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Nonlinear dynamics of a solid-state laser with injection

M. K. Stephen Yeung* and Steven H. Strogatz†

Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853-1502
~Received 5 May 1998!

We analyze the dynamics of a solid-state laser driven by an injected sinusoidal field. For this type of laser,
the cavity round-trip time is much shorter than its fluorescence time, yielding a dimensionless ratio of time
scaless!1. Analytical criteria are derived for the existence, stability, and bifurcations of phase-locked states.
We find three distinct unlocking mechanisms. First, if the dimensionless detuningD and injection strengthk
are small in the sense thatk5O(D)!s1/2, unlocking occurs by a saddle-node infinite-period bifurcation. This
is the classic unlocking mechanism governed by the Adler equation: after unlocking occurs, the phases of the
drive and the laser drift apart monotonically. The second mechanism occurs if the detuning and the drive
strength are large:k5O(D)@s1/2. In this regime, unlocking is caused instead by a supercritical Hopf bifur-
cation, leading first to phase trapping and only then to phase drift as the drive is decreased. The third and most
interesting mechanism occurs in the distinguished intermediate regimek, D5O(s1/2). Here the system ex-
hibits complicated, but nonchaotic, behavior. Furthermore, as the drive decreases below the unlocking thresh-
old, numerical simulations predict a self-similar sequence of bifurcations, the details of which are not yet
understood.@S1063-651X~98!05510-X#

PACS number~s!: 05.45.1b, 42.65.Sf, 42.60.Mi, 42.55.Rz
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I. INTRODUCTION

The Adler equation

dF

dt
5D2k sin F ~1!

provides the simplest model of phase locking between a n
linear oscillator and an external periodic drive. HereF(t) is
the phase difference between the oscillator and the driveD
is the frequency detuning, andk is the coupling strength
This equation first arose in connection with the phase lock
of microwave oscillators@1#, and has since found applicatio
in many other settings, including the depinning of charg
density waves@2#, the entrainment of biological oscillator
@3,4#, and the onset of resistance in superconducting Jos
son junctions@5,6#.

A system governed by the Adler equation can disp
only two types of long-term behavior@6#. If uD/ku<1, all
solutions tend to a phase-locked state, where the resp
oscillator maintains a constant phase difference relative
the driver. On the other hand, ifuD/ku.1, all solutions ex-
hibit phase drift, where the phase difference grows mo
tonically, with one oscillator periodically overtaking th
other.

The main limitation of the Adler equation is that it trea
the response oscillator as a system with only one degre
freedom, namely, its phase. Possible variations in its am
tude ~and any other degrees of freedom! are ignored. This
approximation is reasonable in the limit of weak driving;
that case, the amplitude of the response oscillator typic
equilibrates much more rapidly than its phase, and can th
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fore be treated as a constant in the subsequent analysis. B
the driving is not weak~in some appropriate dimensionles
sense!, the dynamics can become complicated. In this pa
we revisit a classic problem—the mathematical analysis o
solid-state laser with external injection@7–11#—and explore
it in regimes where amplitude effects become important a
the Adler approximation breaks down.

Our work was inspired by recent theoretical and expe
mental studies of amplitude effects in two mutually coupl
solid-state Nd:YAG lasers@12,13#. In those studies, the la
sers were equally coupled and identical, except for a sli
relative detuning of their frequencies from some comm
cavity mode. For coupling strengths well above or below
locking threshold, the lasers were found to exhibit the sim
behavior expected from the Adler approximation. Howev
as the coupling approached the locking threshold from
low, the lasers showed a series of amplitude instabilit
culminating in a period-doubling route to chaos. These ins
bilities could not be explained by the Adler approximatio
Instead the authors proposed the following mechanism.
low the locking threshold, the lasers exhibit phase drift.
the time required for one full cycle of phase slip happens
be an integer multiple of the lasers’ relaxation period, t
resulting subharmonic resonance might account for the
served instabilities. For the highly symmetrical case wh
the two lasers are assumed to have identical intensities
gains, this argument was proven to be correct by reduc
the governing equations to those for a single, periodica
modulated laser, where the subharmonic resonance me
nism was already known to occur@14,15#.

We wondered whether similar amplitude instabilities a
chaos would occur in two coupled Nd:YAG lasers withuni-
directional coupling ~or equivalently, in a single Nd:YAG
laser with external injection!. On the one hand, the qualita
tive argument about subharmonic resonances should
work. On the other hand, the equally coupled case enj
special symmetries that are not present in the unidirectio

ic
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case. Given the crucial role of the symmetry in the ear
analyses of Erneux, Kuske, and Carr@12# and Thornburg
et al. @13#, it seemed possible that some new effects mi
occur if the symmetry were broken.

As we will show below, the system with one-way co
pling can indeed display some fascinating behavior near
unlocking threshold, but it differs from that seen in th
equally coupled case. In particular, we do not see a per
doubling route to chaos, nor any evidence of chaos at
Instead, in a certain distinguished regime of parameters
find a self-similar cascade of periodic windows and bifurc
tions. To the best of our knowledge, this bifurcation scena
is novel.

It will be interesting to see whether this cascade can
detected experimentally for a laser in the appropriate par
eter regime, as specified by our theory. It would also
gratifying to have a better theoretical understanding of
cascade itself.

This paper is organized as follows. The governing eq
tions are given in Sec. II. In Sec. III, we reduce the num
of parameters by nondimensionalizing the equations and
ploiting certain symmetries. By choosing a frame that co
tates with the phase of the driver, we reduce the system
three coupled autonomous ordinary differential equatio
one forF(t), the phase difference between the laser and
drive, and one each for the dimensionless gain and ampli
of the response laser. Fixed points of this reduced sys
correspond to injection-locked states of the original syste
Section IV dispenses with the limiting cases of zero coupl
or zero detuning where the dynamics can be analy
straightforwardly.

The analysis begins in earnest in Sec. V, where we de
criteria for the existence and stability of injection-locke
states, and compare our criteria to those obtained in the u
Adler approximation. In Secs. VI and VII, we start to inve
tigate what happens when locking is lost. We show per
batively that for a broad range of parameters, the phase
ferenceF(t) oscillates periodically, but the precise nature
those oscillations depends on the relative sizes of the dim
sionless coupling, detuning, and stiffness of the system.

For a distinguished limit of parameters, described in S
VIII, the reduced system has complicated dynamics and
dergoes the self-similar cascade of periodic windows
bifurcations mentioned above. In Sec. IX, we consider
system in the singular limit of zero stiffness. Again, the c
cade persists. Based on the distinctive helical structure of
periodic orbits, we propose a mathematical mechanism
derlying the cascade. It apparently stems from
codimension-two bifurcation in which a supercritical Ho
bifurcation combines with a saddle-node infinite-period g
bal bifurcation. We have no proof of this mechanism, b
show that it correctly predicts the scaling laws found nume
cally in the bifurcation diagram. We conclude with a discu
sion of open questions.

II. FORMULATION OF THE MODEL

For solid-state lasers, as well as other ClassB lasers with
negligible linewidth enhancement factors, such as CO2 and
ruby ~NMR! lasers@8#, the polarization relaxes rapidly com
pared to the electric field and the gain, and can therefore
r
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adiabatically eliminated. Following Ref.@16# with straight-
forward modifications, we can write the following equatio
for two lasers coupled through transverse overlap of th
electric fields, assuming single-mode operation and negl
ing spatial variations within the lasers:

dE1

dT*
5tc,1

21@~G12a1!E11mKE28#1 iv1E11Ae1j1~T* !,

dG1

dT*
5t f,1

21~p12G12G1uE1u2!,

~2!
dE2

dT*
5tc,2

21@~G22a2!E21KE18#1 iv2E21Ae2j2~T* !,

dG2

dT*
5t f,2

21~p22G22G2uE2u2!.

