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Quantum-statistical theory of nonlinear optical conductivity for an electron-phonon system
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A general theory is presented for the nonlinear optical conductivities of a system of electrons interacting
with a phonon field. A formal solution of the Liouville equation for the system subjected to an arbitrary number
of electromagnetic wave modes is obtained by applyingKheperator technique developed by Fujita and
Lodder [Physica(Amsterdam 50, 541 (1970]. By using this result, a rigorous expressigi(q,z)) for the
Fourier-Laplace transform of the electric currgid(r,t)) is derived for an electron-phonon system in a
compact general form. Conversely, the current density can be expressed in terms of the complex inversion
integral of Laplace transform theory. In order to obtain a nonlinear conductivity of an arbitrary rank, one only
needs to find the residue ¢8(qg,z)) at an appropriate pole, from which one can extract a formula for the
conductivity tensor. The method is simpler and more transparent than the usual perturbation formalism. Damp-
ing due to scattering can be also incorporated properly into the conductivities of any ranks and can be
evaluated in terms of a resolvent expansion with respect to an electron-phonon interaction in a systematic
manner. We illustrate a formalism and a method to obtain the general formula for a nonlinear conductivity of
any rank and calculate the linear and the lowest-order nonlinear conductivities with the dampingnt@rms
trices, which include the exchange effect among electrons as well as the contributing frequencies of applied
radiation fields[S1063-651X98)07610-1

PACS numbefs): 05.30—d, 72.10—d, 72.20.Ht, 42.65:k

I. INTRODUCTION 1 t t th_1
pi" (0= 7 f dty dtz---f dty
The response theory is one of the standard methods with 0 0 0
which to study many effects due to various interactions be- X[H'(ty),[H'(t2), - ,[H (ty),pol - 11,
tween matter and electromagnetic radiation. The density op-
erator method has been shown to be a useful device for the 1.3

calculation of macroscopic tensor conductivities required in
nonlinear optical mixing problems in solids. Timh-order  with the time ordering,<t,_;<---<t,<t. With the cor-
perturbational solution to the density operator has been olrection of ordern to the density operator known, we can
tained by several different authors and has been expresseddalculate the correction to the mean value of an arbitrary
several different forms. In standard treatmeits the den-  physical quantity such as an electric curréft,t). The cal-
sity operatorp is defined to be a quantity satisfying the quan-culation that involves finding the system density and the
tum Liouville equation. Since the structure of the systemmean value of the physical quantity is straightforward, but
HamiltonianH=Hy+H'(t) is, in general, very complicated, becomes quite tedious. In addition, the time-ordered integrals
exact solutions are rarely obtainable and one must resort tef the nested commutator brackets arising in these equations
approximation techniques. Writing the equivalent integraltend to obscure the physical content of the problem.
equation in the interaction representation A main purpose of this paper is to show a general theo-
retical method to obtain linear and nonlinear conductivity
tensors for an electron-phonon system. We will give rigorous
e , , explicit expressions for the linear and the lowest-order non-
P =pot JO[H (t),pi(t")]dt’, (1.D jinear conductivity tensors, which include the exchange ef-
fect among electrons moving in a phonon field as well as a
collisional decay processes of those electrons due to an
with p, a known initial value in the absence of the time- electron—phonon .inter.action. In thg present work, the formal
dependent perturbatiohl’, one can apply successive ap- solution of the Llouv[lle equation is obtalne_q by means of
proximations to obtain the series solution the K-operator tech.nlque developed by Fujita and L(_)dder
[2], where the density operatp(t) can then be expressible
in a single line(2.26) and thereby time-ordered integrals do

w not appear in this expression. This form turns out to be very
pi()=> plM(t), (1.2 convenient, though not essential, in the subsequent develop-
n=0 ment of the theory of nonlinear conductivities. In addition to

yielding a significant computational simplification over the
usual iterative perturbation approach, this technique provides
wherep,(0)=p, andp{™(0)=0 if n#0 and, in general, a systematic method for representing and classifying arbi-
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trary density perturbation terms in a natural and compacand H,, for the interaction Hamiltonian between those
manner. Since a physical observatile., the mean value of electrons and phonons! (a,) is the creation(annihi-
physical quantityis a linear function of the density operator, |ation) operator for the electrons in a stafe), obeying

contributions to the perturbation expansion of the densityhe fermion anticommutation relations,, ,a,}={a’,a’}
operator may be directly interpreted in terms of observable._ 5 and{a,,at=5,,. b, (b}) is the gnnihilatio}rq(crye-
The K-operator technique to obtain the density operator an%tion) opergtorvfor tﬁévphoqnong with wave vectpand en-
the resolvent expansion methf@] of the observable in the gy o obeying the boson commutation relations
Laplace-Fourier representation would be particularly usequb b ]=qu* bl 1=0 and[b bl 1=6 The counlin

for obtaining linear and nonlinear optical conductivities since. 4’9’ q a'~q’ 9.0’ 1piing
the conductivity of an arbitrary rank can be extracted simpl t_“”Ct'O” vq [=D(g)exp(q-r)] denotes a one-body interac-
by finding the residue of a current density(q,2))/Q at an ion operator, WhICh should be defined | terms of t.he matrlx
appropriate pole in Lapla¢&ouried space. The inclusion of elements referring to electron states. HBr@)) describes in

damping(i.e., decay processedue to the electron scattering & self-cor)sistent_ scheme the interaction of_an electron with
by phonons(and/or static impurities which contributes to the vibrating latticegphonon$ and characterlzes_ the nature
the frequency resonance linewidths and temporal response 8fd the strength of the electron-phonon coupling potential.
the system, can be also easily incorporated into the linear arld®’ convenience, we have chosen the single-particle repre-
nonlinear conductivity formulas in a rigorous manner. |n Sentation that diagonalizes the one—_electron energy operator
contrast to the density-operator phenomenological dampin?e with an allowance for a stz;ﬂc magnetic fielB,
terms [1], we can evaluate those terms by utilizing the (=Y XAo) (ie., helv)=[p+eAq(r)]/2m|v)=e,|v)).
Argyres-Sigel projection operator technigqié—7], which To derive a qlosed—form expression for the electrlc cur-
takes into account the exchange effects among electrons afgnt 16t us consider the case where those electrons in a pho-
the characteristics of collisional decay due to the electronOn field are driven by effectivénterna) electric and mag-
phonon(and/or impurity interactiorfs) from first principles.  netic fields

