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Dynamic magnetization-reversal transition in the Ising model

Arkajyoti Misra and Bikas K. Chakrabarti
Saha Institute of Nuclear Physics, 1/AF Bidhannangar, Calcutta 700 064, India

~Received 22 May 1998!

We report the results of mean field and the Monte Carlo study of the dynamic magnetization-reversal
transition in the Ising model, brought about by the application of an external field pulse applied in opposition
to the existing order before the application of the pulse. The parameters controlling the transition are the
strengthhp and the durationDt of the pulse. In the mean field case, an approximate analytical expression is
obtained for the phase boundary which agrees well with that obtained numerically in the smallDt and largeT
limit. The order parameter of the transition has been identified, and is observed to vary continuously near the
transition. The order parameter exponentb was estimated both for the mean field (b51) and the Monte Carlo
(b50.9060.02 in two dimensions! cases. The transition shows a ‘‘critical slowing down’’ type behavior near
the phase boundary with diverging relaxation time. The divergence was found to be logarithmic in the mean
field case and exponential in the Monte Carlo case. The finite size scaling technique was employed to estimate
the correlation length exponentn (51.560.3 in two dimensions! in the Monte Carlo case.
@S1063-651X~98!06010-3#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

The dynamic response of pure Ising systems to time
pendent magnetic fields is being studied intensively th
days~see, e.g., Refs.@1,2# and references therein!. In particu-
lar, the response of Ising systems to pulsed fields has
cently been investigated@3,4#. The pulse can be either ‘‘posi
tive’’ or ‘‘negative.’’ At temperaturesT below the critical
temperatureTc of the corresponding static case~without any
external field!, the majority of the spins orient themselves
a particular direction giving rise to the prevalent order. If t
external field pulse is applied along the direction of the
isting order, it is called a positive pulse, and if the pulse
applied opposite to the existing order, it is called a nega
pulse. The effect of positive pulse was studied in Ref.@3#,
whereas the occurrence of a magnetization-reversal trans
as a result of the application of the negative pulse was
ported in an earlier work@4#. Here we report the results of
detailed investigation of this dynamic magnetization-rever
transition for pure Ising models under a pulsed field.

In the absence of any symmetry breaking field, for te
peratures below the critical temperature of the correspond
static case (T,Tc), there are two equivalent free energ
minima with average magnetizations1m0 and 2m0 . If in
the ordered state the equilibrium magnetization is1m0
~say!, and the pulse is applied in the direction opposite to
existing order, then temporarily during the pulse period
free energy minimum with magnetization2m0 will be
brought down compared to that with1m0 . If this asymme-
try is made permanent, then any nonzero field~strength!,
which is responsible for the asymmetry, would eventua
induce a transition from1m0 to 2m0 . Instead, if the field is
applied in the form of a pulse, the asymmetry in the fr
energy wells is removed after a finite period of time. In th
case, the point of interest lies in the combination of the pu
height or strength (hp) and its width or duration (Dt) that
can give rise to the transition from1m0 to 2m0 . We call
this a magnetization-reversal transition. A crucial point ab
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the transition is that it is not necessary that the system att
its final equilibrium magnetization2m0 during the presence
of the pulse; the combination ofhp and Dt should be such
that the final equilibrium state is attained at any subsequ
time, even long time after the pulse is withdrawn. The ph
boundary, giving the minimal combination ofhp andDt nec-
essary for the transition, depends on the temperature. AT
→Tc , the magnetization-reversal transition occurs at low
values ofhp and/or Dt and the transition disappears atT
>Tc .

In this paper we have given both the mean field~MF! and
the Monte Carlo~MC! results for the transition. The MC
studies have been carried out for a two-dimensional (d52)
lattice of Ising spins. The phase boundaries in thehp2Dt
plane~each for a fixedT) are obtained for both the MF an
MC cases. Approximate analytical expressions are also
tained and compared to these phase boundaries. The o
parameter (O) for the dynamic transition has been identifie
and at a fixedT its variation with the driving parametershp
andDt has been studied. The observed continuous varia
of O indicates the nature of the transition to be compara
to the second order type static transitions. The critical ex
nents for the order parameter variations near the ph
boundary has been obtained for both the MF and MC ca
We also employed the finite size scaling method~see, e.g.,
Ref. @5#! to estimate the correlation length exponentn for the
transition in the MC studies. We observe a significant ‘‘cri
cal slowing down’’ near the phase boundary, and the beh
ior of the relaxation timet has been studied in both th
cases. In the MF case, we have obtained an approxim
analytical expression fort, indicating clearly a different kind
of divergence oft as compared to that in the static case.

