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Chaos in the random field Ising model
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The sensitivity of the random field Ising model to small random perturbations of the quenched disorder is
studied via exact ground states obtained with a maximum-flow algorithm. In one and two space dimensions we
find a mild form of chaos, meaning that the overlap of the old, unperturbed ground state and the new one is
smaller than 1, but extensive. In three dimensions the rearrangements are m@gicehtrated in the well
defined domain wal)s Implications for finite temperature variations and experiments are discussed.
[S1063-651%98)06710-9
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The concept othaosin disordered systems refers to the case when igl;; Gaussian(with mean zero and variance 1
sensitivity of their equilibrium statéat finite temperaturgs andh;=0 is thespin glass(SG model. The case whed;
or ground statdat zero temperatuyewith respect to infini- =0, and h;=0 is the random bond ferromagnemodel
tesimal perturbations. In spin glasdds, for instance, it is (RBFM). The case whed;;=J, andh; is Gaussianwith
well known that small changes of parameters like temperamean zero and variandg) is therandom field Ising model
ture or external field cause a complete rearrangement of thHé&kFIM). In order to study the sensitivity of the ground state
equilibrium configuratior2,3]. This has experimentally ob- 0f these systems with respect to small changes in the
servable consequences like reinitialization of aging in temduenched disorder, we can apply a random perturbation of
perature cycling experimenfd], and has also been investi- amplitudes<1 to any of the quencheq rapdom variables. As
gated in numerous theoretical work. a consequence theewground state will differ from the old

A slight random variation of the quenched disorder has®"€: .
the very same effect on the ground state configurations. Al. 1he RFIM ground state changes when the domain struc-

though of similar origin, chaos with respect to temperatureture changegfor purely ferromagnetic states this argument

changes is harder to observe than chaos with respect to dig%?f):%tnvgg:reg?ee dc?)';;(‘:’::gnZtlee\r':/gtinst?;éw%%rsoggg Eftes

order ch?yngeBG],land tEe lattter phenomlenon has bg;r} US€ound considering d'omain walls with an Im.ry-l\,ﬂal] type

to quantify spin glass chaos in numerical investigatichg]. araument3.91: The ener o flio droplets or domain
This type of chaos was actually later discovered in an— o (3,9 9¥Eqp to flip droplets or domains

. . : ‘or excitations of sizé scales likel.?, whered is the energy
other, simpler random system, the directed polymer in a ranq,,ctuation exponentd is denotedy in the SG contexi3]; it

dom mediun{8—10], which is equivalent to a domain wall in - joesnot stand for the violation of hyperscaling exponent at
a random bond ferromagnet. The interface displacement as;fe critical point of the RFIM12]). The energy change due
reaction to infinitesimal random changes of bond strengthgy the random perturbatioB,,,q Scales likesL%2, whered
obeys particular scaling laws with exponents related to the-_ is the fractal dimension of the droplet’s surface in the
well-known interface roughness expongnt9,10]. SG cased=D—1 is the interface dimension in the RBIM,
In this paper we consider the random field Ising mdd¢l andd=D in the RFIM case. The decorrelation takes place
and study, for the first time to our knowledge, the sensitivitywhen E L) >Eg(L), ie., for L>L*~8 ™, with \
of its ground state with respect to small changes in the ran=d/2— 4. In SG jargonL* is called the overlap length, and
dom field configurations. It turns out that the emerging pic-\ is denoted!, the chaos exponeh8,7].
ture is very reminiscent of chaos in spin glasses and random Two remarks are in order: first, as already pointed out in
interfaces. This statement is quantified by the following pheRefs.[9] and [10] for L<L*, the ground state is slightly

nomenological pictur¢3,9]. altered by the random perturbation. This is, however, an ef-
Consider a random Ising system defined, for instance, byect of the interplay between elastic energy dg,q. This
the Hamiltonian leads to displacements of the domain wall of siwe~ 5L
with =N+ y, where y is the roughness exponent. The
__ ca _ roughness exponefit3] and the energy fluctuation exponent
H <|z]> 4SS, Z hiS:, @D 0 are related vis9=2y+D—3 [9].

