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The moment equations associated with the evolution of the probability density are known to form an infinite
hierarchy of coupled equations in nonlinear dynamical systems. In the present paper a systematic approach for
closing this hierarchy is proposed, based on the ansatz that in the long time limit there exist groups of moments
varying on the same time scale. The method is applied to a one-dimensional vector field in the presence of
noise, and to two prototypes of chaotic behavior. Excellent agreement with numerical results is obtained.
Special emphasis is placed on the role of symmetries, and on the origin of the composite oscillations found for
certain types of moments in the chaotic syste[84.063-651X98)01310-3

PACS numbd(s): 05.45+b, 05.40:+]j

[. INTRODUCTION ciated with a system are generally low-order moments of the
probability density. To characterize the macroscopic state of
It is widely recognized that the probabilistic description such a system, it would therefore suffice to compute these
constitutes the natural mode of approach to large classes €&fst few moments instead of the full density function. It is
dynamical systems. On the one hand, such systems are oftbire that one encounters a ubiquitous limitation, complicat-
subjected to a variety of forcings, including the internally ing, at the outset, the probabilistic study of nonlinear sys-
generated thermodynamic fluctuations, which can in certaitems: owing to the nonlinear dependence of the coefficients
cases be assimilated to a stochastic process, thereby eliciting the equation for the probability density, the low-order mo-
a response at the level of the system’s observables which canents do not obey closed evolution equations but are, rather,
best be described in probabilistic terrfis]l. On the other linked to the high-order ones by an infinitgerarchy of
hand, as well known, purely deterministic systems obeyingoupled equations.
nonlinear evolution laws can generate complex behavior in Several attempts at overcoming this fundamental diffi-
the form of multiple solutions or aperiodic space-time evo-culty have been reported in the literature. The first idea that
lutions, of which deterministic chaos is the most strikingcomes to mind is to neglect higher order moments or, more
example[2]. Under these conditions the state of the systenprecisely, the corresponding variances or cumulants, alto-
becomes markedly delocalized in phase space, and, ongether. This gives reasonable results in systems operating
again, the probabilistic description offers the most naturabround a stable steady state and submitted to weak noise, but
way to account for this variability and to characterize it in fails completely in the presence of strong fluctuations and/or
terms of quantities related to the intrinsic properties of thechaotic dynamics. A somewhat related technique, subject es-
underlying dynamic§2,3]. This approach has been used suc-sentially to the same limitations, is to linearize the coeffi-
cessfully in, among others, the problem of prediction in thecients of the equations for the probability densities around a
context of atmospheric and climate dynamjég, and the reference statgl]. A third type of approach consists of seek-
characterization of multifractals] and fully developed tur- ing for scaling relations between moments, using arguments
bulence[6]. inspired by Kolmogorov’'s theory of turbulendé]. It has
A typical feature of the probabilistic description is to ex- been applied recently both at the level of heuristic moféls
press the evolution of probability densities in terms diha  and at the level of the Navier-Stokes equatif®k The ob-
ear evolution equation, as opposed to the generally nonlinegective of the present paper is to propose a systematic ap-
character of the corresponding deterministic description. Furproach to the truncation of the moment hierarchies, and to
thermore, while in a nonlinear system the deterministic deapply it to representative case studies.
scription may predict a variety of instabilities, in the proba- The main idea, presented in Sec. Il, is to express high-
bilistic system the probability density will be driven order moments as time-independent functionals of the low-
irreversibly to a final invariant state, as long as the systenorder ones. This stems from the observation that in the re-
enjoys sufficiently strong ergodic properties. The complexitygime of long(but not infinite times there exist subclasses of
of the deterministic nonlinear dynamics will show up, then,moments varying on the same time scale, given by the domi-
through the nonlinear dependence of the coefficients of theant eigenvalug) of the evolution operator for the probabil-
evolution equations of the probability densities in the phaséty density. This provides, then, a natural closure scheme
space variables. As a result of this, it is generally not poslinking the high-order moments to the first few ones. As a
sible to find closed-form solutions for such densities. preliminary exercise, in Sec. Il a deterministic one-
On the other hand, typical macroscopic observables assalimensional vector field is considered, and shown not to sat-

