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Thermodynamic theory for the jamming transition in traffic flow
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A thermodynamic theory is formulated for describing the phase transition and critical phenomenon occurring
in traffic flow. We derive the time-dependent Ginzburg-Land&DGL) equation from the car-following
model. We find the thermodynamic potential for traffic flow where the headway and the inverse of the delay
time correspond respectively to order parameter and temperature. It is shown that the coexisting curve and
spinodal line are given respectively by the first and second derivatives of the potential with order parameter
(the headway We prove that the jamming transition is the first-order transition below the critical point and the
metastable region exists between the coexisting curve and spinodal line. We show the connection between
TDGL equation and the modified Korteweg—de Vries equation describing the traffic jam. We also compare the
nonlinear analysis result with the simulation. It is shown that the coexisting curve is consistent with the
simulation result[S1063-651X98)04710-2

PACS numbsg(s): 05.70.Fh, 05.70.Jk, 89.46k

[. INTRODUCTION Now, it is well known that the time-dependent Ginzburg-
Landau(TDGL) equation can describe the nonequilibrium
Recently, traffic problems have attracted considerable afphase transition including the metastabilif$6,37. The
tention [1]. A variety of approaches have been applied toTDGL equation has two kinds of solutions in the steady
describe the collective properties of traffic flg@—28. The  state: one is the uniform solution and the other is the solution
jamming transitions between the freely moving traffic andof the kink-antikink form. Recently, it has been shown that
the jammed traffic have been found in their traffic models the traffic flow near the critical point can be described by the
The transitions have been observed in actual tr&f@;3Q. modified KdV equation which has a traveling wave solution
The fluid dynamic model and the car-following models haveof the kink-antikink form. To our knowledge, how to de-
been studied analytically by the linear stability theory andscribe the jamming transition by the TDGL equation has not
the nonlinear analysis methodi31,32. The modified been known until now. _
Korteweg—de VriesKdV) equation has been derived from  In this paper, we present a thermodynamic theory to de-
the Car-fo”owing model where traffic jams were described inscribe the collective properties of traffic flow. We derive the
terms of a kink-antikink solutiofi32]. TDGL equation from the car-following model. We find the
The jamming transitions have properties very similar tothermodynamic potential describing the coarse-grained be-
the conventional phase transition. With increasing car denbavior of traffic flow. We prove that the jamming transition
sity, the freely moving traffic changes to the jammed trafficand thg metastability are described in terms c_>f the thermo-
at a specific value of density. In the congested traffic flatv  dynamic theory. We derive the TDGL equation from the
high density, the uniform traffic flow becomes unstable. modified KdV equation. We carry out the simulation for the
Then, the unstable traffic flow results in the formation of car-following model. We compare the theoretical result with
traffic jams in which the freely moving traffic of low density the simulation result. .
coexists with the jammed traffic of high density. The freely ~The organization of the paper is as follows. In Sec. Il we
moving traffic and jammed traffic correspond respectively toPresent a modified version of the car-following model ana-
the gas and liquid phases in the conventional gas-liquidyzed by Newell[2] and Whitham(3]. In Sec. Ill we derive
phase transition: the headway or car density correspond f&¢ TDGL equation from the car-following model. We give a
the volume or density, and the inverse of the delay timghermodynamic theory describing the jamming transition. In
(sensitivity parameter corresponds to temperature. The Sec. IV we derive the modified KdV equation from the car-
metastable region appears near the point of maximal curref@llowing model. We show the connection between the
in the fundamental diagrarf33,34. The metastability is modified KdV and the TDGL equations. In Sec. V we apply
similar to that in the first-order phase transition. Also, thethe linear stability analysis to the car-following model. In
critical point exists in traffic flow of the car following mod- Sec. IV we present the simulation result. We compare the
els[32,35. si_mulation result with the theoretical result. Section VII
Though the properties similar to the phase transitions and!vVesS a summary.
critical phenomena have been found in the traffic flow mod-
els, to our knowledge, the thermodynamic representation de- II. CAR-FOLLOWING MODEL

scribing the jamming transition was unknown until now. Itis  \ye present a modified version of the car-following model

important to derive the thermodynamic theory of the trafﬁcanalyzed by Newell2] and Whithan{3]. The car-following
flow from the traffic flow models. Also, it is interesting to ,o4el is described by the equation of motion of nar
connect the traffic metastability with the spinodal decompo-

sition in the first-order phase transition. dx,(t+ 7)/dt=V(Ax,(1)), (1)
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where Ax,(=Xn4+1—Xp) is the headway and is the delay  For 0<es<1, we define the slow variablééandT,
time. The idea is that a driver adjusts the car velodity/dt

according to the observed headwiy, (t). The delay timer X=g(n+V't) and T=¢3V't, 5)
allows for the time lag that it takes the car velocity to reach )

the optimal velocityV(Ax,) when the traffic flow is varying. Where V' =dV(Ax,)/dAXq|ax -n . We rewrite Eq.(1) as
Newell[2] and Whithan{3] have used the following optimal follows:

velocity function:
dAX,(t+ 7)/dt=V(AXy11(1))—V(AX,(1)). (6)