In order to obtain more exact information about electron

scattering and/or optical properties of solids from conductivi- 9

ties, we will develop a global formalism that enables us to E(r,h)=— T ALY,
include the relaxation mechanism due to, e.g., the electron-

phonon interaction in linear and nonlinear optical conductivi-

ties. We will show the general method to evaluate those re- B(r,t)=VX{Aq(r)+A(r,t)},
laxation (damping terms due to an electron-phonon

interactions and obtain the rigorous explicit expressions fowhereA(r,t) is a time-dependent Maxwell fielghector po-
frequency-dependent damping matrices incorporated in theential), the gauge being chosen so that the scalar potential is
linear and the second-order nonlinear conductivities for arzero. Although in this model the interaction between elec-
electron-phonon system. Those conductivity formulas, whichirons is not explicitly included in the HamiltoniaH, the
include the damping effects, would be particularly useful foreffects of electron-electron interaction could, however, be
analyzing nonlinear effects such as harmonic generatiortaken into account implicitly through the interaction potential
sum- and difference-frequency mixing, and stimulated RaD(q) as a screening effect of those electrons via the dielec-

(2.5

man scattering in solids. tric constant. The effective electric field(r,t) therefore
takes into account possible polarization effects when the sys-
Il. FORMULATION OF QUANTUM TRANSPORT tem is exposed to an external electric fiélg(r.t). In such
o a case, the electrons are subject directly to the prolteng
A. Hamiltonian terna) electric fieldEqy(r,t) = — a,A(r,t)=E(r,t) [which is
We consider an electron-phonon system characterized b§dual to an effectivéinterna) electric field. Therefore, no
the time-independent Hamiltoniat, distinction need be made between the actieffective field

and the probindexterna) field in the present model system.
The probing electric fieldand hence the effective electric

H=HetHptHep, @D field) can be derived from a time-dependent Maxwell field,
which is assumed to be of the form
H=2 (vhdv)aja,=> s,aja,, (22
’ ’ A(r,t)=> {A%xdi(q, r—w.t)]+cc), (2.6
Hp= 2>, (bibg+3)hiwq, (2.3  whereq, andw, represent the wave vector and the angular
q

frequency of the Maxwell field with a mode, respectively.
The summation runs over all wave modes.
The expectation value of the induced electric current at
Hep= 2 X (ulvglv)(bg+b' ala,, (24 some pointr, after the externalMaxwell) field has been
v turned on can be generally evaluated from

where H, stands for the Hamiltonian of dynamically inde-
pendent electronsH, for the Hamiltonian for phonons, (J(rg,1))=Tr{I(rg,t)p(1)}, (2.7
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wherep(t) is the density operator and the symbol Tr denotesvherec, and cl are bosonic annihilation and creation op-
a many-body trace with respect to electrons and phonongrators satisfying

The electric current operatar is given by a sum of one-
electron current operatg¢ry,t). Thus it can be expressed in
the second-quantized form as

(2.19

Tl oT_wfe —
[CaiCpl=CaCp—CpCa= 343,

(2.19

[ca.Col=[cl.ch]=0.
Iro =3 (ulitro.b)|w)ala,, (2.8 b g
m, v

It is then easy to verify that
where
exgiKt/h]c exd —iKt/hi]=cexd —iw,it], (2.16

e
j(ro)=— 5 [{p+eAo(r)+eA(r,0)} 6 (r—ro) exfiKt/A]clexd —iKt/h]=clexd +iw,t]. (2.17

If we define the time-independent operaﬁ)@r) associated
with A(r,t) as

+8(r—ro){p+eAy(r)+eA(r,t)}]. (2.9

The density operatop(t) of the system of electrons plus
phonons under the influence of the external Maxwell field

changes with time, obeying the Liouville equation of motion A(r)EE {A%c exfdiq,-r]+H.cl, (2.18
N B we find from Eqs(2.16—(2.18 that
ih - p(D)=[H+He(t).p(1)], (2.10

where[ , ] denotes the commutatdt, is the Hamiltonian of expiKt/A]A(r)exd —iKt/7]

the systenielectrons plus phonopgiven by Eq.(2.1), and

Hef(t) is the Hamiltonian representing the external distur- =2, {A%C,exHi(q, r—w,t)]+H.c}. (2.19

bance due to the application of the time-dependent Maxwell
field given by Eq.(2.6). This perturbation Hamiltoniahl ,
which represents the interaction between conduction ele
trons (charge —e) and the time-dependent Maxwell field,
can be expressed semiclassically in the second-quantiz
form with respect to the electrons:

This expression is identical to the defining expression for the
Maxwell field A(r,t) [see Eq(2.6)] except for the factors,,
dcl. If we agree to a convention thafter the operator K
is eliminated completely, every, @and CZ are to be equated
with unity, we may equate exiKt/Z]A(r)exd —iKt/A] with
A(r,t). We adopt this conventiofi.e., ca,cl—>1) after ap-
plying the K operator not only to the Maxwell field(r,t)
but also to any function oA(r,t). It should be noted that
upon acting on thé(r), theK operator produces the correct
where the single-electron—Maxwell-field interaction operatoffgrm of Eq. (2.19 associated with the classical Maxwell
hef(t) is explicitly given by field A(r,t). This purely mathematical technique introduced
in Ref.[2] turns out to be very convenient in the subsequent
development of the theory of nonlinear conductivigge be-
low) and especially in the calculation of nonlinear conduc-
tivity of higher rank (see Sec. Ill. Thus, in particular, by

e? defining the time-independent operatdg; as
+A(r,t)-[p+eA0(r)]}+ﬁAz(r,t). (2.12

Hef<t>=EV (ulhe(t)|v)ala,, (2.11)

Neft) = 5 {[p+eAg()]- A0

Thus the perturbatiof o(t) induced in the medium can be
connected to the applied fiekeL,(r,t) through the Maxwell
field A(r,t) defined by Eq(2.6). It should be noted that the
radiation(i.e., electromagnetjdields are treated as classical
fields.

