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Quantum-statistical theory of nonlinear optical conductivity for an electron-phonon system

Akira Suzuki and Masaki Ashikawa
Center for Solid-State Physics and Department of Physics, Faculty of Science, Science University of Tokyo, 1-3 Kaguraza

Shinjuku-ku, Tokyo 162-8601, Japan
~Received 20 March 1998!

A general theory is presented for the nonlinear optical conductivities of a system of electrons interacting
with a phonon field. A formal solution of the Liouville equation for the system subjected to an arbitrary number
of electromagnetic wave modes is obtained by applying theK-operator technique developed by Fujita and
Lodder @Physica~Amsterdam! 50, 541 ~1970!#. By using this result, a rigorous expression^J(q,z)& for the
Fourier-Laplace transform of the electric current^J(r ,t)& is derived for an electron-phonon system in a
compact general form. Conversely, the current density can be expressed in terms of the complex inversion
integral of Laplace transform theory. In order to obtain a nonlinear conductivity of an arbitrary rank, one only
needs to find the residue of^J(q,z)& at an appropriate pole, from which one can extract a formula for the
conductivity tensor. The method is simpler and more transparent than the usual perturbation formalism. Damp-
ing due to scattering can be also incorporated properly into the conductivities of any ranks and can be
evaluated in terms of a resolvent expansion with respect to an electron-phonon interaction in a systematic
manner. We illustrate a formalism and a method to obtain the general formula for a nonlinear conductivity of
any rank and calculate the linear and the lowest-order nonlinear conductivities with the damping terms~ma-
trices!, which include the exchange effect among electrons as well as the contributing frequencies of applied
radiation fields.@S1063-651X~98!07610-7#

PACS number~s!: 05.30.2d, 72.10.2d, 72.20.Ht, 42.65.2k
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I. INTRODUCTION

The response theory is one of the standard methods
which to study many effects due to various interactions
tween matter and electromagnetic radiation. The density
erator method has been shown to be a useful device for
calculation of macroscopic tensor conductivities required
nonlinear optical mixing problems in solids. Thenth-order
perturbational solution to the density operator has been
tained by several different authors and has been express
several different forms. In standard treatments@1#, the den-
sity operatorr is defined to be a quantity satisfying the qua
tum Liouville equation. Since the structure of the syste
HamiltonianH5H01H8(t) is, in general, very complicated
exact solutions are rarely obtainable and one must reso
approximation techniques. Writing the equivalent integ
equation in the interaction representation

r I~ t !5r01
1

i\ E
0

t

@H8~ t8!,r I~ t8!#dt8, ~1.1!

with r0 a known initial value in the absence of the tim
dependent perturbationH8, one can apply successive a
proximations to obtain the series solution

r I~ t !5 (
n50

`

r I
~n!~ t !, ~1.2!

wherer I(0)5r0 andr I
(n)(0)50 if nÞ0 and, in general,
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r I
~n!~ t !5

1

~ i\!n E
0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn

3@H8~ t1!,†H8~ t2!,•••,@H8~ tn!,r0#•••‡#,

~1.3!

with the time orderingtn<tn21<¯<t1<t. With the cor-
rection of ordern to the density operator known, we ca
calculate the correction to the mean value of an arbitr
physical quantity such as an electric currentJ(r ,t). The cal-
culation that involves finding the system density and
mean value of the physical quantity is straightforward, b
becomes quite tedious. In addition, the time-ordered integ
of the nested commutator brackets arising in these equat
tend to obscure the physical content of the problem.

A main purpose of this paper is to show a general th
retical method to obtain linear and nonlinear conductiv
tensors for an electron-phonon system. We will give rigoro
explicit expressions for the linear and the lowest-order n
linear conductivity tensors, which include the exchange
fect among electrons moving in a phonon field as well a
collisional decay processes of those electrons due to
electron-phonon interaction. In the present work, the form
solution of the Liouville equation is obtained by means
the K-operator technique developed by Fujita and Lodd
@2#, where the density operatorr(t) can then be expressibl
in a single line~2.26! and thereby time-ordered integrals d
not appear in this expression. This form turns out to be v
convenient, though not essential, in the subsequent deve
ment of the theory of nonlinear conductivities. In addition
yielding a significant computational simplification over th
usual iterative perturbation approach, this technique provi
a systematic method for representing and classifying a
4307 © 1998 The American Physical Society
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4308 PRE 58AKIRA SUZUKI AND MASAKI ASHIKAWA
trary density perturbation terms in a natural and comp
manner. Since a physical observable~i.e., the mean value o
physical quantity! is a linear function of the density operato
contributions to the perturbation expansion of the den
operator may be directly interpreted in terms of observa
The K-operator technique to obtain the density operator
the resolvent expansion method@3# of the observable in the
Laplace-Fourier representation would be particularly use
for obtaining linear and nonlinear optical conductivities sin
the conductivity of an arbitrary rank can be extracted sim
by finding the residue of a current density^J(q,z)&/V at an
appropriate pole in Laplace~-Fourier! space. The inclusion o
damping~i.e., decay processes! due to the electron scatterin
by phonons~and/or static impurities!, which contributes to
the frequency resonance linewidths and temporal respons
the system, can be also easily incorporated into the linear
nonlinear conductivity formulas in a rigorous manner.
contrast to the density-operator phenomenological damp
terms @1#, we can evaluate those terms by utilizing t
Argyres-Sigel projection operator technique@4–7#, which
takes into account the exchange effects among electrons
the characteristics of collisional decay due to the electr
phonon~and/or impurity! interaction~s! from first principles.
In order to obtain more exact information about electr
scattering and/or optical properties of solids from conduct
ties, we will develop a global formalism that enables us
include the relaxation mechanism due to, e.g., the elect
phonon interaction in linear and nonlinear optical conduct
ties. We will show the general method to evaluate those
laxation ~damping! terms due to an electron-phono
interactions and obtain the rigorous explicit expressions
frequency-dependent damping matrices incorporated in
linear and the second-order nonlinear conductivities for
electron-phonon system. Those conductivity formulas, wh
include the damping effects, would be particularly useful
analyzing nonlinear effects such as harmonic generat
sum- and difference-frequency mixing, and stimulated R
man scattering in solids.

II. FORMULATION OF QUANTUM TRANSPORT

A. Hamiltonian

We consider an electron-phonon system characterize
the time-independent HamiltonianH,

H5He1Hp1Hep, ~2.1!

He5(
n

^nuheun&an
†an5(

n
«nan

†an , ~2.2!

Hp5(
q

~bq
†bq1 1

2 !\vq , ~2.3!

Hep5(
m,n

(
q

^mugqun&~bq1b2q
† !am

† an , ~2.4!

whereHe stands for the Hamiltonian of dynamically inde
pendent electrons,Hp for the Hamiltonian for phonons
ct
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and Hep for the interaction Hamiltonian between thos
electrons and phonons.an

† (an) is the creation~annihi-
lation! operator for the electrons in a stateun&, obeying
the fermion anticommutation relations$am ,an%5$am

† ,an
†%

50 and $am ,an
†%5dm,n . bq (bq

†) is the annihilation~cre-
ation! operator for the phonons with wave vectorq and en-
ergy \vq , obeying the boson commutation relation
@bq ,bq8#5@bq

† ,bq8
†

#50 and@bq ,bq8
†

#5dq,q8 . The coupling
function gq @5D(q)exp(iq•r )# denotes a one-body interac
tion operator, which should be defined in terms of the ma
elements referring to electron states. HereD(q) describes in
a self-consistent scheme the interaction of an electron w
the vibrating lattices~phonons! and characterizes the natu
and the strength of the electron-phonon coupling poten
For convenience, we have chosen the single-particle re
sentation that diagonalizes the one-electron energy ope
he with an allowance for a static magnetic fieldB0
(5“3A0) „i.e., heun&5@p1eA0(r )#2/2mun&5enun&….

