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Nonequilibrium fluctuations in time-dependent diffusion processes
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A fluctuating hydrodynamics approach is presented for the calculation of the structure factonder
dependentonequilibrium diffusive processes in binary liquid mixtures. The hydrodynamic equations are
linearized around the time-dependent macroscopic state given by the usual phenomenological diffusion equa-
tion. The cases of free diffusion, thermal diffusion, and barodiffusion are considered in detail. The results are
used to describe the low-angle scattered intensity distributions from the time-dependent concentration profiles
during the approach to steady state. The theoretical predictions are found to be in agreement with experimental
data from thermal diffusion and free diffusion experiments. It is shown that in general the presence of non-
equilibrium concentration fluctuations yields a substantial increase in the static structure factor over the equi-
librium value, at least for the cases of free diffusion and thermal diffusion. As in the case of nonequilibrium
fluctuations at steady state, the static structure factor displays & fAstivergence at larger wave vectdes
and saturation to a constant value kosmaller than a critical wave vect&gg. It is also shown that the static
structure factor from a sedimenting mixture is actually temporarily lowered below the equilibrium valke for
smaller tharkrg. As the steady state is approached, the structure factor losdsdependence and it attains
the equilibrium value[S1063-651X98)14910-3

PACS numbegps): 05.40-+j, 05.70.Ln, 66.10.Cb

[. INTRODUCTION static stray intensity. Stray light can therefore be eliminated
but at the expense of long measurement times. Consequently
Equilibrium fluctuations in simple fluids and in binary dynamic light scattering techniques are not suited to study
mixtures have been studied very extensively in the pastime-dependent nonequilibrium fluctuations. This might par-
mostly because the invention of the laser and the subsequetilly explain why experimental studies of the time-
refinement of light scattering techniques have allowed thordependent nonequilibrium fluctuations have been lacking un-
ough studies both of static and dynamic correlation propertil fairly recently.
ties of the fluctuations. In this paper we will show a simple way to obtain a the-
The behavior of the nonequilibrium fluctuations in a fluid oretical description of time-dependent nonequilibrium fluc-
under a steady stress condition has attracted much interesiations in diffusion processes. The description proceeds
only fairly recently, the question being whether under stresglong the same fluctuating hydrodynamics guidelines of the
the fluctuations retain the same correlation properties as istationary case. The main difference is that the fluctuating
equilibrium. Particular attention has been dedicated to théaydrodynamics equations are not linearized around a steady
study of the system consisting in a horizontal slab of fluidstate, but instead around a macroscopic nonsteady state,
stressed by a steady stabilizing temperature gradient. Thea¢hose time evolution can be obtained from the usual phe-
retical calculations, based on kinetic theoligsand on fluc- nomenological diffusion equation. The time-dependent static
tuating hydrodynamic$§2—4], have shown that the fluctua- structure factor can be obtained by supplementing the sta-
tions in this system are long range correlated, their statitionary structure factor with the phenomenological equations
structure factor diverging ds # as the wave vectdcgoes to  describing the time evolution of the macroscopic variables.
zero. The presence of long range correlations has been intdn the following section we will derive the static structure
preted as a result of the coupling of velocity fluctuations withfactor of the nonequilibrium fluctuations which take place in
temperature and concentration fluctuations, due to the pres binary mixture where a time-dependent concentration gra-
ence of macroscopic temperature and concentration gradiient is present. We will explicitly consider the cases of free
ents. isothermal diffusion, of thermal diffusion, and of a gravita-
In a series of thorough experimen&s-8 Gammon, Law, tionally induced concentration gradietiiarodiffusion. We
Segre Sengers, and co-workers have measured the statiwill compare the results obtained for thermal diffusion and
structure factor of both simple fluids and binary mixturesfree diffusion with the data recently obtained by means of a
stressed by a stationary thermal gradient, thus providing anique ultra-low-angle static light scattering machine, which
neat quantitative check of the theoretical predictions. In oris able to measure the static intensity of the scattered light
der to measure the nonequilibrium static structure factor thepver a two decade range of angles, starting foa2'. This
used low-angle dynamic light scattering, which allowedinstrument allowed us to provide the first experimental evi-
them to get rid of the strong forward stray light, simply be- dence of the presence of long range correlated fluctuations
cause it is not time correlated. By averaging a scattered induring time-dependent diffusion proces$8s10].
tensity time autocorrelation function over a long period, they It is already known that the presence of a stationary gravi-
isolated the tiny fluctuating intensity on the top of the strongtationally induced concentration gradieribarodiffusion
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does not produce any enhancement of the mean square anhanges in the macroscopic variables is much larger than
plitude of the fluctuations above the equilibrium valuethose involved in the relaxation of the fluctuations. In this
[11,12. However, no predictions are available about the timeway the average values and the time Fourier transform can
evolution leading to the steady staf@ssuming a homoge- be calculated by integrating over the finite time needed to
neous, well mixed initial staje We will show that in this smooth out the fluctuations to z€rd5]. During this time the
case the amplitude of the nonequilibrium fluctuations actuimacroscopic variables are assumed to be frozen. This as-

ally falls temporarily below the equilibrium value. sumption is consistent with our results because, as we will
show later, the gravitational field determines an upper limit
Il. THE STRUCTURE FACTOR OF NONEQUILIBRIUM for the relaxation time of the fluctuations. In microgravity
ELUCTUATIONS conditions the validity of the assumption could be seriously
questioned.