The second remark concerns the RFIM caseDiex2 the
whereS,==*1 are Ising spins(ij) indicates nearest neigh- concept of a macroscopic domain wall fails, and the above
bor pairs on aD-dimensional lattice of, say, linear sitg  considerations can only be transfer@dn grano salisThis
andJ;; denote interaction strengths ahdlocal fields, both means that they are sensible only fox £~ exp(—h#A), the
guenched random variables obeying some distribufgmm-  typical size of domains in the two-dimension@D) RFIM
tinuous, in order to exclude ground state degeneraclde  [14,15.
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FIG. 1. A ground state plus the perturbation-induced changes.
The original spin orientations are indicated in grey $o= + 1 and 1.00 '
white for S=—1. The flipped spins are indicated in bladk.
=320,A=2, and5=0.1 (see text

In three dimensions the situation is different: The concept
of a domain wall is well defined, and we obtain, with the 0.95 1
estimate for the roughness exponent 3 [13] and, conse-
quently, =%, the resulin=%, i.e. L* ~6~ Y. The typical @
displacement of a domain wall thus is, as abo¥e~L¢,
with a=% for L<L* anda=2 for L>L*.

If we take the above arguments to be serious for the 080 1
RFIM in two dimensions, the overlap lengthf turns out to
be formally infinite (since with6=1 one has\ =0), where gt:;ﬁg
one of course has to be careful due to logarithmic corrections o—oL=320
to the energyEy;, . Thus the mechanism by which rearrange- 0.85 ,
ments take place is due to the interplay between elastic en- 1 10
ergy andg,,,q. Moreover, in the 2D RFIM, the typical dis- A
placement of domain walls should scale &s~ 6L for L FIG. 2. (a) (Top) Scaling of the overlap parameter with random

<¢, sincea=\+ x=1. As a consequence the correlation orfie|d strength for the 1D spin chairib) (Bottom) Scaling of the
overlap between the old unperturbed ground s&tend the  overlap in two dimensions for the system sites40, 80, 160, 240,
new oneS'(4), and 320, and fos=0.1.

1 over to a site percolation problem, i.e., the local RF orienta-
q= il E SiS/(9), (2 tion gives the spin state at a site. In that limit the oveddp
! determined by the probability of the applied perturbaifio
. " change the orientation. For somewhat smaller fiejdse-
behaves like 1—qu » and therefgreq S.hOU|d .be of O " comes smaller, in an apparently linear fashionAahanges.
der O(1), depending on the probability with which domain |, \he 1p case the overlap is not sensitive to the system size
wall displacements occur. above a certain threshold in, below which the overlap
In what follows we present results of exact ground stateyickly increases to unity again, which indicates a typical
calculations for 1D spin chains and for 2D systems. We us@omain size. The overlap seems to becomé-dependent
a random field distribution and a perturbation distributionconstant in the thermodynamic limit and far— 0.
that have a constant probability density betweea and A This 1D behavior can be understood as follows. For sim-
and — /2 and 6/2, respectively, and selj=1. Figure 1  plicity let us assume that the first spin is fixed to be up, i.e.,
shows an example of a large 2D ground state-320) with ~ Sy,=+ 1. Then the total random field energy at sités given
the two spin orientations shown in white and gray, respechby H, =3 ,h; in the unperturbed system, and,=H,
tively, and theflippedspins in black. There are two features + A, with A,==_,&;, in the perturbed one. H; and ; are
one should note. First, the size of the system is larger thamdependently distributed variables with zero mean and vari-
the critical length scale needed for ground state breakup, a%cehr=[hi2]a\, and 5r:[5i2]aw respectively, the variables
the magnetization is practically zero. Second, the fIippeq.|n and A, are (for n>1) Gaussian with mean zero and

spins form a number of clusters of varying size, that seem t@ariancenh, andné, , respectively. The probability distribu-
concentrate on theluster boundarief the original ground  tjon p(H, JH!) is simply given by

state.
Figure 2 shows what happens as one sweeps the RF

strength(A). In arbitrary dimensions, the limiA —«~ goes P(H”’H“):f dAP(Hn)P(An)8(Hn+An—Hy).
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FIG. 3. Probability distributions of the overlapfor A=1.8 for FIG. 4. Cluster size distributions of clusters of flipped spins for

the system sizes=40, . . . 320. The inset shows the standard de- 6=0.1, L=40, 160, and 320, an =2.
viations of the overlap pdf's foA=1.4, 1.6, 1.8, 2, and 2.4.

asL is increased a peak appears in the distribution, resem-
Now the total RF fluctuationsl, andH}, produce domains if bling a Gaussian. The inset of Fig. 3 shows the standard
their magnitude is large enough to overcome the ferromagdeviation q of P(q) for varying A as a function of the
netic coupling: suppose thag=+1 and H;>—J for  System size.. Except for the by now standard crossover for
i=1,...n (i.e., a plus doman butH,,;<—J; thenS,,; SmallL andA, we observe that the width of the distribution
will be flipped, i.e.,S,;;=—1, and a newminug domain  decreasgswhich signals that in the thermodynamic limit
starts. For large enough typical domain sizes the total RP(q) approaches a-function-like sharp distribution. The
fluctuations become large: one can negleand assume that crossover exponert, defined withsg~L~°, seems to be
only the signs oH,, andH/, determine the ground staeote ~ exactly 1 €=1).