To derive a closed-form expression for the electric c
rent, let us consider the case where those electrons in a
non field are driven by effective~internal! electric and mag-
netic fields

E~r ,t !52
]

]t
A~r ,t !,

~2.5!

B~r ,t !5“3$A0~r !1A~r ,t !%,

whereA(r ,t) is a time-dependent Maxwell field~vector po-
tential!, the gauge being chosen so that the scalar potenti
zero. Although in this model the interaction between ele
trons is not explicitly included in the HamiltonianH, the
effects of electron-electron interaction could, however,
taken into account implicitly through the interaction potent
D(q) as a screening effect of those electrons via the die
tric constant. The effective electric fieldE(r ,t) therefore
takes into account possible polarization effects when the
tem is exposed to an external electric fieldEext(r ,t). In such
a case, the electrons are subject directly to the probing~ex-
ternal! electric fieldEext(r ,t)52] tA(r ,t)5E(r ,t) @which is
equal to an effective~internal! electric field#. Therefore, no
distinction need be made between the acting~effective! field
and the probing~external! field in the present model system
The probing electric field~and hence the effective electri
field! can be derived from a time-dependent Maxwell fie
which is assumed to be of the form

A~r ,t !5(
a

$Aaexp@ i ~qa•r2vat !#1c.c.%, ~2.6!

whereqa andva represent the wave vector and the angu
frequency of the Maxwell field with a modea, respectively.
The summation runs over all wave modes$a%.

The expectation value of the induced electric current
some pointr0 after the external~Maxwell! field has been
turned on can be generally evaluated from

^J~r0 ,t !&5Tr$J~r0 ,t !r~ t !%, ~2.7!
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wherer(t) is the density operator and the symbol Tr deno
a many-body trace with respect to electrons and phon
The electric current operatorJ is given by a sum of one
electron current operatorj (r0 ,t). Thus it can be expressed i
the second-quantized form as

J~r0 ,t !5(
m,n

^mu j ~r0 ,t !un&am
† an , ~2.8!

where

j ~r0 ,t !52
e

2m
@$p1eA0~r !1eA~r ,t !%d~3!~r2r0!

1d~3!~r2r0!$p1eA0~r !1eA~r ,t !%#. ~2.9!

The density operatorr(t) of the system of electrons plu
phonons under the influence of the external Maxwell fi
changes with time, obeying the Liouville equation of moti

i\
]

]t
r~ t !5@H1Hef~ t !,r~ t !#, ~2.10!

where@ , # denotes the commutator,H is the Hamiltonian of
the system~electrons plus phonons! given by Eq.~2.1!, and
Hef(t) is the Hamiltonian representing the external dist
bance due to the application of the time-dependent Maxw
field given by Eq.~2.6!. This perturbation HamiltonianHef ,
which represents the interaction between conduction e
trons ~charge2e) and the time-dependent Maxwell field
can be expressed semiclassically in the second-quan
form with respect to the electrons:

Hef~ t !5(
m,n

^muhef~ t !un&am
† an , ~2.11!

where the single-electron–Maxwell-field interaction opera
hef(t) is explicitly given by

hef~ t !5
e

2m
$@p1eA0~r !#•A~r ,t !

1A~r ,t !•@p1eA0~r !#%1
e2

2m
A2~r ,t !. ~2.12!

Thus the perturbationHef(t) induced in the medium can b
connected to the applied fieldEext(r ,t) through the Maxwell
field A(r ,t) defined by Eq.~2.6!. It should be noted that the
radiation~i.e., electromagnetic! fields are treated as classic
fields.

B. Formal solution of the Liouville equation

The formal solution of Eq.~2.10! can be easily obtained
by introducing the operator functionK defined by@2#

K[(
a

\vaca
†ca , ~2.13!
s
s.

-
ll

c-

ed

r

whereca and ca
† are bosonic annihilation and creation o

erators satisfying

@ca ,cb
† #[cacb

†2cb
†ca5da,b , ~2.14!

@ca ,cb#5@ca
† ,cb

† #50. ~2.15!

It is then easy to verify that

exp@ iKt /\#caexp@2 iKt /\#5caexp@2 ivat#, ~2.16!

exp@ iKt /\#ca
†exp@2 iKt /\#5ca

†exp@1 ivat#. ~2.17!

If we define the time-independent operatorÂ~r ! associated
with A(r ,t) as

Â~r ![(
a

$Aacaexp@ iqa•r #1H.c.%, ~2.18!

we find from Eqs.~2.16!–~2.18! that

exp@ iKt /\#Â~r !exp@2 iKt /\#

5(
a

$Aacaexp@ i ~qa•r2vat !#1H.c.%. ~2.19!

This expression is identical to the defining expression for
Maxwell field A(r ,t) @see Eq.~2.6!# except for the factorsca

andca
† . If we agree to a convention thatafter the operator K

is eliminated completely, every ca and ca
† are to be equated

with unity, we may equate exp@iKt/\#Â(r )exp@2iKt/\# with
A(r ,t). We adopt this convention~i.e., ca ,ca

†→1) after ap-
plying the K operator not only to the Maxwell fieldA(r ,t)
but also to any function ofA(r ,t). It should be noted tha
upon acting on theÂ~r !, theK operator produces the corre
form of Eq. ~2.19! associated with the classical Maxwe
field A(r ,t). This purely mathematical technique introduc
in Ref. @2# turns out to be very convenient in the subsequ
development of the theory of nonlinear conductivity~see be-
low! and especially in the calculation of nonlinear condu
tivity of higher rank ~see Sec. III!. Thus, in particular, by
defining the time-independent operatorĤef as

Ĥef[(
m,n

^muĥefun&am
† an , ~2.20!

we can expressHef(t) @Eq. ~2.11!# in terms of the operatorK
and the time-independent operatorĤef ,

Hef~ t !8exp@ iKt /\#Ĥefexp@2 iKt /\#

5exp@ iK 3t/\#Ĥef . ~2.21!

The last equality can be easily verified by expanding b
sides with respect tot. It should be noted that the cros
superscript denotes the commutator-generating superope
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~or the Liouville operator!. In Eq. ~2.20! the time-
independent single-electron–Maxwell-field interaction o
eratorĥef associated withhef(t) @Eq. ~2.12!# is given by

ĥef[
e

2m
$@p1eA0~r !#•Â~r !

1Â~r !•@p1eA0~r !#%1
e2

2m
Â2~r !. ~2.22!

In order to obtain the solution of Eq.~2.10!, let us intro-
duce a transformed density operatorr8(t) defined by

r8~ t ![exp@2 iK 3t/\#r~ t !. ~2.23!

From Eqs.~2.10!, ~2.21!, and~2.23!, we obtain the equation
of motion for r8(t) as

i\
]

]t
r8~ t !5~H31Ĥef

31K3!r8~ t !. ~2.24!

