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Scaling law for the Lyapunov spectra in globally coupled tent maps
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The collective motions in globally coupled tent maps are investigated in terms of Lyapunov spectra. The
scattered states are separated into two distinct phases by the characteristics of the Lyapunov spectra. In the
weak-coupling phase, the Lyapunov spectra obey a scaling law with varying system size. This scaling law
holds even in the strong-coupling phase except for the singular property of the largest Lyapunov exponent. The
Lyapunov exponents are estimated theoretically by using the random field approximation. These approximate
results reveal the relation between the Lyapunov exponents and the distribution of the elements. Furthermore,
the features of the band structure in the distribution are expl¢84D63-651X%98)04910-1

PACS numbgs): 05.45+b, 05.70.Ln, 82.40.Bj

[. INTRODUCTION regarded as either an idealization of long-range coupling or
an approximation to short-range coupling in high-

The coupled nonlinear systems are used as mathematicdimensional lattices. It should be noted that the concept of
models to study complex phenomena of systems out of equspace loses meaning for the global coupling.
librium in various fields, such as fluid dynamics, biological One of the most prominent phenomena in GCM is a col-
systems, chemical reactions, etc. When the elements of tHective motion[10—23. The collective motion is expressed
coupled systems have chaotic dynamics, the dynamics of tha terms of a macroscopic variable that depends on the mo-
full systems may be high-dimensional chaos. While the nations of all elements in the system. The collective motion has
ture of low-dimensional chaos has been well known, the unbeen studied extensively since Kaneko observed a coherent
derstanding of high-dimensional chaos is not yet sufficientmotion in globally coupled logistic magd4.0]. As for glo-
In the present paper, let us consider high-dimensional chadsally coupled tent maps, the analysis in terms of the
in terms of the Lyapunov spectrum. The Lyapunov spectrunfrobenius-Perron operator suggested there exist several
is a set of the Lyapunov exponentay(\i, ... An—1), types of collective motion§16—20. In particular, the peri-
where N is the dimension of the phase space and theodic and quasiperiodic motions have been investigated.
Lyapunov exponents are put in order ag=\;.,. The  Similar coherent motions were observed also in coupled map
Lyapunov spectrum is a useful tool to study the structure ofattices[24—2€ and globally coupled oscillatof7-29. As
the phase space of high-dimensional chaotic sysfdmg. = a macroscopic variable, we employ the mean field

In the present paper, one of the simplest models is inves- L N1
tigated analytically. The model we use here is globally _- .
coupled map$GCM) [8], ht_N Zﬁ Fa()). )

e N1 Thus, the coupling term in Eql) is the mean field. Accord-
Xer1(D)=(1=)f (i) + > fx(in). (1) ingly, the motion of theith element is described by the ef-
ir=0 fective map that depends on time through the mean field as

Heret represents a discrete time stépthe index of the follows:
elements(=0,1,2 ... ,N—1), ande the coupling strength. X 1(1)=F(X(1))=(1—€)f(x,(i))+ eh,. (4)
The one-dimensional mafx) gives the dynamics of the
element. We consider here the tent map The collective motion of the system is expressed by the evo-
lution of the mean field.
f(x)=1—alx|. (2) The purpose of the present paper is to investigate the na-

ture of the Lyapunov exponents and the collective motions.
The gradient satisfies ka<2 for elements to give rise to There exist weak-coupling and strong-coupling phases in the
chaotic dynamics. The initial condition is such that the elesregion where the completely synchronized state is unstable.
ments are uniformly distributed over in the interval Numerical calculation shows that the Lyapunov spectra obey
[—1,1]. The variablex of each map is always bounded in a scaling law in the weak-coupling phase. Even in the strong-
the same interval. The modél) is a mean-field version of coupling phase, the scaling law is valid except for the singu-
the coupled map latticéCML), which has been investigated |ar property of the largest Lyapunov exponent. To explain
as a model of spatiotemporal chaos in the short-range codhe scaling law, we estimate the Lyapunov exponents theo-
pling limit [9]. The global coupling in the modél) may be  retically by the random field approximation used 30—32.

Theoretical calculation suggests that the weak-coupling and

strong-coupling phases correspond to “variance dominated”

*Electronic address: morita@future.st.keio.ac.jp and “mean dominated” phases if31], respectively.
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This paper is organized as follows. In Sec. I, the features 1.0 r r T
of globally coupled tent mapd) are introduced. In Sec. I,
the numerical calculation of the Lyapunov spectrum is pre-

sented to show the scaling law. In Sec. IV, we calculate the 05 | |
Lyapunov spectrum by using the random field approxima-

tion. Though the exact structure of the Lyapunov spectrum is *

not obtained, theoretical results agree qualitatively with the T 00 lo2s ]

numerical calculation. A relation between the Lyapunov
spectrum and the distribution of the elements is disclosed. <+
The transition between the above two phases is explored in

Sec. V. This transition is related to the creation and the ex- 05 §
tinction of two chaotic bands in the distribution of the ele- 0.26 .
ments. Section VI contains concluding remarks. 0.26 0.28

_1 O 1 1 1

Il. FEATURES OF GLOBALLY COUPLED TENT MAPS 1.0 0.5 0.0 0.5 1.0

In this section, some features of globally coupled tent
maps(1) are presented. The globally coupled tent maps have
no clustering state, while clustering states are often observed 1.0 T T T
in other globally coupled systenj&0]. Thus, the attractors
of Eq. (1) are classified into completely synchronized or
scattered states as follows. 05t