B. Formal solution of the Liouville equation

The formal solution of Eq(2.10 can be easily obtained
by introducing the operator functidd defined by|2]

K= fhw,Clc,, (2.13

He= > (ulhefv)ala,, (2.20
M,V

we can expresBl(t) [Eq.(2.11)] in terms of the operatdf
and the time-independent operatog;,

Hod ) =exdiKt/AH exd —iKt/4]

—exiK *t/A]Hg. (2.20)
The last equality can be easily verified by expanding both
sides with respect td. It should be noted that the cross
superscript denotes the commutator-generating superoperator
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(or the Liouville operator In Eq. (2.20 the time- where the time-independent single-electron currentopefrator
independent single-electron—Maxwell-field interaction op-is given by

eratorh; associated witthg(t) [Eq. (2.12)] is given by
- e -~
i(ro)=-5-A{lp+ eAo(r)+eA(r)]6®(r—ro)

o= 5 {[p+eAq(r)]-A(r)

2

+6(3)(r—ro)[p+er(r)+eA(r)]}. (2.30

- e -, In Eq.(2.29, |w),|v) are the eigenstates of the single-electron
+A(r)-[pteAon ]+ 5~ A%r). (222 Hamiltonianh,. It should be noted that the many-body trace
in Eq. (2.28 is taken over the electron and the phonon co-
In order to obtain the solution of E42.10), let us intro- ~ Ordinates.

duce a transformed density operafd(t) defined by C. Asymptotic behavior of (J(ry,t)) and the conductivity

tensors
p'(V=exd —iK*t/A]p(t). (2.23

From Egs.(2.10, (2.21), and(2.23, we obtain the equation
of motion forp’(t) as

It is expected that a sufficiently long time after the steady
electromagnetic field characterized Ayr,t) [see Eq(2.6)]
is switched on, the system should approach a stationary state
in which the generalized Ohm law holds between the current
density{J(rq,t))/Q (Q is a volume of the sampleand the
, o A o effective electric fieldE(rg,t). Responding to the applied
p' () =(H"+H+K™)p'(1). (2.24  Maxwell (or electrig field with a set of modes{w,}
=(w1,05,...,0,) and{d,}=(q:,95,...,qm), & component
of the nth-order electric current characterized by the set of
combination frequencies and wave vectoréwaj}

4
if pr
This equation can be easily solved fof(t) since the Liou-
ville operatorsH* (=Hg +Hy+HZ), Hg, andK™ do not _
contain t explicitly. The formal solution of Eq(2.24 is =~ (Qay@ay---10q,) aNd 10t =(0a; Gy a) Will e
given by induced. Herezlzaz,...,an=1,2,...m. . .
Let us consider the case where the probing time-
- dependent electric fielEg,(r,t) [=E(r,t)], which is de-
p'()=exd —i(H*+H&G+K)t#lpo, (229  rived from the Maxwell fieldA(r,t) [Eq. (2.6)], is sinusoidal
and is characterized by the set of wave vectfs} and
wherep, [ =p(0)=p'(0)] is the density operator at the ini- angular frequenciebw,}. It is then convenient to introduce
tial time t=0. From Eqgs(2.23 and(2.25 we can thus for-  a time-dependent complex electric figqr,t) defined by
mally express the solution of ER.10 in a simple form

p(h=exd iK*t/h]exd —i(H* + A+ K )thlpo. (2.2 EW)EE; E“exﬁi(qa'r—watﬂf; E4(r,0),

It should be understood that the symbal stands for “is 239
represented by thié operator” and that the convention with where the sum is taken over all wave modes The ampli-
regard to theK operator along with the bosonic operators tudes and phases of these modes are generally related to the
(CZ ,C,) mustbe applied to the evaluation ¢d(r,,t)). Sub-  nth-order nonlineatcomplex conductivity tensoio" such
stituting this in Eq.(2.7) and noting that the current operator that, ast—c,

J(ro,t) [EQ. (2.8)] is expressed by

o X (A(ro,0)y=2 (IW(rg,1)), (2.32
J(ro,t)=exdiK*t/A](ry), (2.2 n=1

where the nth-order contribution to the current density
(IM(ry,1))/Q in the stationary state may be expressed in
terms ofE“(r,t)’s as

the electronic current aty at a timet can be exactly pre-
scribed by

(I(ro,0))=Tr{I(ro,H)p(t)} (IM(rg,0))/Q

=Tr{exd iK*t/#]J
eI R =3 3 ({0} e )Y B,

xex —i(H*+HX+K)th]pot. (2.28 a e
. (2.33
Here the time-independent current operalf,) associated
with J(rg,t) is given by EX(r,t)---E*(r,t)=E*---E® exdi(q-r—ot)], (2.39

Wro=2 (uliroln)aa,, (2.29 6=2 0oy G=2, Goy (2.39

=1 ]
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Here @q;r Gaj andE“i are frequencies, wave vectors, and study of the residue is sufficient for the description of the

amplitudes of the contributing fields, respectively, with thenonlinear conductivity of any rank?].

resulting (generatef frequency® and wave vector. This By applying the Fourier-Laplace transform formia36
asymptotic constitutive relatiof2.33 between the current to the formal expression for the electronic curredfr,t))
density and the effectivéinterna) electric fieldsdefinesa  [Ed. (2.28], we obtain the exact expression for the Fourier-
generalized complex conductivity tensef?, which in gen-  Laplace transformed electronic currgd(q,z)) as

eral depends on the set of combination frequenhiggj,} and

wave vectorﬂqaj} of the contributing applied fields. In or-

der to obtain the general expression &P, it is convenient
to formulate(J(ry,t)) in the wave-vector—frequency repre-
sentation rather than in the ordinary spag@nd timet since -
a local, asymptotic behavior of the current is more appropri- XTHI(Q) W (z—21)po}, (2.39
ately characterized by the contributing electromagnetic .

modes (g, },{w,)}. In order to obtain the expression of whereW (2) is given by

(J(rp,t)) in the wave-vector—frequency representation, let .

us define the Fourier-Laplace transform of a space-time func- V(z)=(H*+HZ+K*—fhz) ! (2.40
tion f(r,t) by

ﬁZ
(J@2)=-5—

ic+oo
dzy(K*+#zy) "t

ic—

and the Fourier components of the time-independent electric

o d3r currentJ(qg) in wave-vector space are given by Fourier trans-
f(q,z)Eif dt exp[izt]f ﬁexq—iqw]f(r,t). forming Eq.(2.29 as
0 Q
(2.3
s R :
The inverse Fourier-Laplace transform 6fqg,z) is then J(Q)—% (M|J(q)|”>auav' (2.4
given by
with
1 ic+o
f(r,t)=-— f dz exr[—izt]Z exdiq-r]f(q,z), 3
e e | = | “glent-ia-rolitro
=| ——exg—ig-rolj(r
(2.37 Iq ) Q-Toll{lo
wherec is a positive number chosen such thét) should be e R
analytic above the infinite line frort —o to ic+o in the T [{p+eAq(r)+eA(r)lexd —iq-r]
complexz plane except at a finite number of poles. Accord-
ingly, the relation(2.33 can be expressed alternatively and +exd —iq-r{p+ er(r)+eA(r)}]. (2.42

more precisely expressed @es denotes the residue) of
This compact expressiof2.39 along with Egs.(2.40-

RegJIM(Q,2)/Q|,—5_is (2.42 contains full information about linear or nonlinear
conductivity tensor of an arbitrary rank, which can be ob-
. . ()=
__5N ... (n) Lo V) EY(r ) - EX(r 1), tained by the study of the residue df'™(q,z)) (n
% % o7 ({Ga} {@q ) B .y =1,2,3,...) at a prescribed pole.