This equation can be easily solved forr8(t) since the Liou-
ville operatorsH3 (5He

31Hp
31Hep

3), Ĥef
3 , andK3 do not

contain t explicitly. The formal solution of Eq.~2.24! is
given by

r8~ t !5exp@2 i ~H31Ĥef
31K3!t/\#r0 , ~2.25!

wherer0 @5r(0)5r8(0)# is the density operator at the in
tial time t50. From Eqs.~2.23! and ~2.25! we can thus for-
mally express the solution of Eq.~2.10! in a simple form

r~ t !8exp@ iK 3t/\#exp@2 i ~H31Ĥef
31K3!t/\#r0 . ~2.26!

It should be understood that the symbol8 stands for ‘‘is
represented by theK operator’’ and that the convention wit
regard to theK operator along with the bosonic operato
(ca

† ,ca) mustbe applied to the evaluation of^J(r0 ,t)&. Sub-
stituting this in Eq.~2.7! and noting that the current operat
J(r0 ,t) @Eq. ~2.8!# is expressed by

J~r0 ,t !8exp@ iK 3t/\# Ĵ~r0!, ~2.27!

the electronic current atr0 at a timet can be exactly pre-
scribed by

^J~r0 ,t !&5Tr$J~r0 ,t !r~ t !%

8Tr$exp@ iK 3t/\# Ĵ~r0!

3exp@2 i ~H31Ĥef
31K3!t/\#r0%. ~2.28!

Here the time-independent current operatorĴ(r0) associated
with J(r0 ,t) is given by

Ĵ~r0![(
m,n

^mu ĵ ~r0!un&am
† an , ~2.29!
-
where the time-independent single-electron current operaĵ
is given by

ĵ ~r0![2
e

2m
$@p1eA0~r !1eÂ~r !#d~3!~r2r0!

1d~3!~r2r0!@p1eA0~r !1eÂ~r !#%. ~2.30!

In Eq. ~2.29!, um&,un& are the eigenstates of the single-electr
Hamiltonianhe. It should be noted that the many-body tra
in Eq. ~2.28! is taken over the electron and the phonon c
ordinates.

C. Asymptotic behavior of ŠJ„r 0 ,t…‹ and the conductivity
tensors

It is expected that a sufficiently long time after the stea
electromagnetic field characterized byA(r ,t) @see Eq.~2.6!#
is switched on, the system should approach a stationary s
in which the generalized Ohm law holds between the curr
density^J(r0 ,t)&/V ~V is a volume of the sample! and the
effective electric fieldE(r0 ,t). Responding to the applied
Maxwell ~or electric! field with a set of modes$va%
5(v1 ,v2 ,...,vm) and $qa%5(q1 ,q2 ,...,qm), a component
of the nth-order electric current characterized by the set
combination frequencies and wave vectors$va j

%
5(va1

,va2
,...,van

) and $qa j
%5(qa1

,qa2
,...,qan

) will be
induced. Herea1 ,a2 ,...,an51,2,...,m.

Let us consider the case where the probing tim
dependent electric fieldEext(r ,t) @5E(r ,t)#, which is de-
rived from the Maxwell fieldA(r ,t) @Eq. ~2.6!#, is sinusoidal
and is characterized by the set of wave vectors$qa% and
angular frequencies$va%. It is then convenient to introduce
a time-dependent complex electric fieldE(r ,t) defined by

E~r ,t ![ (
a51

m

Eaexp@ i ~qa•r2vat !#[ (
a51

m

Ea~r ,t !,

~2.31!

where the sum is taken over all wave modes$a%. The ampli-
tudes and phases of these modes are generally related t
nth-order nonlinear~complex! conductivity tensors(n) such
that, ast→`,

^J~r0 ,t !&5 (
n51

`

^J~n!~r0 ,t !&, ~2.32!

where the nth-order contribution to the current densi
^J(n)(r0 ,t)&/V in the stationary state may be expressed
terms ofEa(r ,t)’s as

^J~n!~r0 ,t !&/V

5(
a1

•••(
an

s~n!~$qa j
%,$va j

%!:Ea1~r ,t !•••Ean~r ,t !,

~2.33!

Ea1~r ,t !•••Ean~r ,t !5Ea1•••Ean exp@ i ~ q̃•r2ṽt !#, ~2.34!

ṽ[(
j 51

n

va j
, q̃[(

j 51

n

qa j
. ~2.35!
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Here va j
, qa j

, and Ea j are frequencies, wave vectors, a
amplitudes of the contributing fields, respectively, with t
resulting ~generated! frequencyṽ and wave vectorq̃. This
asymptotic constitutive relation~2.33! between the curren
density and the effective~internal! electric fieldsdefinesa
generalized complex conductivity tensors(n), which in gen-
eral depends on the set of combination frequencies$va j

% and

wave vectors$qa j
% of the contributing applied fields. In or

der to obtain the general expression fors(n), it is convenient
to formulate^J(r0 ,t)& in the wave-vector–frequency repre
sentation rather than in the ordinary spacer0 and timet since
a local, asymptotic behavior of the current is more appro
ately characterized by the contributing electromagne
modes ($qa j

%,$va j
)%. In order to obtain the expression o

^J(r0 ,t)& in the wave-vector–frequency representation,
us define the Fourier-Laplace transform of a space-time fu
tion f (r ,t) by

f ~q,z![ i E
0

`

dt exp@ izt#E
V

d3r

V
exp@2 iq•r # f ~r ,t !.

~2.36!

The inverse Fourier-Laplace transform off (q,z) is then
given by

f ~r ,t !5
1

2p i Eic2`

ic1`

dz exp@2 izt#(
q

exp@ iq•r # f ~q,z!,

~2.37!

wherec is a positive number chosen such thatf (z) should be
analytic above the infinite line fromic2` to ic1` in the
complexz plane except at a finite number of poles. Accor
ingly, the relation~2.33! can be expressed alternatively a
more precisely expressed as~Res denotes the residue of!

ReŝJ~n!~ q̃,z!&/Vuz5v̄2 id

52(
a1

¯(
an

s~n!~$qa j
%,$va j

%!:Ea1~r ,t !¯Ean~r ,t !,

~2.38!

where ṽ and q̃ are respectively given by Eq.~2.35!. This
means thatthe generalized nth-order conductivitys(n), be-
ing the coefficient in the term with the products of the co
tributing electric fieldsEa1(r ,t)¯Ean(r ,t) can be obtained
by finding the residue of the Laplace(-Fourier) transform
the current density at a prescribed pole~i.e.,z5ṽ2 id in the
present case! since the current densitŷJ(n)(r0 ,t)&/V ex-
panded in terms of then products of the contributing field
Ea j ( j 51,2,3,...,m) can be evaluated from the complex i
version integral and may be expressed as in the right-h
side of Eq. ~2.38!. This fact tremendously simplifies th
mathematical treatment of the conductivity tensor of a
rank since the study of the residue is much simpler than
of the full analytic behavior of̂J(n)(q̃,z)& in the complexz
plane. It should be noted that a small imaginary part2 id ~d
is a vanishingly small positive number! added to the fre-
quencyṽ implies adiabatic switching of an external electr
field and ensures convergence of the integral att5`. The
i-
c

t
c-

-

-

f

nd

y
at

study of the residue is sufficient for the description of t
nonlinear conductivity of any rank@2#.

