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Dynamic magnetization-reversal transition in the Ising model
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(Received 22 May 1998

We report the results of mean field and the Monte Carlo study of the dynamic magnetization-reversal
transition in the Ising model, brought about by the application of an external field pulse applied in opposition
to the existing order before the application of the pulse. The parameters controlling the transition are the
strengthh, and the duratiomt of the pulse. In the mean field case, an approximate analytical expression is
obtained for the phase boundary which agrees well with that obtained numerically in theAsraalll largeT
limit. The order parameter of the transition has been identified, and is observed to vary continuously near the
transition. The order parameter expongnvas estimated both for the mean fiej@= 1) and the Monte Carlo
(B8=0.90+0.02 in two dimensionscases. The transition shows a “critical slowing down” type behavior near
the phase boundary with diverging relaxation time. The divergence was found to be logarithmic in the mean
field case and exponential in the Monte Carlo case. The finite size scaling technique was employed to estimate
the correlation length exponent(=1.5+0.3 in two dimensionsin the Monte Carlo case.
[S1063-651X98)06010-3

PACS numbsdis): 05.50+q

[. INTRODUCTION the transition is that it is not necessary that the system attains
its final equilibrium magnetizatior- my during the presence
The dynamic response of pure Ising systems to time deef the pulse; the combination &¢f, and At should be such
pendent magnetic fields is being studied intensively thesthat the final equilibrium state is attained at any subsequent
days(see, e.g., Ref$1,2] and references thergirin particu-  time, even long time after the pulse is withdrawn. The phase
lar, the response of Ising systems to pulsed fields has résoundary, giving the minimal combination bf andAt nec-
cently been investigatd@®,4]. The pulse can be either “posi- essary for the transition, depends on the temperaturel As
tive” or “negative.” At temperaturesT below the critical —T_, the magnetization-reversal transition occurs at lower
temperaturdl ¢ of the corresponding static cageithout any  values ofh, and/or At and the transition disappears &t
external field, the majority of the spins orient themselves to =T,.
a particular direction giving rise to the prevalent order. If the In this paper we have given both the mean figitF) and
external field pulse is applied along the direction of the exthe Monte Carlo(MC) results for the transition. The MC
isting order, it is called a positive pulse, and if the pulse isstudies have been carried out for a two-dimensiodat 2)
applied opposite to the existing order, it is called a negativeattice of Ising spins. The phase boundaries in fie- At
pulse. The effect of positive pulse was studied in R8f,  plane(each for a fixedl') are obtained for both the MF and
whereas the occurrence of a magnetization-reversal transitiaC cases. Approximate analytical expressions are also ob-
as a result of the application of the negative pulse was retained and compared to these phase boundaries. The order
ported in an earlier work4]. Here we report the results of a parameter Q) for the dynamic transition has been identified,
detailed investigation of this dynamic magnetization-reversahnd at a fixedr its variation with the driving parametets,
transition for pure Ising models under a pulsed field. andAt has been studied. The observed continuous variation
In the absence of any symmetry breaking field, for tem-of O indicates the nature of the transition to be comparable
peratures below the critical temperature of the corresponding the second order type static transitions. The critical expo-
static case T<T,), there are two equivalent free energy nents for the order parameter variations near the phase
minima with average magnetizatiodsm, and —mg. If in  boundary has been obtained for both the MF and MC cases.
the ordered state the equilibrium magnetization+tisn,  We also employed the finite size scaling mettede, e.g.,
(say, and the pulse is applied in the direction opposite to theref.[5]) to estimate the correlation length exponerior the
existing order, then temporarily during the pulse period tharansition in the MC studies. We observe a significant “criti-
free energy minimum with magnetizatiormy will be  cal slowing down” near the phase boundary, and the behav-
brought down compared to that withmg. If this asymme- jor of the relaxation timer has been studied in both the
try is made permanent, then any nonzero fi@dttength,  cases. In the MF case, we have obtained an approximate
which is responsible for the asymmetry, would eventuallyanalytical expression for, indicating clearly a different kind
induce a transition from-mg to —my. Instead, if the field is  of divergence ofr as compared to that in the static case.
applied in the form of a pulse, the asymmetry in the free

energy wells is removed after a finite period of time. In that Il. MODEL
case, the point of interest lies in the combination of the pulse '
height or strength{;) and its width or duration £t) that We have taken the Ising model for both the numerical

can give rise to the transition frort my to —mgy. We call  simulation and the mean field study. The Hamiltonian of
this a magnetization-reversal transition. A crucial point abounearest neighbor Ising system without any disorder is
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FIG. 1. Schematic time variation of the external fiél(t) and (b) ©)
of the corresponding response magnetizatioft). The thin line
(smallerhy,) shows the case of no transition, whereas the thicker 1 mt) 1= m(t)
line (larger hy) shows the occurrence of transition. The various
quantities studied in this paper like the relaxation timemagneti- 0 0 R
zation at the time of withdrawal of the fieloh,, etc., are also h(t)
indicated. 1L H¥
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whereS;= + 1 represents the Ising spins at lattice $jitand FIG. 2. Monte Carlo results for the time variation of the mag-