Here T* is time, and forj 51,2, Ej is the complex electric
field, Gj is the gain,tc,j is the cavity round-trip time,t f,j is
the fluorescence time of the lasing ions,pj is the pump co-
efficient,a j is the cavity loss coefficient,v j is the detuning
of the laser from some common cavity mode, andK is a
complex coupling coefficient withKEj8 representing the de
gree of overlap of the two lasers, with possible attenuat
and dispersion taken into account. The noise termAe jj j (T* )
models spontaneous emission, but for simplicity, we w
consider only the noiseless casee j50. Also, we will assume
the media are linear, nonabsorbing and nondispersive and
coupling is dissipative so thatEj85Ej andK is real.

The parameterm in the first equation above is
symmetry-breaking coefficient measuring the extent of
feedback from the second laser to the first. The case of s
metric coupling~m51, tc,15tc,2, t f,15t f,2! has been ana
lyzed in @13#. In this paper, we focus instead on the case
unidirectional coupling, i.e.,m50. Whenm50, the first la-
ser is unaffected by the second, and hence we may rega
as a driver. Assuming that this driving laser is pumped ab
its lasing threshold (p1.a1), it is easy to show that its am
plitude and phase velocity settle down to constant valu
Specifically, the long-term state of the drive is given byE1

5Ap1 /a121 exp@i(F101v1T* )#, where F10 is an arbi-
trary constant, with constant gainG15a1 .

We assume these forms forE1 andG1 in the rest of the
analysis. Thus, although we have formulated our study
terms of one solid-state laser driving another, the argume
and results we present hold for more general situations, s
as a solid-state laser subjected to optical injection by ot
sources.

In a typical experimental setup using Nd:YAG lasers@13#,
t f,j andtc,j are both positive and are of the orders 1024 s and
10210 s, respectively. Thus we have two vastly differe
time scales in the system. The detuningv12v2 and the
couplingK are control parameters. The detuning has val
typically of order 105 Hz, while the coupling can be varie
over several orders of magnitude. In the symmetrica
coupled system@13#, values ofK ranging fromO(1028) to
O(1022) have been used. The pumppj and the lossa j are
both positive,O(1022) and their ratiopj /a j is typically an
O(1) quantity.
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III. SCALING AND SYMMETRIES

We scale the equations governing the response lase
introducing the following dimensionless quantities:

s5
tc,2

a2t f,2
, B5

p2

a2
, t5

a2T*

tc,2
, F25

G2

a2
.

Heres is a stiffness parameter, typicallyO(1024) in experi-
ments, characterizing the vast difference in the time scale
the cavity round trip and fluorescence times in the respo
laser. The smallness ofs will be important in the subsequen
analysis. The parameterB is the dimensionless pum
strength of the response laser; it often plays the role o
control parameter in what follows. The variablest and F2
represent dimensionless time and gain, respectively.

Next we change variables by going into a reference fra
rotating with the driver. LetX2>0 be the amplitude of the
complex fieldE2 , defined by

E25X2eiF2,

and defineF by F5F22F1 , whereF1 is the phase of the
driving laser andF;F22F102(v1tc,2/a2)t for suffi-
ciently larget. Assuming@17# X2Þ0, we obtain the reduced
system

dX2

dt
5~F221!X21k cosF, ~3a!

dF

dt
5D2

k

X2
sin F, ~3b!

dF2

dt
5s~B2F22F2X2

2!, ~3c!

where

D5
~v22v1!tc,2

a2
, k5

KAp1 /a121

a2
. ~4!

Here,D is a dimensionless measure of the frequency de
ing of the two lasers, andk can be interpreted as either
dimensionless coupling strength or injection amplitude.

By choosing the phase differenceF as a variable, we
have eliminated the explicit time dependence in the origi
system by rotating with the phase of the driver. In this rot
ing reference frame, a steady state now means a sta
which the phase difference between the two lasers, and
the phaseF2 of the second laser itself, is constant. Such
state is said to be phase locked. The particular case in w
F50 ~which is possible if and only ifD50! is called the
coherent or in-phase state.

The analysis of the reduced system~3! will occupy most
of this paper. As Eq.~3! is invariant under

D→2D, F→2F, ~5!

as well as under

k→2k, F→p1F, ~6!
by
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we will assume from now on thatk, D>0. Also,s, B>0 by
definition.

There is a slight catch that one should be aware of.
though we can assumek>0 without any loss of mathemati
cal generality, there can still be physical consequences.
example, the symmetry~6! allows us to change the sign ofk,
but at the cost of transforming an in-phase solution to
antiphase one. In fact, for certain systems of coupled las
k can be negative@16#.

IV. SPECIAL CASES

The special casek50 with generalD is trivial: the driver
and the response laser are decoupled. The reduced syste~3!
has a global attractor that is typically a periodic orbit, cor
sponding to phase drift between the laser and the drive
degenerate cases, the attractor can be a fixed point for
~3!, e.g., if there is also no detuning, or if the pump for t
response laser lies below the lasing threshold.

A more important special case is that of zero detuni
D50 with kÞ0. Then F50 ~in-phase! and F5p ~an-
tiphase! are invariant manifolds@18#, the former attracting all
initial conditions except those on the latter, which is rep
ling. Hence, so far as long-time behaviors are concerned
can confine our attention to the flow restricted to the ma
fold F50.

On F50, Eq. ~3! simplifies to the planar vector field

dX2

dt
5~F221!X21k,

~7!
dF2

dt
5s~B2F22F2X2

2!.

The nullclines@6# are

F2512
k

X2
, ~8a!

F25
B

11X2
2 . ~8b!

Since Eq.~8a! represents an increasing function ofX2 while
Eq. ~8b! represents a decreasing one, there can be at m
one real intersection. On the other hand, we may comb
the two equations into a cubic polynomial equation inF2 :

F2@~F221!21k2#2B~F221!250

and see that there is at least one real solution in the inte
„0,min(1,B)…, by the intermediate value theorem. Hen
there is precisely one solution forF2 in „0,min(1,B)…, corre-
sponding to a unique fixed point. An application of Dulac
criterion and the Poincare´-Bendixson theorem@6# to Eq. ~7!
then reveals that this fixed point is actually globally stab
with respect to perturbations on theX2F2 plane. Hence, in
physical terms, a globally stable in-phase state exists if
only if there is no relative detuning between the two lase

Having exhausted the possibilities for these special ca
we will assumek,DÞ0 from now on.
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V. LOCKED STATES

A. Existence and stability for general parameter values

A locked state of the laser system corresponds to a fi
point of Eq.~3!, which must satisfy

~F221!X21k cosF50,

D2
k

X2
sin F50, ~9!

B2F22F2X2
250.

In the limiting caseB50 ~i.e., the response laser is n
pumped! Eq. ~9! can be readily solved to yield

F250, X25
k

A11D2
, F5tan21 D.

The eigenvalues of the Jacobian at this fixed point are

l152sS 11
k2

11D2D , l2 ,l35216 iD,

all having negative real parts. This means, asF is the phase
difference between the two lasers, that the response las
passively driven into stable periodic motion

E25
k

A11D2
expF i S tan21D1F101

v1tc,2

a2
t D G

with a constant phase-lead tan21D ahead of the driver, even
though it is not pumped.

For B.0 so thatF2Þ0 at a fixed point, we may eliminat
F from Eq. ~9! and get

X2
25

B

F2
21, ~10a!

X2
25

k2

~F221!21D2 . ~10b!