1063-651X/98/581)/4391(10)/$15.00 PRE 58 4391 © 1998 The American Physical Society



4392 C. NICOLIS AND G. NICOLIS PRE 58

isfy the ansatz of Sec. Il, owing to the quasi-independent d —¢ r e
evolution of the successive moments. Section IV is devoted gt Xgh X = 2 KXyl X X (4b)
to a study of this system in the presence of noise. It is shown !
that noise provides the kind of coupling needed to synchroémd
nize the moments, thereby allowing for closed-form equa-
tions for the evolution of the mean value and the second 4
moment. This result is fully corroborated by numerical ex- gt xil-uxE”:Z kix'il---x:‘i_l---xE”Fi
periments. :

The case of chaotic dynamics is considered in Secs. V and
VI dealing, successively, with the Rsler and the Lorenz +1> Dijkik]-x'f---x:“_l---x;(i_lx:“.
models. Closure is again shown to hold true, and the intricate 1
role of symmetries in the evolution equations is brought out. (40)
The main conclusions are finally drawn in Sec. VII.

We see that, as anticipated in Sec. |, as long~as$s not
Il. FORMULATION linear in x;, Egs. (4b) and (4¢) indeed constitute infinite
hierarchies of equations linking moments of ortteto mo-
In the sequel we shall be dealing with dynamical systeMsnents of at least ordde+ 1. On the other hand, the second

dx see later, this term will be responsible for the coupling of all
—=F(x,1) (1  moments and their eventual synchronization to the same time
dt Y scale.

Let {\,}, n=0,1..., be the eigenvalues &f or P. To

press the main idea of this paper in as simple a setting as

possible, we assume. .}, n#0, to be discrete, nondegener-
dx ate, and separated from the invariant eigenvalye 0 by a
a=F(x,,u)+R(t). (1b) finite gap. Furthermore, we consider systems having suffi-

ciently strong ergodic properties, so that a typical initial con-

Here x=(xy,...,X,) is the set of variabless=(Fy,....F,) djtion po(X) i§ d.river_1 irreversibly to the invariant distribu-

the evolution lawsy stands for the control parameters, andtion ps(X). This implies that

R(t) denotes the random force. We shall limit ourselves to

or with systems subjected, in addition, to a stochastic forcin%X
reflecting environmental or internal variability,

the case wher&(t) is an additive Gaussian white noise, ReX,<0, n=#0. ®)
(R(1))=0, By ordering theh,'s according to increasing absolute values
@) of their real parts we may then write formally the solution of
(Ri(DRy(t")) =Dy 8(t—t"), Egs. (33 or (30) as

where it is understood that the covariance mafii;} is -
positive definite. : 5pt(X)=pt(X)—ps(X)=l§l Cne*n'ehy, (6)

The evolution of the probability densities associated with
Egs.(1a) and(1b) is given, respectively, by the Liouville and \yhere{#,} are the right eigenfunctions of the operator, and

the Fokker-Planck equatioi$—3], the expansion coefficien{<,} are given by
3 L Rp=Lp (Liowil i y g
o T4 ax =te (Houvile equation, (33 Co=(Baopo)= | Ox Bu0p000). (78
5_13:_2 9 E. +1 S b, *p Here ¢ are the left eigenfunctions, and we have used the
at T OX P72 T ox0x biorthogonality relation
Eﬁ’p (Fokker-Planck equatign (3b) (Q,n,(ﬁn):(sﬁ;,_ (7b)