In the completely synchronized state, where all elements
always have an identical value, the motion of the mean field
h; obeys the one-dimensional mag~f(x). This state is T 0.0
stable fora(1— €)<1. In the completely synchronized state, c '
only the largest Lyapunov exponeRy is positive and the
others\;~,; are negative. From simple algebra, we obtain o
No=Inaand\;-1=In[a(1—e¢)]. It should be noted that the -0.5 Lo
largest Lyapunov exponent equals the Lyapunov exponent of 5
the mapx— f(x), while the others equal the local-instability
rate -1.0 = : :

1.0 -0.5 0.0 0.5 1.0

Noca=In[a(1— )], (5) (1) h,

FIG. 1. Return maps of the mean field are shown over 10 000
which is defined by the rate of exponential divergence of the@ime steps after f0steps as transienta) a=1.99, e=0.25, N
difference of two nearby elemeni83]. Here, the term “lo- =320. The enlargement is shown in the ins@l) a=1.99, e
cal” represents a property for the individual elements but not=0.45, N=320. The broken lines represent the criteri@®) in
for a short time scale. It is a specific feature of globally Sec. V.
coupled tent maps that the local-instability rate is a well-
defined exponent independent of the titnend the element
indexi.

field has a complex motion that can be high-dimensional
chaos. In Fig. 1, we show examples of the motion of the

mean field.
On the other hand, foa(1—€)>1, the completely syn- ; ; :
chronized state is unstable. Thus, the elements are scatterggm the previous papef3s], the numerical calculation of

. S . ) apunov exponents showed that the systdinhas a tran-
and behave chaotically in time. This state is called the scafs b P ystam

S ifion that separates the scattered states into two distinct
tered state in this paper. In the scattered state, the numberB asesweak-coupling and strong-coupling phasds the
positive Lyapunov exponents is alwais Thus, there is a

. . ) ) . weak-coupling (strong-coupling phase, the largest
bifurcation where the d|men3|on .of the motion change yapunov exponerit, decreaseéincreaseswith increasing
abruptly from 1 toN. The bifurcation occurs aa(1—e)

. o : ; : e for fixed a. The transition is on account of a competition
=1, where the local-instability rate is marginal, i.@4gcq

—0. TheN itive L hat t between the local-instability rate,,., and the collective-
=0. TheN positive Lyapunov exponents mean that tie otion-instability rateA. Here, A is estimated by the non-
elements are almost independent mutually. If it is assume

. near Frobenius-Perron equation, which is obeyed by the
that N elements are completely independent mutually, theyisirintion of the elements in the limit of large siz&. is

mean field is a constant value in the limit of large size Onexpected to give the rate of exponential divergence between
account Otntbf’ law of Iargei?umbers whatl—€)>v2. o nearby trajectories of the mean-field in the limit of large
[When 2 '<a(l1-€)<2? , the mean field has a size. In the weak-coupling phase {.=>A), the largest
2"-period motion] However, the mean-field cannot be con- Lyapunov exponent obeys the scaling law
stant generally, except for the case with specific parametric

values, even in the limit of large sid@0]. Therefore, the Y <€
motions of all elements have mutual correlation. The mean 0 Mocal™ N -

(6)
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FIG. 2. Log-log plots of the scaled largest Lyapunov exponent 0 20 40 60 80
(Ni—Noca) N/ € versus the coupling strengthfor three values of (a) i
system size. The gradient parameter of the map is fixed as
=1.99. The largest Lyapunov exponent is obtained from an average
over 10 steps after discarding 1®teps as transient.
On the other hand, in the strong-coupling phasg,.f 0.8 T T T
<A), the largest Lyapunov exponent, approaches the
collective-motion-instability rate\ with increasingN.
06 | 4

Ill. SCALING LAW OF LYAPUNOV SPECTRUM

In the previous paper, the scaling ld@) for the largest -
Lyapunov exponent was observed in the weak-coupling ~< 04
phase. We investigate the nature of the Lyapunov exponents
in more detail. First, the largest Lyapunov exponent is ex-

plored. The scaling law6) indicates that the difference be- 0.2 =
tween the largest Lyapunov exponeng and the local- -

instability rate \jcy iS proportional toe and inversely

proportional toN. Here, let us consider the scaled largest 0.0 L 1 L
Lyapunov exponent as\{— \ ,ca) N/ €. If the scaling law(6) 0 20 40 60 80

holds exactly, the scaled largest Lyapunov exponent must be (b) I
independent ofe and N. In Fig. 2, the scaled largest
Lyapunov exponent is plotted as a function offor three

values of the system sizd and a=1.99. Figure 2 shows

that, even in the weak-coupling phase<{e,=0.41 fora ) RN
—1.99[33]), the deviation fropm t?lepscaling l;(ﬁ) increases (triangle down. (b) The gradient is fixed aa=1.99 and the cou-
) ’ pling strengthe is 0.05 (triangle up, 0.15 (triangle down, 0.25

gradually with increasing coupling strength Nevertheless, (diamond, 0.35 (circle), and 0.45(cros$
the scaled largest Lyapunov exponents for three values o? T ’ ' '

system size coincide in the weak-coupling phase. As a resulshows several examples of the Lyapunov spectra. Figiaje 3
the relationship shows the Lyapunov spectra fe=0.2 and several values of
a. For all parameters in Fig.(8&), the systems are in the
Mo~ Nioca™ € (7 weak-coupling phase. In Fig(&, all Lyapunov spectra have
almost flat shapes. Figuré shows the Lyapunov spectra
for a=1.99 and several values ef For e=0.45, where the
system is in the strong-coupling phase, the Lyapunov spec-
1 trum has a sharp bend neiar 0. In the other cases, where
No— Nioca™ N (8)  the systems are in the weak-coupling phase, Lyapunov spec-
tra have almost flat shapes again. However, the Lyapunov
spectra are not degenerate but have a structure obeying a
scaling law in the weak-coupling phase, as is seen in the
following.