(2.38

where® andq are respectively given by Eq2.35. This
means thathe generalized th-order conductivitye", be-
ing the coefficient in the term with the products of the con
tributing electric fieldsE*1(r,t)---E*n(r,t) can be obtained
by finding the residue of the Laplace(-Fourier) transform of
the current density at a prescribed pdlee.,z=o—i 45 in the
present cagesince the current densityd™(rq,t))/Q ex-
panded in terms of tha products of the contributing fields
E“ (j=1,2,3,...m) can be evaluated from the complex in-
version integral and m Xpr in the right-han
sﬁjg Oof EB?%Z?SS). ql'hi?ﬁzi:? ?rerr)nzsr%%du;f/ sir;peiifiegs tths gtt=0. Ir) fact, in the ab.sen.ce of the probing Maxwell field,
mathematical treatment of the conductivity tensor of anythe density operatop(t) is given by[see Eq/(2.26]

rank since the study of the residue is much simpler than that

of the full analytic behavior 0fJ((4,2)) in the complexz p(t)=exf —iH*t/A]po. (2.49
plane. It should be noted that a small imaginary part (6

is a vanishingly small positive numbeadded to the fre- Ast—o, the system would approach a stationary state. This
guencyw implies adiabatic switching of an external electric means that all intensive properties of an observaiip
field and ensures convergence of the integral=atc. The  which can be described in the form of{Fp(t)}, would also

D. Choice of an initial condition

The evaluations of the Fourier-Laplace transformed elec-
tric current(J(q,2)) involve the operatol defined by Eq.
(2.40 and the initial density operatgy,. In general, we may
assume that the initial state of the system is uncorrelated
with the probing Maxwell(or electrig fields. This can be
mathematically expressed by

K”po=Kpo—poK=0 (243
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attain their stationary values for very larggHereA is the
operator of an arbitrary physical quantjtgymbolically, this
may be stated as

(2.45

p(t)— Pstationary for t—oo.
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(J@2))=-5—~ ficﬂo dz(z;-2)

X (K*+%121) " Tr{3(q) peq)

In the Laplace space this asymptotic relation should take the

form [2]

Pstati
:i'onary+(non5|ngular terms

p(2)= (2.46

and hence this can be alternatively expressed as

—Resp(z)|,-is= —RegH* —%z) tpg

Pstationary—

(2.47)
Therefore, we may replac&(z)pg in Eq. (2.39 by

W(z)po=— %z Pstationary™ %z \P(Z)H:fpstationarya
(2.48
where we have used the identity
V(2)=R,~V(2)H}R,. (2.49
Here the resolvent operat®, is defined by
=(H*+K*—#z)"* (2.50

If we assume that the asymptotic state of the system charac-

terized by the system Hamiltonidth is close to the equilib-

rium state, we can then replacéi{+K*—#z) 1p, by
— Pstationary 12~ — peq/ 71 Z, Wherepg, denotes an equilibrium

density operator. The density operam;amnarycorrespond-

h ic+o
4+

o dz(z;—2) HK*+hzy) L

ic—o

XTHI(Q) W (z—21)Hpeg (2.52
where ¥(z—2z;) is given by Eq.(2.40 and J(q) by Eqg.
(2.41). This is the basic equation for the current, from which
we can extract a conductivity formula of any rank. In the
next section we will show the method of obtaining the for-
mulas for linear and nonlinear conductivitiest) and o{?))

and derive explicitly their rigorous expressions including the
associated damping matrices due to an electron-phonon in-
teraction.

I1l. RESOLVENT EXPANSION METHOD
A. Derivation of linear conductivity

Let us proceed to the calculation of Eg.52 to derive
the general expressions for linear and nonlinear conductivity
tensors. Sincel(z) and J(q) contain the field strengtha
associated wittE’s, in order to obtain the expressions for
linear and nonlinear_conductivity tensors, we expan(z)
andJ(q) in terms ofA or Hei. From Eq.(2.49 we obtain

V(z)~R,— )\RH R+)\2RH RH R,—

(3.1)

In this equation we have introduced the dimensionless pa-
rameter\ in order to indicate the order of expansion in the

ing to the stationary state can in practice be chosen to be tHeeld strengths and may skt=1 later on. We shall use such

grand-canonical density operateg(H):

o exid—pH]
Pstationary— peq(H)_ Tr{exd —ﬁﬁ]} ) (2.5)

where g is the reciprocal temperature deflned bkgll and

a convention in this and other similar expansions. Using this
in Eq. (2.52), the first order 0fJ(q,z)) is given by

D h ict+o _
J (q12)>=_ﬁ ficﬂc dz(z,—2)

X (KX +5121) " Tr{ID(q) peg

H=H-{N. HereH=Hg+H,+Hg,, N=X a ,a,, and(is

the Fermi energy in the presence of the electron -phonon in-
teraction and is determined from [Npe|=N,, the total
number of electrons in the system. It should be noted that the
argument ofpg, excludesHg (i.e., the interaction energy
between the external probing Maxwell field and electjons
This choice would be valid for the case where the conduc-
tivities of lower rank is discussed. It is noted that our
requirement(2.45, which is imposed on the nature of where the superscrigh) (n=0,1,2 ..
initial density operator, is less restrictive than the choice ofin the field strength parameter.
Po=Peq Selected by Kubd8]. We can see that this latter ~ When the wavelength#/q of an applied electromagnetic

h ic+o _
+ > fic_x dz(z,—2)

X (KX +42) " THIO(Q)R,—, Hiipeg
(3.2

.) denotes the order

choice surely satisfies the requiremegi@45 since H*
~12) 'peg= —(h2) 'peq and [H,N]=0 for a weak
electron-radiation interaction.

Utilizing Eq. (2.48 along with Eq.(2.51), we can express
Eq. (2.39 as

wave, characterized by, w), is large compared to the mean
free path of electrons and therefore the spatial variation of
the field is negligible, the HamiltoniaH .(t) describing the
electromagnetic interaction with electrons can be approxi-
mated by
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He(t) =eR-E{exdiwt]+exd —iwt]}, (3.3

whereR (=Z;r;) is the sum of a position operator for each

electron and is expressed in the second quantized form

R=, (,u|r|v>aLa,,. (3.9
m,v
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e
gij(0)=— Q THIG(— 0 )[Rj,peqlt  (1,j=X%Y,2),
(3.11)

whereJ; andG(w ™) are, respectively, given by

Ji:_eR:i;[Ri,H], (313

We shall employ this so-called dipole approximation herein-

after. The theory developed in Sec. Il for solving the Liou-

ville equation can be simply extended to the case of(B®)
with Eq. (3.4) by the adaptation

He=eR-E[c,+C/ ], (3.5
wherec,, and CI) are for the mode,=0, w,= w.

