&© andF{Y into

FIG. 2. The dependence of the behaviors of the phase difference
® on B, for k~A=0(c?), a<1/2. Parameters, variables, and
symbols are as defined in Fig. ®.is constant iB<B,, oscillates
betweens/2+ tan {(AAQ/K) if B,<B<1+2k?A?, and increases
strictly if B>1+2k%A%. A is as defined in Eq(22). A super-
critical Hopf bifurcation occurs @ =B, . The bifurcation value for
B has O(0? %) errors [Eq. (16)] and the value ofX, has
O(o*™23) errors[Eq. (26)]. Contrast this with Fig. 1, where phase
trapping is impossible.

2 k2
f=0, 0(0)=FT+ Py = ki 0

for some constani/(?). Hence, for timer=0(1/s), and
assuming the system &ready on the attractqrwe find

k2 ik
E=A%exp i Atogs + 0 + 5 +0(0)
) (23
k k
F2=1+20PA<°)00 Atogg|rt #'91+0(0?),

whereA®=/B—B, and(? is an arbitrary phase constant.
These results have been compared with numerics and show
good agreement. Note that the result is singulak-#0. A
similar singular limit has been observed in a model of CO
laser[25].

B. Discussion
1. Physical interpretation

An inspection ofE in Eq. (23) reveals the following. (i)

If A@®<k/A, the phase differencé oscillates between
w2+ tan }(AAY/K). The response laser is said to pease-
trappedto the drive[26]: both lasers havéhe same average
frequenciesbut their relative phase varies periodically. In
other words, they are frequency locked but not phase
locked. (i) If AQ>k/A, then® increases monotonically
at an almost uniform rate, corresponding to a state of phase
drift.

These different behaviors, together with the regimes in pa-
rameter space in which they occur, are depicted in Fig. 2.
This figure should be compared with Fig. 1, which shows
that fork=0(A)<c"?, ® changes directly from locking to
drifting at the critical pump valu®=B.+ (¢%3), with no
intervening possibility of phase trapping.

Figure 3 illustrates the accuracy of our analytical approxi-
mations. For a given value & we compute the time series
of the intensityl =X3. The local minima and maxima of the
intensity are plotted in Fig. 3 as a function lof For k>2,

the E(Y) equation and suppressing secularity so that it is posthe intensity is constant because the system has a stable fixed

sible to haveE=E_ exp(A7)+ik/A, we get

point corresponding to a locked state; hence only a single-
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opLmin » Lmax For B close toBy;,, we may takes =B— By, as a small
parameter. By perturbing first with respecta@nd then with
respect ta, we find that the three eigenvalues at the relevant
fixed point are

) ak? 1 ak? ) s 2
A =1 A+F +eée B—C—A4—BC(1—IA) +0(o%,e9),
0 1 2 k —
)\2:)\1,
FIG. 3. Orbit diagram, plotting the local minima and maxima of

the intensityl =X3 vs k, of Eq. (3), with =0.010,A=2.0, k 26 ok?

€[0,2.2], B=2.0. Dots represent numerical results and curves the- N3=—0B.+ B +O(0’2,82),
Cc

oretical expectation$Eq. (23)]. In this and subsequent orbit dia-

grams(Figs. 4 and § the numerical results are obtained by follow- h bar d | .
ing the equation of motion with the subroutisgiFF in [W. H. where an overbar denotes a complex conjugates Apes

Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannaty;  through zerox, andi, cross the imaginary axis with non-
merical Recipes in Fortran: The Art of Scientific Computidgd ~ 2€r0 speed, while\; remains real and negative. Thus, by
ed. (Cambridge University Press, New York, 1992which imple- ~ Hopf's theorem[27], a limit cycle is present on one side of
ments a fourth-order Rosenbrock method, and then estimating tH&€ bifurcation point. Moreover, this limit cycle is centered at
extremal values of the intensity with a second-order interpolationthe fixed point, and has angular frequency given by the

The results are corroborated by another subrowtimegs (ibid), ~ imaginary part of the conjugate pair of the eigenvalues. All
which implements a semi-implicit extrapolation algorithm analo-these results are in agreement with E23), and we have
gous to the Bulirsch-Stoer method. also confirmed them numerically.