Consider the graphs ofX2 versusF2 corresponding to Eqs
~10a,10b!. The intermediate value theorem reveals the f
lowing. ~i! If 0 ,B<1, there is only one fixed point, with
F2P(0,B)#(0,1). ~ii ! If 1 ,B,Bc , depending on param
eter values, there may be one or three fixed points. The
always one in the intervalF2P(0,1), and there may be a pa
in F2P(1,B). ~iii ! If B.Bc , again depending on param
eter values, there may be one or three fixed points, al
which lie in F2P(1,B). Here

Bc[11
k2

D2 ~11!

represents a special value for the dimensionless pu
strength. In Sec. V B we will show thatBc , with a small
correction, is the critical value at which locked states lo
stability.
d

r is

-

is

f

p

e

To analyze the local stabilities of these fixed points,
apply the Routh-Hurwitz criteria@19,20# to the characteristic
equation of Eq.~3!, and deduce that the fixed point is local
stable if and only if

H1~F2!ª~B12!F2
222F2

32B~11D2!,0,

H2~F2!ª2s~F2
22B!2F2@~F221!21D2#,0,

~12!
H28~F2!ª2F2~F221!2sB,0,

H3~F2!ª2~F221!312D2~F221!2
2sB

F2
~F221!~F222!

22sF2~F221!12s2B2
2s2B2

F2
2 ,0,

whereF2 is evaluated at the fixed point in question. Wh
H1 ,H3,0, the two inequalitiesH2,0 and H28,0 are
equivalent and so we only need to check one of them.

For B,Bc , we can verify by direct substitution into con
dition ~12! that the fixed point withF2,1 is stable. As we
increaseB throughBc , this fixed point crossesF251. The
stabilities for the fixed points withF2.1 are not so clear. In
fact, at B5Bc we can solve the fixed-point equation~10!
exactly and find that eitherF251 or

F2511
k2

2D2 6A k4

4D42D22k2,

where the last pair exist if and only ifk4/4D4>D21k2. Di-
rect substitution into condition~12! reveals that the fixed
point with F251 is stable~while the stabilities of the othe
two fixed points remain unclear! and hence there is no bifur
cation atB5Bc . Hence, the conditionB,Bc is sufficient
but not necessary for a stable locked state to exist. In fact
s5O(1), we have found numerical examples of stab
locked states even whenB.Bc . However, these example
are not of much physical interest, given thats!1 for real
lasers. In the next subsection, we will show that fors!1, the
locking conditionB,Bc is indeed tight, with a correction
term that approaches zero ass does.

B. Location and stability of locked states fors!1

From now on we will assumes!1. For definiteness, con
sider the scalingk,D5O(sa), and write

k5ksa, D5dsa.

For a.0, the graph of Eq.~10b! has a narrow peak, with
O(sa) width, atF251, and we can show that there are thr
fixed points of Eq.~3! if B<Bc , while there is only one
fixed point if B.Bc and B2Bc@s2a. As we increaseB,
somewhere in the regionBc,B<Bc1O(s2a), two of the
fixed points collide. To better understand what is going
we will employ the Routh-Hurwitz criteria~12!.

For B.1, we can find the location of the fixed poin
perturbatively ifa.0. There is always a fixed point with

F25F0* [B2
s2ak2B

~B21!2 1O~s4a!. ~13!
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For 1,B<Bc , there are a pair of fixed points@21# with

F25F6* [16saA k2

~B21!
2d21O~s2a!. ~14!

Direct substitution into Eq.~12! shows that only the fixed
point with F25F2* is stable. So we will concentrate on th
fixed point and study the mechanism through which it lo
stability. We expect that it will undergo a bifurcation inBc
,B<Bc1O(s2a).

Bifurcation occurs if one of the functions in Eq.~12! van-
ishes @22#. Specifically, the Routh-Hurwitz conditionH1
50 corresponds to a zero eigenvalue, and is therefore
nerically associated with a saddle-node bifurcation, wher
H350 indicates pure imaginary eigenvalues and a Hopf
furcation.~These results follow immediately from the obse
vation that the characteristic polynomial is cubic with re
coefficients.!

We solve Eq.~12! in conjunction with the fixed-point
equation~10! by the method of dominant balance@23#. Let
B5Bc1«. ThenH1(F2)50 if

«5«1[
s2ad2Bc

2

4~Bc21!
1O~s4a!,

~15!

F2511
s2ad2Bc

2~Bc21!
1O~s4a!,

andH3(F2)50 if

«5«3[s222aBc
2~Bc21!/d21O~s324a!,

~16!
F2511s222aBc~Bc21!/d21O~s324a! for a,1/2.

There is no self-consistent solution, with 0,«!1, for
H3(F2)50 if a.1/2. If a,1/2, then«3!«1 and soH3 be-
comes zero beforeH1 does, indicating a Hopf bifurcation
~Whether it is subcritical or supercritical is undetermined
this stage in the calculation. But see Sec. VII B.! If a.1/2,
then H1 becomes zero at«5«1 , indicating a zero-
eigenvalue bifurcation, which, given the absence of any
propriate symmetry, is expected to be a saddle-node bifu
tion @18#. We have confirmed these bifurcation scenar
numerically, using the bifurcation packageAUTO @24#.

The argument above leaves a gap ata51/2, in which case
H1 andH3 both vanish when«5O(s), corresponding to a
bifurcation of higher codimension, and potentially leading
a complicated outcome. We will look into this case sep
rately in Sec. VIII. But as far as the fixed point is concerne
it loses stability atB5Bc1O(s). Hence, no matter whethe
the scaling exponenta is greater than, less than, or equal
1/2, we can conclude thatBc is a tight estimate of the un
locking threshold, with an error at most ofO(s).

To sum up, fors!1 we have shown the following: ~i!
If B,Bc1«, there is one locally stable fixed point. Th
corresponds to a stable injection-locked state, with a nonz
phase difference unless there is no detuning.~ii ! If B.Bc
1«, then there may be one or three fixed points, all in
regionF2P(1,B), and they are all saddles. Hence there is
stable locked state in this case. Here, 0,«5min(«1,«3)
s

e-
as
i-

l

t

p-
a-
s

-
,

ro

e
o

<O(s), with «1 ,«3 given by Eqs.~15! and ~16!, and B
5Bc1« is the parameter value at which the unlocking tra
sition occurs.

Taking advantage of the symmetries~5! and ~6!, we may
rewrite the locking conditionB,Bc1« in terms of the
physical parameters defined in Eq.~2!:

uKuAp1

a1
21.uv12v2utc,2Ap2

a2
212«, ~17!

with 0,«<O(tc,2/a2t f,2). In physical terms, stable locking
occurs if the couplingK and the injection intensity~con-
trolled by the pump strengthp1! are sufficiently strong to
overcome the relative detuning between the drive and
response laser.

It is also noteworthy that the right-hand side of the loc
ing condition depends on the pump strengthp2 of the re-
sponse laser. In applications involving injection locking,
laser with a low power output but very accurate frequency
often used to control a strong but sloppy one. The criter
~17! indicates that locking is more difficult if the respons
laser has a stronger pumpp2 .

C. Discussion

The condition for locking is commonly derived in th
limit of small injection intensity~which equalsp1 /a121 in
our notation!. This derivation relies on the slowly varyin
envelope approximation, along with the further assumptio
that the intensity of the response laser is at the free-runn
output level and that the gain has saturated. Then the sys
of governing equations is reduced to a phase model equ
lent to Adler’s equation@7,11#. The traditional result for the
locking condition is, in terms of our symbols,D,k/AI 2
where I 2 is the free-running intensity of the driven lase
Since I 25B21, this condition reduces to our conditionB
,Bc .

We have rederived this well known result in a more ge
eral context. In particular, we have shown that a suffici
condition for locking isB,Bc , even whenk is not small
and the phase model no longer holds.@Recall thatk is the
dimensionless product of the coupling strength and the in
tion amplitude; see Eq.~4!.# Moreover, our approach allow
us to calculate the correction terms in the formulas for
locking threshold, namely, Eqs.~15! and~16!, in the limit of
small s5tc,2/(a2t f,2).