We define the set dfth-order moments op as follows: Notice thato= p, and?boz 1

- . ‘ The deviation of the kth-order moment from its
mkl_..kn(t):xll---xnnzf dxg: - dXpX t X "p(Xq, Xy, t) asymptotic value is given by integrating thector monomial
(4a)

k— y K1, . .y Kn =
Kyt k=K. XE=xtex " kgt k=K

Multiplying both sides of Eqs(3a) and (3b) by x1---xn,  OVer dp(x):

n
integrating over phase space and performing integrations by

parts (being understood that tends rapidly to zero aj = CeM(XK b= C,eMB,. ®
— ) one obtains, respectively, A= " Mg n
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Equationg6) and(8) imply that in the limit of long times A=—n|u|,
dp; and its moments will be dominated by the eigenvalues
A\, having the smallest real parts. Let,... \s be the set of ba=(—1)"5M(x),
such eigenvalues. We then have, from ER),
S P X n=0,1,2 (15)
&(k%E Cne)\”tBkn, 1$kSS (9) n I’]' ) sy Lygeen
n=1

. _ __ The spectral representation 6p, and 5x* in this basis
These relations can be viewed as a system of equations I'”'féad[Eqs.(6) and(8)]

ing C,eMnt to ox¥ through the inverse matriB ™! of {B,},

Cye % 3pu(x)= 2, Cpe "i(=1)"5M(x),
c =871 . (10) n=1
Cees X i} (163
k_— —n|ult n n
Now let 5x™, m>s, be a higher order moment. According to X _zl Cne . (=1 f_wdx XS (x).
Egs.(9) and(10),
Using the properties of the Diraé function and its deriva-

S S
“m _ o tives, one sees straightforwardly that
5Xm~n§_:1 C,eMBy= > Bpy(B Hpy X", m>s.

nn =1 .
(11) Bknz(—l)nj dx X&M(x)=0, k#n
This relation expresses tlmth momentm>s as a superpo-
sition of slower order moments. It therefore provides us with =1, k=n. (16b

a way to close the hierarchy of moment equations to its first )

s members. The procedure holds true as lon@as invert-  As a result, Eq(16a yields

ible and theB,,,'s are not all zero. As we will see shortly, = it
this may indeed happen in the presence of symmetries, in ox“=Cye "M,

which case the above scheme should be properly amended ) ) ,
by restricting the sums to terms having similar symmetry!n @greement with Eq(13). Clearly, one is here in the case
properties. Wher_e_elther the mat_rl?B is not invertible or the coupling
coefficientsB,,,, are trivial in Eq.(11).

Next consider a nonlinear vector field with a cubic non-
linearity below the(pitchfork) bifurcation pointu =0,

In order to gain insight on the necessary ingredients for
closure we consider in this section a simple model in which d_X_ U3 -0 1
all calculations, including the determination of the full form ar #XTX msU 17
of the probability density itself, can be carried out explicitly.

We start with the case of a linear one-dimensiofid)) The moment equation@hb) are now nonclosed,
vector field

lll. 1D VECTOR FIELD: DETERMINISTIC CASE

ax
dx — =kux*—kxk"2, (18)
g A% m<0, (12) dt

) ) ] but one observes that thafinite) matrix of coefficients is
corresponding in the general setting of Hda) to F(X)  an upper triangular matrix, suggesting that the moments still

= ux. The moment equatiorighh) then read vary on different scales. One can confirm this by the study of
P the spectrum of the Liouville operator corresponding1d),
di — KuxK (13 L=—(dax)(ux—x%. One finds[9]
t 1

. Xp=—n|ul,
showing that moments are decoupled and each of them var- "

ies on a different scalekg) "t This is, therefore, a case 3 || V2

where closure is not expected to work. == 5| X— pE , (19)
To see how this shows up in our formulation we consider a¢" Vi-¢2 £=0

the Liouville operator associated with E{.2),

c__ @ 1« ) 0,1,2
- = , h=0,1,2,....
L= X mX. (14 LY /X2+|,LL|

The eigenvalues and eigenfunctions of this operator hav&he coefficienB,, in the spectral representation 8f%, Eq.
been fully determined in Ref9]. One finds (8), is thus given by
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10° . T T . This gives rise in the white noise limit to a Fokker-Planck
equation for the probability density(x,t) of the form|cf.
o 8x Ea. (30)
E .................................................. &p J D (92p
) LA 3+
E o2l ] o WO g 5 @)
g
and to the associated moment hierar¢hy. (4c)]
10-3 L 8x3 T _
........................ dxX - =5 1 ——
........................ TR + +5 Dk(k=1)x"%, k=12,....
104 L (22)
10° , . . ) As is well known, the eigenfunctions of the Fokker-