To decide whether the bifurcation is subcritical or super-

valued branch of data is seen. Asdecreases through the Cfitical, we use the Poincatendstedt method6] to seek a
unlocking threshold, a limit cycle is born, causing two periodic solution. We find that such a solution, be it stable or
branches to bifurcate continuously from of the locked stateNOt, can exist only i8> By, , i.e., when the fixed point is
as shown in Fig. 3. This splitting is what one would eXpectunstable, indicating that the bifurcation is supercritical. The
for a supercritical Hopf bifurcation—the intensity now oscil- Periodic solution thus obtained is, as expected, the same as
lates sinusoidally, so the lower branch corresponds to locdhat given by Eq.(23). However, while the Poincare
minima of the intensity time series, and the upper branct-indstedt method tells us nothing about the stability of the
corresponds to maxima. The curves passing through the dag®lution, it has the merit that it is uniformly valid for all
are analytical predictions given by E(p3). time, thus confirming the speculation, based on numerics and
While the solution(23) is periodic in the reference frame the two-timing analysis in Sec. VII A, that there is indeed a
rotating with the driver, back in the laboratory frame the Periodic solution.
solution involves two frequencies. The phase of the receiver

laser is then C. Rescaling for <1 with k=0(A)> o'
Having considered the cadeA=0(1), we will now
W1Tc 2 demonstrate that as long ks O(A)>0(¢?), the lowest-
Cy=P1+P~Dypt P T+argE order dynamics remain the same as before. Thus, any cou-

pling and detuning that satisfy these milder bounds are still
sufficiently strong to preserve the qualitative features seen

and is in general quasiperiodic. earlier. In this sense, the conditi@r O(A)>O(o?) estab-
lishes the demarcation line for the regime of “strong” cou-
2. Hopf bifurcation at B=B +O(o?) pling and detuning.
The calculations in Sec. VII A, and in particular EG2), By definingu via F,=1+ou, we may rewrite Eq(3) as
are correct only to the lowest order in If we proceed to dX
higher orders, we find d—2 =cguX,+k cosd, (243
T
o’B5(B.—1) dod K
A=\/B—(B+C— +0(0?). A
c A2 () 3o =A X, sin @, (24b)
From this and Eq(23) we see that the radius of the stable du 2
_ . —=B—(1+ 1+ X%). 24
limit cycle scales as/B— By, WhereBy;m=B.+0(o?) is dr (1 ou) 2 (249

the bifurcation value at which the limit cycle is bofoom-

pare with Eq.(16)], and the frequencyA+ok?/A% is an  For A,k=0(1), we observe in numerics thafF,=1
O(1) quantity. These results strongly hint that this is a su-+O(o) so thatu=0(1). More generally, ifk,A=0O(c?),
percritical Hopf bifurcation6]. Indeed, we can prove that we may writeA= §o? k= ko?, with §,k=0(1), andres-
this is the case for<1 andk,A=0(1), asfollows. cale time by setting=o®r. Then Eq.(24) becomes
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dX; | . point will lose stability whenB—B.=0(o), probably in a
g -0 TuXptkcosd, (253 codimension-two bifurcation combining the features of a
saddle-node infinite-period bifurcation and a supercritical
dd P Hopf bifurcation.
T 5— X sin d, (25b For B slightly above the bifurcation value, we expect the
2 dynamics to be a combination of the two cases studied pre-
du viously. The long-time behavior should be a spiraling motion
i B—(1+ Ulfau)(1+x§)_ (25¢  that slowly passes through the bottleneck near
For a<1/2, our numerical simulations indicate thap X,=yB-1, ®=sinl(¥), F,=1,

=1+0(c! ?) so thatu=0O(1). Hence we can invoke a
self-consistent argument to identify, to lowest orders, Eq
(25) with Eq. (24), with o122 t,8,« replacing o, 7,A K,
respectively, since the termsu in Eq. (240 and o' 2u in X,=\B—1, F,=1.