To see why a simple phase model can give the cor
locking condition, consider the least-stable eigendirection
the locked state. Suppose the coupling is weak, in the se
that k5O(D)!s1/2. At the bifurcation point, the soft mode
~the eigenvector associated with the zero eigenvalue! is given
by

~X2 ,F,F2!5S 2sa,
2~Bc21!

kBc
,

2sak

dBc
D1O~s2a!.

For smalls, the first and third components of this eigenve
tor are small, indicating that the soft mode lies nearly alo
the phase direction. Hence when the coupling is weak,
phase direction alone determines the locking condition, t
good approximation.
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More generally, one can ask, When can the full model
replaced by a phase model? We will show in the followi
section that this reduction is valid whenk andD are small.

VI. WEAK COUPLING

If B.Bc1«, there is no stable fixed point of Eq.~3!, so
the response laser cannot lock to the drive. The desync
nized dynamics then strongly depend on the relative size
the parametersk, D, ands. For definiteness we will continue
to assume thats!1 andk,D5O(sa).

In this section, we focus on the weak coupling casea
.1/2, and show that unlocking occurs via a saddle-no
infinite-period bifurcation. All solutions are then attracted
a stable periodic solution for the reduced system; this p
odic solution corresponds physically to a phase-drifting st

Before we go on, a warning is in order: we will consid
only lowest-order effects in this section for simplicity. I
particular, we will not pick up the« corrections@Eqs. ~15!
and ~16!# for the locking condition.

Suppose thatk5O(D)!s1/2, or equivalently,

uKuAp1

a1
21;uv12v2utc,2!Aa2tc,2

t f,2

in terms of the physical parameters in Eq.~2!. In this limit,
we can reduce the full model Eq.~3! to a phase model by th
following argument. Letu5F221 and introduce the self
consistent assumptionX25O(1) ~which we find to be justi-
fied by numerics!. Then we observe that ifu@k, the term
k cosF in Eq. ~3a! is negligible and so theX2 ,u dynamics
decouples from that ofF and constitutes a two-dimension
system. Next, by a phase plane analysis and diagonali
the Jacobian we can show thatX2→AB21 andu decreases
toward 0, with anO(s1/2) spiralling frequency and anO(s)
relaxation rate. So after anO(s21) transient time,u be-
comes comparable tok and we can no longer neglect th
term k cosF in Eq. ~3a!.

As X25O(1), Eq. ~3b! indicates thatF evolves with a
characteristic rate of sizeO(D,k). If this characteristic rate
is much smaller than that for the spiralingX2 ,u dynamics,
which is true if D,k!s1/2, we can takek cosF to be a
constant with anO(k2) error, and deduce thatX2 ,u relax to
their equilibrium values with anO(s1/2) characteristic rate.

Assuming this relaxation has happened, Eq.~3b! becomes

dF

dt
5D2

k

AB21
sin F1O~k2!, ~18!

which is recognized as Adler’s equation@Eq. ~1!#. The im-
portant feature is thatF either approaches a constant or
strictly increasing, withF mod 2p being periodic with pe-
riod 2p/AD22k2/(B21), depending on whetherB is
smaller than or larger than 11k2/D2, with anO(k2) error.

So, for larget, the unlocked dynamics are given by

X2;AB211
kB cosF~t!

2~B21!
1O~k2!, ~19!
e

o-
of

e

i-
e.

ng

F2;12
k cosF~t!

AB21
1O~k2!,

whereF~t! is governed by Eq.~18!. HenceX2(t) andF2(t)
oscillate periodically, withO(k) amplitudes and the sam
Fourier spectra as cosF, up to overall multiplicative con-
stants. This last feature supplements the observation, n
in @7~a!#, that the laser intensity ‘‘acquires distortion
higher harmonics’’ as the locking threshold is approached
fact, by insisting on a phase model, Siegman@7~b!# analyzed
the dynamics of a laser with external injection outside
locking regime. Now we have justified this insistence
showing that in an appropriate regime in the parame
space, namely,k5O(D)!s1/2, the laser system indeed ap
proaches a state withX2.AB21,F2.1, starting from arbi-
trary initial conditions.

The saddle-node bifurcation found in Sec. V B fora
.1/2 can now be identified more specifically as a sadd
node infinite-period bifurcation@6#. ForB.Bc1«, the phase
increases strictly with a nonuniform speed, with a bottlene
nearF5sin21(DAB21/k). These behaviors are illustrate
in Fig. 1.

The argument above clearly does not hold ifk,D
5O(s1/2), as then the phase dynamics has a character
rate comparable to that of the spiralling motion on theuX2
cross sections. We will address this case in Sec. VIII.

VII. STRONG COUPLING

We turn now to the case of strong coupling:k5O(D)
@s1/2. The main result is that unlocking occurs via a sup
critical Hopf bifurcation, leading to a globally attracting lim
cycle for Eq. ~3! when B.Bc1«. We will investigate in
Sec. VII A the casek5O(D)5O(1). Then in Sec. VII C we
use a rescaling argument to show that this scenario also
sumes the ostensibly more general casek5O(D)@s1/2.

A. Two-timing calculations

Assume thats!1, andk,D5O(1). By defining

E5X2eiF,

FIG. 1. The dependence of the behaviors of the phase differe
F on the pump to loss ratioB, for k;D5O(sa), a.1/2. D,k are
as defined in Eq.~4!. E5X2eiF is the complex electric field. The
stable~unstable! fixed point is represented byd ~s!. F is constant
if B,Bc[11k2/D2 and increases strictly ifB.Bc , with a saddle-
node infinite-period bifurcation atB5Bc . The bifurcation value for
B has O(s2a) errors @Eq. ~15!# and the value ofX2 has O(sa)
errors@Eq. ~19!#. Contrast this with Fig. 2.
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which represents the complex electric field of the respo
laser as observed in a frame rotating with the driver, we
combine Eqs.~3a! and ~3b! into

dE

dt
5@~F221!1 iD#E1k. ~20!

For s!1, F2 is slowly varying and so may be taken to be
constant except over long-time scales of orderO(1/s). If F2
were really a constant, the exact solution to Eq.~20! could be
found as

E5Ecexp„@~F221!1 iD#t…2
k

~F221!1 iD
, ~21!

whereEc is a complex constant. HenceX25uEu would decay
exponentially tok/A(F221)21D2 if F2,1 and grow expo-
nentially to infinity if F2.1. In the first scenario whereF2
,1, we have

dF2

dt
.sFB2F2S 11

k2

~F221!21D2D G.0

if B.Bc and F2.1. So F2 would grow for F2,1. In the
second case whereF2.1, dF2 /dt.2sF2X2

2,0 and soF2

would decay. Hence we expect that, after initial transi
instabilities fort!O(1/s), the system will settle down to its
eventual fate, withF2.1 andE.Ec exp(iDt)1ik/D for all
sufficiently larget, and this is indeed what we find in ou
numerics~not shown!.

Now we investigate the structure of the attractor of E
~3! by two timing @23#. We first define a slow timeT5st.
Abusing notation, we have

d

dt
f ~t,T!5

] f

]t
1s

] f

]T
,

where f denotes eitherF2 or E. Assuming transients hav
already decayed, we letF2511sF2

(1)1O(s2) and E
5E(0)1sE(1)1O(s2). Then we find

E~0!5A~0!~T!ei @u~0!~T!1Dt#1
ik

D
,

F2
~1!5 f ~T!1S B212@A~0!~T!#22

k2

D2D t1
2k

D2 A~0!~T!

3cos„u~0!~T!1Dt….

To remove the secularity so thatF2
(1) remains bounded

~which is necessary forF2 to stay close to 1!, we need

A~0!5AB2S 11
k2

D2D5AB2Bc. ~22!