FIG. 3. Lyapunov spectra are plotted fr=80. (a) The cou-
pling strength is fixed ag=0.2 and the gradierd is 1.5 (circle),
1.6 (diamond, 1.7 (triangle up, 1.8 (plus), 1.9 (cross, and 1.99

is valid only in the weak-coupling limi¢— 0. In contrast, the
relationship

is always valid in the weak-coupling phase region, unhss
is too small. In addition, we see from Fig. 2 that the relation-

hi
Ship Taking account of EQ.(8), we introduce the scaled
€ Lyapunov spectrum defined as
No— Nocal™= = 9)
° N L(I/N)=N(\i = Nioca). (10
holds in the weak-coupling limi¢— 0. In Fig. 4, two examples of the scaled Lyapunov spectra are

We now investigate the Lyapunov spectrum. Figure 3presented forN=80,160,320. Figure (4) shows that the
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2 o FIG. 6. Scaled Lyapunov spectra are plotted for the same pa-
= rameters as Fig. (B). For €=0.45, the large exponentd (0)
o5 =28.0 andL(1/N)=3.2] are not plotted.
20
of, e b ——— as is seen from Figs.(8) and 4c). When the system sizd
000 001 002 003 004 00 02 04 06 08 10 increases, the largest Lyapunov exponent approaches the
(c) i'N (d) ilN - S - . .
collective-motion-instability rateA, which is larger than

FIG. 4. Scaled Lyapunov spectra are plotted for three values ok 5. AS @ resultlL (0) is almost proportional tdl. Never-
system size(@) Weak-coupling phase=1.99, e=0.25, thatisthe theless, the scaled Lyapunov spedi@a/N) coincide with
same parameters as Fig(al (b) Strong-coupling phasea  one curve fori=1 as is seen from Fig.(d). Therefore, the
=1.99, €=0.45, that is the same parameters as F{@).Xc) The  Lyapunov exponents except the largest one can be written as
blowup of (b) for the range of &i/N<0.05.(d) The enlargement
of (b) for the range of &L(i/N)<2. The lines are to guide the
readers’ eyes. The horizontal broken lineg@h and (d) represent
the result(39) of the random field approximation.

1
Ni=Njocar™ NL(i/N;a,e) (i=1). (12

. . . , . Equation(12) indicates that the scaling lai&1) holds except
fuhnct|onTLh(|/N)h|s I|_ndependent oN in the Wekz)ak-cc_)uplm_g hthe singularity for the largest one. Howevér(x;a,e) di-
Foriwse. us, the Lyapunov exponents can be written in t \9erges forx—0 in the strong-coupling phase.

IV. RANDOM FIELD APPROXIMATION

1
Ni=Njocat NL(l/N,a,f) (11)

In this section, the theoretical estimation of Lyapunov ex-
. ponents by the random field approximation is presented. This
Figure 5 shows the scaled Lyapunov spectra for the saMggiimation will disclose the relation between the the
parameters as Fig.(@. When th_e gradiena is suff_|C|entIy Lyapunov exponents and the distribution of the elements
large, L(x;a,€) appears to be independent af Figure 6 (i)
shows the scaled Lyapunov spectra for the same parameters
o b nte th, - for o9 ! A Evousion o e tangent vct

On the other hand, in the strong-coupling phase, the Lyapunov exponents can be computed by the linearized
scaled Lyapunov spectruir(i/N) is not independent o, dynamics of the tangent vectf#, (i)} in the tangent space at

{x(i)} of Eq. (1)

0-5 T T T T T T
- . . 6 N_l .y .y
Ga(i)=(1- s+ 2 siD&(), (13
0.4 -'-. E i"=0
= wheres;(i) = —asgn(x,(i)). Thus, the tangent vector at time
= T is given by
T-1
5T=( 11 Jt) éo. (14)
01 1 1 1 1 1 1 . . .
0.0 02 0-4_/N0-6 0.8 1.0 whereJ; is anNX N Jacobian matrix,
i
. E -
FIG. 5. Scaled Lyapunov spectra are plotted for the same pa- {Jt}ijE(l_ E)St(|)5ij +Nst(l)' (15)

rameters as Fig. (8). The horizontal broken line represents the
result (39) of the random field approximation. F@a=1.7, the
scaled Lyapunov spectra coincide with one curve. We define here the multiplier matriM; as
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1 elements{M};; are estimated. A simple calculation of the

M= H Ji- (16)  combination indicates that the total number of paths connect-
=0 ing (i,0) with (i,T—1) for a certain fixed value ah is
The Lyapunov exponents are given as (N=1)™ 1 TI
=|— — (=) —
1 Co(m. 1) [ NI ) A TG ST
Ai=lim == n yr, 17 (22)

T—w

As a result of Egqs(18), (21), and(22), there are the number

where yi(i=0,1,...N—1) are the N eigenvalues of
7 N-1) g Cq4(m,T) of the random variables which are

M{M;, whereM; is the transpose dfl;. We estimate the
multiplier matrix M1 by using the method if80-32, which