Eq. (250 do not affect the lowest-order phenomena and are

therefore negligible. A$, k=0(1), we canapply the same Meanwhile, there is a global relaxation towards this attractor.
two-timing analysis as in Sec. VII A, but with the time scales The interplay among these three mechanisms can lead to
t and o'~ 2%, and get results similar to those found earlier. complicated behavior, as we will see below.

In terms of the variables used before rescaling, the lowest- |n contrast, in the case of symmetrical couplipg=1 in

together with a fast reinjection roughly along the circle

order terms are found to be Eqg. (2)], the phase difference decouples from the intensity
5 _ and the gain, if one also assumes that both lasers have equal
X,el = E=A<°>exp[i A+ Ukj O+ ﬁ gains and inte_nsities at all timg$3]. This d_ecoupling of the
A A phase dynamics leaves only two mechanisms: a global relax-
L O(l 2 ation toward the attractor, and a phase advanceifneinjec-
(o ), tion) along the attractor. In this sense, the unidirectionally
K K2 (26) coupled case might be prone to greater dynamical complex-
F2=1+20PA(°)COS{ Atogg|Tt lp(‘ﬂ ity.
+ 0(02—2a,3—5a), B. Numerics

In the intermediate coupling reginie= O(A)=0(c?),
where, as beforeA®=(B—B.=VB—1-k’/A% and ¢  £q (25) becomes Ping 189 (A)=0(r"

is an arbitrary phase constant. This result is the same as Eq.

(23) to lowest order, exhibiting periodic motion born out of a dX,
supercritical Hopf bifurcation a8 increases througiB, W=UX2+K cosd,
from below. One slight difference is that the next higher-
order terms will beD(o~?3) instead ofO(o). Also, corre- dd «
sponding behaviors in this new system will occur on a T 65— A sin ®,
slower time scale, as=o?r<r, if a>0. 2
Clearly the argument above breaks dowa# 1/2, i.e., if d
k=0(A)=0(0c"?), as theno 22 in Eq. (253 is no longer au_ B—(1+ o) (1+X3), (27)

small as assumed by the perturbative treatment. Another way dt
of putting this is that the two time scales, which #Dé1)
andO(o~1*23) int, collapse into one as— 1/2. In the next
section, we turn our attention to this distinguished regikme

with k~8=0(1)> 02 In rectangular coordinates, with
= X,c0s®P,y=X,sin ®, this system can be rewritten as

=0(A)=0(0"?). For symmetrically coupled lasers, this is dx
the regime where subharmonic resonance, amplitude insta- — =ux—d8y+x,
bilities, and chaos were discovergt3,14]. dt
VIII. INTERMEDIATE COUPLING Z_y:uer Sx (29)
t L
A. Overview

The cases studied earlier allow us to anticipate some as- du 12 2. o

pects of the possible unlocking behavior for intermediate E_B_(lﬂf u)(1+x7+y7).

coupling. From Secs. V, VI, and VII, we know that for weak

coupling @>1/2), the fixed point corresponding to the  To probe the dynamics, we will vary and hold the other
stable locked state disappears in a saddle-node infinite-perigzhrameters fixed. This may seem unnatural, given that we
bifurcation wherB— B.= (%), while for strong coupling have been using as a control parameter so far. However, it
(a<1/2), it loses stability in a supercritical Hopf bifurcation turns out that if we vary instead ofB, the features we wish
when B—B,=0(0? 23). Hence, by sandwiching, we ex- to emphasize will stand out more clearly. In experiments,
pect that for intermediate coupling € 1/2), the stable fixed both parameters are easily tunable.
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3 y=ImE
\S7/ x=ReE
(b)
L%
. . 2 15 15
®) Lo 0 /\ L es) N | 0 Q\\
] ] =T )
| min» tmax © L@ e
e 23 0 2 72 0 2 15 05 25