By applying the Fourier-Laplace transform formula~2.36!
to the formal expression for the electronic current^J(r0 ,t)&
@Eq. ~2.28!#, we obtain the exact expression for the Fourie
Laplace transformed electronic current^J(q,z)& as

^J~q,z!&82
\2

2p i Eic2`

ic1`

dz1~K31\z1!21

3Tr$Ĵ~q!C~z2z1!r0%, ~2.39!

whereC(z) is given by

C~z![~H31Ĥef
31K32\z!21 ~2.40!

and the Fourier components of the time-independent elec
currentĴ~q! in wave-vector space are given by Fourier tran
forming Eq.~2.29! as

Ĵ~q!5(
m,n

^mu ĵ ~q!un&am
† an , ~2.41!

with

ĵ ~q![E
V

d3r 0

V
exp@2 iq•r0# ĵ ~r0!

52
e

2mV
@$p1eA0~r !1eÂ~r !%exp@2 iq•r #

1exp@2 iq•r #$p1eA0~r !1eÂ~r !%#. ~2.42!

This compact expression~2.39! along with Eqs.~2.40!–
~2.42! contains full information about linear or nonlinea
conductivity tensor of an arbitrary rank, which can be o
tained by the study of the residue of̂J(n)(q̃,z)& (n
51,2,3,...) at a prescribed pole.

D. Choice of an initial condition

The evaluations of the Fourier-Laplace transformed el
tric current^J(q̃,z)& involve the operatorC defined by Eq.
~2.40! and the initial density operatorr0 . In general, we may
assume that the initial state of the system is uncorrela
with the probing Maxwell~or electric! fields. This can be
mathematically expressed by

K3r0[Kr02r0K50 ~2.43!

at t50. In fact, in the absence of the probing Maxwell fiel
the density operatorr(t) is given by@see Eq.~2.26!#

r~ t !5exp@2 iH 3t/\#r0 . ~2.44!

As t→`, the system would approach a stationary state. T
means that all intensive properties of an observable^A&,
which can be described in the form of Tr$Ar(t)%, would also
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attain their stationary values for very larget. ~HereA is the
operator of an arbitrary physical quantity.! Symbolically, this
may be stated as

r~ t !→rstationary for t→`. ~2.45!

In the Laplace space this asymptotic relation should take
form @2#

r~z!5
rstationary

z2 id
1~nonsingular terms! ~2.46!

and hence this can be alternatively expressed as

rstationary52Resr~z!uz5 id52Res~H32\z!21r0 .
~2.47!

Therefore, we may replaceC(z)r0 in Eq. ~2.39! by

C~z!r052
1

\z
rstationary1

1

\z
C~z!Ĥef

3rstationary,

~2.48!

where we have used the identity

C~z![Rz2C~z!Ĥef
3 Rz . ~2.49!

Here the resolvent operatorRz is defined by

Rz[~H31K32\z!21. ~2.50!

If we assume that the asymptotic state of the system cha
terized by the system HamiltonianH is close to the equilib-
rium state, we can then replace (H31K32\z)21r0 by
2rstationary/\z'2req/\z, wherereq denotes an equilibrium
density operator. The density operatorrstationarycorrespond-
ing to the stationary state can in practice be chosen to be
grand-canonical density operatorreq(H̃):

rstationary5req~H̃ !5
exp@2bH̃#

Tr$exp@2bH̃#%
, ~2.51!

whereb is the reciprocal temperature defined by 1/kBT and
H̃[H2zN. HereH5He1Hp1Hep, N5(nan

†an , andz is
the Fermi energy in the presence of the electron-phonon
teraction and is determined from Tr@Nreq#5Ne, the total
number of electrons in the system. It should be noted that
argument ofreq excludesHef ~i.e., the interaction energy
between the external probing Maxwell field and electron!.
This choice would be valid for the case where the cond
tivities of lower rank is discussed. It is noted that o
requirement ~2.45!, which is imposed on the nature o
initial density operator, is less restrictive than the choice
r05req selected by Kubo@8#. We can see that this latte
choice surely satisfies the requirement~2.45! since (H3

2\z)21req52(\z)21req and @H,N#50 for a weak
electron-radiation interaction.

Utilizing Eq. ~2.48! along with Eq.~2.51!, we can express
Eq. ~2.39! as
e

c-

he

n-

e

-

f

^J~q,z!&82
\

2p i Eic2`

ic1`

dz1~z12z!21

3~K31\z1!21Tr$Ĵ~q!req%

1
\

2p i Eic2`

ic1`

dz1~z12z!21~K31\z1!21

3Tr$Ĵ~q!C~z2z1!Ĥef
3req%, ~2.52!

where C(z2z1) is given by Eq.~2.40! and Ĵ~q! by Eq.
~2.41!. This is the basic equation for the current, from whi
we can extract a conductivity formula of any rank. In th
next section we will show the method of obtaining the fo
mulas for linear and nonlinear conductivities (s(1) ands(2))
and derive explicitly their rigorous expressions including t
associated damping matrices due to an electron-phonon
teraction.

III. RESOLVENT EXPANSION METHOD

A. Derivation of linear conductivity

Let us proceed to the calculation of Eq.~2.52! to derive
the general expressions for linear and nonlinear conducti
tensors. SinceC(z) and Ĵ~q! contain the field strengthsÂ
associated withE’s, in order to obtain the expressions fo
linear and nonlinear conductivity tensors, we expandC(z)
and Ĵ~q! in terms ofÂ or Ĥef . From Eq.~2.49! we obtain

C~z!'Rz2lRzĤef
3 Rz1l2RzĤef

3 RzĤef
3 Rz2¯ .

~3.1!

In this equation we have introduced the dimensionless
rameterl in order to indicate the order of expansion in th
field strengths and may setl51 later on. We shall use suc
a convention in this and other similar expansions. Using t
in Eq. ~2.52!, the first order of̂ J(q,z)& is given by

^J~1!~q,z!&52
\

2p i Eic2`

ic1`

dz1~z12z!21

3~K31\z1!21Tr$Ĵ~1!~q!req%

1
\

2p i Eic2`

ic1`

dz1~z12z!21

3~K31\z1!21Tr$Ĵ~0!~q!Rz2z1
Ĥef

3req%,

~3.2!

where the superscript~n! (n50,1,2, . . . ) denotes the orde
in the field strength parameter.

When the wavelength 2p/q of an applied electromagneti
wave, characterized by~q,v!, is large compared to the mea
free path of electrons and therefore the spatial variation
the field is negligible, the HamiltonianHef(t) describing the
electromagnetic interaction with electrons can be appro
mated by
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Hef~ t !5eR•E$exp@ ivt#1exp@2 ivt#%, ~3.3!

whereR (5( ir i) is the sum of a position operator for eac
electron and is expressed in the second quantized form

R5(
m,n

^mur un&am
† an . ~3.4!

We shall employ this so-called dipole approximation here
after. The theory developed in Sec. II for solving the Lio
ville equation can be simply extended to the case of Eq.~3.3!
with Eq. ~3.4! by the adaptation

Ĥef5eR•E@cv1cv
† #, ~3.5!

wherecv andcv
† are for the modeqa50, va5v.

The first term of the right-hand side of Eq.~3.2! vanishes
identically because

j ~1!~q![
ie

\
@r ,Hef#5

e2

i\
@r ,r•E#50. ~3.6!

By a straightforward calculation along with Eqs.~2.13!–
~2.15! and~3.5!, the part of the integrand in the second te
in Eq. ~3.2!, which containscv andcv

† , is finally given by

~K31\z1!21Tr$Ĵ~0!~q!Rz2z1
Ĥef

3req%

5$\~v1z1!%21Tr$Ĵ~0!~q!~H31\v2\z1\z1!21

3@eR•E,req#%1$\~2v1z1!%21Tr$Ĵ~0!~q!