II. MODEL

We have taken the Ising model for both the numeri
simulation and the mean field study. The Hamiltonian
nearest neighbor Ising system without any disorder is
4277 © 1998 The American Physical Society
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H52J(̂
i j &

SiSj2h~ t !(
i

Si , ~1!

whereSi561 represents the Ising spins at lattice sitei , and
J(.0) denotes the nearest neighbor ferromagnetic inte
tion strength. The time dependent external magnetic fi
h(t) is applied in the form of a pulse of durationDt,

h~ t !52hp for t0,t,t01Dt

50 otherwise. ~2!

t0 is taken to be much larger than the relaxation time of
unperturbed system, so that the system is guaranteed to r
a state of equilibrium before the pulse is applied. The av
age magnetizationm is given by ^Si&, where the angular
brackets represent a thermal average. By the timet5t0 , the
system has reached its equilibrium state with the magne
tion m(t)56m0 . This is the state before the application
the pulse, which is applied at timet5t0 to compete with the
initial magnetization. We then want to look at the dynam
of the system under a pulsed field starting with the init
condition m(t0)51m0 ~say!. Depending on the strengt
(hp) or duration (Dt) of the pulse, the system has tw
choices after the pulse is withdrawn: it can either go back
the original ordered state@m(t5`)51m0#, or it can switch
to the other equivalent equilibrium ordered state@m(t5`)
52m0#. Figure 1 shows these behaviors schematically. T
result, at any finite temperature belowTc , naturally depends
on the strength and the duration of the pulse. Specifically,
observe that the result depends onmw[m(t01Dt), the av-
erage magnetization at the time of withdrawal of the fie
The sign ofmw , which in turn depends on the combinatio
of hp andDt, governs the transition.umwu was found out to
be the appropriate candidate for the order parameter: ifmw
becomes negative, on an average one observe
magnetization-reversal transition; however ifmw is positive,

FIG. 1. Schematic time variation of the external fieldh(t) and
of the corresponding response magnetizationm(t). The thin line
~smallerhp) shows the case of no transition, whereas the thic
line ~larger hp) shows the occurrence of transition. The vario
quantities studied in this paper like the relaxation timet, magneti-
zation at the time of withdrawal of the fieldmw , etc., are also
indicated.
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the system is most likely to return back to its original eq
librium state. In fact, it is guaranteed to be so in the me
field case. However in MC simulations, there exists oc
sional fluctuations due to which the system may finally arr
at the1m0 state starting with negativemw , and vice versa.
We have identified thehp2Dt phase boundary at a particula
temperature which gives the optimum combination of t
driving parameters (hp andDt) that can force the system t
a final state with magnetization2m0 , starting from an initial
state with magnetization1m0 , or vice versa. We define th
relaxation timet as the time taken by the system to reach
final equilibrium state from the time of withdrawal of th
field ~at t5t01Dt). The relaxation time increases as th
value of umwu approaches zero, or equivalently as one a
proaches the phase boundary from either side. In Fig. 2
typical MC results~on a square lattice! show how the tran-
sition can be brought about by either increasingDt @see Figs.
2~a!–2~c!# or hp @Figs. 2~d!–2~f!#. One can also note from
these figures how the relaxation timet increases as one ap
proaches the phase boundary.

III. MEAN FIELD STUDY

The mean field equation of motion for the average m
netizationm(t) of the system is

dm

dt
52m1tanhS m1h~ t !

T D , ~3!

r

FIG. 2. Monte Carlo results for the time variation of the ma
netizationm(t) against the time variation of the fieldh(t) at T
51.0 for ~a! hp51.04, Dt510; ~b! hp51.04, Dt515; ~c! hp

51.04, Dt528; ~d! hp51.04, Dt510; ~e! hp51.17, Dt510; and
~f! hp51.34, Dt510. Time is measured in units of Monte Car
steps.
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whereh(t) is given by Eq.~2!. Here we have assumedJn
51, wheren is the lattice coordination number. With th
choice, the critical temperature in the static limit (Tc) be-
comes unity. All the mean field calculations are perform
therefore, at a temperatureT,1. The equation was solve
numerically to obtain the phase boundaries, shown in Fig
A point on a particular phase boundary gives the optim
combination ofhp andDt that can induce the transition from
a state with magnetization1m0 to 2m0 , where m0
5tanh(m0 /T). The axes side of the boundaries correspond
the return to original equilibrium state, whereas one obtain
magnetization-reversal transition for combinations ofhp and
Dt beyond the phase boundary. Because of the absenc
any fluctuations in the mean field equation~3!, there exists a
finite coercive field forT,Tc and therefore one cannot brin
about the transition just by increasingDt if hp does not ex-
ceed the coercive field value. Hence the phase boundary
comes parallel toDt axis for large values ofDt.