FIG. 5. Thexy projections of the attractors of EqR7), with
0=0.0025,6=1.0,B=2.0. (a) k=0.78, a quasiperiodic attractor.
K We have followed the flow only for a time span of 1000 units in
order to reveal the structuré) «=0.77, a periodic attractor with
FIG. 4. Numerically computed orbit diagram of E@7), with many local minima and maxima. This attractor remains a closed
0=0.0025,5=1.0,B=2.0. (a) x[0.40,1.1; (b) an enlargement curve without blurring in a time span of 2000 units, strongly hinting
in the rangex €[0.98,1.0. Contrast the complicated patterns with at its periodicity. (c) x=0.70, a period-1 orbit(d) x=0.68, a
the simple structure in Fig. 3. Note, in particular, the self-similar period-2 orbit.(e) x=0.67, a period-4 orbit.
bifurcation sequence that piles up at=0.9986=5VB—1
+0(0).

0.98 099 T

periodic or not for a given set of parameters, a more careful
treatment, such as plotting the power spectrum, is needed.
Figure 4 illustrates the complicated dynamics that occuMe have computed the largest Lyapunov exponent as a func-
in this system. The plot is an orbit diagram, shown in thetion of «, with other parameters fixed, and find that it is
same format as Fig. 3. The local minima and maxima of thelways zero, up to the accuracy of the numerical algorithms.
intensity’s time series are shown as the couplnigcreases This result suggests that there is probably no chaos in the
toward the locking threshold. For the particular parameterétermediate coupling regime considered here. Perhaps a
chosen in the simulation, the locking threshold is kgt ~more prudent way to put it is this: chaos is not widespread
=0.9986= 64B—1+0(0). Of course, fork>«,., the re- for intermediate coupling, if it occurs at all.
sults are simple: there is a single branch of constant intensity, There are many other interesting attractors and bifurca-
corresponding to the locked state. But fox x. we see an tions that could be discussed here, but we prefer to skip them
intricate pattern of local maxima and minima. so that we can focus our attention on the self-similar picture
The most striking feature occurs for 08&=<«., where  near the unlocking threshold.
the diagram consists of a sequence of similar patterns that are
scaled down asc increases. Figure(B) shows the region

close tok= k. in greater detail. The self-similar structure  \ye now consider a simpler system that exhibits the same

appears to persist all the way to the unlocking threshold at5scade found in Fig. 4. Let=0 in the reduced system
Kk=kK¢. This scenario is not the standard period-doubling(27)’ so that it becomes

route to chaos, nor any of the other familiar bifurcation cas-

IX. A SINGULAR LIMIT

cades. We do not fully understand what is happening here. dX,
Some first steps toward understanding this remarkable struc- or ~UXet K cos@,
ture will be presented in Sec. IX.
We are mainly interested in the self-similar structure near do K .
the unlocking threshold, but some other features of Fig. 4 FTE X, Sin @, (29)
deserve comment. An unsuspicious look at Fi@n) 4night
suggest that the attractor is quasiperiodic or chaotic for du 5
0.52<x=<0.58, as we see a complex set of data there. But gr ~ B~ (1+X3).

this conclusion is premature, as a highly looped periodic at-
tractor with many turning points could also generate such d&igure 6 shows that this new system still exhibits the striking
picture, thanks to the many local minima and maxima in itspattern found earliefalthough the precise positions of the
corresponding time series. bifurcations are not the same, and there are structures that
Figure 5 shows that, in fact, this is exactly what is hap-come up in one case but not the othérhis robustness sug-
pening for many values ok in the range 0.58 k<0.58.  gests that the self-similar cascade is not due to perturbative
The xy projections of the attractors in phase space are ploteffects ofo but is more generic. To check that the cascade is
ted usingbsTooL [28]. The orbit in Fig. %a) appears to be not just an artifact of the choice of variables plotted, we have
guasiperiodic, while those in Figs(tB—5(e) appear periodic. also tried plotting local minima and maxima ®fy,u, and
These figures also suggest that several kinds of of bifurca-=x2+y? against the parameter In all cases, we find simi-
tions are taking place. The trio Figs(ch-5(e) indicates a lar patterns. We have also checked that the patterns keep
period-doubling sequence, although we do not see the fullecurring even closer to the unlocking threshold, specifically
period-doubling cascade to chaos. for k€[0.998,]] andx[0.9998,]. So we believe that the
Hence, to distinguish whether the long-term behavior isself-similarity is genuine.
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Hence both fixed points recede to infinity Bs-1", and
they coalesce at (8/5,0) asB—B; .
As for stability, the Jacobian of Eq29) is