3~H32\v2\z1\z1!21@eR•E,req#%. ~3.7!

Substituting this equation and performing the integral in E
~3.2!, we obtain

^J~1!~q,z!&5$~z1v!211~z2v!21%

3Tr$Ĵ~0!~q!Gz@eR•E,req#%, ~3.8!

whereGz is given by

Gz[~H32\z!21. ~3.9!

Since we are interested ins~v!, we only need to find the
residue atz52v1 id. Thus the relation~2.38! in Sec. II C
should be expressed by

ReŝJ~1!~q,z!&/Vuz52v1 id

5
e

V
Tr$Ĵ~0!~q!@H31\~v2 id!#21@R•E,req#%

52s~v!•E. ~3.10!

From this, the linear~complex! conductivity reads
-
-

.

s i j ~v!52
e

V
Tr$JiG~2v2!@Rj ,req#% ~ i , j 5x,y,z!,

~3.11!

whereJi andG(v2) are, respectively, given by

Ji52eṘi5
ie

\
@Ri ,H#, ~3.12!

G~v2![~H32\v2!215~He
31Hp

31Hep
32\v2!21.

~3.13!

The overdot in Eq.~3.12! is ]/]t. It should be noted thatv2

is a complex external frequency and will be set equal tov
2 id, wherev is real andd is a positive infinitesimal. To ge
rid of the commutator in Eq.~3.11!, we apply the Kubo
identity @8#

@2eR,req#52 i\reqE
0

b51/kBT

db8J~2 i\b8!,

~3.14!

where

J~2 i\b8![exp@b8H#J exp@2b8H#. ~3.15!

Accordingly, Eq.~3.11! can be written as

s i j ~v!5
\

iV
TrH Ji~H31\v2 i\d!21req

3E
0

b

db8Jj~2 i\b8!J
[ lim

d→01

E
0

`

dt exp@2 i ~v2 id!t#

3E
0

b

db8V21Tr$reqJj~2 i\b8!Ji~ t !%,

~3.16!

where

Ji~ t !5exp@ iH 3t/\#Ji ~3.17!

is the total current operator in the Heisenberg picture;req is
the normalized grand canonical density operator~2.51!. It
should be noted that the limitd→01 should be taken last in
Eqs. ~3.11! and ~3.16!, in particular after the bulk limit (V
→`, Ne→` while Ne/V5ne, which is finite!. This expres-
sion is identically equal to the well-known Kubo formula@8#.

B. Evaluation of linear conductivity

We start with the linear conductivity formula~3.11!:
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s i j ~v!52
e

V
Tr$JiG~2v2!@Rj ,req~H̃ !#%

.2
e

V
Tr$JiG~2v2!@Rj ,req~H̃0!#%

52
e

V
Tr$req~H̃0!@Rj ,K~v2!#%. ~3.18!

In the last equality we have made use of the invariance p
erty of the trace under cyclic permutation. Here we ha
assumed thatreq for the electron-phonon system@Eq. ~2.51!#
can be factorized as

req~H̃ !.req~H̃0!5re~H̃e! ^ rp~Hp!, ~3.19!

where H̃0[He1Hp2zN[H02zN, H̃e[He2zN, and a
many-body electron-phonon operatorK(v2) is defined as

K~v2![G~v2!Ji . ~3.20!

The resolvent operatorG(v2) is given by Eq.~3.13!. The
approximation forreq is justified in our weak coupling cal
culation. Using Eq.~3.4!, Eq. ~3.18! can be expressed in th
matrix form as

s i j ~v!52
e

V (
m,n

^mur j un&^K~v2!&mn , ~3.21!

where we have introduced the notation

^¯&mn[Tr$req~H̃0!~am
† an!3

¯%. ~3.22!

Our problem is now to evaluate the quantity^K(v2)&mn

in Eq. ~3.21!. To do this, we introduce the projection oper
torsP,P8 defined by@4–7#

P¯[^¯&mnJi /^Ji&mn , ~3.23!

P8[12P. ~3.24!

It is clear from these definitions that

PJi5^Ji&mn Ji /^Ji&mn5Ji , ~3.25!

P8Ji5Ji2PJi5Ji2Ji50, ~3.26!

P25P, P825P8. ~3.27!

From Eq.~3.20!, K(v2) should obey the equation

Ji5~H32\v2!K~v2!

5~H32\v2!@PK~v2!1P8K~v2!#. ~3.28!

LettingP andP8 operate separately on Eq.~3.28!, we obtain
the equations
p-
e

Ji5PJi5~PH32\v2!PK~v2!1PH3P8K~v2!,

~3.29!

05P8Ji5~P8H32\v2!P8K~v2!1P8H3PK~v2!.

~3.30!

Here we have used the identity

PP85P8P50, ~3.31!

which can be easily verified from Eqs.~3.24! and ~3.27!.
Solving Eq.~3.30! for P8K(v2), we obtain the equation

P8K~v2!52~P8H32\v2!21P8H3PK~v2!.
~3.32!

Substituting Eq.~3.32! into Eq.~3.29!, we obtain the relevan
term Ji :

Ji5P@H32H3G8~v2!P8H32\v2#PK~v2!

5
^K~v2!&mn

^Ji&mn

^~H32H3G8~v2!P8H32\v2!Ji&mnJi

^Ji&mn
,

~3.33!

where we have defined a resolvent operatorG8(v2) as

G8~v2![~P8H32\v2!21. ~3.34!

Thus the quantitŷK(v2)&mn can be exactly expressed by

^K~v2!&mn

5
^Ji&mn

^@H32H3G8~v2!P8H3#Ji&mn^Ji&mn
212\v2 .

~3.35!

Noting that ^Ji&mn52^nu j i um&( f n2 f m) and ^(He
3

1Hp
3)Ji&mn52«nm^nu j i um&( f n2 f m) («nm[«n2«m) in Eq.

~3.35!, an expression for a dynamic complex conductiv
~3.18! can be expressed as

s i j ~v!52
e

V (
m,n

~ f n2 f m!
^mur j un&^nu j i um&

\v22«nm2 iGmn~v2!
,

~3.36!

where the damping matrix~self-energy! Gmn(v2) is given
by

iGmn~v2!5
^@Hep

32Hep
3G8~v2!P8Hep

3#Ji&mn

^Ji&mn
.

~3.37!

Equation ~3.36! along with Eq.~3.37! is the exact formal
expression for the linear optical conductivitys i j (v) valid
for an arbitrarily strong electron-phonon interactionHep ex-
cept for the approximation~3.19! introduced in the exac
conductivity formula~3.11!. This expression~3.36! provides
a rigorous basis for the evaluation of optical properties
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conduction electrons in solids. The quantityGmn(v2) clearly
determines the spectral line shape~phonon-induced broaden
ing! of the dynamic~optical! conductivity of solids.

The next step is to evaluate the damping matrixGmn(v2)
@Eq. ~3.37!#. To do this, we expand Eq.~3.34! in terms of the
electron-phonon coupling parameterh @3#,

G8~v2!P85~H0
31P8Hep

32\v2!21P8

5G0~v2! (
n50

`

@2hP8Hep
3G0~v2!#nP8,

~3.38!

whereG0(v2) is an unperturbed resolvent operator defin
by
th

th

pe

nc
a
ra
ra

id
n
ig

ob
n
-
so
d

G0~v2![~H0
32\v2!21. ~3.39!