This is well defined if and only ifB>Bc , which is, to lowest
order, the condition for the fixed point of Eq.~3! to be un-
stable~Sec. V!. Substituting the results forE(0) andF2

(1) into
theE(1) equation and suppressing secularity so that it is p
sible to haveE.Ec exp(iDt)1ik/D, we get
e
n

t

.

s-

f 50, u~0!5
k2

D3 T1c~0!5s
k2

D3 t1c~0!

for some constantc (0). Hence, for timet5O(1/s), and
assuming the system isalready on the attractor, we find

E5A~0!expH i F S D1s
k2

D3D t1c~0!G J 1
ik

D
1O~s!

~23!

F25112s
k

D2 A~0!cosF S D1s
k2

D3D t1c~0!G1O~s2!,

whereA(0)5AB2Bc andc (0) is an arbitrary phase constan
These results have been compared with numerics and s
good agreement. Note that the result is singular ifD→0. A
similar singular limit has been observed in a model of a C2
laser@25#.

B. Discussion

1. Physical interpretation

An inspection ofE in Eq. ~23! reveals the following. ~i!
If A(0),k/D, the phase differenceF oscillates between
p/26tan21(DA(0)/k). The response laser is said to bephase-
trappedto the drive@26#: both lasers havethe same average
frequenciesbut their relative phase varies periodically.
other words, they are frequency locked but not pha
locked. ~ii ! If A(0).k/D, thenF increases monotonically
at an almost uniform rate, corresponding to a state of ph
drift.
These different behaviors, together with the regimes in
rameter space in which they occur, are depicted in Fig
This figure should be compared with Fig. 1, which sho
that for k5O(D)!s1/2, F changes directly from locking to
drifting at the critical pump valueB5Bc1(s2a), with no
intervening possibility of phase trapping.

Figure 3 illustrates the accuracy of our analytical appro
mations. For a given value ofk, we compute the time serie
of the intensityI 5X2

2. The local minima and maxima of th
intensity are plotted in Fig. 3 as a function ofk. For k.2,
the intensity is constant because the system has a stable
point corresponding to a locked state; hence only a sin

FIG. 2. The dependence of the behaviors of the phase differe
F on B, for k;D5O(sa), a,1/2. Parameters, variables, an
symbols are as defined in Fig. 1.F is constant ifB,Bc , oscillates
betweenp/26tan21(DA(0)/k) if Bc,B,112k2/D2, and increases
strictly if B.112k2/D2. A(0) is as defined in Eq.~22!. A super-
critical Hopf bifurcation occurs atB5Bc . The bifurcation value for
B has O(s222a) errors @Eq. ~16!# and the value ofX2 has
O(s122a) errors@Eq. ~26!#. Contrast this with Fig. 1, where phas
trapping is impossible.
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valued branch of data is seen. Ask decreases through th
unlocking threshold, a limit cycle is born, causing tw
branches to bifurcate continuously from of the locked sta
as shown in Fig. 3. This splitting is what one would expe
for a supercritical Hopf bifurcation—the intensity now osc
lates sinusoidally, so the lower branch corresponds to lo
minima of the intensity time series, and the upper bran
corresponds to maxima. The curves passing through the
are analytical predictions given by Eq.~23!.

While the solution~23! is periodic in the reference fram
rotating with the driver, back in the laboratory frame t
solution involves two frequencies. The phase of the rece
laser is then

F25F11F;F101
v1tc,2

a2
t1arg E

and is in general quasiperiodic.

2. Hopf bifurcation at B5Bc1O„s2
…

The calculations in Sec. VII A, and in particular Eq.~22!,
are correct only to the lowest order ins. If we proceed to
higher orders, we find

A5AB2S Bc1
s2Bc

2~Bc21!

D2 D 1O~s3!.

From this and Eq.~23! we see that the radius of the stab
limit cycle scales asAB2Bbifn, whereBbifn5Bc1O(s2) is
the bifurcation value at which the limit cycle is born@com-
pare with Eq.~16!#, and the frequencyD1sk2/D3 is an
O(1) quantity. These results strongly hint that this is a
percritical Hopf bifurcation@6#. Indeed, we can prove tha
this is the case fors!1 andk,D5O(1), asfollows.

FIG. 3. Orbit diagram, plotting the local minima and maxima
the intensity I 5X2

2 vs k, of Eq. ~3!, with s50.010, D52.0, k
P@0,2.2#, B52.0. Dots represent numerical results and curves
oretical expectations@Eq. ~23!#. In this and subsequent orbit dia
grams~Figs. 4 and 6!, the numerical results are obtained by follow
ing the equation of motion with the subroutineSTIFF in @W. H.
Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Nu-
merical Recipes in Fortran: The Art of Scientific Computing, 2nd
ed. ~Cambridge University Press, New York, 1992!#, which imple-
ments a fourth-order Rosenbrock method, and then estimating
extremal values of the intensity with a second-order interpolat
The results are corroborated by another subroutine,STIFBS ~ibid!,
which implements a semi-implicit extrapolation algorithm ana
gous to the Bulirsch-Stoer method.
,
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For B close toBbifn , we may take«5B2Bbifn as a small
parameter. By perturbing first with respect tos and then with
respect to«, we find that the three eigenvalues at the relev
fixed point are

l15 i S D1
sk2

D3 D1«F 1

Bc
2

sk2

D4Bc
~12 iD!G1O~s2,«2!,

l25l1,

l352sBc1
2«sk2

D4Bc
1O~s2,«2!,

where an overbar denotes a complex conjugate. As« goes
through zero,l1 andl2 cross the imaginary axis with non
zero speed, whilel3 remains real and negative. Thus, b
Hopf’s theorem@27#, a limit cycle is present on one side o
the bifurcation point. Moreover, this limit cycle is centered
the fixed point, and has angular frequency given by
imaginary part of the conjugate pair of the eigenvalues.
these results are in agreement with Eq.~23!, and we have
also confirmed them numerically.

To decide whether the bifurcation is subcritical or sup
critical, we use the Poincare´-Lindstedt method@6# to seek a
periodic solution. We find that such a solution, be it stable
not, can exist only ifB.Bbifn , i.e., when the fixed point is
unstable, indicating that the bifurcation is supercritical. T
periodic solution thus obtained is, as expected, the sam
that given by Eq. ~23!. However, while the Poincare´-
Lindstedt method tells us nothing about the stability of t
solution, it has the merit that it is uniformly valid for a
time, thus confirming the speculation, based on numerics
the two-timing analysis in Sec. VII A, that there is indeed
periodic solution.

C. Rescaling for s!1 with k5O„D…@s1/2

Having considered the casek,D5O(1), we will now
demonstrate that as long ask5O(D)@O(s1/2), the lowest-
order dynamics remain the same as before. Thus, any
pling and detuning that satisfy these milder bounds are
sufficiently strong to preserve the qualitative features s
earlier. In this sense, the conditionk5O(D)@O(s1/2) estab-
lishes the demarcation line for the regime of ‘‘strong’’ co
pling and detuning.

By definingu via F2511su, we may rewrite Eq.~3! as

dX2

dt
5suX21k cosF, ~24a!

dF

dt
5D2

k

X2
sin F, ~24b!

du

dt
5B2~11su!~11X2

2!. ~24c!

For D,k5O(1), we observe in numerics thatF251
1O(s) so thatu5O(1). More generally, ifk,D5O(sa),
we may writeD5dsa,k5ksa, with d,k5O(1), andres-
cale time by settingt5sat. Then Eq.~24! becomes

-

he
.

-
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dX2

dt
5s122auX21k cosF, ~25a!

dF

dt
5d2

k

X2
sin F, ~25b!

du

dt
5B2~11s12au!~11X2

2!. ~25c!