J(>0) denotes the nearest neighbor ferromagnetic interadi€tizationm(t) against the time variation of the fiela(t) at T
tion strength. The time dependent external magnetic field” 1-84“22(51)2;;);)1504, féz 1AOt; (% h(p)=h1.041, 1A7t=A%5;lg:) hpd
. . . . =1. ) = , p: . s = ’ e p: . , — , an
") fs applied n fhe form of & pulse of duratar (f) h,=1.34, At=10. Time is measured in units of Monte Carlo
h(t)=—h, for to<t<to+At steps.

the system is most likely to return back to its original equi-
librium state. In fact, it is guaranteed to be so in the mean

t, is taken to be much larger than the relaxation time of thdi€ld case. However in MC simulations, there exists occa-
unperturbed system, so that the system is guaranteed to rea@ifnal fluctuations due to which the system may finally arrive
a state of equilibrium before the pulse is applied. The aver@t the+mg state starting with negative,,, and vice versa.
age magnetizatiom is given by (S;), where the angular We have |dent|f|¢d thbp—At phasg boundary a_tapamcular
brackets represent a thermal average. By the timty, the tem_perature which gives the optimum combination of the
system has reached its equilibrium state with the magnetiz4living parametersh, andAt) that can force the system to
tion m(t)=+m,. This is the state before the application of a final state with magnetizationm,, starting from an _|n|t|al

the pulse, which is applied at tinie-t, to compete with the state V\{|th magnetlzatlo& mg, or vice versa. We define thg
initial magnetization. We then want to look at the dynamics'élaxation timer as the time taken by the system to reach its
of the system under a pulsed field starting with the initialfin@l equilibrium state from the time of withdrawal of the
condition m(ty)=+m, (say. Depending on the strength field (at t=ty+At). The relaxation tlmg increases as the
(h,) or duration At) of the pulse, the system has two value of |m,,| approaches zero, or equwale_ntly as one ap-
choices after the pulse is withdrawn: it can either go back t°roaches the phase boundary from either side. In Fig. 2 the
the original ordered stafen(t= )= +m], or it can switch typ|cal MC results(on a square !attu)gshow how the tran-

to the other equivalent equilibrium ordered stfbe(t= o sition can be brought about by either increasitd see Figs.

= —m,]. Figure 1 shows these behaviors schematically. Thé(@-2(€)] or hy, [Figs. 2d)-2(f)]. One can also note from
result, at any finite temperature beldw, naturally depends these figures how the relaxation timéncreases as one ap-
on the strength and the duration of the pulse. Specifically, w@roaches the phase boundary.

observe that the result dependsmp=m(ty+ At), the av-
erage magnetization at the time of withdrawal of the field.
The sign ofm,,, which in turn depends on the combination  The mean field equation of motion for the average mag-
of h, andAt, governs the transitionm,,| was found out to netizationm(t) of the system is

be the appropriate candidate for the order parametemn,if

becomes negative, on an average one observes a d_m: m anr( m+h(t))
magnetization-reversal transition; howevenif, is positive, dt T '

=0 otherwise. 2

Ill. MEAN FIELD STUDY

()
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] dm h(t) 1-T
=—em+ —, €=-——

dt T T “)

whereh(t) is given by Eq.(2). The solution of Eq(4) for
t>t, can be written as

hp
exd e(t—tg) ]+ s 5)

hp
m(t)=| mg— =

It may be noted from solutiofb) thatt has to be close tt,

in order to keep the value afi(t) small, so that the linear-

1 10 100 1000 ization in Eq.(4) is valid. The magnetization-reversal transi-
At tion occurs ifm(ty+ At)<0. The phase boundary can there-

fore be obtained from Eq5) by putting m,=m(ty+ At)

=0. The resulting equation for the phase boundary is then

FIG. 3. Mean field phase boundary in thg— At plane for three
different values ofT. The dotted lines correspond to the numerical
solution of Eq.(3), while the solid lines give the corresponding