T7
is similar to the method used in the theory of directed poly- i) m( 1— e+ € maT (23)
mers in a random medium. N N
B. Assumption with probability
To begin with, the assumption is presented in this subsec- -
tion. An elemenfM};; of the multiplier matrixMy consists 1+(2p—1) (24)
of the sum of the multipliers for all paths connecting0j 2
with (j,T—1) in element-time space. These paths are de-
fined by the functions,(t), wherek is the index of the path. and
The multiplier for a certain path is given by
e\m e\T™m <€>m(l +‘E T_mT 25
M = N) 1-et ] S (18) N N 2 (25
where with probability
T-1
: 1-(2p—1)7
s=11 siv). (19 — (26)

Here m represents the number of integersthat satisfy  Because of the assumption that they are mutually indepen-
(1) #i(t+1) for O<t<T—1. Accordingly,m is an inte-  dent, it is deduced by the central limit theorem that the sum
ger in[0,T], which depends on path Here, let us assume of the above random variables is a random variable that
thats(i) are random variables as follows: obeys the Gaussian distributio®( w,,,,) through central
Pls(i)=a]=p, limit theorem. Here the average,, and the standard devia-

tion o, are given by
Pls(i)=—a]=1-p, (20 —m

a'(2p—-1)7,

e\m €
where p describes the skewness of the distribution of the Mm:cd(m'T)<N) (1_5+ N
elements. Then$, are also random variables, whose prob-
ability is given by ¢\ 2T-2m

€ 2m
arﬁzcd(m,T)(N) (l—e-i- —

a?’[1-(2p—-1)2T].

1+(2p—1)7 N
— ATy —
P(&=a')= > ; (27)
T 1-(2p—1)7 The diagonal elementdM;};; are given by the sum of the
P(S=-a)=——7F—. (21)  variables, each of which obeys the Gaussian distribution

N(um,om from m=0 to m=T. Because of the nature of
Two random variable§, andS,, for different paths andk’ Gaussian distributior,M+};; obey the Gaussian distribution
are not necessarily independent of each other. To obtain d(xq,04), where
analytical solution, we assume thgt for all paths are mu-

tually independent random variables. Consequently, the ele- T
ment of the multiplier matriM; is considered as the sum of M= 2 Mms
the mutually independent random variablg) over all m=0
paths.
T
2 2
C. Multiplier matrix a7~ mE:o Om - (28)

We now estimate the multiplier matrid; by using the
assumption in the preceding subsection. First, the diagon&@y using the binomial theoremyy and oy are described as
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1 : 1 ;
ne=glap—1)1"+| 1~ Slla2p-1)(1- 1",
1 € 2 2 T
2_ 2T [1_ .. &% = _ _ _1)2T
oh=@| | 1-et ) +lg) (N-D)| [1-(2p-1)T],
1 € 2 € 21T
_ |1 a2T _ R R _ _ 2T
+1-5 a7 | 1 e+N) (N) [1-(2p—-1)2"]. (29)

Second, we consider the off-diagonal elemet};;(i#j). The total number of the paths connectirigOf with (j,T
—1) for a certain value o is

_1)m

(N
Cod(m1T):[T

T!

= (30

1 m
Y

From the same calculation as the above one, it is obtained that the off-diagonal elements obey the Gaussian distribution
N(od,00q), Where

1 1
po=y[a(2p-1)]"- ~[a(2p-1)(1- T,

2 2T € ? € 2 T 2T 1 2T € 2 € 2 2T
oo a1t ) + N) (N—l)} [1-(2p-1)?")- a?T| [ 1-e+ N) _(N) [1-(2p—1)2]. (3D
|
D. Results €(2—¢)
The results in the preceding subsection indicate that the az=a(l—e)\/1+ m : (39

multiplier matrix is expressed by two matrices as follows.

One of them is the constant mati given by Here we take into account only the predominant term of Eqgs.

1 (29 and(31). Note thatay is always larger thaias|.

Na-{-f— Ta’; (i=}), When|a,| < as, all the elements of the multiplier matrix
Al = 32 M diverge exponentially a@(ag). Thus, the constant ma-
{ T}IJ 1 ( ) . . .. . Y. . .
1. 15 (i+]) trix At is negligible. The multiplier matrix can be rewritten
N%T N*2 : in the form
where Mr=a3R. (36)
ay=a(2p—1), When the eigenvalues &®'R are denoted a$y/}, the ei-
envalues oMMy are given bya3'y/ . Since the eigenval-
a=a(2p—1)(1—e). 3 0 T 8re GVEN D¥Es i g

ues{vy/} are independent of, we get all the Lyapunov

In the case op=1 orp=0, which is expected to correspond EXPONents as

to the completely synchronized state, the multiplier matrix (2-0)
€E(£— €

Mr is expressed by only the constant matdx as Mt

=Ar. Then, the eigenvalues M{M are calculated analyti-

cally and we obtainy9=a?" and y.=[a(1—¢€)]?" (i

1
+-Inl1+

Ni=In az=Ina+In(1l—¢) 5

|

(37

N(1—¢)?

=1). According to Eq.(17), the Lyapunov exponents are

obtained as\g=Ina and\;=In[a(1—¢€)] (i=1). These val-

ues coincide with the exact solutions in the completely syn

chronized state.

The other matrix is the random orie;. The elements
{Rrhj
the Gaussian distributio(0,1). In the case of €p<1,

The random field approximation gives the result that all
Lyapunov exponents are degenerate fan|<as. This

N-fold degeneracy agrees with the numerical result that the
Lyapunov spectra have almost flat shapes in the weak-

are mutually independent random variables obeying?OUPIling phasésee Fig. 3 However, the Lyapunov spectra

are not degenerate completely. Thus, this random field ap-

which corresponds to the scattered state, the multiplier meroximation does not give the exact shapes of the Lyapunov

trix My is described as
Mr=Ar+ a3Rr. (34)

for large value ofT, where

spectrg see Figs. @) and 5. The disagreement is due to the
assumption tha$, for all paths are mutually independent. In
fact, S, for a path correlates witl§,, for another path.