For largeT, the mean field phase boundary can be e
mated approximately by solving the linearized mean fi
equation

FIG. 3. Mean field phase boundary in thehp2Dt plane for three
different values ofT. The dotted lines correspond to the numeric
solution of Eq.~3!, while the solid lines give the correspondin
theoretical prediction@from Eq. ~6!#.
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dm

dt
52em1

h~ t !

T
, e5

12T

T
, ~4!

whereh(t) is given by Eq.~2!. The solution of Eq.~4! for
t.t0 can be written as

m~ t !5S m02
hp

eTDexp@e~ t2t0!#1
hp

eT
. ~5!

It may be noted from solution~5! that t has to be close tot0
in order to keep the value ofm(t) small, so that the linear
ization in Eq.~4! is valid. The magnetization-reversal trans
tion occurs ifm(t01Dt)<0. The phase boundary can ther
fore be obtained from Eq.~5! by putting mw5m(t01Dt)
50. The resulting equation for the phase boundary is th

hp
c5

m0eT

12exp~2eDt !
. ~6!

In Fig. 3, this analytic result for the phase boundary is co
pared with those obtained by numerically solving Eq.~3!. As
one can clearly see from the figure, the agreement is goo
the smallDt region of the phase boundaries for large valu
of T.

As mentioned above, the magnetizationmw at the time of
withdrawal of the pulse, seems to be the crucial quan
governing the transition. The sign ofmw solely decides the
final equilibrium state of the system out of the two equil
rium choices. Therefore we define the mean field order
rameter (O) as following

O5mwu~mw!, ~7!

where the step functionu is defined as

u~x!51, for x.0

50, otherwise.

The nature of variation ofO with uhp2hp
cu at different values

of Dt and T is shown in Fig. 4. Herehp
c5hp

c(Dt,T) is ob-

al
g

e

FIG. 4. Log-log plot of the variation of order parameterO againstuhp2hp

cu for Dt51, T50.9 (L); Dt51, T50.6 (n); Dt52, T
50.8 (h); Dt55, T50.9 (1); Dt510, T50.8 (3); andDt510, T50.6 (!) in the mean field case. Thehp

c values are obtained from th
corresponding phase boundaries~Fig. 3!.
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tained from the phase boundary. We fitted the order par
eter variations to the power law form

O;uhp2hp
cub, ~8!

and found the value for the exponentb.1 by fitting the
numerical results for different values ofDt andT.

The relaxation time (t) grows as the phase boundary
approached from either side, and shows a divergence on
boundary. We measure the relaxation time by measuring
time required bym(t) to reach the final equilibrium value
6m0 , with an accuracy ofO(1024), from the time of with-
drawal of the pulse. According to Eqs.~7! and~8!, for a fixed
Dt, mw;uhp2hp

cu. Therefore,t is also expected to diverg
asmw vanishes. Figure 5 shows that this is indeed the c
and the growth of the relaxation time was found to be lo
rithmic in nature. That the relaxation time will diverge log
rithmically at the phase boundary at any temperature be
the static critical temperature (T,1) can be shown analyti
cally. Let us follow the mean field dynamics of the syste
after the withdrawal of the field. The system starts with
magnetizationmw , and evolves according to Eq.~3! with
h(t)50 to reach the final state of equilibrium characteriz
by magnetization6m0 . Keeping the value ofm/T small, we
expand tanh of Eq.~3! up to the cubic term

dm

dt
5em1am3, ~9!

wherea521/(3T3). Thus we can write

E
0

t

dt5E
mw

m0 dm

em1am3

or

t52
ln mw

e
1

ln~e1amw
2 !

2e
1C~T!, ~10!

where C(T) is a constant depending on temperature on
Now, if the combination ofhp andDt is such that one start
with very small value ofmw , then one obtains

FIG. 5. Divergence of the relaxation timet in the MF case. The
solid line shows the logarithmic fit to the numerical solution of E
~3!.
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lnumwu. ~11!