Imin ’ Imax . (a)

u -0 X
K J=| o u yi.
—-2x —2y O
At the fixed points, the characteristic equation simplifies to
® ' Linine Liax 0= () =AP— 2N+~ A+ 2(B—1)(n
" =f(M)=A°—2uN+ o= A+ 2(B=1)(A—u),
Is (3
f 4 where u=u*} at the fixed pointp.. Since f_,(—2\)
i P . =—f,(\) andu} =—u*, we can conclude that i is an
0.98 0.99 1 eigenvalue ofp, , then—N\ is an eigenvalue op_ . Hence

we cannot have a saddle-node bifurcatioBatB, .

The eigenvalue equatiof81), as it stands, is hard to
solve. But some information can be obtained from the inter-
mediate value theorem. Sindg(=*)=*, and f;«(0)

On the other hand, the limit=0 requires some caution =*2(B—1)6V(B.—B)/(B—1) is positive (negative at
on our part. The blown-up syste(@7) is obtained from Eq. P+ (P-), the intermediate value theorem implies that the
3) by the rescalingt=c"%r, ou=F,—1, A=o?2s, fixed pointp_ always has a positive eigenvalue and there_—
k= o2k, which becomesingularaso— 0. Hence Eq(29) ~ fore cannot be stable. Whether it is a saddle or a repellor is
is not directly relevant physically, but it has the virtue that it "0t determined by this argument. _
leads to cleaner numerics, and brings out the bifurcation 10 investigate the type of bifurcation &=B., we will
mechanism more clearly. consider Eq.(31) with B=B.—&, wheree>0 is a small
One should also be aware that the singular limit displayarameter, andc and 6 are assumed to b®(1) positive
some nongeneric dynamics because of its higher degree gpantities. Then we have a regular perturbation problem and
symmetry than the original system. For instance, @) is ~ ¢an find the eigenvalues to be

FIG. 6. Numerically computed orbit diagram of E@®9), with
6=1.0,B=2.0.(a x€[0,1.1]; (b) k[0.98,1.0. Compare with
Fig. 4.

invariant under the transformation 55+ K252
A== J&2+ 221 5%~ PrN \/;‘FO(S),
T t——t, X—>—X, Y=Yy, U——u, (30 “ “ (32)
_— i — 2k &2
a “reversibility” symmetry that is not preserved by E@Q7) 7\3=—54+2K2 Je+ O(e)

for o#0. A corollary of this invariance is that i) is an

attractor, then the sé ={(x,y,u)|[(—x,y,~u)eQ}isare- atp,. Hencep. is an attractor. More specifically, it is an
pellor. Results like this can be used for CheCking numericahttracting “Spira| node.” The eigenva|ues pt can be ob-

convergence in tracing bifurcation diagrams. tained by taking the negatives of the eigenvalueg of
These results provide some local information about the
A. Fixed-point analysis bifurcation aB=B.. AsB—B. , i.e.,e—0", the two fixed

points approach each other and collideBstB.. Mean-
while, their attractiveness and repulsiveness get weaker and
weaker, sinceall the eigenvalues approach the imaginary
axis. The fixed point aB=B. is linearly neutrally stable.