that this is different from the high field region,>J, in ~_ The mechanism by which is determined is illustrated in
which the local random fieldk; dominaté. Thus the prob- Fig. 4. The size distribution of flipped clustergs) con-
ability of S, andS;, being equal is given by verges withL to a power law,n~s~ 1% with a cutoff that

depends very weakly if at all oh. This has to be so for the
overlap not to diverge to zero in the thermodynamic limit,
D(SFSG)IJ dHydH P(H, Hy) 6(HaHR), (3 since one can write 2q as an integral oven(s): an
L-dependent cutoff would imply thaf would decrease con-
where @ is the step function. A straightforward calculation tinuously.
yields p(S,=S)=1—(1/m) 5r/hr+0(52)- For the data Finally, in Fig. 5, we demonstrate that-Ig~ 6 for small
shown in Fig. 1a), in which h?=A?%3 and §?=§%A%12 & This folloyvs from the scaling arguments presented for 2D
with 6=0.1, we haves,/h,=0.05 and henceqg=—1 RFIM domain walls and the 1D RF chain.
+2p(S,=S/)~0.97, agreeing roughly with the numerical

results forh,—0 in the limit L —oo. 1.00
The 2D behavior is depicted in Fig. 2 fa==0.1. The

number of simulations is 10 000 far=40 and 80, 4000 for

L =160, 1000 forL =240, and 500 fot. =320. The generic

behavior of the overlap is as for the 1D cham(A) is 095 |

roughly linear until the regime of small fieldd&2), after
which it seems to saturate tocadependent valug(s). The
crossovergincrease ofg with decreasing)) are due to the ©
ground state breakup mechanism. For small systems th
ground state is ferromagnetic, except for a limited number of 4,
domains of the opposite spin orientation. The decreagdsn
caused by the effect of the ground state becoming more an
more uniform(magnetizatiodm|— 1). Otherwise the behav-
ior strongly resembles the 1D case.

The thermodynamic behavior of the overlap is also visible  gg5 . ‘ s s
in the statistics of overlap distributions. Figure 3 shows how 0.00 0.02 0.04 5 0.06 0.08 0.10
the probability distributiorP(q) of q behaves with varying
system size and foA=1.8 (the data are the same as pre- FIG. 5. Dependence of the overlap on the perturbation
sented in Fig. 2 For all system#(q) is peaked aj=1, but  strengths for weak and strong magnitudésa), L= 80.
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In this paper we have considered the stability of the ranof the domain wall for temperature changes results in a dis-
dom field Ising model to small perturbations. Unlike in spin placement exponent which does not produce any extensive
glasses, it turns out that the RFIM ground state shows a weathanges in the overlap. In two dimensions the predicted out-
form of chaos, similar to directed polymers or random bondcome is simply that of a random wallA&~L*?). In other
Ising model domain walls. The overlap attains its value words, assuming that typical valleys in the energy landscape
from fluctuations of the domain Wa||S, in both one and tWOare Separated by an energy given by the energy fluctuation
dimensions. Thus the ground state stays almost intact. Th@xponent gives completely different results for temperature
ground state domains are robust against external perturbgng ground state chaos than for random bond disorder. This
tions since, most likely, the field excess of a domain is exyjscussion is intimately related to coarsening and aging in
tensive £h;~V). For the RFIM in three dimensions, the o RE|M: one should note that so far, to our knowledge,

prediction of the domam _waII scaling argument Is tept there have been no simulation results that address these ques-
should converge to unity since the domain wall dlsplacemen{ions directly

exponenta here is3: the displacement of a domain wall on
large enough length scales &sx~L¢“, and therefore +q Note added in proofRecently we became aware of tem-
«L* 1 0. Moreover, in both limitsh,/J—0 and h,/J perature cycling experiments in a random field sysfé6],

—; i.e., deep in the ferromagnetic phase and deep in thevhere indications for thdpartia) reinitialization of aging
paramagnetic phase, it is trivial that- 1. have been reported. These are probably not caused by cha-
One would like to extend the argumentation to changes irvtic rearrangements of domain walls, but originate from the

temperature, as is common for spin glasses and randongxistence of slow and fast domaifesee[16]).

bond-type directed polymers. In spin glasses chaos is inti

mately linked to the nonequilibrium correlation length,  This work was performed within the Finnish-German co-
which gives rise to measurable consequences in, e.g., temperation project supported by the Academy of Finland and
perature cycling experiments that measure the out-of-phaghe DAAD. M.A. would like to thank Eira Sepjt for a
susceptibility. Here, however, repeating the scaling argumentersion of the computer code used.
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