It can be easily verified that even if theO(m5) term in the
expansion of Eq.~9! is kept, the final result~11! is not modi-
fied in themw→0 limit. The above form for the variation o
t fits accurately the numerical results: atT50.6, 1/e51.5,
and this matches exactly with the numerical result as sho
in Fig. 5. The above analysis also makes it very clear that
logarithmic divergence ofmw implies a similar divergence
with uhp2hp

cu for a fixedDt. It may be mentioned here tha
for the dynamic magnetization-reversal transition, the ab
divergence int occurs at anyT,Tc . The same equation
~11! also gives the well knownuT2Tcu21 divergence oft
for the static transition atT5Tc51. It may also be noted
from Eq. ~11! that the logarithmic dependence oft on uhp

2hp
cu, through its dependence onmw , for this dynamic tran-

sition at hp
c(Dt,T,Tc), is qualitatively different from the

divergence oft (;uT2Tcu21) for the static transition in the
same model@Eq. ~3!# at T5Tc .

IV. MONTE CARLO STUDY

For the MC simulation we have taken Ising spins on
square lattice of sizeL3L with periodic boundary condition
We have takenL5200 for typical studies. Each spin of th
lattice was updated sequentially using the Glauber sin
spin flip dynamics@6#. One complete sweep through the e
tire lattice is taken as one Monte Carlo Step~MCS!. Phase
boundaries at different temperatures below the static crit
temperature (Tc.2.27) shows~Fig. 6! a qualitatively similar
nature to that in the mean field case. However, unlike
mean field phase diagrams, the presence of fluctuat
causes the MC phase diagrams to touch the abscissa as
totically.

When the contributions of fluctuations become importa
at higher values ofT and small values ofhp , the above MF
theory fails. Ifhp→0 ~as in the largeDt region of the phase
boundary!, one can use the picture of nucleation of a sing

.

FIG. 6. Monte Carlo phase diagram in thehp2Dt plane for
temperaturesT50.1 ~d!, T50.5 ~¹!, T51.0 ~h!, T51.5 ~n!, and
T52.0 ~!!. The inset shows the variation of the quantityhp

c ln Dt
with Dt21 for the same values ofT.
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FIG. 7. Log-log plot of the variation of order parameterO againstuhp2hp
cu for Dt52, T52.0 (L); Dt51, T51.5 (1); Dt55, T

51.5 (n); Dt510, T52.0 (3); Dt55, T51.0 (h); and Dt51, T51.0 (!) in the MC case. Thehp
c values are obtained from th

corresponding phase boundaries in the MC case.
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domain. The classical nucleation theory of Becker and D¨r-
ing ~see, e.g., Ref.@7#! suggests that the nucleation rateI
;exp@2F(lc)/T# is given by the optimality conditionl c
5@s(d21)/2d#/hp of free energyF( l )52hpl d1s l d21 for
the formation of a droplet or domain of linear sizel under
field hp . Heres is proportional to the surface tension for th
formation of a droplet. Equating the growth rate given by t
Becker-Döring nucleation rateI with the inverse pulse width
one obtainsDt.exp(1/hp

d21), suggesting

hp
c ln Dt5C, ~12a!

along the phase boundary in two dimensions, whereC is a
constant. It agrees qualitatively with the MC estimated ph
diagram in the lowhp ~i.e., largeDt) limit @4,8#. For large
values ofhp , and hence for small values ofDt, the critical
droplet sizel c;1/hp being much smaller than the syste
size L, many droplets grow simultaneously, and the tran
tion occurs due to coalescence of the droplets and not by
above-mentioned process of growth of a single droplet
such coalescence regime, one expects that the nucle
time will be given byI 2x, wherex51/(d11) ~instead of
unity as in the single droplet regime!, resulting in

hp
c ln Dt5C/3 ~12b!

for the phase boundary ind52. In order to check results
~12a! and ~12b!, we estimated the producthp

c ln Dt along the
MC phase boundaries at different values ofT, as shown in
the inset of Fig. 6. It is seen that the product does not
proach a constant value@as suggested by Eq.~12a!# for large
Dt ~single domain region! at low values ofT. For higher
values ofT, however, the product remains more or less
constant for large values ofDt, but the detailed nature of th
variation of the product withDt indicates a nonmonotoni
variation. The ratio of the limiting values of this product~for
large and smallDt) is observed to vary in the range 1.5–6.
compared to the value 3 predicted by Eqs.~12a! and ~12b!.

Similar to the MF case@Eq. ~7!#, we define the order
parameter in the same way:O5mwu(mw), whereu is the
e

e

i-
he
n
ion
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a

,

step function andmw is the average magnetization at the tim
of withdrawal of the pulse. Figure 7 shows the variation
this order parameter withuhp2hp

cu for different values ofDt
andT. Typical number of initial seed values taken to gen
ate the configurations over which each data point is avera
is 500. The variation ofO was again fitted to the power law
form ~8! with the order parameter exponentb, and we find
b;1 by fitting the MC results for four different values ofDt
and four different values ofT.