10 12 14 16 18 ¢ 20 Planck operator are smooth square integrable functions of
[1,9,10. In other words the presence of noise, however
FIG. 1. Long time transient evolution of the first and third ex- small, regularizes the highly singular eigenfunctions of the
cess moments associated with ELj7), with u=—0.1, as obtained Liouville operator of the previous section appearing in the
from an ensemble of 1000 initial conditions uniformly distributed in spectral representation of the excess probability density in
the interval 3sx<®6. Eqg. (163. On the other hand, these new smooth eigenfunc-
tions keep the symmetry of their singular counterparts: odd-
9 | ]2k indexed¢,’'s are odd funct_ions OK, and even indexed?n’s
Bkn:a—gnm _ are even functions of. This has an immediate bearing on
£=0 the spectral representation of the momédufs Egs.(9) and

(16a],

We notice that folkk=1 one obtains a nonvanishing contri- o o .
bution withn=1; for k=2 the contribution ofB,; is zero, Sxk= E C.eM'B, = 2 Cnexntf dx ><k¢n(X)-
and that ofB,, nonvanishing, etc. We thus recover the sepa- n=1 n=1 —o
ration of the time scales of the linear case, entailing that one (23
cannot expect the existence of closure expressing high-order
moments in terms of lower order ones. Specifically, By, is seen to be zero unlegsand n have the
We now illustrate these results by means of a numericafame parity. Equatiof3) therefore splits into two different
experiment, which will also set the stage for similar experi-sets,
ments carried out in the more involved cases of the following
sections. Since we want to capture a transient phenomenon —= ot
(eventually all moments will settle to their asymptotic values X :n%:«/en Che™Bomn, (2439
if the system has strong ergodic properntiese need to fol-
low the time evolution of an ensemble of phase space points
initially far from the asymptotic stat_exeo in thg present PYCLEES Cr By 11 (24h)
cas8. To this end, we choose 1000 initial conditions distrib- n odd
uted uniformly in the interval3,6], monitor the instanta-
neous position of each of these points, and construct the To proceed further we need some information on the ei-
instantaneous values of the various moments by evaluatingenvalues{\,}. By mapping Eq.(21) into a Schrdinger-
the discrete analog of Eq4a). Figure 1 depicts the result type equation, one can show that the spectrum is discrete and
obtained for the first and third moments. We see that thq‘,‘]ondegenerat@'emembering thapu<0). In the long time
third moment varies three times as fast as the first one, inmit Egs. (24) are therefore dominated by the first nontrivial
agreement with the analytical result. This precludes the pogerm, which corresponds =2 in Eq. (248 andn=1 in
sibility to express high-order moments as functions of thegq. (24b). It follows that all even moments and all odd mo-
low-order ones. ments taken separately evolve on the same scale, the even
moments being faster than the odd ones. This provides us
immediately with the necessary ingredients to close the mo-
IV. 1D STOCHASTICALLY DRIVEN VECTOR FIELD ment hierarchy. To be specific, consider E22) for k=1,
written in terms of excess variables around the steady state

In this section we consider the effect of noise on the mo
values,

ment dynamics of the nonlinear 1D vector field of Eg7).
The augmented evolution equation is nfef. Eq. (1b)] _

dox — =

Wz,u&x—éx . (25)
dx
L x—3
dt pX=XHR(), w=0. (20 Now, according to Eq(24b),
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&”Cle)\ltBll, 10° T T T T T
3 gt Bar -1 8x
SXP~CreMBy~ 22 5, t>ATh (26) ol |
11

Inserting into Eq(25), one obtains a closed equation @,
déx B3|
ot ( ) ox.

(27)

Comparing with Eq(26), we conclude thag.—Bg3;/B;; is

the dominant eigenvalue of the Fokker-Planck operator.
Bj,/B1; therefore represents the correction to the Liouvillian Toeeel
eigenvaluex {¥= u arising from the effect of noise.