For a,1/2, our numerical simulations indicate thatF2
511O(s12a) so thatu5O(1). Hence we can invoke a
self-consistent argument to identify, to lowest orders, E
~25! with Eq. ~24!, with s122a,t,d,k replacing s,t,D,k,
respectively, since the termssu in Eq. ~24c! ands12au in
Eq. ~25c! do not affect the lowest-order phenomena and
therefore negligible. Asd,k5O(1), we canapply the same
two-timing analysis as in Sec. VII A, but with the time scal
t ands122at, and get results similar to those found earli
In terms of the variables used before rescaling, the low
order terms are found to be

X2eiF5E5A~0!expH i F S D1s
k2

D3D t1c~0!G J 1
ik

D

1O~s122a!,
~26!

F25112s
k

D2 A~0!cosF S D1s
k2

D3D t1c~0!G
1O~s222a,325a!,

where, as before,A(0)5AB2Bc5AB212k2/D2 and c (0)

is an arbitrary phase constant. This result is the same as
~23! to lowest order, exhibiting periodic motion born out of
supercritical Hopf bifurcation asB increases throughBc
from below. One slight difference is that the next highe
order terms will beO(s122a) instead ofO(s). Also, corre-
sponding behaviors in this new system will occur on
slower time scale, ast5sat!t, if a.0.

Clearly the argument above breaks down ifa51/2, i.e., if
k5O(D)5O(s1/2), as thens122a in Eq. ~25a! is no longer
small as assumed by the perturbative treatment. Another
of putting this is that the two time scales, which areO(1)
andO(s2112a) in t, collapse into one asa→1/2. In the next
section, we turn our attention to this distinguished regimk
5O(D)5O(s1/2). For symmetrically coupled lasers, this
the regime where subharmonic resonance, amplitude in
bilities, and chaos were discovered@13,14#.

VIII. INTERMEDIATE COUPLING

A. Overview

The cases studied earlier allow us to anticipate some
pects of the possible unlocking behavior for intermedi
coupling. From Secs. V, VI, and VII, we know that for wea
coupling (a.1/2), the fixed point corresponding to th
stable locked state disappears in a saddle-node infinite-pe
bifurcation whenB2Bc5O(s2a), while for strong coupling
(a,1/2), it loses stability in a supercritical Hopf bifurcatio
when B2Bc5O(s222a). Hence, by sandwiching, we ex
pect that for intermediate coupling (a51/2), the stable fixed
.
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point will lose stability whenB2Bc5O(s), probably in a
codimension-two bifurcation combining the features of
saddle-node infinite-period bifurcation and a supercriti
Hopf bifurcation.

For B slightly above the bifurcation value, we expect th
dynamics to be a combination of the two cases studied
viously. The long-time behavior should be a spiraling moti
that slowly passes through the bottleneck near

X25AB21, F5sin21S DAB21

k D , F251,

together with a fast reinjection roughly along the circle

X25AB21, F251.

Meanwhile, there is a global relaxation towards this attrac
The interplay among these three mechanisms can lea
complicated behavior, as we will see below.

In contrast, in the case of symmetrical coupling@m51 in
Eq. ~2!#, the phase difference decouples from the intens
and the gain, if one also assumes that both lasers have e
gains and intensities at all times@13#. This decoupling of the
phase dynamics leaves only two mechanisms: a global re
ation toward the attractor, and a phase advancement~reinjec-
tion! along the attractor. In this sense, the unidirectiona
coupled case might be prone to greater dynamical comp
ity.

B. Numerics

In the intermediate coupling regimek5O(D)5O(s1/2),
Eq. ~25! becomes

dX2

dt
5uX21k cosF,

dF

dt
5d2

k

X2
sin F,

du

dt
5B2~11s1/2u!~11X2

2!, ~27!

with k;d5O(1)@s1/2. In rectangular coordinates, withx
5X2cosF,y5X2sinF, this system can be rewritten as

dx

dt
5ux2dy1k,

dy

dt
5uy1dx, ~28!

du

dt
5B2~11s1/2u!~11x21y2!.

To probe the dynamics, we will varyk and hold the other
parameters fixed. This may seem unnatural, given that
have been usingB as a control parameter so far. However,
turns out that if we varyk instead ofB, the features we wish
to emphasize will stand out more clearly. In experimen
both parameters are easily tunable.
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Figure 4 illustrates the complicated dynamics that oc
in this system. The plot is an orbit diagram, shown in t
same format as Fig. 3. The local minima and maxima of
intensity’s time series are shown as the couplingk increases
toward the locking threshold. For the particular paramet
chosen in the simulation, the locking threshold is atkc

50.99865dAB211O(s). Of course, fork.kc , the re-
sults are simple: there is a single branch of constant inten
corresponding to the locked state. But fork,kc we see an
intricate pattern of local maxima and minima.

The most striking feature occurs for 0.83<k<kc , where
the diagram consists of a sequence of similar patterns tha
scaled down ask increases. Figure 4~b! shows the region
close tok5kc in greater detail. The self-similar structur
appears to persist all the way to the unlocking threshold
k5kc . This scenario is not the standard period-doubl
route to chaos, nor any of the other familiar bifurcation c
cades. We do not fully understand what is happening h
Some first steps toward understanding this remarkable s
ture will be presented in Sec. IX.

We are mainly interested in the self-similar structure n
the unlocking threshold, but some other features of Fig
deserve comment. An unsuspicious look at Fig. 4~a! might
suggest that the attractor is quasiperiodic or chaotic
0.52<k<0.58, as we see a complex set of data there.
this conclusion is premature, as a highly looped periodic
tractor with many turning points could also generate suc
picture, thanks to the many local minima and maxima in
corresponding time series.

Figure 5 shows that, in fact, this is exactly what is ha
pening for many values ofk in the range 0.52<k<0.58.
The xy projections of the attractors in phase space are p
ted usingDSTOOL @28#. The orbit in Fig. 5~a! appears to be
quasiperiodic, while those in Figs. 5~b!–5~e! appear periodic.
These figures also suggest that several kinds of of bifu
tions are taking place. The trio Figs. 5~c!–5~e! indicates a
period-doubling sequence, although we do not see the
period-doubling cascade to chaos.

Hence, to distinguish whether the long-term behavior

FIG. 4. Numerically computed orbit diagram of Eq.~27!, with
s50.0025,d51.0, B52.0. ~a! kP@0.40,1.1#; ~b! an enlargement
in the rangekP@0.98,1.0#. Contrast the complicated patterns wi
the simple structure in Fig. 3. Note, in particular, the self-simi
bifurcation sequence that piles up atk50.99865dAB21
1O(s).
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periodic or not for a given set of parameters, a more care
treatment, such as plotting the power spectrum, is nee
We have computed the largest Lyapunov exponent as a f
tion of k, with other parameters fixed, and find that it
always zero, up to the accuracy of the numerical algorith
This result suggests that there is probably no chaos in
intermediate coupling regime considered here. Perhap
more prudent way to put it is this: chaos is not widespre
for intermediate coupling, if it occurs at all.

There are many other interesting attractors and bifur
tions that could be discussed here, but we prefer to skip th
so that we can focus our attention on the self-similar pict
near the unlocking threshold.

IX. A SINGULAR LIMIT

We now consider a simpler system that exhibits the sa
cascade found in Fig. 4. Lets50 in the reduced system
~27!, so that it becomes

dX2

dt
5uX21k cosF,

dF

dt
5d2

k

X2
sin F, ~29!

du

dt
5B2~11X2

2!.