Here also we estimate the relaxation timet by measuring
the time ~MC steps! required for m(t) to reach the final
equilibrium value6m0 from the time of withdrawal of the
pulse with a predefined accuracyO(1022). Again t was
found to diverge as the phase boundary~at any fixedT) is
approached from either side. Figure 8 shows that the div
gence oft occurs at the point wheremw vanishes at the
phase boundary. It is not possible to average the relaxa
time for different realizations of the dynamics for a particu
mw , as different realizations produce different values ofmw .
Therefore a small range ofmw was taken, instead of a par
ticular value, to take an average oft. A typical value of the
range ofmw over which averaging has been done is 0.01
was observed thatt depends on the driving parametershp ,
Dt, and temperatureT only implicitly through the quantity
mw . The divergence oft was found to be very sharp, and
fitted with an exponential function (t;exp@2cumwu#, where
c is a constant depending on temperature! unlike the mean
field case wheret was seen to behave logarithmically wit
umwu.

We fitted above the MC results forL5200, and extracted
the value of the exponentb, assuming the finite size effect
to be negligible. Ashp→hp

c , for finite L, one should con-
sider the effectivehp

c to be a function ofL. Therefore, one
should consider an additional scaling function ofL/j in Eq.
~7!, wherej;uhp2hp

cu2n is the correlation length with ex
ponentn. Assuming thatj;L for such MC cases, we ca
write the appropriately modified form of~7! as

O;L2b/n f @~hp2hp
c!L1/n#. ~13!
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We have fitted the data for differentL to the scaling form
~13!. The data forL550, 100, 200, and 400 for a particula
value ofDt ~55! and two different values ofT were scaled
to obtain the fitting values of the exponents as shown in F
9. A typical number of averages over different initial see
taken for the MC data was 2500 forL550, and 50 forL
5400. With such a scaling fit procedure,hp

c could be ob-
tained with an accuracy of 0.001. This givesb50.90
60.02 andn51.560.3. It was observed that the quality o
fitting does not change appreciably for a variation of t
fitting parameters within the error limits specified above.

V. DISCUSSION

The recently reported@4# dynamic magnetization-reversa
transition in a pure Ising model under a pulsed~negative!
magnetic field has been studied extensively in this paper
ploying the mean field approximation as well as the Mo
Carlo technique in two dimensions. Accurate estimates h
been made for the phase boundaryhp

c(Dt,T), both in MF
and MC cases. Approximate analytic estimates of the ph
boundary have been made in both cases, and compared
the numerical results obtained. The order parameter for
dynamic transition has been identified, and is given by
average magnetization at the time of withdrawal of the pu
In the mean field approximation the order parameter w
found to vary linearly withuhp2hp

cu, indicating the order
parameter exponentb51; while in the MC caseb was

FIG. 8. Divergence of the relaxation timet for ~a! T51.5; Dt
53 (L), and Dt55 ~1!, and ~b! T52.0; Dt51 (L), and Dt
53 ~1! in the MC case. The solid lines indicates the exponentia
to the MC data.t is measured in units of MCS.
.
s

-
e
ve

se
ith
is
e
e.
s

found to be around 0.9 ford52. The application of the finite
size scaling method gives the value of the critical exponenn
for the correlation length to be nearly 1.5 ford52. Besides
the length scale, a time scale was also found to diverge
both cases of mean field and Monte Carlo studies. In
mean field case, the relaxation timet was found to diverge
logarithmically with mw , or equivalently withuhp2hp

cu, as
the phase boundary is approached. This has also been
onstrated to be true analytically. However, the divergence
t was found to be stronger in the Monte Carlo case, whert
diverges exponentially withumwu or with uhp2hp

cub ~with
b.0.90 ind52) as the phase boundary is approached. T
finite size scaling results suggested that the correlation len
diverges asuhp2hp

cu2n at the phase boundary withn.1.5 in
d52. The existence of divergences of both the length a
time scales indicates the thermodynamic nature of this
triguing dynamic magnetization-reversal transition in t
Ising model.
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t

FIG. 9. Finite size scaling analysis of the MC data:O(L)/Lb/n

plotted against uhp2hp
cuL1/n for a fixed Dt. ~a! T51.5, L

5100 ~L!, L5200 ~1! andL5400 ~h!; ~b! T52.0, L550 ~L!,
L5100 ~1!, L5200 ~h!, andL5400 ~3!. The best collapsed dat
are shown with fitting valuesb50.90, n51.5, andhp

c51.088 in
~a!, andhp

c50.720 in~b!.
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