Figure 2 describes the result of a numerical evaluation of
the first two even and odd moments for=—0.1 andD
=0.01, obtained by monitoring the time evolution of a non- G, 2. As in Fig. 1, but for Eq(20) with D=0.01 and forsx,
equilibrium ensemble initially corresponding to a uniform 53 (il line) and 5x2, sx* (broken ling, as obtained from an
distribution ofx in the interval[3,6]. We see that these two ensemble of 20 000 initial conditions.
sets vary on the same scale, the first being faster than the first
second in agreement with the theoretical prediCtiOﬂS. To te&homents in the case of Spira| ChaOS, obtained by using an
the closure itselfEq. (26)], in Fig. 3 we plot the excess third injtial Gaussian ensemble centered @0,0, and having a
momentsx® as a function oféx. We obtain, after an initial width equal to the asymptotic values of the second moments.
time layer, a straight line in agreement with B@6), the  we see that our ansatz is clearly satisfied. The following
slope of which gives the value of the noise correction to thegdditional features are also worth noticifg that the mo-
Liouvillian eigenvaluex = —0.1. ments perform composite oscillations in the form of beat-

ings; and(b) the damping of these oscillations remains prac-
tically negligible for a substantial period of time, owing
. presumably to the weak mixing character of spiral chaos.

We now turn to higher-dimensional deterministic dynami-Thege properties are also shared by other moments as well,
cal systems giving rise to chaotic behavior, focusing first ony ., assxXy, etc.

Rossler-type attractors, which lack any pbvious symmetry Figures %a) and 5b) provide the same type of informa-
property. The particular prototype equations we shall congjgn, for the case of screw chaos, again using an initial Gauss-
sider are{11,12 ian ensemble centered this time @n1,1). We again observe
composite oscillations, which are now clearly damped.

10° | I

104 L 1 1 1 1 I
[ 7 8 9 10 1M1 ¢ 12

V. CHAOTIC DYNAMICS: ASYMMETRIC CASE

d_X: —y—2z, In the light of the above results a minimal closure would
dt be obtained by overlooking the fast oscillation of frequency
w¢ . The dominant eigenvalues of the Liouvillian would then
%=x+ay, (28) be given by a pair of complex conjugate eigenvalues exhib-
dz b ox3
— =bx—cz+xz
g ~bx—cz+xz .
001 } Lt
They generate foa=0.32,b=0.3, andc=4.5 weak chaos,
whereas foa=0.38,b=0.3, andc=4.5 one obtains a stron-
ger, more mixing form of chaos. We shall refer to these two0 005 f
types of behavior as spiral and screw chaos, respectively. ™ i P ]
s

The complexity of the above dynamics precludes of

course any exact result concerning the eigenvalues an /

eigenfunctions of the Liouvillian, contrary to the case treated 0 .

in Sec. lll. Still, because of the absence of symmetries one

expects that in the spectral representat@nand the closure

relations(11) the matrixB will be invertible and the expan- . .

sion coefficientdB,,, nonvanishing. As a corollary, and pro- 0 0.05 0.1

vided that the spectrum remains discrete, all moments shoula

vary on the same time scale, and closure should hold true. FiG. 3. Dependence of the excess third moméxit on dx as

This is fully confirmed by numerical experiments to which optained from the numerical experiment of Fig. 2. The clearcut

we turn presently. linear relation provides a justification of the closure relatiém.
Figures 4a) and 4b) depict the time evolution of the (26)], and gives a noise correctier0.02 to the Liouvillian eigen-

excess first moments and of three of the six excess secondlue.