The first term of the right-hand side of E@.2) vanishes
identically because

2

: ie e
M@= [rHel= 7 [rr-E]=0. (36

By a straightforward calculation along with Eq&.13-

(2.15 and(3.5), the part of the integrand in the second term

+

W

in Eqg. (3.2), which contain,, andc, , is finally given by

(K*+h2z;) " TTHIO(QR, -, Hiped
—h(w+2)} IO (H  +ho—fhz+hizy) L
X[eR-E, pegl} +{#i (— 0 +21)} " 1Tr{I(q)

X(H*~fiw—fhz+hz;) '[eR-E,peql}. (3.7

Substituting this equation and performing the integral in Eq.

(3.2, we obtain

(IV(q,2)={(z+w) 1+ (z-w) Y
XTr{IO(q)GleR E,pegl}, (3.9

whereG, is given by

G,=(H*-hz) L (3.9

Since we are interested io(w), we only need to find the
residue az=—w+i4. Thus the relatiori2.38 in Sec. Il C
should be expressed by

Rng(l)(q!Z)>/Q|Z:—w+i5
=3Tr{3<°>( H*+#(0—i8)] [R-E
a q ®=16)]"[R-E,peql}
=—o(w)-E. (3.10

From this, the lineatcompleX conductivity reads

G(o )=(H*—fhw ) '=(H  +Hy+H ~fo™) "%
(3.13

The overdot in Eq(3.12) is d/dt. It should be noted thab™
is a complex external frequency and will be set equabto
—i8, wherew is real ands is a positive infinitesimal. To get
rid of the commutator in Eq(3.11), we apply the Kubo
identity [8]

B=1kgT

[~ eRoped = —ihpeg||  AB'I-iRB"),
(3.19

where

J(—ihB )=exd B'H]J exd —B'H]. (3.1

Accordingly, Eq.(3.11) can be written as

h
O'ij(w)zm Tr[Ji(HX-l-ﬁw—iﬁﬁ)lpeq

XJBd 'J inB’
. B'Ii(—i ,3))

= lim jdtexq—i(w—i5)t]
s—o*t 70

B
x [ "ag 0 pugy -ins)3 0},
(3.16

where

Ji(t)y=exd iH *t/A]J; (3.17
is the total current operator in the Heisenberg pictyig;is
the normalized grand canonical density operd®bl). It
should be noted that the limé— 0" should be taken last in
Egs.(3.11) and (3.16), in particular after the bulk limit Q
—0, Ng—o while Ng/Q =n,, which is finitg. This expres-
sion is identically equal to the well-known Kubo formdiB.

B. Evaluation of linear conductivity

We start with the linear conductivity formul@.11):
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e ) - Ji=PJi=(PH " —fio" )PK(w ) +PH*P'K(w"),
gij(@)=—§ THIG(— 0 )[R}, pedH) ]}

(3.29
Z_ETr{JAG(_w—)[R, p q(i:| )]} 0=P' Ji=(PH —ho )P Ko )+P' H*PK(w").
Q i j1Pe 0
(3.30
__ % Tr{peq(i:'O)[Rj Ko (3.19 Here we have used the identity
PP'=P"P=0, (3.3

In the last equality we have made use of the invariance prop-
erty of the trace under cyclic permutation. Here we havewhich can be easily verified from Eq$3.24 and (3.27.
assumed thai,, for the electron-phonon systelq. (2.50]  Solving Eq.(3.30 for P'K(w ™), we obtain the equation
can be factorized as
~ ~ _ PKlw )=—(P'H —fho ) 1PH*PK(w).
peq(H):peq(HO):pe(He)®pp(Hp)n (3.19 (3.32

where ﬁoEH +H,— (N=Hg—¢N H.=H —¢N, and a Substituting Eq(3.32) into Eq.(3.29, we obtain the relevant
e p 1 e e ]

many-body electron-phonon operatofw ) is defined as €M Ji:
K(w )=G(w )J;. 320 J=PH =H*G (0")P'H ~fiw ]PK(w")
- X _ X ! — 13 X _ — ) )
The resolvent operatdB(w ™) is given by Eq.(3.13. The = (K@ ))uy (H"—H"G"(0 )P'H” —frw )‘]'>MV‘]"
approximation forp. is justified in our weak coupling cal- (i) v (I} v
culation. Using Eq(3.4), Eq.(3.18 can be expressed in the (3.33

matrix form as
where we have defined a resolvent oper&ofw ) as

ai(@ == 2 Gl K (o)) 32D G (@) =(PH*~ho) L (334
o,V

Thus the quantit{K(w™ can be exactly expressed b
where we have introduced the notation q S C y exp y

S (K@)
<' : '>MVETr{peq(HO)(a,u,av) o } (3.22 <J >
_ i/ pv
Our problem is now to evaluate the quant{i¢(»)),, _<[HX—HXG’(w*)P’HX]Ji>M,,(Ji);Vl—hw"

in Eq. (3.21). To do this, we introduce the projection opera-
tors P, P’ defined by[4—7] (3.39
Noting that (J),,=—(v[iilu)(f,—f,) and ((H
’P'”E<'”>,LLV‘Ji/<‘]i>/-LV’ (323) +Hr>)<)‘-]i>,u1):_8VM<V|ji|1u‘>(fv_f,u) (SV,LLESV_S/.L) in Eq

(3.35, an expression for a dynamic complex conductivity

P=1-P. (3.24) (3.18 can be expressed as
It is clear from these definitions that e (ulrilv)(vliilm)
gijf(0)=—q 2 (f,=f,) s,
wy o —g,,—il,(07)

P‘Ji:<‘]i>MV‘Ji/<‘]i>ﬂvz‘]i y (325) (336)
where the damping matritself-energy I',,(w ™) is given
P’Ji=Ji—PJi=Ji—Ji=O, (326) by
PP=P, P?=P. (3.2 . _ ([HeHgB (0 )P HEl I
ir,(o7)= 3 .
From Eq.(3.20, K(w™) should obey the equation v (3.37