By assumingN is sufficiently large and by using the ap-
proximation that In(#x)=x for x<1, we rewrite Eq(37) as
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NS Gl (39) G
i local 2N(1—6)2. % 04
[
Thus, the scaled Lyapunov spectrum is given by - 0.0
€(2—e€ ‘c'_)_
L(i/n;a,e)z(—)z. (39 o 04
2(1—¢) ©
_ . _ £ o8¢ x < .
This equation suggests that the scaled Lyapunov spectrum is - *
independent of the system sikk This agrees with the nu- < 4o . !
merical result(11) in the weak-coupling phase. Moreover, 0.2 0.3 0.4 0.5
Eq. (390 suggests that the scaled Lyapunov spectrum €

L(I/p;a,g) .doe.s not depend aa. This agrees with the nu FIG. 7. Comparison between the numerical calculation and the
merical indication that the scaled Lyapunov spectrum is in-

. . random field approximatiofd1). The numerical result for the larg-
dependent o& for sufficiently largea (see Fig. 3. The de- est Lyapunov exponent of E@l) is plotted forN= 1000 (circle).

viation seen fors.mall values gfmay be due tP the tendenpy Cross marks represent[&i2p—1|] and the solid line represents
that the correlation o, for different paths increases with |yr31—¢)). Whenp is calculated, we takél=1001 to avoid the
decreasinga. Therefore, the scaling laull) is explained case ofp,= 1/2, in which Eq.(42) diverges. Ifaj2p—1|] is obtained
qualitatively by EQ(38) In addition, in the limit ofe—0, from an average over iQ;’[eps as well ax,.
we obtain Eq.(9) from Eq. (38).

On the other hand, whea,|> a3, all the elements of the coupling phase, as expected. It is evident that there exists a

multiplier matrix My diverge exponentially asMT}ij:aI. transition neat2p—1|=1—¢€. The same type of transition
As a result, the largest eigenvalyg also diverges exponen- was observed in CML by PikovskjB1]. Pikovsky denoted
tially as O(«3"). From Eq.(17), we obtain as “variance dominated” and “mean dominated” the weak-
coupling and strong-coupling phases, respectively.
No=In|a;|=In a+In|2p—1|. (40 In the intermediate region, the theoretical predictidf)

yields considerably smaller values than the numerical results
Besides, the other eigenvalugs (i=1) are still O(a3" (see Fig. 7. In order to explain this disagreement, we intro-
because|a,|<a3. Thus, the other Lyapunov exponents duce the finite-time average (#p,— 1| as
\; (i=1) are given by Eq(38). This theoretical result ex-
plains qualitatively the scaling lawl2), which holds except
the singularity for the largest Lyapunov exponent. However, Inqt )=z ,E In[2p,, —1].
as is seen from Fig. (d), the exact shape of the scaled vt
Lyapunov spectrum is not obtained either from this randonfigure §a) shows the dependence @ft;T) on timet in the
field approximation. intermediate region fofT=100. Obviously, the value of
When the system sizN is sufficiently large, the approxi- q(t;T) switches between two separated ranges intermit-
mate value of the largest Lyapunov exponent is given by tently. Figure 8b) shows temporal change of the finite-time
Lyapunov exponenk(t;T) for the same trajectory as Fig.
No=max(in[a|2p—1[],In[a(1-e)]). 4D g@). As is predicted from Eq(41), Ao(t;T)=In[a o(t;T)]
during time intervals ofq(t;T)>1—e¢€, whereas\y(t;T)

t+T-1
(43

When |2p—1|>1—¢€, A\, depends on the skewnepsthat
represents the average probability that the elements have

positive values. It is plausible thatis estimated in the form 1 ' ' ' '
1y 8 o
Inj2p—1|=lim = >, In|2p,—1], (42) 2
T—o T t=0 o
S, -
wherep; is the fraction of positive elements at timeWhen =
N is an even number, Eq42) is divergent if p,=1/2 at (@ -2 : : : :

certain timet. However, this divergence is not significant for
the Lyapunov exponents because of the contribution from
the random matriRy. The most simple method to avoid
this irrelevant divergence is taking an odd numbeNasVe

use this method whep is estimated. The numerical result 0.1 : L . :

for the largest Lyapunov exponent, [&2p—1|], and (b) 0 10000 20000 30000 40000 50000
In[a(1—e¢)] are plotted as functions af for a=1.99 in Fig. time

7. As is seen from Fig. 7, the theoretical predictigt) FIG. 8. (@ In[aq(t;T)] is plotted as a function of for a
agrees well with the numerical calculation. The case 0f=1.99 e=0.42,N=1001, andT=100.(b) Ao(t;T) is plotted as a
|2p—1|<1-e€ corresponds to the weak-coupling phasefunction oft for the same trajectory ag). The horizontal broken
while the case of2p—1|>1— € corresponds to the strong- line represents [@(1—¢)]=0.143.. . ..
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Xo(t;100) , I [a q(t;100)] FIG. 11. 20—1 is plotted as a function ad(1— €) if the mean

field is constant in the limit of large size. The broken line represents
the minimum value of (% €). Since the gradierd is in the range
1<a=<2, (1-¢) has the minimum value &=2,