The structure factor is the fundamental tool to describe’ Tq soften the notations, in the following we will drop the

fluctuations in a fluid. It is also most appropriate in this dis-prackets from the averaged variables and we will not indicate

cussion since we will mainly describe scattering data. ~ the space-time dependence of both fluctuating and macro-
In order to derive the structure factor of the time- gcopic variables.

use the fluctuating hydrodynami@&H) approacti13]. Fluc-  time-dependent state we obtain
tuating hydrodynamics has been successfully used to de-

scribe nonequilibrium fluid systems at steady stite- ac 1 _ déc 1 )
4,11,12,13. E+;V-J=—7—5U-VC—;V-5J
We will now show that a time-dependent theory of non-
equilibrium fluctuations in diffusion processes can be ob- 1 i
tained by supplementing the FH equations with phenomeno- + » BéCV-j+V-F, (6)
logical equations describing the time evolution of the
macroscopic state of a binary mixture. To simplify the prob- 1 Jsu 1 1
lem we will neglect pressure fluctuations which contribute to - Vp—g=- = + l_) BScV p+vV2su+ ; V.S (7

Brillouin scattering only{14]. We will also neglect tempera-

ture fluctuations, so that the only relevant hydrodynamiGyhere we have added terms containing the random fdfces

variables are the densify, the concentratior, and the ve- 5545 which describe the spontaneous onset of concentration
locity u of the mixture. Moreover we will assume that the 5,4 velocity fluctuations, respectively.

fluid is at rest. The hydrodynamic equations describing the Equations(6) and (7) have to be complemented by phe-

mixture in the presence of gravity are thii®] nomenological equations which describe the time evolution
Jge 1 of the macroscopic state. In the steady-state theory these
—+u-Ve=—~-V.j, (1)  equations areic/dt=0, dp/dt=0, which describe the time
ot p independence of mass-related variables,0, which stands

for the absence of macroscopic convecti®h,j=0, which
describes the absence of a net mass transfer in a layer of
fluid, andV p=pg, which describes the hydrostatic pressure
variation due to the gravitational field.

wherep is the mass density of the mixture,is the weight In the time-dependent theory we assume that the macro-

fraction of the denser componentis the mass fluxpis the  scopic concentration evolves in time according to the usual
hydrostatic pressurey the kinematic viscosity, ang the gjffusion equation

gravitational acceleration vector. The hydrodynamic vari-

M 1V+V2+ 2
G vptuviute, 2

ablesc, p, andu fluctuate both in time and space around a Joc 1 _

certain average macroscopic value. As custonjaB] we E”L 0 V=0, (8)
rewrite these variables as the sum of an averaged term and a

fluctuating one: which describes the time evolution of the macroscopic con-

centration, once the dependence of the mass flux from hy-
drodynamic variables is prescribed. We still assume that
macroscopic convection is absent and that a pressure gradi-
P} =(p(x,))+ dp(x,) =(p(x,1)) +pBoc(X,1), (4) enthsz is present inside the mixture. P ’

Moreover we assume that the gradients of the thermody-
namic variables are small, so that we can neglect the spatial
dependence of the thermophysical properties of the mixture
514]. Under these assumptions E¢8) and(7) become

c(x,t)=(c(x,t))+ 5c(x,t), €]

u(x,t)=(u(x,t))+ su(x,t)= du(x,t). (5)

In writing Eq. (4) we have assumed that the only relevant
density fluctuations are due to concentration fluctuations s
that sSp=ppBdc, Where,szfl(ap/ac)p,T (the thermal ex-

’ . ase 1 1 ,
pansion effect is neglected because we have neglected tem- ——=—5y.Vc—~V-§j+~- BScV-j+V-F, (9)
perature fluctuations Moreover we have inserted in E¢p) ot p p
the quiescent fluid hypothes{si)=0. 5 1
The averaged variables in Eg®)—(5) depend both on gou 2 T v,
space and time. We will assume that the time associated with at pgoctuviout p Vs (10
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Equations(9) and (10) have basically the same form of the evaluated by transforming only the horizontal variablesd
equations found by Segrand Sengers for a binary liquid y. The space-time Fourier transform for the concentration
mixture stressed by a steady temperature gradient under tllectuations is thus

action of the gravitational field12]. However, these equa-

tions are now complemented by the diffusion equaii®hn )

which describes how th&c term contained in Eq(9) 5C§’,tw:f dtf dx dyax,t)exgi(k-x—wt)] (13
evolves in time, thus allowing determination of the spectrum

of nonequilibrium fluctuations at different times during a dif- and an analogous expression holds for the velocity fluctua-
fusion process. tions.

The terméu- Ve in Eq. (9) represents a source term for  In Eq. (13) the variablesk and w in the lower label are
the concentration fluctuations induced by velocity fluctua-used to describe the spectral properties of the nonequilibrium
tions. The termpBgéc in Eq. (10) represents the opposite fluctuations, while the macroscopic state is identified by the
phenomenon, that is, the presence of velocity fluctuationsariables in the upper label. The macroscopic variables are
induced by concentration fluctuations, due to the presence efot affected by the temporal Fourier transform because, as
the gravity force. we assumed before, the frequencies associated with them are

In order to calculate the correlation properties of the fluc-much smaller than those associated with the fluctuations.
tuating variables we still have to specify the phenomenologi-This allows retaining the explicit temporal dependence of the
cal relation which relates the mass fluxo the thermody- macroscopic variables.
namic forces. In the general case where the slab of fluid is Moreover, since only the transverse velocity fluctuations
under the action of a stabilizing temperature grad¥efitthe  contribute to the Rayleigh scattering2], the transformed
mass flux is momentum equation can be projected in the direction per-

pendicular tok by means of the projection operator. Under
_ ket Ko these assumptions the Fourier-transformed equations are
j=—pD Vc+?VT+—Vp , (11
P 8¢ (iw+DKY)=— 8V - VC(Z) —iK-Fr o, (14)

whereky is called the thermal diffusion ratio arlg, is the i R
barodiffusion ratio[13]. The three gradient terms in paren- ovi' (iw+vk? = Bdcp! g-(1-kk)— — k- S - (1—Kk),
theses describe the Fickean backflow, the Soret-induced ' P

flow, and the sedimentation flow, respectively. Each one of (19
these terms can give rise to important modifications of the