5x 015
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FIG. 4. Long time evolution ofx, dy, and 8z (a), and 82,

5)7, and 672 (b), in the case of spiral chad€gs. (28) with a
=0.32,b=0.3, andc=4.5] as obtained from 20 000 initial condi-

moment

40 50 60 70 80 100

moment

40 50 60 70 80 90 ¢ 100

FIG. 5. As in Fig. 4, but in the case of screw chdgss. (28)
with a=0.38] and the initial Gaussian ensemble centered on

(1,1,9.

tions distributed according to a Gaussian ensemble centered on
(0,0,0 and having a width equal to the asymptotic values of theRequiring that the solutions of this equation reproduce the

second mo

ments?, y?, z2.

observed frequency and damping values, one may imfer
andm,, which in this context play a role similar to that of

iting an imaginary part equal to the slow oscillation fre- friction coefficients in a damped oscillator. We do not carry

guencyws, h1,=pu*iws. According to Eqs(9)—(11), this

this argument further here, postponing a more comprehen-

implies that all moments can be expressed in terms of twsive analysis to Sec. VI, dealing with the Lorenz model.

low-order

and averaging the first two equatiof®8) one obtains the

ones, say andy. Writing, for instance,

Z=myX+myy, (29

closed set
dx _ _
—= =~ mx—(1+my)y,
dt
(309
dy _— _
a =X+ ay,
whose characteristic equation reads
w’+(a—my)w+1+m,—ma=0. (30b)

To obtain a more satisfactory closure one needs to ac-
count for both the fast and slow oscillations. Now, the time
series of Figs. 4 and 5 can be well represented by a function
of the form Ae ' coswd coswit, where cosed accounts
for the amplitude modulation. On the other hand, in the spec-
tral representation of Eq9), the time dependencies enter in
an additive fashion. One must therefore decompose the
above function as

Ae “[cog ws— w)t+cof ws+ wi)t], (3D
implying the presence of combination overtones of the two
basic frequenciesg and w;. We shall comment on the ori-
gin of this phenomenon in Sec. VI.

To accommodate this scheme in the general setting of

Sec. I, one now needs four basic moments in terms of which
all others can be expressed. Each of these closure relations
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2 - T - T the long time limit, similar to those found in Sec. V. As a
corollary of the above, closure relations are expected to hold
only within each of these two classes of moments. In the
sequel we analyze separately in some detail the case of even
and odd moments.

moment

A. Even moments

Owing to the composite character of the oscillations of
the even moments revealed by Fig. 6, at least four different
terms in the spectral representation of E§). are needed,
corresponding to two pairs of complex conjugate eigenvalues
with nearly identical real parts. A set of four equations in-
volving only even excess moments can be deduced from Eq.

05 . ! L L (32 by straightforward manipulations. It reads
0 2 4 6 8 ¢t 10 d _ o
FIG. 6. Time evolution of the excess momewis (broken ling at OX?=—200X*+205X Y,

and éx z (full line) normalized by their initial values in the case of

the Lorenz modelEgs.(32) with r=28, 0=10, andb= %] as ob- d — — .
tained from 20 000 initial conditions uniformly distributed on the at Oy =—20y"+2r6X y—26Xy z
attractor.
d _ - (33
. L _ - 2__ 2
will exhibit four phenomenological coefficients, whose val- g 97 = —2boz"+25xy 7,

ues could be determined by a procedure similar to the one in

Egs.(29) and(30). d _ — — I
gt SX Y=rox“+ody —(o+1)6x y— 6x°z.
VI. CHAOTIC DYNAMICS IN THE

PRESENCE OF SYMMETRIES In the sequel we therefore considér y2, z2, andx y as the
basic set of even moments, and attempt to close the system

In this section we pursue the study of moment dynamicsOf equations(33) by expressing(y z and x2z as a linear

of chaotic systems by considering a different class of evolu- - }
tion equations admitting symmetries. The model on whichComblnatlon of thenicf. Eq. (11)]

the analysis will be illustrated is Lorenz’s classical model SX Y z=a, 02 +a,0y%+a3622+a,6X Y,
[13] —— — — — _ 34
y 8X?2=1,6X>+ b,y + b3622+ b, 5X y. 34
E:U(_)Hy)’ Substituting into Eq(33), we obtain a closed linear system
of equations for the four basic moments. The solutions of
dy this system will display a behavior similar to Fig. 6 if the
——=rX—Yy—Xz, (32 . - . .
dt corresponding characteristic equation has two pairs of com-
q plex conjugate eigenvalues with similar real parts, and with
z