FIG. 9. Comparison between the distributions ofala(t;T)]
(thick line) and of the finite-time Lyapunov exponex§(t;T) (thin
line) for the same parameter as Fig. 8. The bin widthi§ and the

distributions are normalized for their integration to be 1.
V. BAND-STRUCTURE AND TRANSITION

=In[a(1-¢)] during time intervals ofy(t;T)<1—e, Thus, In the preceding section, we have obtained the relation
the situation of the strong-coupling phase and that of thgyetween the Lyapunov exponents and the distribution of the
weak-coupling phase alternate. In Fig. 9, we show the distrielements. The abrupt transformation of the distribution takes
butions of Ija q(t;T)] and\o(t;T) for the same parameter as place when chaotic bands are broken through tangent bifur-
Fig. 8. The distribution of Ipa q(t;T)] has two well-defined cation, as we see in the following.

peaks(thick line in Fig. 9. The lower peak exerts no influ-  To begin with, we assume that the mean field is constant.
ence on the finite-time Lyapunov exponent. The higher peaH—hus, the system has" Zhaotic bands when22n+l<a(1
agrees well with a peak of the distribution of the finite-time 5—n o . -

Lyapunov exponentthin line). Moreover, the distribution of . 6)<2. - In the limit of large size, the distribution func-
the finite-time Lyapunov exponent has a sharp peak a?on defined by
In[a(1—¢)], as expected.

The distributions of Ifa q(t;T)] for several values of are
shown in Fig. 10. For a sufficiently large value ®f the
distribution has only one broad peak. In Fig. 10, the condi-
tion Infaqt;T)]<In[a(l—e¢)] is always satisfied whe
=10°. In this case)o(t;T=10°)=In[a(1—¢€)] is expected s a constant function that consists df @eparated supports.
from the approximate estimatiof1). However, there are \whene=0, this can be the case. Singgis also independent
time intervals where the system behaves as the largesf the time steft, the skewnesp is determined by only the
coupling phase, as is seen from the intermittent motion of thgajye ofa(1— €). Under the above assumptio@p—1| is
finite-time Lyapunov exponentsee Fig. 8 Thus, Ao(t; T smaller than & e for any value ofa(1-¢), as is seen from
=10°) is considerably larger than the expected valuerig, 11.

In [a(1—¢)]. This random field approximation is not always  However, the real values ¢2p— 1| are different from the
good whenT is large. values shown in Fig. 11 wheaw0. This is because neither

the mean field nor the distribution function is constant. Three
1/1-

1 N—1
pe(x)= lim D s(x—xy(i))
=0

N— oo

(44)

of p; is limited in a small domain. Thus, it is expected that
|2p—1| is not over - €. On the other hand, when the two-
band structure is brokefFig. 12b)], the distribution func-

. J““\ /

» T=10°

stk PR | y T=10°

e
y

w;

J\

» T=10°

the two-band structure is retaingéig. 12a)], the time series
5

f

L

A

1 T=102

tion has only one narrow support, which fluctuates chaoti-
cally. Thus,p, often takes 1 or-1. Accordingly,|2p—1|

can exceed T €. As an example, we consider the intermit-
tent behavior shown in Fig. 8. The temporal change of the
distribution of x,(i) is displayed in Fig. 13. During time

intervals where the system behaves as the weak-coupling
phase, two chaotic bands are obserw@ampare Figs. 8 and
. 13). On the other hand, no band structure is observed during
In [a g(t;T)] ; .
time intervals where the system behaves as the strong-

FIG. 10. The distributions of Ifia o(t;T)] for several values of coupling phase. Figure 13 suggests that the intermittent
T, a=1.99, e=0.42, andN=1001. The cross marks represent Switching between the above two situations is due to the
In[a(1—-é)]. creation and the extinction of two-band structure.

distribution

successive snapshots gf(x) are shown in Fig. 12. When
l/ ™
10 l/:|/ j
-2 -1

:*‘Mt + T=10

0 <
0 1



PRE 58 SCALING LAW FOR THE LYAPUNOV SPECTRAIN ... 4409

6 1 1 1 1.0 1 1 1
4 | ]
X X
a w
2 f ; :
' L
i 05 | ]
0 :
-1.0 . 1.0 _10 . . 1 . 1 . 1 .
(a) X -1.0 -0.5 0.0 0.5 1.0
(a) X
6 1 1 1
!- 1.0 1 ) )
I
: M
4F : i 05 |
= L L
< Y N £
2+ E :": b w 00 F
Voo b ~
i :.-l-'i l"l_l i LLAot
: Lo I ]
0 1 ; 1 .i 1 ! i -Ol5
-1.0 -0.5 0.0 0.5 1.0 )
b X
(b) 1.0 & L L L

FIG. 12. The three successive snapshotg,(f) are shown in 1.0 05 0.0 05 1.0
order as solid, dashed, and dot-dashed lif@stwo-band structure b ’ ' ’ ) )
is retained fora=1.99¢=0.35; (b) two-band structure is broken (b) X
for a=1.99¢=0.45. The distribution functiong,(x) are calculated FIG. 14. The two-iterated mag , ;(F,(x)) at t=11 100 and

by the nonlinear Frobenius-Perron equation. t=11168 for the same trajectory as Fig. 8 are shown. The thin lines

are trajectories starting from apices.
Although there are also more than two band attractors, we

focus on the two-band structure in the following. This is
because the two-band structure is significant for Lyapuno

exponents, besides which more than two bands are rare yo-iterated mapF...1(Fi(x)), whereF(x) was given by

g. (4). The shape of;, 1(Fi(x)) is determined by, and
hiy1. Two illustrations of the two-iterated maps fa(1l
— €)<\/2 are given in Fig. 14. In Fig. 14), the two-iterated
map has three unstable fixed points. Thus, two chaotic bands
exist and the elements in the two different bands are sepa-
rated by the middle unstable fixed point. On the other hand,
there is only one unstable fixed point in Fig.(f4 In this
case, one of the two chaotic bands is extinguished through a
tangent bifurcation. The two bands of the two-iterated map
are retained on the condition that the successive pair
(h¢,hi, 1) of the mean-field satisfy the following two equa-
tions:

Eeen. To explore the two-band structure, we consider the

x(i)

10 0 10000 20000 30000 40000 50000
time
FIG. 13. The temporal change of the distributiorxg(fi) for the
same trajectory as Fig. &(i) are plotted fori=0,1,2 ...99 at
every 100 time step. (1—e)[1l—a(l—e+eh )]+ eh<O, (45

(1-e)[1—a(l—e+eh)]+eh, <0,
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FIG. 15. The coupling strength beyond which the two bands FIG. 1_6. The critical cpgplingc is_ _plot_ted as a function of the
are broken is plotted as a function of the population ratio betweersyStem sizeN, where the initial condition is the two-band-structure
the two bands. We numerically calculate by averaging over 20 reWh0se population ratio is 1/2. We calculate in the same way as Fig.
alizations where increases by 0.0001 every®l0me steps for the 15 The lines are to guide the readers’ eyes.
system ofN=100. The lines are to guide the readers’ eyes.

observed, as seen from the dashed line in Figa)lDn the
whena(1l—e€)<\2. In Fig. 1b), the criterion(45) is dis-  other hand, for large values @f(1—¢), neither jump nor
played as the region between the two broken lines. In théysteresis is observegee Figs. 1), 17(c), and 17d)].
strong-coupling phase, the criterié45) is satisfied at some Even in the region where all two-band states are unstable, the
time steps but broken at the other time steps. Thus, the crBystem can spend long stretches of time being a two-band
terion (45) is not a sufficient condition for the two-band state. Thus, the intermittent behavior seen in Fig. 8 exists in
structure to exist in the modél). the wide parameter region. As a restitchanges gradually.

Taking into account the fact that the bifurcation structure In order to characterize the intermittent behavior, we cal-
of the model(1) depends ora(1—€) in a rugged way(see culate the probability of temporary two-band states of dura-
Fig. 11 and[20,23), it is desirable that the value af(1  tion 7. Let D(7) denote the distribution probability of the
— €) be fixed in order to study the transition. Thus, we con-duration 7, which is measured by using the criteriofb).
sider the situation in whicke increases progressively with Even when no temporary two-band state is observed,
fixed a(1—e€). When two-band structure is retained, the (N,h¢;1) often enters in the region described by E4p). In
number of elements in each band is constant. Thus, thef&e region(45), the rate of the exponential divergence for the
exist a lot of two-band states that are characterized by the

population (N;,N,) of the elements in each band. To distin- 1.0 Ra—— 10 . :
guish these states, we define the population ratio as | —na0 ] 06 |~ N=40 ]
max(y,n,), wheren;=N;/N, n,=N,/N, andn;+n,=1. s - Neoas fr
The coupling strength beyond which the two-band state is_ *°[ 1 06 1

——
s,

band state with the population ratio 1/2 is the most stable, a:

unstable depends on the population rdka. 15. The two- 04t ; * 04t ;
i

is seen from Fig. 15. Let¢, denote the coupling strength at * » j}
which the two-band state with population ratio 1/2 loses the %%z 05 04 002 e 04
stability. Thus, there is no stable two-band structure above® € ) €

the critical couplinge.. The critical couplinge. increases 10 . . 10

with the system sizeN (see Fig. 1B This is due to the o5 L o Net os L o Neso

finite-size effect that the fluctuation of the mean field de- | - N-10 ﬂ e

creases with the system size. For some valuea(af- ), 06 1 /] T 06 1

the critical couplinge, appears to saturatghe cases of * 04 | ;’ ;‘rf. 04 b
a(l1—¢€)=1.05,1.10,1,15 in Fig. 16 Thus, the transition ex- el 1{ 3; ] ozl ]
ists in the limit of large size. On the other hand, there are j )!j ' J
values ofa(1l—¢€) where the two-band structure is always 093 o 07 00,5 o5 04
retained for sufficiently large system size in the range of 1« 3 @ €

<as=2 ande>0 [the case of(1-¢)=1.20 in Fig. 16. FIG. 17. The order parameter is plotted as a function of for

. The order parametdf! IS defm?d as the fraction ,Of Fhe three values of system size. The order paraméter averaged over
time steps when Ed45) is not fulfilled. If H=0, the distri-  5q realizations where increases by 0.0001 everyLme steps.
bution function is always two-band. Figure 17 shoWs  The initial condition is selected that the population ratio is 1/2 at
when € increases progressively with fixea(1—e€). Here, ¢=0.2. (@ a(l1-€)=1.05 (b) a(l—€)=1.10; (© a(l—e)
the initial condition is selected that the population ratio be=1.15; (d) a(1—€)=1.20. In(a), the dashed line represents the
1/2 for e=0.2. For small values c(1—€) [Fig. 11a)], the  order parametel when e decreases foN=160. This dashed line
change ofH has a clear jump. In this case, a hysteresis ids not shown in(b), (c), and(d), because no hysteresis is observed.
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mean field is given by approximately{refer to Fig. Zb)].
Thus, the distribution probabilityp(7) is expected to have
the exponential decay d3(7)«a”". The numerical result
agrees well with this expectatidirig. 18a)]. This fast ex-
ponential decay is not relevant to the intermittent behavior.
On the other hand, when the intermittent behavior is ob-
served, a slow exponential decay also exist®ify) [Fig.
18(b)]. Thus, the probability of the duration of the temporary
two-band states decays exponentially. This result indicates
that the temporary two-band state has a characteristic time,
which is longer than the time scale of the individual chaotic
elements. This characteristic time increases wlemnle-
creases. Since for<e; two-band states became attractors,
this characteristic time is expected to divergeeat In the
neighborhood ok, the distribution probabilityp (7) obeys