J=(H*~ o Ko Equation (3.36 along with Eq.(3.37) is the exact formal
: expression for the linear optical conductivity;(w) valid
=(H*"—%ho )[PK(w )+P'K(w™)]. (3.2  for an arbitrarily strong electron-phonon interactidg, ex-
cept for the approximatiort3.19 introduced in the exact
Letting P and’P’ operate separately on E@®.28), we obtain  conductivity formula(3.11). This expressior3.36 provides
the equations a rigorous basis for the evaluation of optical properties of
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conduction electrons in solids. The quantity,(w ™) clearly G0 )=(Hy—hw ) L (3.39

determines the spectral line shajpdonon-induced broaden-

ing) of the dynamic(optical) conductivity of solids. Using Eq.(3.38 in Eq. (3.37), we can formally expand Eq.
The next step is to evaluate the damping malitjx (@) (337 in terms of 7,

[Eq.(3.37)]. To do this, we expand E@3.34) in terms of the

electron-phonon coupling parametef 3],

i - 0 rHXn
G/(w—)Pl:(H(>)<+P/H;<p_hw—)—1pl IFMV(w ) <J|>Iu,,nz <H '{ G ((,L) P ep] J)}LV
:Go(w_)Zo [— nP’ngGO(w_)]np/, =i E F(n) . (3.40

3.3
(3.39 Sincel’,,(w™) has already been expanded in powersypf
whereG°(w ) is an unperturbed resolvent operator definedthe lowest-order nonvanishing terfif?) can be expressed,

by after some algebraic manipulations, by
. . (HeG%0 ) HGI) (Bly—qlw)
(2) _ P M A e
|rﬂy(‘0 )= <Ji>,w 2 2 [<V|7q|a><a“||,8> <V|J||a><a|7q|:8>] <V|j |M>
Ng+1—fg Ng+fg
x €5~ hwg—ho” * €pthog—ho”
(Bly-qlB)
+2 E [<V|7’q|a><a|1||ﬂ> <V|]||a><a|')’q|/’v>] <V|J |(ju,>

fs fs

X - —
g~ hog—ho” &, tho—ho

+ 3 3 AD a5yl )~ el BB )

aB q
Eqp—hwg—ho™  &,,thog—lo™ |

(3.41

where Nq=Tr{ppbgbq} and fﬁzTr{peagaB} denote the (3.41] reduces to the corresponding expressipha1] ob-
Planck distribution function for phonons with energy,  tained for a cyclotron resonance linewidth by replacing the
and the Fermi-Dirac distribution function for electrons with electron states by Landau states and the current opgrator
energy eg, at equilibrium temperaturd=1/kgB, respec- by j. (=jx*ijy).

tively. It should be noted that the above expression for the

damping matrix(self-energy is exact to second order in

for an electron-phonon interaction and determines the spec- C. Evaluation of nonlinear conductivity

tral line shape of the optical conductivi.36) [or (3.18)]. From Eq.(2.52 along with Eq.(3.1), (J(q,2)) in the

The terms associated with the Fermi-Dirac distribution fUnC'second order of the fie|d_strength paramete%) (lS given by
tion f ; describe the effects of exchange among electrons and

play an important role in the determination of the tempera- f ic+oo
ture dependence on the optical conductivity for low tempera- (3®(a,2)= 2
tures. In the usual transport theory of conductivity in solids . .
[9,10], the exchange effects of electrons in their collisions ><Tr{\]<0)(q)RZ,ZlH§f R, 2 Hetpeqg- (342

with phonons enter through the exclusion factors. If we ig-

nore the exchange effects among electrons by setting

=0, we recover the expression for the same quantity obwe will apply the dipole approximation to the present non-
tained by assuming a system of one electron moving in dinear case and assume that the time-dependent electric field
phonon field. Badjou and Argyrd3] showed that these ef- consists of a set of frequency modes,} («=1,2,3,...m),

fects play an important role in the case of the cyclotron resowhere the component field is sinusoidal with a frequency
nance line shape. In fact, our expressibff)(w™) [EQ.  ,. In this caseH is given by

dzy(z;—2) Y (K*+hzy) L

IC—x»



4316 AKIRA SUZUKI AND MASAKI ASHIKAWA PRE 58

m

Hef(t)zeo;l E* R{exdiw,t]+exd —iw,t]}. Ho= 621 E*-R{c,+cl}. (3.44

(3.43
R By a straightforward calculation along with Eq&.14),
The time-independent interaction Hamiltonidg; associated (2.15, and(3.44), we obtain the part of the right-hand side
with H(t) [Eq. (3.43] is then given by of Eq. (3.42 that contains the operatocs, ,CL as

~ - 1
(K*+ hzl)ileleHgf szlez;fPeq: E‘b % {(wa— wg+ Zl)ilewa+wB+z—zl[eR' EﬁyG—qurzle[eR' Ea,pe(,]]}

1 _
+E % {(wa+w,8+zl) 1G*tua7w

y +zle[eR' Eﬁ!waaJrzle[eR' Eavpeq]]}

B

1
+ 4 % {(—w,— wpTt Zl)ilea+wﬁ+z—zl[eR' EBaGwa+z—zl[eR' Eavpeq]]}

1 -1 B a
+Eﬁ %{(_wa+wﬁ+zl) Gwa—wﬂ-FZ—Zl[eR'E qua+z—21[eR'E vpeq]]}!

(3.49

where the resolvent operat@, is defined by Eq.3.9). Substituting Eq.(3.45 into Eq. (3.42 and performing thez;
integration, we can recast E(.42 to the form

(I2(02) =", (~w,+ 05~ THIOQCIR-ELG, -, [R-E" pegl])
+622 (—w,—wg—2) THIO(Q)G,[R EF,G,.,, [R-E* peql1})
a,B B
+ 922 ((wa+ wp— Z)ilTr{J(O)(q)GZ[R' EB,GZ*(u [R Eavpeq]]})
a,B B

+822 (0= wp—2) *TrH{IO(q)G,IR-EF,G,1,, [R-E% pegl 1)) (3.46
a,B B

We can see from this expression the frequency mixing of3.47) we can obtain a general expression for the sum-
modes, e.g. and 8. For the sum frequency,+wg, the  frequency second-order conductivity as

relation (2.38 in Sec. Il C can be expressed in the present

case by taking the residue &t — w,— wz+id (see the Ap-

pendix: T (0,050, +0p)
Re(IP(A0.D)/ Q- -0, uye15 - 52 THIG(— @, wgtid)
=%2Tr{J<°>(q)G(—wa—wB+i5) xRZjXG(—waJri&)preq}
X[R-EA,G(~ w,+18)[R-E* peglI} =- % Tr{peRe G(w,—i6)
= — 0D (w,,05;0,+ wg): EEP (3.47) XRG(w,+wg—i8)J} (i,j.k=xy,2), (3.48

for the lowest-order nonlinear case. Another combination ofvhere the last equality is due to the cyclicity of the trace. It
frequency mixing ino‘? is similarly extracted from taking a is noted thatr,3 take any combination of a frequency mode
residue of(J(®)(q,2))/Q at an appropriate pole. From Eg. amonga,8 (=1,2,3,...n) applied to the system.
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In order to obtaino{® in the matrix representation, let us
introduce a notation for the right-hand side of £8.48:

(K(w ) =Tr{peqala,) *G(w,)(alas) *K(w,z)},

(3.49
where w, =w,—i8, v z=w,+wgz—id, and((---)) is de-
fined by

(= N=Tr{pefalay) *G(w,)(alas -}, (3.50
K(@,p)=G(w,5)J;. (3.51)

From Egs.(3.48 and (3.49, the second-order conductivity
(3.48 can be expressed in terms @K (w,z))) as

2 .
O'i(jk)(wa,wﬁ,w +0)B)

:_eﬁ 82 2 (elrd&)(rl (K

Y,

w;B)». (3.52

Here we have adopted the approximati{8ril9 for the equi-

librium density operator as is used for the evaluation of a
linear conductivity. Our problem is thus reduced to the

evaluation of the quantity(K(w,z))) to obtain the explicit

expression of the second-order conductivity. To carry it out
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Q'=1-0. (3.60

Thus the quantityf Y(w,))., can be exactly expressed as

<Z>s§
w,)Q'H*1Z),(Z),/ —tw,
(3.6

<Y(w;)>8§:<[HX_HXGH(

where the resolvent operat@”(w_) is given byG"(w,)
=(Q'H - fw,) 1. From Egs.(3.55, (3.56, and (3.61)
we can write the expression for the quantifK(w,z)))
[Eq. (3.59] as

<Z>E§
1w )] [ho,—iT (0, 0,5]
? 123.62)

(K(w)= 7

wherel'(w,) andT'(w, ,w,z) are the quantities associated
with damping due to the electron-phonon interaction and are
given by

iT(w,)=Tr{pefala,)”
><[HX—HXG”(w;)Q’HX]Z}/(Z>S§,

(3.63

we apply the projection operator technique introduced in

Sec. lll B. We again define the projection operatBr®’ by

o= NI I, (353

P =1-P. (3.59

In a similar manner as we did in Sec. lll B, the expression

for the quantity((K(w,z))) may be expressed in the form

(K(@g4p)))

_ ((3)
(([H*=HG' (@) P'H JINN(I)) *—frey’
(3.595
where the resolvent operatoG’(w,s) is defined by

G'(w,p)= (PH ~fo, 8 1. To evaluate the quantity
((J;)) In Eq. (3.59), let us rewrite the quantity(J;)) as

((IN)=Tr{pedalap) *G(w;)(alas) * I} =(Y(@;))s¢,

(3.56
(-)e=Tr{pedala) -}, (3.57)
Y(w,)=G(v,)(ala;)*J=G(w,)Z. (359

We define the projection operatogs Q' by
Q =(") e ZI{Z) e, (3.59

iT(w, ,0.5=Tr{pefala) *G(w,)(alas*
X[H* =H*G' (0,5 P'H*1I}(Z) ¢
X Tr{pedaiay) “[H*—H*G"(w,)

XQH ~thw, 1ZH(Z), (3.69
respectively. The quantityZ).. is easily evaluated and is
given by

(Z)ee= Tr{Pecﬁalag) X(aryaa) *Ji}

=[(€ljilv) 8es—(oliile) g, 1(fe—f.). (3.6

With the use of the identity for the resolvent operator

G(0,)=C%w,)—G(w,)HG%w,), (3.60

Gw,)=(Hg —hw,) '=(H{+Hy —hw,) ™Y,

(3.67

we expandil'(w,) and il'(o, ,0,g) in terms of the
electron-phonon coupling parameten and keep the
terms up toO(#%?). Noting in the resultant expressions
that IT0(w,)=e, 1100, 005) = (el El]1|1)005
_85£<5|JI|8>5§7) (<§|J||')’> 6 <51]||8>6§y) , andil’ 1)((0 )
=ir(w, 0,5 =0,((K(w,g))) in Eq. (3. 62) can be writ-
ten as
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<§|Jlly>5£5
[fw, —eg—iTP (0, )[fhwz—ee—ITP (0, ,0,0)]

) (liife) s,
[ﬁw;—858—ir(z)(w;)][ﬁwgﬁ—s(gs—il_'(z)(w; @45 ] '

<<K<w;B>>>=<f§—fs>[

(3.68

By utilizing Eq. (3.68 in Eq. (3.52), the rigorous expression of the second-order conduct{@ty2 is thus given by

(YIrileX(elrd E)(Eljil v) 8es
[hwg—ee—iTE o0, o) l[ho, —eg,—iTE s(0,)]

(elrid €)(&lrjl 6)(dljile) bey
[ﬁw ap” €8T 'Fggy,s(wa !waﬁ)][hw _8§s_lrs§y5(w;)] ,

€
oiR(0a0gioat o)== 2 (f=1.)

(3.69

where «,8 take any frequency modese., a,8=1,2,3 ... m) and the damping matriceB(w_) andI'(w,_, W,p) are,
respectively, given by

(aly-qle) : :
Zg)ya(w )= 2 E <5|]||8>5§y 2§|J||'}’>5 [<§|7q|7><5|1i|a>+<5|7q|a><§|1i|7’>]
o Netiofe o Ngtf,
o~ hog—ho, egthog—lo,
_2 2 <a|7—q|8><ﬁ|7q|a><5|ji|ﬁ> Nq+1_fa Nq+fa s
5T (liile)oey—(Eillndss |ea—howg—tho, egpthog—ho,| *
_2 2 <5|77q|8><§|7q|a><a|ji|7> Nq+1_f5 Nq"’f&
a  (dliile)ey=(&liil M ss lecs—hwg—ho, epthog—ho,
(ly-gla) : .
EE <5|]||8>5§ 2§|J||7>5 [<a|7’q|7><5|Ji|8>+<5|7q|£><a|1i|7’>]
y
S Netfe L Nkl
Eqs—hwqg—ho, &,thog—ho,
> (&ly—gla)(alyqlB)(Bljil ) Notfe  Ngtl-f, 5
3G (iile)de,—(Eiil V) des |tae—thoqg—ho, eptho—ho,] °
_ dlji Ng+f Ng+1—f
sy CErdneedila [ N, N, } 570
« ‘@ (0liile)bey—(&liil V) bes &y~ hwg—lw, &, tho—lo,

<a’|'y ql &) . _ .
Tdl0a wap) =2 20 15y s (a6, (O valBXAliila) = (Blyd @) il £)]