V(AX,)= 1- —(ylv)(Ax,—L)]}, 2

(AXn)=Umax exd — (y/v)(AX, ik i) We set headwapx,(t) as
wherev .y is the maximal velocitylL is the car length, and
v is a constant. Equatiof?) is a monotonically increasing

function with Ax,. This optimal velocity function does not By inserting Eq.(7) into the left-hand side of Eq6) and

have the turning pointinflection poin}. If we choose New-  expanding to fifth order o, one obtains the following:
ell's function (2) as the optimal velocity, we cannot derive

the TDGL equation and the modified KdV equation from Eq. dAx,(t+ 7)/dt=g2V' 9yR+&3V'2792R+e*(V'372/2) 3R
(1). Therefore, we choose the same optimal velocity function 5 4 3 .
as that used by Bandet al. [4] +e°(V'*7°16) xR+ &% 9R

+ 852V’ 7ayR. )

Axy(t)=h+eR(X,T). @

V(AXn) = (vmad2){tani{Ax,—he) +tantthe)},  (3)

By expanding the optimal velocity function around the turn-

whereh, is the safety distance. Equatid8) has a turning in C ; ; ; ;

. Ry g . g point, inserting Eq(7) into the right-hand side of Eg6),
point atAx,=h.:V"(h;)=0. It is important that the optimal and expanding to fifth order of, one obtains
velocity function has a turning point. Otherwise, we cannot '

derive the TDGL equation and the modified KdV equation,v(Ax,, ;) — V(AX,)

which have a kink-antikink density wave solution represent-

ing the traffic jam. For simplicity, we set,,=2 hereafter. =V (AXni1— AXp) +(V"I6)[ (AXpy1—he)3

The realistic values of parametarg,, andh; will be deter- 3

mined by comparing with the observed experimental data of — (A%, =he)”]

traffic. Bandoet al.[4] have determined the values of param- _,,/r_2 3 2 4 3 5 4

etersv nax @ndh, which reproduce the characteristic features ViIeToxR+ e (12 iR+ (16 xR+ e*(1/24) xR

of the observed traffic flow data. +(V"16)[ %3R3+ £5(1/2) &§R3]. 9
Generally, it is necessary that the optimal velocity func-

tion has the following properties: It is a monotonically in- By inserting Egs.(8) and (9) into Eq. (6), we obtain the

creasing function, it has an upper bouimaaximal velocity,  following:

and it has a turning point at the safety distance. Thus, when, S

the headway is less than the safety distance, the car velocify 9TR+ &2V  7d1dxR

is reduced and small enough to prevent crashing into the

— o3\ ’ 2 AV 12,2 3
preceding car. On the other hand, if the headway is larger ~¢V (1/2=V'7)dxR+e"V' (1/6-V'“r°/2) xR

than the safety distance, the car moves with higher velocity. + &4 (V"16) 9y R3+ 85V (1/24— V' 37316) %R
The car velocity does not exceed the maximal velocity. X
Equation(3) satisfies the above properties. +85(V”’/12)(9§<R3. (10)
Bandoet al.[4] have proposed the optimal velocity model
described by the following differential equation: We consider the neighborhood ¥f 7= 1/2:
d2x, /dt2=a[V(AX,(t))—dx,/dt], (4 V' r=1/2+¢? (11)

wherea is the sensitivity and/(Ax,,) is given by Eq.(3). In  Equation(10) is rewritten as
this model, the inverse of sensitivigycorresponds to delay

4 _ A\ 3p_ .4 " 3
time 7in Eq. (1). Komatsu and Sas@2] have derived the e*0rR=2g"V' (1124 xR~ =*(|V"|/6) xR

modified KdV equation from Eq4). Unfortunately, we can T3V (12— V' P 2R — 5V’ (1/48 *R
not derive the TDGL equation from E@4). Therefore, we eV m)IxR— V' (11489
adopt the modified Newell's model described by El.with +s5(|V”’|/12) (9)2(R3, (12)
Eq. (3).
whereV"” <0.
Ill. TDGL EQUATION By transforming variableX and T to variablesx=g !X