As Eq. (32) indicates, locally the bifurcation is of codi-
mension two, with a simple zero eigenvalue and a conjugate
pair of pure imaginary eigenvalues. As noted[ i8], such
bifurcations can be complex because of their global struc-

Since the transformation from E{B) to Eq. (29) is sin-
gular, the fixed-point analysiéoth existence and stability
in Sec. V is not directly applicable to ER9). The necessary
modification is straightforward, and the result is as follows.
Fixed points exist if and only if £B<B,=1+ x?/5°. They
are given byp. = (x£x*,y*,x=u*), where

x*:(—S V(B—1)(B.—B), tures. In Eq.(29), as in Eq.(24), the reinjection provides
K such a global mechanism that leads to complicated dynam-
ics.
) Since the stable fixed point is annihilated in a collision
y' = ;(B_ 1), with an unstable object &8— B, , we do not expect stable
objects forB>B,. to be in small neighborhoods @0,5(B.
—1)/«,0), the position of the fixed point @&=B.. How-
PR B.—B ever, some form of intermittency might be expected, and as

B-1" we show in the next section, this is indeed the case. A tra-
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jectory on the periodic attractors spends a long time in heli- 3 3
cal motion near the ghost of the fixed point. The same is true
when o> 0, indicating that this helical motion in the bottle-

neck is not caused by the degeneracy.

Before we move on to numerics, it should be noted that (@)
this degenerate “attractor-repellor bifurcation” is a conse-
guence of setting to zero. Fore>0, a generic saddle-node -1 y 4 -1 y 4
bifurcation occurs aB=B, . Also, for ¢>0, generically we
do not have a genuine codimension-two bifurcation. But 3 3 -
since bothH; and H; in condition (12) vanish atB,
+0(o), meaning that all three eigenvalues are close to the
imaginary axis when bifurcation occurs, the nonsingular sys-
tem (27) may pick up some remnants of the bifurcation sce-
nario of the singular systefi29), so that their orbit diagrams 3 3 .
(Figs. 4 and B exhibit similar features. This suggests that -1 y 4 -1 y 4
whatever the bifurcation scenario is, it is stable with respect

to perturbations in parameters, at least in an operational FIG. 7. Theyu projections of the attractors of E9) as we
sense. sweep across the=7 periodic window by increasing, with &

=1.0, B=2.0. (@ «=0.91867; (b) «=0.92500; (c) «
=0.929 80;(d) x=0.932 00. The snapshots are not taken at evenly
spaced values ot. Rather, representatives are chosen to show the
In our numerical studies of the self-similar bifurcation deformations more clearly.

sequence, we concentrate on the periodic windows. As b%ﬁe complex eigenvalues in E83). The combination of
fore, we will vary k and keep other parameters fixed. Then o - i .
slow passage an®(1) spiraling gives rise to the helical

for k=« t+e, with 0<e<1 and x.=6yB—1, the fixed appearance of the trajectories.

H — * * *
points are ap.. =(*x*,y*, = u"), where As we increasec in a periodic window, §—2) of these
loops stay at roughly the same distance from theaxis,
+0(&%?), while the remaining two loops are stretched in the reinjection
part of the flow. Moreover, the left side of the projection
moves, with a stronger shear at the bottom, towardsuthe
+0(e?), axis, eventually crossing the loops. Meanwhile, there is a
clockwise rotation to bring about the structure we see as we
reach the right-hand end of the window. The same trend

© (d)

B. Numerical studies of the self-similar bifurcation sequence

1

3e
* _ =
X 5 \/ZSKC(]. A,

P ke[
y o K¢

w=— 2 Zend + i) +0(£52), occurs in all the periodic Wi_ndc_st_we have sampled_, with
K 4i, 3=n=<12(we do not see periodic windows corresponding to
n=1,2). If this “n loops in thenth window” scenario is
The eigenvalues gi, are correct, and if there really exist infinitely many such win-
dows accumulating at the limiting value=1, we will have
i 2 6+ an attractor with infinitely many tight loops at=1", just
M= £iN6+2k16°= 6 Ko Ot 2K2 Je+0(e), before its annihilation in an attractor-repellor bifurcation.
33) This will then be reminiscent of the chaotic orbit born from
the infinite sequence of period doubling in the logistic map.
—8(2k)%? In a similar problem concerning a GQaser, Zimmer-
3= 5 2k 2 Ve+0(e). mann, Natiello, and Solaf29] worked backwards and con-