—Z_xy—bz imaginary parts related to the fast and slow oscillation fre-
dt guencies or appropriate combination overtones as in Eq.
. (31). This, however, is not sufficient to determine all coeffi-
for parameter values=28, ¢=10, andb=3. . cientsa; andb;. We therefore follow a different procedure:
One can check straightforwardly that these equations reye require Eqs(34) to hold at four different appropriately
main invariant under the transformatiorx,¥,z2)—~(—X,  chosen times, compute numerically the instantaneous mo-
—Y.2). As this invariance property will be shared by the ments appearing in E434) for these four times, and deduce
Liouville operatorL as well[Eq. (3)], we expect that there the coefficientsa; andb; by solving the linear set of equa-
will be two classes of eigenfunctions of this operator whichtions (34) for these unknowns. We then stipulate that the
will be either even or odd ix andy. The first class will be  closure relationg34) should hold true for all times.
the only one to contribute to the spectral representdfios. Figure 7 depicts the momenisx2z and 5Xy z as ob-
(8 and (9)] of moments of the formk"y?™ ¥z, and the tained directly from the simulatioffull lines) along with the
second the only one to contribute to moments of the formvalues deduced from the closure relati¢84) using the pro-
nyzm“‘Rz . In analogy with Sec. IV, we therefore expect cedure explained above. The agreement is remarkably good,
even and odd moments associated with @) to vary on  not only for the amplitude of the oscillations but for their
the same scale within each class, and on different scales frophase as well, which as well known is a much more sensitive
one class to another. This is fully confirmed by simulation asvariable. Notice that this agreement is independent of the
illustrated in Fig. 6. The simulation reveals, in addition, thatinstantaneous values of the moments chosen to fit the param-
(a) odd moments vary on a faster scale than even ofigs; eters in Eqs(34), provided that they are not too close. This
odd moments vary monotonously in the long time limit; andresult vindicates fully our closure ansatz. For reference we
(c) even moments execute damped composite oscillations ialso give, in Fig. 8, a detailed plot of two typical even mo-
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FIG. 7. Long time evolution of the excess even momeht& FIG. 8. Typical time evolution of the even excess momeis
(@) and 8x y z (b), obtained from simulation of systex32) (full (a) and 5z° (b). Parameters and initial conditions are as in Fig. 6.

lines) and from the closure relatiori84) (broken line$. Parameters

" . o expanding eigenvalues on a Poincaerface of section
and initial conditions are as in Fig. 6. P 9 €g

transversal to the cycle. These eigenvalues may be real or

— — . ) o . complex, positive or negative, provided that the inequalities
2 2
ments 6x° and 6z<, illustrating both the similarity in their Q\p|<l! |A,|>1 are satisfied.

behavior and the persistence_ of the composite oscillations " umber of powerful techniques for carrying out such
during an extended lapse of time. periodic orbit expansions explicitly has been reporfieH]
Having determined the values @ and b;, one may \hich however, are typically applicable to hyperbolic sys-
come back to Eq(33) and compute the roots of the charac- yomg Much remains to be done for real-world fractal attrac-
teristic equation. One indeed obtains two pairs of complex, o gch as the Rsler and Lorenz attractors. In the follow-
conjugate roots, whose imaginary parts are linear combingpg \ve therefore limit ourselves to purely qualitative and
tions of the fast and slow frequencies appearing in the figuregome\what speculative arguments. The main point is that in a
in much the same way as in EQD). .. chaotic attractor one expects strong interference effects be-
\We next comment on the origin of complex oscillations inyyeen the successive unstable cycles. The first nontrivial in-
the form of beatings observed in the transient behavior of thg;nce in which such an interference will show up is when
even moments of the Lorenz model, as well as of all MOyhe ixfinite sum and product in EG35) is truncated to its
ments of the Resler model of Sec. V. The starting point is st two terms in which only the two shortest cycles having
the connection between the eigenvalues of the Liouvillian,siapie eigenvalues closer to unity than any other cycle are
and the zeros of the Selberg-Smale zeta fundftih retained. Setting=k=0, expanding the product, and keep-

ing only diagonal terms referring to these two cycles, from

= Y .
N)= 1— Pl=o, 35 Eqg. (35 one obtains
RIS ” 36)
+ =1.
A TAZ (

where the product is taken over @linstablg periodic orbits
contained in the chaotic attractdF, are the corresponding If |A,|>1 the first term dominates in E¢B6), and the cor-
fundamental periods, and, and A , the contracting and the responding eigenvalues are given 4]
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2m 1 , 100 - . . v
M= N— & In|A4], n integer. (37 dxz
1 1