Z,t . . )
structure factor with respect to the thermodynamic equilib-v_\’here&’kxw represents the transverse velocity fluctuation de

rium case. As we shall show, the results are quite unex‘ilned by
pected, since the first two terms give rise to an enhancement,
while the last actually depresses the mean square amplitude
of the long wavelength fluctuations. o ) ]
The thermal diffusion ratidr, the barodiffusion ratid,, By combining Eqs(14) and(15) one readily obtains
and the osmotic compressibility¢/du), r depend on the It o ’
concentratiorc of the mixture. Because of the small concen- 6ci [ (io+Dk)(iw+vk?) + Bg-Ve(z,1)]
tration gr_adlent assumption previously formulated these de- =—i(io+vk?)k-Fy,
pendencies are here neglecféd]. :
By linearizing Eq.(11) for small fluctuations we can now i ~n
express the fluctuating part pfas a function of the hydro- ) K-S o (1-kk)-Ve(z,t). 17
dynamic variables:

SVE = suZt . (1-KK). (16)

In order to calculate the correlation properties of the concen-

V.-8j=—pDV286c+B6cV-j+ BV éc-j—pBDV éc-Ve. tration fluctuations the correlation functions of the source
(120 termsF andS still have to be specified. We will assume that

the correlations of these random forces retain their equilib-

Only the first term on the right side of E€L2) is relevantto  rium values given by16,14

determine the correlation properties of the nonequilibrium T

fluctuations, as the second one will simplify with a similar i —xj \_ KB 5_0 . L N

term coming from Eq(6), and the last two terms will cancel (FioFior) = 8mp D ) T5'~15(k k") o(w=w’),

out during the following calculations. P (18)
In order to calculate the correlations of the fluctuating

variables the spatial and temporal Fourier transforms of Egs. L. (1 RERY. h.C*  (1_LRY.

(9) and (10) have to be evaluated. We will assume that the (kS0 (1=kk)-Ve]lk- S, (1-kk)- V])

macroscopic temperature and concentration gradients are kgT )
vertical (parallel to thez axis and to the gravitational accel- ~ 8. pv|Vl?, (19
erationg) and that the wave vectdt is perpendicular to
these gradients. In this way the wave vector is restrained to |

; : i (F} Sy my=0 (20
the horizontal plane, and the spatial Fourier transform can be Kok o .
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By combining Eqs(17)—(20) we obtain the correlation prop- cause this is the situation which leads to the onset of convec-
erties of the concentration fluctuations in a thin layer of mix-tive instabilities. As we are mainly interested in the stable
ture characterized by a macroscopic concentration gradiersituation where the gradient points downwards, in the fol-

Vc(z,t): lowing we will assume thaR(k)/R; is negative.
2t ezt It is interesting to calculate an approximate form for Eq.
(oce ,6Ck s (21). The denominator of Eq21) can be factorized aswf
B kT [(w2+v2k4)Dk2(ac/aM)p,T+vk2|Vc(z,t)|2 +wi)(w2+ wz_), where the two roots are given by
~ 87%| |(io+Dk?)(iw+vk?®—[R(k)/R.JuDk*? |’ , —k%? ( D)Z ( R(k)) D
wi= —|1+—] +2{1- —
(22) = 2 v R. /v
is i D\? R(k)| D|?
whereR(k)/R, is given by 42 _2<1_ ( )) D
v R. /v
R(k)  Bg-Vc(zt)
R =— DK (22 D2 R(k) 2 1/2
¢ —-4—|1- . (23
v R

is a Rayleigh number ratio introduced in analogy with con-

vective instabilities[11,12. The Rayleigh number ratio is By assuming thaD/v<1 and that—-4DR(k)/(R.v)<1 the
defined so that it is positive when the concentration profile igwo roots arew? =D?k*(1—R(k)/R.)? andw? =v2k*, and
top-heavy(the concentration gradient points upwardse- Eg.(21) becomes

ke T Dk3(dcl o k?|Vc(z,1)|?
(32, 5cp 1) = o2 T e N

Ko/ 84 w2+{Dk2[1—R(k)/RC]}2+[w2+(vk2)2](w2+{Dk2[1—R(k)/RC]}Z)

The assumptiol/v <1 is valid for most binary liquid mix-  the time constant actually increases kés As R(k)/R.=

tures_,sas typical values_fgr mixtures of organic fluids are _ Tati/ Tgra» the transition between the two quite opposite

~10"° cn/s andD~10"° cnv/s. The meaning of the as- regimes occurs wheR(k)/R,=— 1, that is, in correspon-

second term of Eq24), considered as a function af, is the

product of two Lorentzian curves, whose width is given by

|o,| and|w_|. As we assumed that 4DR(k)/(Rp)<1, kRo:(

the Lorentzian of widtiDk?[1— R(k)/R;] is much narrower

than the one of widthvk?. By approximating the wider

Lorentzian by its value at maximum the spectrum of theFor large values ok, k>kgo, we are in the diffusive mode.

fluctuations becomes This implies that concentration fluctuations decay because on
the smaller length scales diffusion is a fast process. If we go

2D[1-R(k)/R,]k? to k<kgro, We are considering fluctuations over length scales

+{D[1—R(k)/R.]k?}?)’ that are so large that other processes are more effective than

(25) diffusion in relaxing the fluctuations. What is actually hap-

pening is that a concentration fluctuation is associated to a

,39 Ve 1/4

vD

(27)