a power law, as is seen from Fig. (&8 In Fig. 18c¢), the
deviation from the power law is seen when-1. It is be-
cause there is also the exponential decay, which is irrelevant
to the intermittent behavior. The preliminary calculation sug-
gests that the exponent of the power law depends on the
a(l—e) but is independent oll. However, there is a limit

in the approach using the criteridd5), because this crite-
rion is not a sufficient condition in which temporary two-
band states can exist. A different approach would be required
to study the critical phenomena and the universality classes
of the transitions in detalil.

VI. CONCLUSION

We have investigated the Lyapunov spectra in globally
coupled tent maps. There are two phases in the scattered
region, where the completely synchronized state is unstable.
In the weak-coupling phase, the Lyapunov spectra obey the
scaling law(11) with varying N. The strong-coupling phase
is seen between the weak-coupling and the completely syn-
chronized states. Even in the strong-coupling phase, the scal-
ing law holds except for the singularity of the largest
Lyapunov exponent. We note here that the scaling law is not
always clear in a medium region between the weak-coupling
and strong-coupling phases. This is due to the intermittent
behavior(Fig. 8 and the dependence of the critical coupling
€. on the system sizB8l (Figs. 16 and 1)

The theoretical calculation by the random field approxi-
mation explained qualitatively the nature of the Lyapunov
spectra. This study demonstrated that the skewipegsr
q(t;T)] of the distribution of the elements is important to the
Lyapunov exponents. The exact shape of the scaled
Lyapunov spectrunh.(x;a, ) was not given by this random

the criterion(45) is retained. The distributions are calculated from afije|d approximation. The correlation between the elements is
trajectory over 18 time steps(a) Linear-log plotting for the case cgnsidered only through the skewngssThe exact shape of

that no two-band structure is observed:=1.75,e=0.4[a(1—¢)
=1.05], N=160. The distribution probability has exponential de-

L(x;a,e) may be determined by the correlation, which was
ignored in our approximation.

cay asD(r)xa” ". The broken line represents an exponential decay The largest Lyapunov exponent was estimated ag42j.

with ratea. (b) Linear-log plotting for the case in which intermit-
tent behavior is observe&=2, e=0.4[a(1—¢€)=1.2], N=160.
There is another exponential decay with a considerably smaller d
cay rate. The broken line represents an exponential decay with r
1.006. The blowup is shown in the inset. The broken line in the
inset represents an exponential decay with eatéc) Log-log plot-
ting for the case ofe=0.335-¢, when a(1—¢€)=1.20 andN

e-
att

for sufficiently large system size. This result indicated there
is a transition. In the previous pap&3], this transition was
nvestigated in terms of the competition between the local-
instability rate\ .5 and the collective-motion-instability rate
A. In this paper, the random field approximation showed that
this transition is also due to the competition between the

=160. The dashed line represents the fitting power law with affandom matrix terms Ry and the constant on&r. Appar-

exponent—2.63 . . ..

ently, the elements of the random matdgTRT are given as
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+exXpoca) for N—. Thus, the matrixA; is expected to  chaos have been investigated in connection with phase tran-

be relevant to the collective-motion-instability-rate While  sitions in equilibrium system$34—-41. There are several
in the weak-coupling phase the largest Lyapunov exponerfioupled nonlinear systems that show the clear critical prop-
depends only on the system parameters, in the strongties[5,26,34—39 The investigation of the critical proper-
coupling phase it depends also on the skewmess ties for our transition is now progress. On the other hand, in

We characterized the intermittent switching between thdéhe case of smak(1—e) [Fig. 17@)], we had a discontinu-
two phases by introducing the finite-time average ofous transition. Discontinuous phase transitions such as this
|2p,— 1|. This intermittent switching is due to tangent bifur- have been reported for some coupled nonlinear systems
cations due to the temporal change of the mean field. Thik40,41. Our transition is complicated because the weak-
tangent bifurcation is explained well by using the two- coupling phase has a lot of “macroscopic” separated states
iterated map. “Internal” bifurcations such as this have beerdepending on the population ratio of two separated bands. In
studied in connection with the quasiperiodic collective mo-addition, since the concept of space loses meaning for global
tion in globally coupled logistic maps by Shibata andcoupling, the correlation between any two elements should
Kaneko[22]. The intermittent behavior is observed even innever be ignored. In order to understand clearly the critical
the limit of large size. The temporary two-band state has #henomena of the transition for the globally coupled sys-
characteristic time. The characteristic time depends on thééms, more research would be required.
parameters, e, andN.

Furthermore, we explorgd the transition in. terms of twq- ACKNOWLEDGMENTS
band structure of the two-iterated map. Continuous and dis-
continuous transitions were observed. In the case of the con- The author appreciates Y. Kuramoto, T. Chawanya, K.
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size. Near the transition point, there is a power law in theand T. Mizuguchi for their support. The author would like to
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