. Y c_ moéT
theoretical predictiofifrom Eq. (6)]. hp_ T—exg— At (6)
whereh(t) is given by Eq.(2). Here we have assumelh  |n Fig. 3, this analytic result for the phase boundary is com-
=1, wheren is the lattice coordination number. With this pared with those obtained by numerically solving B). As
choice, the critical temperature in the static limi.f be- one can clearly see from the figure, the agreement is good in
comes unity. All the mean field calculations are performedthe smallAt region of the phase boundaries for large values
therefore, at a temperatufie<1. The equation was solved of T.
numerically to obtain the phase boundaries, shown in Fig. 3. As mentioned above, the magnetizatiog at the time of
A point on a particular phase boundary gives the optimalyithdrawal of the pulse, seems to be the crucial quantity
combination ofh, andAt that can induce the transition from governing the transition. The sign ai,, solely decides the
a state with magnetizationt m, to —mg, where my  final equilibrium state of the system out of the two equilib-
=tanhfny/T). The axes side of the boundaries correspond tagium choices. Therefore we define the mean field order pa-
the return to original equilibrium state, whereas one obtains gameter Q) as following
magnetization-reversal transition for combinationsgfand
At beyond the phase boundary. Because of the absence of O=m,6(m,), )
any fluctuations in the mean field equati@®), there exists a

finite coercive field foff <T, and therefore one cannot bring Where the step functiodt is defined as

about the transition just by increasidd if h, does not ex- 8(x)=1, for x>0
ceed the coercive field value. Hence the phase boundary be- '
comes parallel ta\t axis for large values oAt. =0, otherwise.

For largeT, the mean field phase boundary can be esti-
mated approximately by solving the linearized mean fieldThe nature of variation o with |h,—hg| at different values

equation of At andT is shown in Fig. 4. Heréag=h{(At,T) is ob-
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FIG. 4. Log-log plot of the variation of order parame®@ragainst|/h,—h;| for At=1, T=0.9 (¢); At=1,T=0.6 (A); At=2,T
=0.8(1); At=5,T=0.9 (+); At=10,T=0.8 (X); andAt=10, T=0.6 (x) in the mean field case. Tlfhg values are obtained from the
corresponding phase boundari€sg. 3).
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FIG. 5. Divergence of the relaxation timein the MF case. The 0 {5 1(’;0 2 804 1500
solid line shows the logarithmic fit to the numerical solution of Eq. At

).

FIG. 6. Monte Carlo phase diagram in thg— At plane for
tained from the phase boundary. We fitted the order paramemperature§=0.1(®), T=0.5(V), T=1.0(0), T=1.5(A), and
eter variations to the power law form T=2.0 (»). The inset shows the variation of the quantityin At

with At~ for the same values of.

O~|hp—hg|ﬁ, (8)
1
and found the value for the exponefit=1 by fitting the T e In[m,|. 11
numerical results for different values aft andT.

The relaxation time £) grows as the phase boundary is |t can be easily verified that even if t@(m°®) term in the
approached from either side, and shows a divergence on th&pansion of Eq(9) is kept, the final resultL1) is not modi-
boundary. We measure the relaxation time by measuring thged in them,,— 0 limit. The above form for the variation of
time required bym(t) to reach the final equilibrium value 7 fits accurately the numerical results: Bt 0.6, 1e=1.5,
+myg, with an accuracy 00(10 ), from the time of with-  and this matches exactly with the numerical result as shown
drawal of the pulse. According to Eq3) and(8), for afixed  in Fig. 5. The above analysis also makes it very clear that the
At, m,,~|h,—hgl|. Therefore,r is also expected to diverge |ogarithmic divergence ofn, implies a similar divergence
asm,, vanishes. Figure 5 shows that this is indeed the caseyith Ihp— hg| for a fixedAt. It may be mentioned here that
and the growth of the relaxation time was found to be logafor the dynamic magnetization-reversal transition, the above
rithmic in nature. That the relaxation time will diverge loga- divergence inr occurs at anyT<T.. The same equation
rithmically at the phase boundary at any temperature below11) also gives the well knowtiT—T,|~* divergence ofr
the static critical temperaturél(<1) can be shown analyti- for the static transition aT=T.=1. It may also be noted
cally. Let us follow the mean field dynamics of the systemfrom Eq. (11) that the logarithmic dependence ofon h,
after the withdrawal of the field. The system starts with a_ h;l, through its dependence am,, for this dynamic tran-
magnetizationm,,, and evolves according to E@3) with  gjion ath¢(At,T<T,), is qualitatively different from the
h(t)=0 to reach the final state of equilibrium characterlzeddivergencg ofr (~|T—T,| ") for the static transition in the
by magnetization- my. Keeping the value an/T small, we same modelEq. (3)] at19=T _
expand tanh of Eq3) up to the cubic term ¢