(8ek, 8¢ 6) =S"(K) (2

where the static structure fact6f'(k) is given by density fluctuation and consequently a buoyancy force is
T P 1 generated. If the system is arranged with a built-in concen-

SHY(k) = LA <_C> - - tration gradient, then the fluctuation parcel will try to move

167"p | \op] )+ 1=RK/R; to the layer where the density will be matched. It will also try

to dispose of the excess concentration via diffusion, but the
_ (26) condition —R(k)/R.>1 implies that diffusion is slow in

comparison with the buoyancy driven travel to the density-

matching layer. Thekgg value then describes the longest
The spectrum is therefore a Lorentzian with linewi@hl  wavelength at which a concentration fluctuation will pre-
—R(k)/R]K?. It is very instructive to see what is the value dominantly decay via diffusion. Incidentally, at this wave-
of the associated time constants ferR(k)/R.>1 and length the concentration fluctuation time constant attains its
—R(k)/R.<1. largest value, excitations at larger or smaller wavelengths

If —R(k)/R;<1, the time constant becomesg;; decaying faster. For smallérvalues, buoyancy and drift to

=1/(Dk?), that is, the classical diffusion time constant. If the density-matching layer is the winning mechanism for the
—R(k)/R.>1 [but still smaller thary/(4D)], then the time  relaxation of fluctuations.
constant isTgra\,=uk2/(,Bch). While the diffusion time We can now examine what is the physical meaning of the
constant decreases ak?/we find that for—R(k)/R.>1 condition —4DR(k)/(R.v)<<1, under which the previous

[Ve(z,1)]? 1
vDk* 1-R(k)/R,




PRE 58 NONEQUILIBRIUM FLUCTUATIONS IN TIME-. .. 4365

results have been obtained.44DR(k)/(R.v)>1, then the tribution of the scattered intensity changes layer by layer, the
time needed by the viscosity force to act is so long that theverall scattering distribution results from a summation of
motion of the parcel actually overshoots the density-the scattered intensity distributions from the individual lay-
matching layer, diffusion still playing an irrelevant role. So ers. We will briefly outline how the superposition of the light
the fluctuations will become overstabilized, and the spectrunecoming from different layers of fluid contributes to the over-
will split into the symmetric doublet characteristic of propa- all scattered intensity.
gating fluctuationg11,17. If we consider the light scattered at an anglevith re-
The static structure factor introduced with E@6) de-  spect to the incident wave vecthy we can define the trans-
scribes the static transverse correlation properties of a thiderred momentum wave vectd: In the case of Rayleigh
horizontal layer of mixture. To outline how the equilibrium scatteringk is given by
static structure factor is modified in the nonequilibrium con-

dition it is convenient to rewrite Eq26) as k= 4mn sinf (31)
N 2’
k=S |14 Vc(z,t) 1 _ _ _ _ _
(k)=Sg chrav l+[k/kRo(z,t)]4 ) wheren is the index of refraction of the fluid and is the

(28) wavelength of the incoming beam.
In deriving the structure factor of the concentration fluc-
where tuations we have assumed that the wave vektogs in the
horizontal plane. As it is apparent from E@®1) this is ap-
proximately true only for small scattering angles, that is, the
(29) angles where substantial deviations of the nonequilibrium
static structure factor from the equilibrium one are expected.
The spectral density of the light scattered with wave vec-
tor k and frequency onto a far detector at a distanRdrom

s _ kgT [ dc
eI 167 | du ot

is the equilibrium static structure factor and

K ﬁc) the sample i$18]
Vega=—— Vp=p89| — 30
grav D p=pB9 Em - (30) 1ok 9612
|(k,w)=m e Sk, (32
is the equilibrium concentration gradient induced by baro- 0 p.T

dlﬁ#rs\?rf}r[sltst]érm of Eq(28) represents the equilibrium con- where | is the intensity of the incident bears,, is the
tribution to the static structure factor while the second onegIeIeCtrIC constant of the sample, afitk,w) is the overall

represents a nonequilibrium contribution due to the presenceynamIC structure factor defined by
of a macroscopic concentration gradient inside the mixture. S(k, ) =(5C) ,OC ) (33
The coupling of velocity fluctuations with concentration
fluctuations due to the presence of the gradient determinephis dynamic structure factor is different from that intro-
the divergence of the nonequilibrium term las* at wave  duced with Eq(25), since it is defined in terms of the three-
vectors larger thalkro. At smaller wave vectors the diver- dimensional spatial Fourier transform of the concentration
gence is frustrated by the presence of the gravity force, anfluctuations defined by
the nonequilibrium term rolls off to a constant value. Experi-
mental evidence of the gravity-induced frustration of concen- _ . B
tration fluctuations in a binary mixture under a steady tem- 5Ck"“_f dzf dx dyf dt se(x,exii(k-x—ot)]
perature gradient was recently reported by our gridug.