Using Eq.~3.38! in Eq. ~3.37!, we can formally expand Eq
~3.37! in terms ofh,

iGmn~v2!5
1

^Ji&mn
(
n51

`

^Hep
3@2G0~v2!P8Hep

3#nJi&mn

5 i (
n51

`

Gmn
~n!~v2!. ~3.40!

SinceGmn(v2) has already been expanded in powers ofh,
the lowest-order nonvanishing termG (2) can be expressed
after some algebraic manipulations, by
iGmn
~2!~v2!52

^Hep
3G0~v2!Hep

3 Ji&mn

^Ji&mn
5(

a,b
(

q
@^nugqua&^au j i ub&2^nu j i ua&^augqub&#

^bug2qum&

^nu j i um&

3F Nq112 f b

enb2\vq2\v2 1
Nq1 f b

enb1\vq2\v2G
1(

a,b
(

q
@^nugqua&^au j i um&2^nu j i ua&^augqum&#

^bug2qub&

^nu j i um&

3F f b

«nm2\vq2\v22
f b

«nm1\vq2\v2G
1(

a,b
(

q

^nug2qua&

^nu j i um&
@^au j i ub&^bugqum&2^augqub&^bu j i um&#

3F Nq1 f b

«am2\vq2\v2 1
Nq112 f b

«am1\vq2\v2G , ~3.41!
the
or

n-
field

cy
where Nq5Tr$rpbq
†bq% and f b5Tr$reab

†ab% denote the
Planck distribution function for phonons with energy\vq
and the Fermi-Dirac distribution function for electrons wi
energy eb , at equilibrium temperatureT51/kBb, respec-
tively. It should be noted that the above expression for
damping matrix~self-energy! is exact to second order inh
for an electron-phonon interaction and determines the s
tral line shape of the optical conductivity~3.36! @or ~3.18!#.
The terms associated with the Fermi-Dirac distribution fu
tion f b describe the effects of exchange among electrons
play an important role in the determination of the tempe
ture dependence on the optical conductivity for low tempe
tures. In the usual transport theory of conductivity in sol
@9,10#, the exchange effects of electrons in their collisio
with phonons enter through the exclusion factors. If we
nore the exchange effects among electrons by settingf b

50, we recover the expression for the same quantity
tained by assuming a system of one electron moving i
phonon field. Badjou and Argyres@7# showed that these ef
fects play an important role in the case of the cyclotron re
nance line shape. In fact, our expressionGmn

(2)(v2) @Eq.
e

c-

-
nd
-
-

s
s
-

-
a

-

~3.41!# reduces to the corresponding expressions@7,11# ob-
tained for a cyclotron resonance linewidth by replacing
electron states by Landau states and the current operatj i

by j 1 ([ j x1 i j y).

C. Evaluation of nonlinear conductivity

From Eq. ~2.52! along with Eq. ~3.1!, ^J(q,z)& in the
second order of the field-strength parameter (l2) is given by

^J~2!~q,z!&52
\

2p i Eic2`

ic1`

dz1~z12z!21~K31\z1!21

3Tr$J~0!~q!Rz2z1
Ĥef

3 Rz2z1
Ĥef

3req%. ~3.42!

We will apply the dipole approximation to the present no
linear case and assume that the time-dependent electric
consists of a set of frequency modes$va% (a51,2,3,...,m),
where the component field is sinusoidal with a frequen
va . In this case,Hef is given by
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Hef~ t !5e(
a51

m

Ea
•R$exp@ ivat#1exp@2 ivat#%.

~3.43!

The time-independent interaction HamiltonianĤef associated
with Hef(t) @Eq. ~3.43!# is then given by
e

Ĥef5e(
a51

m

Ea
•R$ca1ca

†%. ~3.44!

By a straightforward calculation along with Eqs.~2.14!,
~2.15!, and ~3.44!, we obtain the part of the right-hand sid
of Eq. ~3.42! that contains the operatorsca ,ca

† as
~K31\z1!21Rz2z1
Ĥef

3 Rz2z1
Ĥef

3req5(
a,b

1

\
$~va2vb1z1!21G2va1vb1z2z1

†eR•Eb,G2va1z2z1
@eR•Ea,req#‡%

1(
a,b

1

\
$~va1vb1z1!21G2va2vb1z2z1

†eR•Eb,G2va1z2z1
@eR•Ea,req#‡%

1(
a,b

1

\
$~2va2vb1z1!21Gva1vb1z2z1

†eR•Eb,Gva1z2z1
@eR•Ea,req#‡%

1(
a,b

1

\
$~2va1vb1z1!21Gva2vb1z2z1

†eR•Eb,Gva1z2z1
@eR•Ea,req#‡%,

~3.45!

where the resolvent operatorGz is defined by Eq.~3.9!. Substituting Eq.~3.45! into Eq. ~3.42! and performing thez1
integration, we can recast Eq.~3.42! to the form

^J~2!~q,z!&5e2(
a,b

„~2va1vb2z!21Tr$J~0!~q!Gz†R•Eb,Gz2vb
@R•Ea,req#‡%…

1e2(
a,b

„~2va2vb2z!21Tr$J~0!~q!Gz†R•Eb,Gz1vb
@R•Ea,req#‡%…

1e2(
a,b

„~va1vb2z!21Tr$J~0!~q!Gz†R•Eb,Gz2vb
@R•Ea,req#‡%…

1e2(
a,b

„~va2vb2z!21Tr$J~0!~q!Gz†R•Eb,Gz1vb
@R•Ea,req#‡%…. ~3.46!
o

n

o

.

m-

. It
e

We can see from this expression the frequency mixing
modes, e.g.,a and b. For the sum frequencyva1vb , the
relation ~2.38! in Sec. II C can be expressed in the pres
case by taking the residue atz52va2vb1 id ~see the Ap-
pendix!:

ReŝJ~2!~q,z!&/Vuz52va2vb1 id

5
e2

V
Tr$J~0!~q!G~2va2vb1 id!

3†R•Eb,G~2va1 id!@R•Ea,req#‡%

52s~2!~va ,vb ;va1vb!:EaEb ~3.47!

for the lowest-order nonlinear case. Another combination
frequency mixing ins(2) is similarly extracted from taking a
residue of^J(2)(q,z)&/V at an appropriate pole. From Eq
f

t

f

~3.47! we can obtain a general expression for the su
frequency second-order conductivity as

s i jk
~2!~va ,vb ;va1vb!

52
e2

V
Tr$JiG~2va2vb1 id!

3Rj
3G~2va1 id!Rk

3req%

52
e2

V
Tr$reqRk

3G~va2 id!

3Rj
3G~va1vb2 id!Ji% ~ i , j ,k5x,y,z!, ~3.48!

where the last equality is due to the cyclicity of the trace
is noted thata,b take any combination of a frequency mod
amonga,b (51,2,3,...,m) applied to the system.
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In order to obtains(2) in the matrix representation, let u
introduce a notation for the right-hand side of Eq.~3.48!:

^^K~vab
2 !&&[Tr$req~ae

†aj!
3G~va

2!~ag
†ad!3K~vab

2 !%,
~3.49!

where va
2[va2 id, vab

2 [va1vb2 id, and ^^•••&& is de-
fined by

^^¯&&[Tr$req~ae
†aj!