IV. MONTE CARLO STUDY

dm 3
dt = em+ant, © For the MC simulation we have taken Ising spins on a
square lattice of size X L with periodic boundary condition.
wherea=—1/(3T%). Thus we can write We have taker. =200 for typical studies. Each spin of the
lattice was updated sequentially using the Glauber single
T my dm spin flip dynamicg6]. One complete sweep through the en-
f dt:f — 3 tire lattice is taken as one Monte Carlo St@3CS). Phase
0 my €M+ am

boundaries at different temperatures below the static critical
temperatureT.=2.27) showgFig. 6) a qualitatively similar
nature to that in the mean field case. However, unlike the
mean field phase diagrams, the presence of fluctuations
causes the MC phase diagrams to touch the abscissa asymp-
totically.

When the contributions of fluctuations become important
where C(T) is a constant depending on temperature onlyat higher values of and small values di,, the above MF
Now, if the combination oh, andAt is such that one starts theory fails. Ifh,—0 (as in the large\t region of the phase
with very small value oimn,,, then one obtains boundary, one can use the picture of nucleation of a single

or

2
3 In mW+ IN(e+ amy,) N

C(T), (10

=
€ 2€
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FIG. 7. Log-log plot of the variation of order parame®@ragainst/h,—hp| for At=2, T=2.0 (¢); At=1,T=15 (+); At=5,T
=15 (A); At=10, T=2.0 (X); At=5, T=1.0 (0); andAt=1, T=1.0 (x) in the MC case. Thé; values are obtained from the

corresponding phase boundaries in the MC case.

domain. The classical nucleation theory of Becker and-Do
ing (see, e.g., Refl7]) suggests that the nucleation rdte
~exd—F(.)/T] is given by the optimality condition .
=[o(d—1)/2d]/h, of free energyF(l)=2h,I%+ ol for
the formation of a droplet or domain of linear sikeinder
field h,. Hereao is proportional to the surface tension for the

step function andn,, is the average magnetization at the time
of withdrawal of the pulse. Figure 7 shows the variation of
this order parameter witth,— ht| for different values ofAt
andT. Typical number of initial seed values taken to gener-
ate the configurations over which each data point is averaged
is 500. The variation 0O was again fitted to the power law

formation of a droplet. Equating the growth rate given by theform (8) with the order parameter exponeff and we find

Becker-Daing nucleation raté with the inverse pulse width,
one obtainsﬁt:exp(lhg‘l), suggesting
hiln At=C, (123

along the phase boundary in two dimensions, wheris a

B~ 1 by fitting the MC results for four different values At
and four different values of.

Here also we estimate the relaxation timbéy measuring
the time (MC step$ required form(t) to reach the final
equilibrium valuexm, from the time of withdrawal of the
pulse with a predefined accuracy(10 2). Again r was

constant. It agrees qualitatively with the MC estimated phasgyund to diverge as the phase boundéay any fixedT) is

diagram in the lowh, (i.e., largeAt) limit [4,8]. For large
values ofh,, and hence for small values dft, the critical
droplet sizel.~1/h, being much smaller than the system

approached from either side. Figure 8 shows that the diver-
gence ofr occurs at the point wheren,, vanishes at the
phase boundary. It is not possible to average the relaxation

sizeL, many droplets grow simultaneously, and the transitime for different realizations of the dynamics for a particular
tion occurs due to coalescence of the droplets and not by the,,, as different realizations produce different valuesngf.
above-mentioned process of growth of a single droplet. InTherefore a small range o, was taken, instead of a par-
such coalescence regime, one expects that the nucleatig@ular value, to take an average af A typical value of the

time will be given byl 7%, wherex=1/(d+1) (instead of
unity as in the single droplet regimeesulting in

hgln At=C/3 (12b
for the phase boundary id=2. In order to check results
(12a and(12b), we estimated the produbgln At along the
MC phase boundaries at different valuesTofas shown in

range ofm,, over which averaging has been done is 0.01. It
was observed that depends on the driving parametérs,