The most remarkable feature of E@8) is that the non- :f dz sczt . (34)
equilibrium term can lead to an enhancement or a depression "
of the equilibrium static structure factor, depending on th
sign of the factoVc/V cy,,— 1. This point will be discussed

in-more detail in Sec. IV B. obtain that the overall structure fact®(k,w) is just the

We would like to stress here that Eq26) and (28) are o ;

. X L ; superposition of the structure factors due to different layers
valid under a great variety of conditions: they describe theof fluid:
static correlation properties in an equilibrium state, in a sta- '

eBy assuming that fluctuations taking place in different layers
are not correlated and by inserting Eg4) into Eq. (33) we

tionary nonequilibrium state, and in a nonequilibrium time-
dependent state. S(k,w)zf dz(sci ock 2. (35
IIl. THE STATIC SCATTERED LIGHT By integrating Eq.(35) along the frequency axis we obtain

_ _ ) the overall static structure factor:
The static structure factor introduced with EQ6) de-

scribes the transverse correlation properties of the concentra- ‘

tion fluctuations in a thin layer of a binary mixture. This S(k't):J dzS(k). (36)
structure factor can be best analyzed via light scattering. We

will consider the scattering setup where the probe beam i is convenient to introduce the overall nonequilibrium static
aligned with the gravity acceleration. Since the angular disstructure factor
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Snd k1) =S(k,t) —aSy, (37 1.0 T I T
\
| \ ]
wherea is the thickness of the sample. The nonequilibrium \\ i T 1025
structure factor defined by Eq37) represents the excess 08F t \ | —"1035 _
contribution of the nonequilibrium fluctuations to the overall \ D 10
static structure factor, with respect to the equilibrium one. i \, : 10
06 .. N - 10’s
Or N T
IV. TIME-DEPENDENT DIFFUSION PROCESSES L~ e TN
[ T S sz
In the following we will discuss the nonequilibrium time- g PN T T
dependent cases of free diffusion, thermal diffusion, and 0.4 1 AN T
barodiffusion in a binary mixture. The features of the static i \,
structure factor will be presented and, when possible, com- ! \\
pared with experimental results. 02| : \ .
L i §
A. Free diffusion i i
P P RPN SES R B
A free diffu;ion process is usually arranged as follows 0'00_2 0.3 0.4 0.5 0.6 0.7 0.8
[19]. Two miscible fluids are prepared so that they are sepa-
rated by an initially sharp, horizontal boundary. As soon as (6D

the fluids are left in contact, a diffusive flow begins to trans-

port mass across the interface so that the concentration in trtlﬁe

neighborhood (.)f the boundary pegl_ns to Chf?”ge- As tlm%nd vertical axes are exchanged for convenience. The diffusion co-

gOQS by, the thickness of the region '”VP'Ve_d in the CONCeNetricient isD=1.5x 108 cné/s, the thickness of the sample ds

tration Chgnge grows. During a free diffusion prpcess the 0.45 cm. Initially two horizontal layers of the binary mixture at

concentration at the top and bottom of the sample is assumege niform concentrations, =0.75 andc,=0.25 are separated by

to remain constant. This assumption is true in the case of horizontal interface at the midheighta/2. In the early stages of

unbounded diffusion, where two infinitely thick layers of the giffusion process the concentration at the boundarie anda

fluid are allowed to diffuse one into each other. In praCticedoes not Change in time, as the diffusive remixing occurs on|y

the assumption is valid only during a given time interval around the midheight. This is the free diffusion regime. When the

after the beginning of the diffusion process, which dependsgoncentration near the boundaries begins to change, then the system

on the vertical size of the vessel and on the mutual diffusiorenters into the restricted diffusion regime.

coefficientD. As soon as the concentration near the bound-

aries begins to change, the features of the macroscopic difium time-dependent fluctuations which take place during a

fusion process cease to depend on the diffusion coefficierftee diffusion process. Notice that the local structure factor

only, and they are influenced by the height of the vessel alsalepends on the specific layer of fluid and is characterized by
The typical initial condition of a free diffusion experiment the actual value of the local concentration gradi®it (V¢

FIG. 1. Time evolution of the concentration profile plotted vs
normalized height during a diffusion process. The horizontal

is the step function concentration profile depends on the spatial coordinajeln order to compare the
theoretical results with low-angle static light scattering data,
c(2,0)= ¢, 0<z<h (39) the overall nonequilibrium static structure factor, defined by

c,, h<z<a Eqg. (37), must be evaluated. We will assume that the con-
. i o centration gradient present inside the fluid is much larger
whereh is the position of the initial boundary between the than that due to barodiffusion. The overall nonequilibrium
two fluids anda is the thickness of the two superimposed static structure factor obtained by combining E(28) and

layers. . . _ _ (37) and normalized by its equilibrium value is given by
The evolution of the concentration profile during the free

diffusion process, obtained by solving the diffusion equation  S,(k,t) 1 J Vc(zt) 1 1
with the initial condition(38), is [20] aSq a z V Cyrav 1+ [KKng(Z DT
% . (40)
2 1 [jwh
c({)=Cot — (Cl_CZ); 7S where in the free diffusive regim®c is given by[21]
Dj2m? c1—Cp p[ (z—h)?
_ i Vc(zt)= exp — . 41
Xex;{ —az—t)cos{Jwg’), (39 (z,1) JaDbt D1 (41)
where/=z/a andcy=[c;h+c,(a—h)]/a is the concentra- The nonequilibrium static structure factor calculated from
tion at the end of the diffusion process. Eq. (40 is plotted at different times in Fig. 2, where the
The time evolution of this concentration profile is shown parameters are the same used in Fig. 1 #0.27, v
in Fig. 1 forD=1.5x10"° cn?/s, a=0.45cm,h=a/2, ¢,  =1.35cn¥/s, (9c/du),7=7.7<10" 7 Scn.
=0.75, andc,=0.25. The nonequilibrium static structure factor experimentally