Figure 6 shows that this new system still exhibits the strik
pattern found earlier~although the precise positions of th
bifurcations are not the same, and there are structures
come up in one case but not the other!. This robustness sug
gests that the self-similar cascade is not due to perturba
effects ofs but is more generic. To check that the cascade
not just an artifact of the choice of variables plotted, we ha
also tried plotting local minima and maxima ofx,y,u, and
I 5x21y2 against the parameterk. In all cases, we find simi-
lar patterns. We have also checked that the patterns k
recurring even closer to the unlocking threshold, specifica
for kP@0.998,1# andkP@0.9998,1#. So we believe that the
self-similarity is genuine.

r

FIG. 5. Thexy projections of the attractors of Eq.~27!, with
s50.0025,d51.0, B52.0. ~a! k50.78, a quasiperiodic attractor
We have followed the flow only for a time span of 1000 units
order to reveal the structure.~b! k50.77, a periodic attractor with
many local minima and maxima. This attractor remains a clo
curve without blurring in a time span of 2000 units, strongly hinti
at its periodicity. ~c! k50.70, a period-1 orbit.~d! k50.68, a
period-2 orbit.~e! k50.67, a period-4 orbit.
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On the other hand, the limits50 requires some cautio
on our part. The blown-up system~27! is obtained from Eq.
~3! by the rescalingt5s1/2t, s1/2u5F221, D5s1/2d,
k5s1/2k, which becomessingularass→0. Hence Eq.~29!
is not directly relevant physically, but it has the virtue tha
leads to cleaner numerics, and brings out the bifurca
mechanism more clearly.

One should also be aware that the singular limit displ
some nongeneric dynamics because of its higher degre
symmetry than the original system. For instance, Eq.~29! is
invariant under the transformation

T: t→2t, x→2x, y→y, u→2u, ~30!

a ‘‘reversibility’’ symmetry that is not preserved by Eq.~27!
for sÞ0. A corollary of this invariance is that ifV is an
attractor, then the setṼ5$(x,y,u)u(2x,y,2u)PV% is a re-
pellor. Results like this can be used for checking numer
convergence in tracing bifurcation diagrams.

A. Fixed-point analysis

Since the transformation from Eq.~3! to Eq. ~29! is sin-
gular, the fixed-point analysis~both existence and stability!
in Sec. V is not directly applicable to Eq.~29!. The necessary
modification is straightforward, and the result is as follow
Fixed points exist if and only if 1<B<Bc[11k2/d2. They
are given byp65(6x* ,y* ,6u* ), where

x* 5
d

k
A~B21!~Bc2B!,

y* 5
d

k
~B21!,

u* 52dABc2B

B21
.

FIG. 6. Numerically computed orbit diagram of Eq.~29!, with
d51.0, B52.0. ~a! kP@0,1.1#; ~b! kP@0.98,1.0#. Compare with
Fig. 4.
t
n

s
of

l

.

Hence both fixed points recede to infinity asB→11, and
they coalesce at (0,k/d,0) asB→Bc

2 .
As for stability, the Jacobian of Eq.~29! is

J5F u 2d x

d u y

22x 22y 0
G .

At the fixed points, the characteristic equation simplifies

05 f u~l![l322ul21
k2

B21
l12~B21!~l2u!,

~31!

where u5u6* at the fixed point p6 . Since f 2u(2l)
52 f u(l) and u1* 52u2* , we can conclude that ifl is an
eigenvalue ofp1 , then2l is an eigenvalue ofp2 . Hence
we cannot have a saddle-node bifurcation atB5Bc .

The eigenvalue equation~31!, as it stands, is hard to
solve. But some information can be obtained from the int
mediate value theorem. Sincef u(6`)56`, and f u

6
* (0)

562(B21)dA(Bc2B)/(B21) is positive ~negative! at
p1 (p2), the intermediate value theorem implies that t
fixed point p2 always has a positive eigenvalue and the
fore cannot be stable. Whether it is a saddle or a repello
not determined by this argument.

To investigate the type of bifurcation atB5Bc , we will
consider Eq.~31! with B5Bc2«, where «.0 is a small
parameter, andk and d are assumed to beO(1) positive
quantities. Then we have a regular perturbation problem
can find the eigenvalues to be

l1,256 iAd212k2/d22
d61k2d2

kd412k3 A«1O~«!,

~32!

l35
22kd2

d412k2 A«1O~«!

at p1 . Hencep1 is an attractor. More specifically, it is a
attracting ‘‘spiral node.’’ The eigenvalues atp2 can be ob-
tained by taking the negatives of the eigenvalues ofp1 .

These results provide some local information about
bifurcation atB5Bc . As B→Bc

2 , i.e.,«→01, the two fixed
points approach each other and collide atB5Bc . Mean-
while, their attractiveness and repulsiveness get weaker
weaker, sinceall the eigenvalues approach the imagina
axis. The fixed point atB5Bc is linearly neutrally stable.

As Eq. ~32! indicates, locally the bifurcation is of codi
mension two, with a simple zero eigenvalue and a conjug
pair of pure imaginary eigenvalues. As noted in@18#, such
bifurcations can be complex because of their global str
tures. In Eq.~29!, as in Eq.~24!, the reinjection provides
such a global mechanism that leads to complicated dyn
ics.

Since the stable fixed point is annihilated in a collisi
with an unstable object asB→Bc

2 , we do not expect stable
objects forB.Bc to be in small neighborhoods of„0,d(Bc
21)/k,0…, the position of the fixed point atB5Bc . How-
ever, some form of intermittency might be expected, and
we show in the next section, this is indeed the case. A
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jectory on the periodic attractors spends a long time in h
cal motion near the ghost of the fixed point. The same is t
whens.0, indicating that this helical motion in the bottle
neck is not caused by the degeneracy.

Before we move on to numerics, it should be noted t
this degenerate ‘‘attractor-repellor bifurcation’’ is a cons
quence of settings to zero. Fors.0, a generic saddle-nod
bifurcation occurs atB5Bc . Also, for s.0, generically we
do not have a genuine codimension-two bifurcation. B
since both H1 and H3 in condition ~12! vanish at Bc
1O(s), meaning that all three eigenvalues are close to
imaginary axis when bifurcation occurs, the nonsingular s
tem ~27! may pick up some remnants of the bifurcation sc
nario of the singular system~29!, so that their orbit diagrams
~Figs. 4 and 6! exhibit similar features. This suggests th
whatever the bifurcation scenario is, it is stable with resp
to perturbations in parameters, at least in an operatio
sense.

B. Numerical studies of the self-similar bifurcation sequence

In our numerical studies of the self-similar bifurcatio
sequence, we concentrate on the periodic windows. As
fore, we will vary k and keep other parameters fixed. Th
for k5kc1«, with 0<«!1 and kc[dAB21, the fixed
points are atp65(6x* ,y* ,6u* ), where

x* 5
1

d
A2«kcS 12

3«

4kc
D1O~«5/2!,

y* 5
kc

d S 12
«

kc
D1O~«2!,

u* 52
d

kc
A2«kcS 1

«

4kc
D1O~«5/2!.

The eigenvalues atp1 are

l1,256 iAd212kc
2/d22dA 2

kc

d41kc
2

d412kc
2 A«1O~«!,

~33!

l35
2d~2kc!

3/2

d412kc
2 A«1O~«!.

1. Helical structure of the periodic attractors

UsingAUTO, we have examined the phase-space geom
of the attractors in individual periodic windows. For definit
ness, consider theyu projections of the attractors. Figure
shows a typical collection of snapshots as we sweepk across
a window. What happens in this window also happens
other windows, with some modifications in details. Spec
cally, we seen little helical loops per round trip at the lef
end of thenth window. ~In this example,n57.! Most of
these loops are located near~0,1,0!, where the stable fixed
point is annihilated atk51.

Intuitively, the trajectory is slowly funneled through th
bottleneck caused by the ghost of the former stable fi
point. During this slow passage, the trajectory also spi
around at anO(1) frequency, given by the imaginary part o
i-
e

t
-

t

e
-
-

t
ct
al

e-

ry

n
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the complex eigenvalues in Eq.~33!. The combination of
slow passage andO(1) spiraling gives rise to the helica
appearance of the trajectories.