structed a model by assembling a local spiral motion and a
global reinjection. Numerically, for a fixed set of parameters,
the flow is similar to what we see here. However, how this
UsingAuTO, we have examined the phase-space geometrinathematical model is related to the original laser system is
of the attractors in individual periodic windows. For definite- unclear.
ness, consider thgu projections of the attractors. Figure 7
shows a typical collection of snapshots as we sweapross
a window. What happens in this window also happens in In each periodic window, the unstable branch always has
other windows, with some modifications in details. Specifi-its nontrivial Floquet multipliers outside the unit circle, indi-
cally, we seen little helical loops per round trip at the left cating a repellor instead of a saddle. When this branch col-
end of thenth window. (In this example,n=7.) Most of lides with the stable branch, an attractor-repellor bifurcation
these loops are located ne@;,1,0, where the stable fixed of cycles occurs, bringing an end to the periodic window. In
point is annihilated ak=1. virtue of the invariance of Eq29) under the transformation
Intuitively, the trajectory is slowly funneled through the (30), it is no wonder that at the bifurcations, when the attrac-
bottleneck caused by the ghost of the former stable fixedor and the repellor coalesce, this neutrally stable object is
point. During this slow passage, the trajectory also spiralsnvariant under 7' :x— —X,y—Yy,u— —u. This explains
around at arO(1) frequency, given by the imaginary part of why the projections onto thgu plane are always sym-

1. Helical structure of the periodic attractors

2. How periodicity ends
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metrical with respect tai— —u [as seen in Figs.(@ and 1-Kgpn 4 812 T
7(d)], while the projections onto they plane are always T ~. " 40| Ra
symmetrical with respect t&— —x at the ends of the win- 1/4 20
dows (not shown. 16| @ ol ®

As mentioned earlier, the attractor-repellor bifurcations 1/64 n
are a consequence of the reversibility symmetry of ¢he 4 812
=0 system. Generically, the periodic attractors are annihi- 1/2Wn . 40TLn .
lated in saddle-node bifurcations and there isSfreymmetry, 1/10 ~. ’ ~
a strong indication that the mechanism underlying the cas- 150 (c) T 20 @ /{“
cade of bifurcations has nothing to do with this symmetry. 1/250 .. 10 77

Recalling the results in Sec. IX A, we notice that while an 4 s " T i "
attractor-repellor bifurcation of fixed points occurs as the
locking threshold is approached from above-{1"), there FIG. 8. Log-log plots showing the trends among the periodic

is a simultaneous attractor-repellor bifurcation of cy¢f@®-  windows of Eq.(29) with 6=1.0,B=2.0, in the(a) positions of the
sumably with infinitely many loopsas the threshold is ap- right ends of the periodic windows, with the theoretical prediction
proached from belowk—17). This double-sided aspect of IN(1—«rn)=In(27/8)=21Inn; (b) periods of the attractors at the
the unlocking bifurcation also seems to be preservedsfor right ends of the periodic windows, with the theoretical prediction

>0, suggesting that it too has nothing to do with symmetry.n Tra=In2@/V3)+In n; (c) widths, with the fit Inw,=1.5-3 Inn;
and (d) periods of the attractors at the left ends of the periodic

windows, with the fit InT_,=1.2+Inn. Dots represent raw data

with 3<n=<12, solid lines represent theoretical predictigiss.
The periodic windows in Fig. 6 have been verified by (35) and(36)] with no fitting parameter, and dashed lines represent

AUTO to be isolas, i.e., they terminate at both ends as thgemitheoretical predictions, where the slopes are chosen according

periodic attractors are annihilated in collisions with unstableo the theoretical scalingEgs.(37) and(38)], and the intercepts are

objects(probably unstable periodic orbjtsHowever, we do  chosen to fit the data.