Equation(28) together with Eq(39) solves the problem measured by means of very-low-angle static light scattering
of finding the local static structure factor of the nonequilib- during a free diffusion experiment and normalized by its
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FIG. 2. Normalized overall nonequilibrium static structure fac-  FIG. 3. Normalized overall nonequilibrium static structure fac-
tor calculated at different times during the diffusion process andor measured by means of low-angle static light scattering. The
plotted vs the wave vectdt. The parameters correspond to those Structure factors are measured at different times during the diffusion
used in Fig. 1. At large wave vectors the structure factor displaygrocess and plotted vs the wave vedkdrl0]. The sample is the
thek™* power law behavior characteristic of velocity-induced non- binary mixture aniline-cyclohexane prepared at its critical concen-
equilibrium concentration fluctuations. At smaller wave vectors thetrationc=0.47. The mixture phase separate3 at T=3 K, where
structure factor rolls off at a constant value because gravity inhibits1—¢,=0.5, and the diffusive process is started by suddenly raising
the large wavelength fluctuations. The amplitude of the structuréhe temperature above the critical oneTat T,=1 K. The param-
factor at small wave vector is initially constant and then suddenlyeters used in Figs. 1 and 2 correspond to the experimental situation
drops. This amplitude is proportional to the concentration differ-described here, so that a quantitative comparison of the results is
ence near the boundaries. As shown in Fig. 1, during the free difpossible. The features of the structure factor closely mirror those of
fusion regime this concentration difference is constant, and ithe calculated one shown in Fig. 2.
changes rather sharply when the system enters the restricted diffu-
sion regime. wherec,; andc, are the concentrations at the top and bottom

layers inside the sample. The terll on the right side of

equilibrium value is plotted in Fig. B10]. The values of the EU: (42) becomes relevant only near equilibrium. Equation
parameters in Fig. 2 correspond to the experimental condi4? €xplains why in Figs. 2 and 3 the scattered intensity
tions used during the measurement of the data in Fig. 3, spXxtrapolated at zero angle is at first stationary and then sud-
that a direct comparison is possible. denly drops. At firstc; — ¢, is constant because only a thin
These data were taken by using a near-critical anilinelayer at the midheight of the mixture is involved in the dif-

cyclohexane mixture. The mixture was prepared 3 °C belov{USivé process. The drop corresponds to the transition from
its critical temperaturd’, in its two-phase region, so as to e free diffusion regime to the restricted diffusion one,
obtain two macroscopic phases separated by a horizontjeré the concentration near the boundaries is a time-
sharp boundary. A sudden temperature jump was then algl_ependent guantity22]. During the free diffusion regime,
plied to bring the mixture 1 °C abovk, . After the tempera- the agreement between thg low wave vector values of the
ture jump is applied the two macroscopic phases becomgtructure factors shown in Figs. 2 and 3 is within 40%, which
completely miscible, and the free diffusion process starts. 'S satisfactory if one considers the uncertainty in reference
The structure factor retains essentially the same featured@ta for @c/du)p v

outlined before: thek—* behavior fork>kgo, due to the Figures 2 and 3 also show that the curves roll off at
coupling between velocity and concentration fluctuationsSMaller wave vectors as time goes by. We can estimate how

and a roll off to a constant value for smaller wave vectorshe roll off wave vector should evolve in time by assuming

due to the restoring action of the buoyancy force. that its value is mostly determined by the midheight layer

There are a few features worth pointing out. Figures 2 and/ére the concentration gradient is maximum. From Egs.
3 show that initially the forward scattered intensity does not'2 /) @nd(41) the time dependence of the roll off wave vector
change in time. From Eq41) we can calculate the value of 'S
the nonequilibrium static structure factor for vanishingly
small wave vectors:

1/4

1
e =At"8 (43)

vD 47Dt

The exponent-1/8 is in fair agreement with the value0.11
measured in the experiment described in R&€], and the

ro

Snd0t)  c1—Cp

= 1, 42
aSy aVcCgyay (42




4368 ALBERTO VAILATI AND MARZIO GIGLIO PRE 58

measured value of the prefactaris about 25% smaller than W~y
the value calculated by using E@2) and reference data. [N \\ Y
. NN " ) s
B. Thermal diffusion 08 \\\ N T zoxslozs 8
When a temperature gradient is applied to a liquid mix- . N \\ g% 10°s
ture a macroscopic mass flux is inducg2B]. This is the VY —ems 3x10%s
thermal diffusion or Soret effect. At steady state a macro- 0.6 - N 7
scopic concentration gradient is produced such that the net L R
diffusive mass fluy vanishes, the mass flow due to thermal & ?\}\
diffusion being exactly balanced by the ordinary diffusion 0.4 - : \\‘\ N
backflow. From Eq(11) the steady-state Soret-induced con- | Y N
centration gradient in the absence of a gravitational field is NN
y 02} \-\ . -
Vesoe=— 7 VT. (44) . TN
0.0 P T S S \k . .“J I\‘}\ .\:‘\.
In the following we will assume that the sample is a hori- 10.40 0.45 0.50 0.55 0.60
zontal layer of a binary mixture wittk;>0 and that the o(Ch)

temperature gradient is applied by heating the layer from
above. This is the stable configuration that avoids the onset fig. 4. Time evolution of the concentration profile plotted

of convective instabilities. vs the normalized height during a thermal diffusion process.

Some theorie$12,14 have recently described the non- The horizontal and vertical axes are exchanged for convenience.
equilibrium fluctuations in a mixture at steady state. The preThe initial concentration isc,=0.5, the diffusion coefficient
dictions of these theories have been checked by Sengers apg-1.3x 1076 cn/s, the temperature gradieWfT = 160 K/cm, the
co-workers[7,8]. However, so far no description has beenthermal diffusion ratick;= 3.5, and the temperature corresponds to
provided for the nonequilibrium fluctuations during the tran-T=2315 K. The concentration is initially uniform. As soon as the
sient after the application of the temperature gradient. Foremperature gradient is applied, the concentration begins to change
this purpose we can use E@8), complemented by the so- near the boundaries and the concentration gradient there attains in-
lution of the diffusion equatior(8), under the appropriate stantaneously its steady-state vaWiesy.. At steady state a linear
boundary and initial conditions. For a mixture initially at the concentration profile is formed inside the sample.