As we increasek in a periodic window, (n22) of these
loops stay at roughly the same distance from theu axis,
while the remaining two loops are stretched in the reinject
part of the flow. Moreover, the left side of the projectio
moves, with a stronger shear at the bottom, towards thu
axis, eventually crossing the loops. Meanwhile, there i
clockwise rotation to bring about the structure we see as
reach the right-hand end of the window. The same tre
occurs in all the periodic windows we have sampled, w
3<n<12 ~we do not see periodic windows corresponding
n51,2!. If this ‘‘ n loops in thenth window’’ scenario is
correct, and if there really exist infinitely many such wi
dows accumulating at the limiting valuek51, we will have
an attractor with infinitely many tight loops atk512, just
before its annihilation in an attractor-repellor bifurcatio
This will then be reminiscent of the chaotic orbit born fro
the infinite sequence of period doubling in the logistic ma

In a similar problem concerning a CO2 laser, Zimmer-
mann, Natiello, and Solari@29# worked backwards and con
structed a model by assembling a local spiral motion an
global reinjection. Numerically, for a fixed set of paramete
the flow is similar to what we see here. However, how t
mathematical model is related to the original laser system
unclear.

2. How periodicity ends

In each periodic window, the unstable branch always
its nontrivial Floquet multipliers outside the unit circle, ind
cating a repellor instead of a saddle. When this branch
lides with the stable branch, an attractor-repellor bifurcat
of cycles occurs, bringing an end to the periodic window.
virtue of the invariance of Eq.~29! under the transformation
~30!, it is no wonder that at the bifurcations, when the attra
tor and the repellor coalesce, this neutrally stable objec
invariant under T 8:x→2x,y→y,u→2u. This explains
why the projections onto theyu plane are always sym

FIG. 7. Theyu projections of the attractors of Eq.~29! as we
sweep across then57 periodic window by increasingk, with d
51.0, B52.0. ~a! k50.918 67; ~b! k50.925 00; ~c! k
50.929 80;~d! k50.932 00. The snapshots are not taken at eve
spaced values ofk. Rather, representatives are chosen to show
deformations more clearly.
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metrical with respect tou→2u @as seen in Figs. 7~a! and
7~d!#, while the projections onto thexy plane are always
symmetrical with respect tox→2x at the ends of the win-
dows ~not shown!.

As mentioned earlier, the attractor-repellor bifurcatio
are a consequence of the reversibility symmetry of thes
50 system. Generically, the periodic attractors are ann
lated in saddle-node bifurcations and there is noT symmetry,
a strong indication that the mechanism underlying the c
cade of bifurcations has nothing to do with this symmetr

Recalling the results in Sec. IX A, we notice that while
attractor-repellor bifurcation of fixed points occurs as t
locking threshold is approached from above (k→11), there
is a simultaneous attractor-repellor bifurcation of cycles~pre-
sumably with infinitely many loops! as the threshold is ap
proached from below (k→12). This double-sided aspect o
the unlocking bifurcation also seems to be preserved fos
.0, suggesting that it too has nothing to do with symme

3. Trends in the periodic windows

The periodic windows in Fig. 6 have been verified
AUTO to be isolas, i.e., they terminate at both ends as
periodic attractors are annihilated in collisions with unsta
objects~probably unstable periodic orbits!. However, we do
not fully understand the mechanism that causes such an
lations, although it seems to be some form of resonanc
the spiraling motion and the global reinjection. Indeed,
have found that as we increasek in a periodic window, pe-
riodicity ends precisely when a trajectory executes an inte
number of spiral loops upon one reinjection, i.e., if

2p

v I
5n

2p

vS
, ~34!

wheren is a positive integer, andv I andvS are the frequen-
cies of the reinjection and the spiralling motion, respective
To see this, we assume that the time needed for reinjectio
dominated by the slow passage through the bottleneck. T
using Eq.~33!, we may rewrite Eq.~34! as

d~2kc!
3/2

d412kc
2 A«n5

1

n
Ad212kc

2/d2

to lowest order, where«n512kR,n, andkR,n is where the
nth periodic window ends at the right. Solving for«n , we
get

«n5
~d412kc

2!3

d4~2kc!
3

1

n2 . ~35!

Moreover, at these parameter values, corresponding to
right ends of the periodic windows, the periods of the attr
tors are expected to be

TR,n'
2p

v I
52p

d412kc
2

d~2kc!
3/2

1

A«n

5
2pd

Ad412kc
2

n. ~36!

Figures 8~a! and 8~b! compare these predicted scalin
laws against numerics. Forn>5, Eqs.~35! and ~36! agree
with numerics to within 2%.
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We do not know what mechanism kills the periodic wi
dow as we decreasek. But drawing an analogy to the mecha
nism at the other end, we expect that the positions of the
ends of the periodic windows scale as

12kL,n5O~1/n2!,

so that the widths of the periodic windows scale as

wn5kR,n2kL,n5O~1/n3!, ~37!

and the periods of the attractors at the left ends of the p
odic windows scale as

TL,n5O~n!. ~38!

These scaling behaviors are verified in Figs. 8~c!–8~d!.
Meanwhile, the sizes of the attractors, as measured by

L2 norms, remainO(1) ask→12. This is expected as the
L2 norm is dominated by the global reinjection, which pe
sists in all periodic windows.

X. OPEN QUESTIONS

From a theoretical perspective, the most interesting o
question concerns the mathematical mechanism underl
the self-similar cascade of bifurcations observed in both
~27! and the simpler system~29!. Whatever the mechanism
is, the heuristic arguments and numerical evidence prese
in Sec. IX suggest that it must combine the features o
saddle-node infinite-period bifurcation and a supercriti
Hopf bifurcation. As such, it may well arise in other scie
tific settings. Maybe it can even be detected experimenta

Although self-similarity itself is common in dynamica
systems, and has been explained by renormalization-gr
arguments in such contexts as period doubling, interm
tency, and quasiperiodic breakdown@18#, it seems the cas

FIG. 8. Log-log plots showing the trends among the perio
windows of Eq.~29! with d51.0,B52.0, in the~a! positions of the
right ends of the periodic windows, with the theoretical predicti
ln(12kR,n)5 ln(27/8)22 ln n; ~b! periods of the attractors at th
right ends of the periodic windows, with the theoretical predicti
ln TR,n5 ln(2p/))1ln n; ~c! widths, with the fit lnwn51.5– 3 lnn;
and ~d! periods of the attractors at the left ends of the perio
windows, with the fit lnTL,n51.21 ln n. Dots represent raw data
with 3<n<12, solid lines represent theoretical predictions@Eqs.
~35! and~36!# with no fitting parameter, and dashed lines repres
semitheoretical predictions, where the slopes are chosen acco
to the theoretical scaling@Eqs.~37! and~38!#, and the intercepts are
chosen to fit the data.
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cade we see here falls into none of these categories. Ra
it is characterized by an infinite series of saddle-node bi
cations of cycles, accumulating at a finite parameter va
corresponding to the locking threshold.

Aside from these bifurcation issues, the dynamics of
~29! is also interesting for afixedset of parameters. Zimmer
mann, Natiello, and Solari@29# suggested that the period
orbits with many small loops can be understood as the
fects of a flow with helical local dynamics together with
global reinjection. The challenge now is to find a way
reduce the laser equations to a form where this conjectu
phase-space geometry becomes transparent.

There are many other interesting avenues for future
search. The dynamics of the unidirectionally forced syst
could be explored over a much broader range of param
values, withk andD not necessarily of the same order. W
have also neglected the effects of noise, a topic of g
importance in technological applications of injection locki
@11,30–32#. Another promising direction would be to stud
arrays of coupled lasers@33–39# driven by external injection,
particularly in regimes where amplitude effects are import
and the phase model approximation is not valid. Finally,
-
ng
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es
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er,
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ed
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have restricted attention to drive signals of constant inten
and frequency, but for applications to optical communic
tions @40,41#, one needs to study how lasers respond
modulated drive signals, especially those carrying messa
within them.
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