3G~va
2!~ag

†ad!3
¯%, ~3.50!

K~vab
2 ![G~vab

2 !Ji . ~3.51!

From Eqs.~3.48! and ~3.49!, the second-order conductivit
~3.48! can be expressed in terms of^^K(vab

2 )&& as

s i jk
~2!~va ,vb ;va1vb!

52
e2

V (
«,j

(
g,d

^«ur kuj&^gur j ud&^^K~vab
2 !&&. ~3.52!

Here we have adopted the approximation~3.19! for the equi-
librium density operator as is used for the evaluation o
linear conductivity. Our problem is thus reduced to t
evaluation of the quantitŷ^K(vab

2 )&& to obtain the explicit
expression of the second-order conductivity. To carry it
we apply the projection operator technique introduced
Sec. III B. We again define the projection operatorsP,P8 by

P¯[^^¯&&Ji /^^Ji&&, ~3.53!

P8[12P. ~3.54!

In a similar manner as we did in Sec. III B, the express
for the quantity^^K(vab

2 )&& may be expressed in the form

^^K~vab
2 !&&

5
^^Ji&&

^^@H32H3G8~vab
2 !P8H3#Ji&&^^Ji&&

212\vab
2 ,

~3.55!

where the resolvent operatorG8(vab
2 ) is defined by

G8(vab
2 )[(P8H32\vab

2 )21. To evaluate the quantity
^^Ji&& in Eq. ~3.55!, let us rewrite the quantitŷ^Ji&& as

^^Ji&&5Tr$req~a«
†aj!

3G~va
2!~ag

†ad!3Ji%5^Y~va
2!&«j ,

~3.56!

^¯&«j[Tr$req~a«
†aj!

3
¯%, ~3.57!

Y~va
2![G~va

2!~ag
†ad!3Ji[G~va

2!Z. ~3.58!

We define the projection operatorsQ,Q8 by

Q¯[^¯&«j Z/^Z&«j , ~3.59!
a

t
n

n

Q8[12Q. ~3.60!

Thus the quantitŷY(va
2)&«j can be exactly expressed as

^Y~va
2!&«j5

^Z&«j

^@H32H3G9~va
2!Q8H3#Z&«j^Z&«j

212\va
2 ,

~3.61!

where the resolvent operatorG9(va
2) is given byG9(va

2)
[(Q8H32\va

2)21. From Eqs.~3.55!, ~3.56!, and ~3.61!
we can write the expression for the quantity^^K(vab

2 )&&
@Eq. ~3.55!# as

^^K~vab
2 !&&5

^Z&ej

@\va
22 iG~va

2!#@\vab
2 2 iG~va

2 ,vab
2 !#

,

~3.62!

whereG(va
2) andG(va

2 ,vab
2 ) are the quantities associate

with damping due to the electron-phonon interaction and
given by

iG~va
2![Tr$req~a«

†aj!
3

3@H32H3G9~va
2!Q8H3#Z%/^Z&«j ,

~3.63!

iG~va
2 ,vab

2 ![Tr$req~a«
†aj!

3G~va
2!~ag

†ad!3

3@H32H3G8~vab
2 !P8H3#Ji%/^Z&«j

3Tr$req~a«
†aj!

3@H32H3G9~va
2!

3Q8H32\va
2#Z%/^Z&«j , ~3.64!

respectively. The quantitŷZ&«j is easily evaluated and i
given by

^Z&«j5Tr$req~a«
†aj!

3~ag
†ad!3Ji%

5@^ju j i ug&d«d2^du j i u«&djg#~ f j2 f «!. ~3.65!

With the use of the identity for the resolvent operator

G~va
2!5G0~va

2!2G~va
2!Hep

3G0~va
2!, ~3.66!

G0~va
2![~H0

32\va
2!215~He

31Hp
32\va

2!21,
~3.67!

we expand iG(va
2) and iG(va

2 ,vab
2 ) in terms of the

electron-phonon coupling parameterh and keep the
terms up toO(h2). Noting in the resultant expression
that iG (0)(va

2)5«j« , iG (0)(va
2 ,vab

2 )5(«jg^ju j i ug&d«d

2«d«^du j i u«&djg) ~^ju j i ug&d«d2^du j i u«&djg)21, and iG~1!~va
2!

5 iG (1)(va
2 ,vab

2 )50, ^^K(vab
2 )&& in Eq. ~3.62! can be writ-

ten as
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^^K~vab
2 !&&5~ f j2 f «!F ^ju j i ug&d«d

@\va
22«j«2 iG~2!~va

2!#@\vab
2 2«jg2 iG~2!~va

2 ,vab
2 !#

2
^du j i u«&djg

@\va
22«j«2 iG~2!~va

2!#@\vab
2 2«d«2 iG~2!~va

2 ,vab
2 !#G . ~3.68!

By utilizing Eq. ~3.68! in Eq. ~3.52!, the rigorous expression of the second-order conductivity~3.52! is thus given by

s i jk
~2!~va ,vb ;va1vb!52

e2

V (
«,j,g,d

~ f j2 f «!F ^gur j u«&^«ur kuj&^ju j i ug&d«d

@\vab
2 2«jg2 iG«jgd

~2! ~va
2 ,vab

2 !#@\va
22«j«2 iG«jgd

~2! ~va
2!#

2
^«ur kuj&^jur j ud&^du j i u«&djg

@\vab
2 2«d«2 iG«jgd

~2! ~va
2 ,vab

2 !#@\va
22«j«2 iG«jgd

~2! ~va
2!#G , ~3.69!

where a,b take any frequency modes~i.e., a,b51,2,3, . . . ,m) and the damping matricesG(va
2) and G(va

2 ,vab
2 ) are,

respectively, given by

iG«jgd
~2! ~va

2!.(
a

(
q

^aug2qu«&

^du j i u«&djg2^ju j i ug&d«d
@^jugqug&^du j i ua&1^dugqua&^ju j i ug&#

3F Nq112 f a

«ja2\vq2\va
2 1

Nq1 f a

«ja1\vq2\va
2G

2(
a,b

(
q

^aug2qu«&^bugqua&^du j i ub&

^du j i u«&djg2^ju j i ug&d«d
F Nq112 f a

«ja2\vq2\va
2 1

Nq1 f a

«ja1\vq2\va
2Gdgj

2(
a

(
q

^dug2qu«&^jugqua&^au j i ug&

^du j i u«&djg2^ju j i ug&d«d
F Nq112 f d

«jd2\vq2\va
1

Nq1 f d

«jd1\vq2\va
G

2(
a

(
q

^jug2qua&

^du j i u«&djg2^ju j i ug&d«d
@^augqug&^du j i u«&1^dugqu«&^au j i ug&#

3F Nq1 f a

«a«2\vq2\va
2 1

Nq112 f a

«a«1\vq2\va
2G

1(
a,b

(
q

^jug2qua&^augqub&^bu j i ug&

^du j i u«&djg2^ju j i ug&d«d
F Nq1 f a

«a«2\vq2\va
2 1

Nq112 f a

«a«1\vq2\va
2Gd«d

1(
a

(
q

^jug2qug&^augqu«&^du j i ua&

^du j i u«&djg2^ju j i ug&d«d
F Nq1 f g

«g«2\vq2\va
2 1

Nq112 f g

«g«1\vq2\va
2G , ~3.70!