uniform concentratiorty and bounded by impermeable sur- ) _ )
faces atz=0 anda these conditions are The concentration profiles obtained from Ed7) are
plotted in Fig. 4 at different times during the transient. The

c=c,, O<z=a, t=0 (45  curves in Fig. 4 correspond @=0.1 cm, VT=160 K/cm,
T=315K, D=1.3x10 ° cn¥/s, andk;=3.5. This choice
and of the parameters corresponds to the experimental situation
that will be described shortly.
VCc=VCsyen 2z=0a, t>0. (46) We use the same procedure outlined in the free diffusion
case to calculate the overall nonequilibrium static structure

The boundary condition§46) arise from the fact that the factor via Eqs(40) and(47). The results are plotted in Fig. 5
concentration gradient must reach instantaneously its stead@! different times(the parameters used are the same used in
state value in the layers where the mass flow is zero, as wadd- 4- The inset of Fig. 5 shows the structure factors res-
pointed out by Archibald19]. The diffusion equation with ~caled by their value ak=0. From the inset it is apparent
the boundary condition§46) and the initial condition(45) how the roll off wave vector varies within a very narrow

of variables[20] to obtain the roll off position is dictated by the magnitude of the gra-

dient. During the transient the gradient close to the bound-
1 2 2 1 _ aries is locked to the steady-state one. Due to the high gra-
c({,t)=co+ aVcSO,et[ - > = [1-(—1)] dient, these are the regions that contribute most to the
2 =1 structure factor and therefore are mainly responsible for the
location of the roll off.

(47) Figure 6 shows the static structure factor as determined by
means of low-angle light scatterif§]. A 1 mm thick hori-
zontal layer of a near-critical aniline-cyclohexane binary

In writing Eq. (47) we have assumed that the thermalizationmixture was used to obtain these data. The mixture was kept

of the mixture is attained almost instantaneously with respecibout 12 K abovel,, in its one-phase region, and a sym-

to the time needed to reach the steady concentration profilkmetrical 16 K vertical temperature difference was suddenly
defined by Eq(44). This assumption is valid for most mix- applied across itheating from above so as to start the
tures, as a typical value of the thermal diffusivity 5y  thermal diffusion process. The inset of Fig. 6 shows the scat-
~103 cn¥/s and the diffusion coefficient is usually smaller tering data rescaled by the forward scattered intensity. These
than 10°° cné/s. scaled data confirm that the roll off position is almost sta-

. j?7°D
Xcogjml)exp — 2 t
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FIG. 5. Normalized overall nonequilibrium static structure fac-  FIG. 6. Normalized overall nonequilibrium static structure fac-
tor calculated at different times during the thermal diffusion procesgor measured at different times during the thermal diffusion process
and plotted vs the wave vectét The parameters correspond to by means of low-angle static light scattering, and plotted vs the
those used in Fig. 4. The curves retain the same features discusse@ve vectork [9]. The sample is the binary mixture aniline-
in the free diffusion case: the * power law behavior at large wave cyclohexane prepared at its critical concentratien0.47 and kept
vector and the gravity-induced roll off at smaller wave vectors.in its homogeneous state®t-T,=12 K. The experiment is started
However, in this case the roll off wave vector is almost stationary,by applying a steady temperature gradient to the mixture, so that a
as it depends on the magnitude of the concentration gradient negencentration gradient develops because of the Soret ¢@28t
the boundaries, where the gradient attains its steady-state value dihe inset shows the structure factors normalized by their value at
most instantaneously. This is best shown in the inset, where this=0, and confirms that the roll off wave vector is almost stationary
structure factors are normalized by their small wave vector valuesiuring the thermal diffusion process. The parameters used in Figs. 4
The parameters correspond to those used in Fig. 4. and 5 correspond to the experimental situation described here, so

that a direct quantitative comparison is possible. The features of the

tionary. According to Eq(42) the forward scattered intensity Structure factor closely mirror those of the calculated one shown in
provides a measure of the difference of the concentratiofl9- -
near the boundaries. By using E¢42) and(47) we find that
this concentration difference changes in time according t9arge molecular weight! [M is proportional to oclau)p 1l
the law or for smaller molecules under the action of a centrifuge.
) They are also large in the vicinity of critical points, where
8 p( 7D ” (dclaw), + diverges. One might ask if the gravitationally
— —5 ex t||—1. (48 ) p. . . . . .
T induced concentration gradient gives rise to a coupling be-
tween velocity and concentration fluctuations. Segre
In writing Eq. (47) we have assumed thet-a?/(97°D), so  Schmitz, and Sengerfd 1] showed that the presence of a
that the early stages of the thermal diffusion process can bsteady gravitational gradient does not affect the static struc-
neglected. Equatiof48) is in good agreement with the ex- ture factor of a simple fluid and Segend Senger$12]

Sne( O,t) _ VCSoret
aseq \Y Cgrav

a2

perimental results presented in REJ]. suggested that this should also hold true for a binary mixture.

No predictions are available to describe what happens during

C. Barodiffusion: gravitationally induced the buildup of the sedimentation gradient, starting from a
concentration gradients homogeneous state.