At the level of the long time behavior of the moments, this 50 ]
would show up in the form of damped simple periodic oscil-
lations, which is not the case in the present problem. It there-
fore seems reasonable to stipulate that the composite oscilla
tions observed in Figs. 7 and 8 result from the joint effect of

at least two unstable cycles on the underlying attractor of
comparablebut differeny expansion rategA,|<|A,| and
periodicities, T;<T,. Equation(36) then becomes a tran-  -50
scendental equation whose solution will give, typically, com-
bination overtonefl7] of T, andT,, just as observed in the
simulation. Unfortunately the argument cannot be pushed to_;qq ! , . .
a more quantitative form, a§ and|A;| are unknown for the 0 2 4 6 8 t 10
models at hand.

FIG. 9. Time evolution of the excess odd momehtz as ob-
tained from direct numerical simulation of systeé®) (full line)
B. Odd moments and from the closure relatiof89) (broken ling. Parameters and

We end this section by compiling the principal resultsinitial conditions are as in Fig. 6.
concerning the analysis of the dynamics of odd moments of
the Lorenz model. As seen from Fig. 6, these moments Ungalues from both the invariant eigenvalue and from the
dergo a transient behavior in the form of an undershoot, fo'higher order ones.
lowed by damped oscillations, and eventually a practically The closure relations generated by our method bear strong
monotonous behavior in time. On the basis of this evidencgjmijarities with the phenomenological relations linking the
we stipulate that two terms in the spectral representation o a5 of jrreversible processes to the associated generalized
Eq. (9) should now be sufficient. A set of two equations forces in irreversible thermodynamics. Well-known ex-

Evolgglgbonl_y O?d Excess mt(;]mef_nt? t(\:/\?n be otl_atamed fron};lmples of such relations are Fourier’s or Fick’s laws, famil-
9. (32) by simply averaging the first two equations, iar in heat and mass transfer problems, and Stoke's law ex-
dx o pressing momentum flux in terms of the velocity gradient in
T o(—x+y), the Navier-Stokes equation. Common to all these relations is
indeed that their origin lies in the spectral properties of the
(38 associated evolution operators. A major difference is, on the
other hand, that the low-order moments in hydrodynamics
may exhibit nontrivial time dependencies, including sus-
tained oscillations or chaotic behavior, whereas the moment
The corresponding closure relation replacing 84) is now  equations considered in the present work eventually admit a
expected to be unigue steady-state solution, as long as the system has strong
. _ _ ergodic properties. This is due to the nonexistence of con-
OX y=a;0x+ayoy, (39  served quantities in the class of dissipative dynamical sys-
tems considered in this study. The situation is likely to be
in which the coefficients; anda, are to be determined by different in spatially extended systems, which would un-
the same procedure as in Sec. VI A. Figure 9 summarizes thgoubtedly be worth investigating in the future from this
comparison between the “exact” time dependences&fz  standpoint.

<|

=IX—y—XY.

K

obtained by direct simulatiofull lines) and the “fitted” The nontrivial behavior of space averages in the long time
one using Eq.(39). The agreement is, again, remarkably limit has recently been established in systems of coupled
good. map lattices, especially in the presence of global coupling

On replacing Eq(39) into Eq.(38), one is in the position [18]. Again, it would be interesting to study the moment
to obtain analytically the time dependence xfandy  dynamics of such systems in the framework of the approach
through the computation of the roots of the characteristioutlined in the present paper, to assess whether such behav-
equation. The result is, again, consistent with the time deperior finds its origin in the spectral properties of the evolution
dencies obtained by direct simulation. operator for the probability density replacing the Liouville

operator for this class of systems.

VII. CONCLUSIONS
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