At, and temperatur@ only implicitly through the quantity
m,,. The divergence of was found to be very sharp, and it
fitted with an exponential functionrtexg —cjm,|], where

c is a constant depending on temperatwelike the mean
field case where- was seen to behave logarithmically with

. ) : My -
the inset of Fig. 6. It is seen that the product does not ap- V\VNe fitted above the MC results far= 200, and extracted

proach a constant vallas suggested by E¢L23] for large
At (single domain regionat low values ofT. For higher

values of T, however, the product remains more or less &ider the effectiveh®

constant for large values dft, but the detailed nature of the
variation of the product withAt indicates a nonmonotonic
variation. The ratio of the limiting values of this prodér
large and smallt) is observed to vary in the range 1.5—6.
compared to the value 3 predicted by E@k2a and(12b).
Similar to the MF casdEq. (7)], we define the order
parameter in the same wa@=m,,6(m,,), whered is the

51

the value of the exponergt, assuming the finite size effects
to be negligible. Ashp—>hg, for finite L, one should con-
to be a function ofL. Therefore, one
should consider an additional scaling functionLdt in Eq.
(7), whereé~|h,—hg| ™" is the correlation length with ex-
ponenty. Assuming thatt~L for such MC cases, we can
write the appropriately modified form ¢¥) as

O~L A (h,—h)LY"]. (13
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FIG. 8. Divergence of the relaxation timefor (a) T=1.5; At L ) . ,
=3 (0), andAt=5 (+), and (b) T=2.0; At=1 (0 ), and At FIG. 9. Finite size scaling analysis of the MC da®(L)/L*"”

=3 (+) in the MC case. The solid lines indicates the exponential fitPlotted against|h,—h[L*" for a fixed At. (@ T=15, L
to the MC datar is measured in units of MCS. =100(¢), L=200(+) andL =400 (0J); (b) T=2.0, L=50 (©),
L=100(+), L=200(), andL=400(X). The best collapsed data
We have fitted the data for differeht to the scaling form &€ ShOWC” with fitting valueg=0.90, »=1.5, andh;=1.088 in
(13). The data forL =50, 100, 200, and 400 for a particular (@ andh;=0.720 in(b).
value of At (=5) and two different values of were scaled
to obtain the fitting values of the exponents as shown in Figfound to be around 0.9 fat=2. The application of the finite
9. A typical number of averages over different initial seedssize scaling method gives the value of the critical expoment
taken for the MC data was 2500 far=50, and 50 forL for the correlation length to be nearly 1.5 fo=2. Besides
=400. With such a scaling fit procedur‘e; could be ob- the length scale, a time scale was also found to diverge in
tained with an accuracy of 0.001. This givegs=0.90 both cases of mean field and Monte Carlo studies. In the
+0.02 andv=1.5+0.3. It was observed that the quality of mean field case, the relaxation timmewas found to diverge
fitting does not change appreciably for a variation of thelogarithmically withm,,, or equivalently withlh,—hg|, as
fitting parameters within the error limits specified above. the phase boundary is approached. This has also been dem-
onstrated to be true analytically. However, the divergence of
V. DISCUSSION 7 was found to be stronger in the Monte Carlo case, where
_ L diverges exponentially withm,| or with [h,—hi|# (with
Th'e. reqently reportgﬁﬂ] dynamic magnet|zat|on-reyersal B=0.90 ind=2) as the phase boundary is approached. The
transition in a pure Ising model under a puls€®gativé  finite size scaling results suggested that the correlation length

magnetic field has been studied extensively in this paper emy. . . .
ploying the mean field approximation as well as the Mont';Hlverges a$hp h"' atthe phase boundary with=1.5 in

. . ! ) . d=2. The existence of divergences of both the length and

Carlo technique in two dimensions. Accurate estimates haV{e - . -
b de for the ph bound&&(At T) both in ME ime scales indicates the thermodynamic nature of this in-

€en made for the pnase boun W ’.)’ oth in triguing dynamic magnetization-reversal transition in the
and MC cases. Approximate analytic estimates of the pha ing model
boundary have been made in both cases, and compared wit '
the numerical results obtained. The order parameter for this
dynamic transition has been identified, and is given by the
average magnetization at the time of withdrawal of the pulse.

In the mean field approximation the order parameter was We would like to thank M. Acharyya, D. Chowdhury, C.
found to vary linearly with|h,—hg|, indicating the order Dasgupta, D. Dhar, A. K. Sen, and D. Stauffer for some
parameter exponen8=1; while in the MC caseB was useful comments and suggestions.
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