The static structure factor of a binary mixture in an equi- We will show that, at variance with the free diffusion and

librium state is well knowr{24], and for ordinary fluids is thermal diffusion cases, no enhancement of the fluctuations

completely featureless: the scattered intensity distribution i§0€S occur during the transient, and indeed the fluctuations
constant at all scattering angles. are depressed below the equilibrium value for excitation
In a mixture, gravity gives rise to sedimentation, a down-Wave vectors smaller than the roll off okgo.
ward mass flow of the denser component. This creates a The static structure factor introduced with E@8), and
macroscopic concentration gradient, which in turn gives risdience the scattered intensity, is given by the sum of the
to a diffusive backflow. Eventually a stationary state isequilibrium term @c/du), + and a term accounting for non-
reached, where the two mass flows counterbalance ea@quilibrium fluctuations. This last term, however, can be
other. The gradient at steady state is given by(B).. Large  positive or negative, depending on the sign of the factor
gradients are observed in solutions of macromolecules oVc/Vcge—1.
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FIG. 7. Normalized overall structure factor calculated at differ-  F|G. 8. Normalized overall structure factor calculated at differ-
ent times during the early stages of a sedimentation process anght times during the intermediate and late stages of a sedimentation
plotted vs the wave vectdk. At first the sample is at uniform process and plotted vs the wave vedtoAs the equilibrium state is
concentration and the structure factor is flat. As sedimentation beapproached the low-depression in the structure factor gradually
gins, the structure factor decreases below the equilibrium value afisappears. The physical system is the same depicted in Fig. 7.
small wave vectors. The physical system modeled here corresponds

to polystyrene particles with a radius of 100 nm immersed in water. . - o
The initial uniform concentration i€,=0.01, the temperatur@ from a homogeneous concentration condition. The initial

=300K, the kinematic viscosity =0.01 cnf/s, the diffusion co- ~ concentration isco=0.01, the temperatur@ =300 K, the

efficient D=2.2x10"®cmf/s, B=0.052, and {c/du),r Kinematic viscosity v=0.01 cni/s, the diffusion coef-

=103 %cn?. ' ficient D=2.2x10"% cnf/s, $=0.052, and {c/du),t
=103 s%/cn?. From Fig. 7 one can notice that indeed in the

If the system has reached the steady-state gradient valfmy phases of the process a depression in the structure fac-

) ) . {or below the equilibrium value develops at small wave vec-
chae"' Egﬁg ggiglgglez?Iit:rZerleC?r:/:r:qu]lieb:ieuﬂItst?t?(?tcur ;(k;e ors. Figure 8 shows that as the steady state is approached the
Y >€g ’ Y, structure factor tends to level off to the equilibrium value.

factor is not modified_ by Fhe presence of g.ravit.y. Notice thaEne can also notice that the effect is not very pronounced
in the cases of free diffusion and thermal diffusion, the actua nd probably hard to measure in a real experiment.

gradientVc is usually much larger thaiVcg.,,, and this
explains why the nonequilibrium fluctuations make the scat-
tered intensity increase well above the equilibrium value. In
the sedimentation case, however, if one starts with a homo-

V. SUMMARY AND CONCLUSIONS

We have presented an extension of the fluctuating hydro-

: %ynamics theory to the description of time-dependent non-
smaller thanV ¢y, and therefore, quite unexpectedly, the oo jijibrium fluctuations. It is shown that under realistic as-

amplitude of the nonequilibrium fluctuations will be smaller sumptions, the theory already developed for steady-state
than the equilibrium one at small wave vectors. nonequilibrium fluctuations can be used to account for the
We will present a calculation of the time evolution of the yansient behavior by complementing the steady-state equa-
static structure factor from a sedimenting sample under reakjons with those describing the evolution of the macroscopic
istic estimates. To do so, we first calculate the time-concentration gradients. The role of velocity fluctuations as
dependent concentration profiles in the same way outlined ithe principal mechanism leading to anomalously large con-
the thermal diffusion case. The profiles have the same qualeentration fluctuations is discussed together with the antago-
tative evolution of the ones shown in Fig. 4, the only differ- nizing effect due to spontaneous concentration fluctuations in
ences being that the steady-state concentration gradient the presence of gravitational acceleration. Three typical dif-
Egs. (46) and (47) used to calculate the profiles is now fusion processes are considered, namely, free diffusion, ther-
Vg, and that the time scales involved have changed, dumal diffusion, and barodiffusion. The time evolution of the
to the different value of the diffusion coefficient. concentration gradients during the approach to steady state is
Equation(28) together with Eqs(36) and(47) solves the recalled for the three cases, and a small section is dedicated
problem of finding the overall static structure factor for theto the calculation of the scattered intensity distribution from
sedimenting binary mixture. In Figs. 7 and 8 we show thethe liquid layers that host the gradients. The predictions are
calculated time evolution of the overall static structure factorcompared with experimental results from thermal diffusion
normalized by its equilibrium value for a colloidal suspen-and free diffusion experiments, and good agreement is
sion of polystyrene particles in water=100 nm), starting found. In both cases the fluctuations do exhibit a pronounced
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enhancement with respect to the equilibrium value during théecomes constant, in agreement with the existing theoretical
transient to steady state. Quite different is the case of bargredictions.

diffusion. It is predicted that during the transient, the mean It is pointed out that the validity of the fluctuating hydro-
square amplitude of the fluctuations is actually smaller tharflynamic approach rests under the assumption that proper
the equilibrium one, a result that is rather nonintuitive. Weaverage quantities can be defined. This is the case for
show that the presence of the gravitational gradient actuallground-based situations, where gravity actually prevents the
depresses the equilibrium fluctuations below their thermody@mplitude of long wavelength fluctuations from diverging.
namic value in the early phases of the transient, since buo}}\_/llcrograwty conditions might render this assumption quite
ancy actually “hides away” spontaneous fluctuations byduestionable.
drifting them along the gradient until they rest in a density-

matching layer. This process is more effective at longer
wavelength, and the calculated scattered intensity presents a We acknowledge early discussions on this topic with Phil
hole around the main beam position. As the steady state Segre We thank Doriano Brogioli for useful comments. The
approached, the amplitude of the fluctuations gradually atwork was partially supported by ASAgenzia Spaziale ltal-
tains its thermodynamic value, and the scattered intensitiana.
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