Ng+1-f, Ng+f,
ggo—hog—ho, egthog—ho,

vé

<5|7’ q| > . _ .
EE <5|J||8>5§y <§|J||7>5 [<§|7q|a><a|1i|7> <a|7q|')’><§|1i|a>]

Ng+1-fs Ng+fs

X — =
ggs—hwg—ho, &ithog—ho,

<§|'y q| > . _ .
22 <5|J||8>5§y <§|J||'}’>5 [<a|7q|ﬁ><,3|1i|'y> <ﬁ|')’q|7><alji|,8>]

Ng+ o Ng+1—f,

X —+ =
g5~ hwg—ho, e,5thog—ho,

ed
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(Ely—dv
<5|ji|8>5§y_<§|ji|7>536
Ng+1—f,
gy thog—fw,

—; % [(3] vola)eliile)—(alvqle)(dlii|a)]
Ng+f,
gy~ hog—fho,

(&ly—qlB)
*2 2 Gl e, (i
Ngt+1-fg
837+hwq—ﬁw;ﬁ

X

[(BlvaleXaliilv)—(alvql v)(Bliil)]

Ng+fg
epy~hwg—lio,g
(8ly—dlB)
+ - -
az,ﬁ % <5|Ji|8>5§y_<§|li|7>5sa
egythog—lio,,

X EX)

[(alvgle)(Bliila)=(Blyqla)(aljile)]

Ngtfg

epy~hwg—Tio,g

(Bly—qle)

+ - -
C’Zﬁ; <5|JI|8>5§7_<§|JI|7>5£B
esp—hwg—ho,,

(Bly—ql7)

+ " .
aE,BEq (Oljile) bey=(€liil v) 8es
sw—ﬁwq—hw;ﬁ

575

[(Blval @) (alil B) = (el vql B)(4l]il )]

espthowg—Thw,,

vé

[(alvql BYElil ) = (&| vl a){al]i| B)]

Ng+fg

X -
s§5+ﬁwq—ﬁwaﬁ

(3.79

Sys-

Here we have ignored the terms that are in proportion to therder »? in an electron-phonon interaction. In these expres-
Fermi-Dirac distribution functiorf ,=f(e,) in I'(w,) and  sions for the damping matrices, the terms associated with the
Mo, 0,5 Fermi-Dirac distribution functiond , and f; describe the
effects of exchange among electrons. If we ignore the effects
of electron exchange by settirfg;=0, our result(3.14 re-
duces to the same quantitg,10], which is obtained by as-
IV. CONCLUSION suming a system of one electron moving in a phonon field.

In the present paper we have given a formalism and a fullVe expect that the lowest-order nonlinear conductivity for-
account of the method of evaluation of linear and nonlineafnula(3.69 along with Egs(3.70 and(3.71) can be applied
conductivity tensors for an electron-phonon system. We ret0 study nonlinear optical phenomena at finite temperatures
late the conductivity tensors to dampii@laxation matri- ~ such as sum-frequency generatigd2,13 or second-
ces, which reflect the effects of contributing frequencies offarmonic generation[14-16 in solids. Finally, we
applied radiation fields as well as the collision processes béiave made the approximatiof8.19, pefH)=peqHo)=
tween electrons and phonons. Thus the collisions betweepy(H¢) ® py(Hp) to obtain the results. This approximation
those phonons and electrons and those radiation field fredisregards initial correlations between electrons and
quencies are responsible for the broadening of spectral linphonons, which play a role of subtle interference effects be-
shape and can be studied theoretically by examining the realveen the applied fields and the scattering. However, in most
part of these conductivity tensors. The theory is develope@ases of optical mixing problems in solids, the neglect of the
independently of the single-particle representatismmen- electron-phonon interaction Hamiltonian in the initial density
tum, Landau, or other representaioand hence it can operatorp.{H) does not affect the features of the high-
be applied irrespectively of the system studied. For th&requency optical conductivity for weakly interacting sys-

sake of demonstration, only the lineéin Sec. Il B) and
the lowest-order nonlineatin Sec. Il O conductivities

tems, which we have presented in this paper.
Although we have formulated the theory for an electron-

are calculated explicitly along with the rigorous eXpreSSiOﬂSphonon system, impurity effects on dampmg can be also in-

for the complex damping matricd¥{?)(w ™) in o};(w) and
ngg)y(s(w;)'rgzg)y&(w; 'w;ﬁ) in Ui(jzl((wa:wﬁ;wa+wﬁ) to

cluded in the present theory; in the lowest-order approxima-
tion, the relaxation matrix due to phonons and static
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impurities is given by the sum of relaxations due to the pho-effect of phonon(and/oy impurity scatterin¢s) on the opti-
non and the impurity scatterings. The formula for thecal mixing problems for future studies.

relaxation matrix due to the impurity scattering can be ob-

tained for a low impurity density case can be obtained sim- AppENDIX: DERIVATION OF THE SUM-FREQUENCY

ply by replacing Hep by an electron-impurity interaction NONLINEAR CONDUCTIVITY FORMULA  (3.48

HamiltonianH;p,, in Fﬁfy, which is written for an appropri-
ate electron-impurity interaction potential in the second The sum-frequency second-order —conductivity(y
quantized form. We will leave the application of the presentX(w, ,wz;w,+ wg) can be extracted from Eq3.46 by

results to study the effect of the electron exchange and theaking the residue ofJ®(q,2))/Q atz=— w,~wgtid.

eZ
Reg‘](Z)(qiz)>/Q|z=7wu7w5+ié‘: 5 Tr{‘J(0>(q)G( T WeT wB+ i 5)[R EE,G( —w,t i 5)[R Eaipeq]]}

2

= % JE; TH{IO(Q)G(~ w,— wpt+iO)[REL ,G(—w,+i8)[RER peql ]}

=0 % TO@G(- 0.~ wgti IR G~ o +i )[R peg I EVEL

e2

=0 2 TH{IO(Q)G(~w,— wa+i ORI G(—w,+i R peg ELEY
=—0'(2)(wa,wﬁ;wa+w5):E“E'B, (A1)

from which we can immediately write a general expression for the sum-frequency second-order conductivity as
2
(2) . _ e : X H X
Ty, 05,0, T wg)=— a TH{JiG(—w,~wg+i R G(—w,+id)Ry Peqt
e2
=-q Tr{pedRi G(w,— i ORI G(w,+ ws—i8)Ji} (i,j,k=x,y,2), (A2)

whereG(w,—i8)=G(0,) andG(w,+ wz—i19)=G(w,z) are given by Eq(3.13 and pey by Eq. (3.20. The many-body
trace should be taken over the electron and the phonon coordinates.
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