not fully understand the mechanism that causes such annihi-

lations, although it seems to be some form of resonance of We do not know what mechanism kills the periodic win-

the spiraling motion and the global reinjection. Indeed, wedow as we decrease But drawing an analogy to the mecha-

have found that as we increagen a periodic window, pe- nism at the other end, we expect that the positions of the left

riodicity ends precisely when a trajectory executes an integeends of the periodic windows scale as

number of spiral loops upon one reinjection, i.e., if

3. Trends in the periodic windows

1— Kk n=0(1/n?),

2 2

= nw—, (39 so that the widths of the periodic windows scale as
| S

. o Wp= kg n— KLn=0(1n%), 3
wheren is a positive integer, an@d, andwg are the frequen- n= KR~ KLn=O(1N%) S

cies of the reinjection and the spiralling motion, respectively anq the periods of the attractors at the left ends of the peri-
To see this, we assume that the time needed for reinjection {sgic windows scale as

dominated by the slow passage through the bottleneck. Then,

using Eq.(33), we may rewrite Eq(34) as TLa=0(n). (39

8(2k)%? 1 These scaling behaviors are verified in Fig&)88(d).
M2k Ven= nV O+ 2kl 6 Meanwhile, the sizes of the attractors, as measured by the
L2 norms, remairO(1) ask—1~. This is expected as the
to lowest order, where,=1— g, and kg, is where the L2 norm is dominated by the global reinjection, which per-
nth periodic window ends at the right. Solving fe,, we  Sists in all periodic windows.
get
X. OPEN QUESTIONS
(0*+2k)° 1 : : : ,
8”:—r64(2;< ) 2 (35 Frqm a theoretical perspectlve,. the most |n.terest|ng open
¢ guestion concerns the mathematical mechanism underlying

: the self-similar cascade of bifurcations observed in both Eq.
Moreover, at these parameter values, co_rrespondlng to th(%?) and the simpler systert29). Whatever the mechanismq
right ends of the periodic windows, the periods of the attrac—is’ the heuristic arguments and numerical evidence presented
tors are expected to be

in Sec. IX suggest that it must combine the features of a
5 S22 1 oS saddle-node infinite-period bifurcation and a supercritical
T. "o Ke + _ m 36  Hopf bifurcation. As such, it may well arise in other scien-
RN ™ n n. (36 I ) _ _

o 0(2k0)™ e, o'+ 2k2 tific settings. Maybe it can even be detected experimentally.

Although self-similarity itself is common in dynamical
Figures 8 and 8b) compare these predicted scaling systems, and has been explained by renormalization-group
laws against numerics. Far=5, Eqs.(35) and (36) agree arguments in such contexts as period doubling, intermit-

with numerics to within 2%. tency, and quasiperiodic breakdoyh8], it seems the cas-
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cade we see here falls into none of these categories. Rathérave restricted attention to drive signals of constant intensity
it is characterized by an infinite series of saddle-node bifurand frequency, but for applications to optical communica-
cations of cycles, accumulating at a finite parameter valugons [40,41], one needs to study how lasers respond to
corresponding to the locking threshold. modulated drive signals, especially those carrying messages
Aside from these bifurcation issues, the dynamics of Eqwithin them.
(29 is also interesting for &ixedset of parameters. Zimmer-
mann, Natiello, and Solafi29] suggested that the periodic
orbits with many small loops can be understood as the ef-
fects of a flow with helical local dynamics together with a
global reinjection. The challenge now is to find a way to We thank John Guckenheimer for discussions on period
reduce the laser equations to a form where this conjecturedoubling and the self-similar bifurcation sequence, Jim
phase-space geometry becomes transparent. Keener for pointing out that essential singularities can give
There are many other interesting avenues for future rerise to self-similar bifurcation sequences, Rajarshi Roy and
search. The dynamics of the unidirectionally forced systenScott Thornburg for discussions on the physical interpreta-
could be explored over a much broader range of parameteion of our results and for references to the laser literature,
values, withk and A not necessarily of the same order. We and Paul Steen for commenting on an early draft of this
have also neglected the effects of noise, a topic of gregptaper and for providing technical advice regardimgro.
importance in technological applications of injection locking We also thank Henry Abarbanel, Rajarshi Roy, and the other
[11,30-32. Another promising direction would be to study members of the UCSD—-Georgia Tech—Cornell collaboration
arrays of coupled lase[83—39 driven by external injection, on synchronization and communication in nonlinear optical
particularly in regimes where amplitude effects are importansystems. The research was supported in part by the National
and the phase model approximation is not valid. Finally, weScience Foundation.
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