iG«jgd
~2! ~va

2 ,vab
2 !.(

a,b
(

q

^aug2qu«&

^du j i u«&djg2^ju j i ug&d«d
@^dugqub&^bu j i ua&2^bugqua&^du j i ub&#

3F Nq112 f a

«ja2\vq2\va
2 1

Nq1 f a

«ja1\vq2\va
2Gdgj

2(
a

(
q

^dug2qu«&

^du j i u«&djg2^ju j i ug&d«d
@^jugqua&^au j i ug&2^augqug&^ju j i ua&#

3F Nq112 f d

«jd2\vq2\va
2 1

Nq1 f d

«jd1\vq2\va
2G

2(
a,b

(
q

^jug2qua&

^du j i u«&djg2^ju j i ug&d«d
@^augqub&^bu j i ug&2^bugqug&^au j i ub&#

3F Nq1 f a

«ad2\vq2\va
2 1

Nq112 f a

«ad1\vq2\va
2Gd«d



PRE 58 4319QUANTUM-STATISTICAL THEORY OF NONLINEAR . . .
2(
a

(
q

^jug2qug&

^du j i u«&djg2^ju j i ug&d«d
@^dugqua&^au j i u«&2^augqu«&^du j i ua&#

3F Nq1 f g

«g«2\vq2\va
2 1

Nq112 f g

«g«1\vq2\va
2G

1(
a,b

(
q

^jug2qub&

^du j i u«&djg2^ju j i ug&d«d
@^bugqua&^au j i ug&2^augqug&^bu j i ua&#

3F Nq1 f b

«bg2\vq2\vab
2 1

Nq112 f b

«bg1\vq2\vab
2 Gd«d

1(
a,b

(
q

^dug2qub&

^du j i u«&djg2^ju j i ug&d«d
@^augqu«&^bu j i ua&2^bugqua&^au j i u«&#

3F Nq1 f b

«bg2\vq2\vab
2 1

Nq112 f b

«bg1\vq2\vab
2 Gdgj

1(
a,b

(
q

^bug2qu«&

^du j i u«&djg2^ju j i ug&d«b
@^bugqua&^au j i ub&2^augqub&^du j i ua&#

3F Nq112 f b

«db2\vq2\vab
2 1

Nq1 f b

«db1\vq2\vab
2 Gdgj

1(
a,b

(
q

^bug2qug&

^du j i u«&djg2^ju j i ug&d«d
@^augqub&^ju j i ua&2^jugqua&^au j i ub&#

3F Nq112 f b

«jb2\vq2\vab
2 1

Nq1 f b

«jb1\vq2\vab
2 Gd«d . ~3.71!
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Here we have ignored the terms that are in proportion to
Fermi-Dirac distribution functionf a[ f («a) in G(va

2) and
G(va

2 ,vab
2 ).

IV. CONCLUSION

In the present paper we have given a formalism and a
account of the method of evaluation of linear and nonlin
conductivity tensors for an electron-phonon system. We
late the conductivity tensors to damping~relaxation! matri-
ces, which reflect the effects of contributing frequencies
applied radiation fields as well as the collision processes
tween electrons and phonons. Thus the collisions betw
those phonons and electrons and those radiation field
quencies are responsible for the broadening of spectral
shape and can be studied theoretically by examining the
part of these conductivity tensors. The theory is develo
independently of the single-particle representation~momen-
tum, Landau, or other representation! and hence it can
be applied irrespectively of the system studied. For
sake of demonstration, only the linear~in Sec. III B! and
the lowest-order nonlinear~in Sec. III C! conductivities
are calculated explicitly along with the rigorous expressio
for the complex damping matricesGmn

(2)(v2) in s i j (v) and
G«jgd

(2) (va
2),G«jgd

(2) (va
2 ,vab

2 ) in s i jk
(2)(va ,vb ;va1vb) to
e

ll
r
-

f
e-
en
e-
ne
al
d

e

s

orderh2 in an electron-phonon interaction. In these expr
sions for the damping matrices, the terms associated with
Fermi-Dirac distribution functionsf a and f b describe the
effects of exchange among electrons. If we ignore the effe
of electron exchange by settingf b50, our result~3.14! re-
duces to the same quantity@9,10#, which is obtained by as-
suming a system of one electron moving in a phonon fie
We expect that the lowest-order nonlinear conductivity f
mula ~3.69! along with Eqs.~3.70! and~3.71! can be applied
to study nonlinear optical phenomena at finite temperatu
such as sum-frequency generation@12,13# or second-
harmonic generation @14–16# in solids. Finally, we
have made the approximation~3.19!, req(H̃).req(H̃0)5

re(H̃e) ^ rp(Hp) to obtain the results. This approximatio
disregards initial correlations between electrons a
phonons, which play a role of subtle interference effects
tween the applied fields and the scattering. However, in m
cases of optical mixing problems in solids, the neglect of
electron-phonon interaction Hamiltonian in the initial dens
operatorreq(H̃) does not affect the features of the hig
frequency optical conductivity for weakly interacting sy
tems, which we have presented in this paper.

Although we have formulated the theory for an electro
phonon system, impurity effects on damping can be also
cluded in the present theory; in the lowest-order approxim
tion, the relaxation matrix due to phonons and sta
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impurities is given by the sum of relaxations due to the p
non and the impurity scatterings. The formula for t
relaxation matrix due to the impurity scattering can be o
tained for a low impurity density case can be obtained s
ply by replacing Hep by an electron-impurity interaction
HamiltonianH imp in Gmn

(2) , which is written for an appropri-
ate electron-impurity interaction potential in the seco
quantized form. We will leave the application of the prese
results to study the effect of the electron exchange and
r

-

-
-

t
e

effect of phonon~and/or! impurity scattering~s! on the opti-
cal mixing problems for future studies.

APPENDIX: DERIVATION OF THE SUM-FREQUENCY
NONLINEAR CONDUCTIVITY FORMULA „3.48…

The sum-frequency second-order conductivitys i jk
(2)

3(va ,vb ;va1vb) can be extracted from Eq.~3.46! by
taking the residue of̂J(2)(q,z)&/V at z52va2vb1 id:
ReŝJ~2!~q,z!&/Vuz52va2vb1 id5
e2

V
Tr$J~0!~q!G~2va2vb1 id!†R•Eb,G~2va1 id!@R•Ea,req#‡%

5
e2

V (
j ,k

Tr$J~0!~q!G~2va2vb1 id!†RjEj
b ,G~2va1 id!@RkEk

a ,req#‡%

5
e2

V (
j ,k

Tr$J~0!~q!G~2va2vb1 id!†Rj ,G~2va1 id!@Rk ,req#‡%Ej
bEk

a

5
e2

V (
j ,k

Tr$J~0!~q!G~2va2vb1 id!Rj
3G~2va1 id!Rk

3req%Ej
bEk

a

52s~2!~va ,vb ;va1vb!:EaEb, ~A1!

from which we can immediately write a general expression for the sum-frequency second-order conductivity as

s i jk
~2!~va ,vb ;va1vb!52

e2

V
Tr$JiG~2va2vb1 id!Rj

3G~2va1 id!Rk
3req%

52
e2

V
Tr$reqRk

3G~va2 id!Rj
3G~va1vb2 id!Ji% ~ i , j ,k5x,y,z!, ~A2!

whereG(va2 id)[G(va
2) andG(va1vb2 id)[G(vab

2 ) are given by Eq.~3.13! andreq by Eq. ~3.20!. The many-body
trace should be taken over the electron and the phonon coordinates.
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