andt=¢ 3T and takingeR(X,T)=S(x,t), Eq. (12) is re-
We show the derivation of the TDGL equation from EQs. written as follows:
(1) and (3). We wish to derive the equation describing the
collective motion on coarse-grained scales. We now consider 4,S=(V'/24) afs— (|V"]16)0,S3—V' (V' 7— 1/2)(958
the slowly varying behaviors at long wavelengths. We ex- , 4 ” 23
tract slow scales for space variabland time variablé [38]. —(V'/48)3,S+(|V"112) 5S>, (13
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By adding term ¥'(V'7—1/2)4,S to both the left- and
right-hand sides and performing Galilean transformatign:
=t andx;=x+2V'(V'7—1/2)t;, we obtain

d, S=[dy,~ (1/2) afl][(v'/24)a§15+ 2V' (V' 7—1/2)S
—(|V"]16)S%]. (14)
We define the thermodynamic potential:
d(S=—V'(V' 7= 1/2)S?+ (|V"|I124)S*, (15

whereV’' =V’(h.) andV”=V"(h.) (<0). By rewriting Eq.
(14) with Eq. (15), we obtain the TDGL equation:

8= —[0x,— (1/2) aﬁl] 5D (9)/5S
with
(I)(S)Ef dx[(V'148)(dy S)*+ $(S)], (16)

where 6/ S indicates the functional derivative.
The TDGL equation(16) has two steady-state solutions
except for a trivial solutiors=0: one is the uniform solution

S(xq,t)=+[6V'(2V' 7= 1)/|V"[]"2 (17)
and the other is the kink solution
S(xq,ty)==[6V'(2V 7= 1)/|V"[]V?
xtanf {1202V’ 7— 1)} x;—x10)], (18

where X, is a constant. Equatiofl8) represents the coex-
isting phase.
The coexisting curve is given by the condition

plaS=0 and §?¢lIS*>0. (19

From Egs.(15) and (19), we obtain the coexisting curve in
terms of the original parameters

(AX)eo=he+[6V'(2V'7—1)/|V"|]V2 (20)
The spinodal line is given by the condition
P plaS?=0. (21)

From Eqs(15) and(21), we obtain the spinodal line in terms
of the original parameters

(AX)gp=he+[2V'(2V' 7= 1)/|V"|]M2 (22
The critical point is given by the condition
dpldS=0 and d°¢l9S*=0. (23

From Eqgs.(15) and(23), we obtain the critical point in terms
of the original parameters

(AX)c=h, and 1h,=2V'. (24)

Figure 1 shows the phase diagram between headwagnd
inverse 1t of delay time whereh,=5.0, V'(h)=1 and
V" (h,)=—2 in Eqg.(3). The solid curve indicates the coex-
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FIG. 1. Phase diagram in thék, 1/7) plane, where\x is the
headway, 17 is the inverse of delay time, the safety distancéJs
=5.0,V'(h.)=1, andV"”(h;) = —2. The critical point is given by
Ax=h.=5.0, and 1#=2.0. The solid curve represents the coexist-
ing curve given by Eq(20). The dotted line represents the spinodal
line given by Eq.(22). The full circles indicate the simulation re-
sult.

isting curve given by Eq(20). The dotted line indicates the
spinodal line given by Eq22). The critical point is given by
Ax=h;=5.0 and 1#=2.0. In the region within the coexist-
ing curve, the freely moving phase coexists with the con-
gested phase. The intermediate regions between the coexist-
ing curve and the spinodal line represent the metastable
regions. The full circles indicate the simulation result of the
coexisting phase boundaries explained lately in Sec. VI.

Generally, the jamming transition is the first-order phase
transition below the critical point. The metastability ob-
served in the traffic flow models corresponds to the spinodal
decomposition in the conventional first-order phase transi-
tion.

IV. MODIFIED KdV EQUATION

We derive the modified KdV equation from Ed4) and
(3). Then, we show the connection between the modified
KdV equation and the TDGL equation. We consider the
slowly varying behavior at long wavelengths near the critical
point. We extract slow scales for space variablend time
variablet. For 0<e<1, we define the slow variables and
T,

X=2e(n+V't) and T=¢3V't/3, (25)

wheres?=2V'r—1.
We set headway x,(t) as

Axq(t)=he+e(V I|V"]) Y2 (X,T). (26)

By inserting Eq.(26) into Eq. (6) and expanding to fifth
order ofe, we obtain the regularized equation

Orr — 3r + dyr3=—eM[r], (27)
where

M[r]=604r + dxr — or°. (28)
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Equation(27) is the modified KdV equation with a@(¢) Ax,
correction term on the right-hand side. Equati@) is con-
sistent with Eq(12). We note that hereafter all derivatives of
the optimal velocity are evaluated Ak=h,.

Let us find the propagating solution of EQ7) with con-
stant velocityc by settingr (X,T)=r(X—cT). First, we ig-
nore theO(e) terms in Eq.(27) and get the modified KdV C ! ! .
equation, which has the kink solution 0 25 50 75 100

n (N=100)
ro(X—cT)=c?tanH (c/2)YA(X—cT)]. (29 FIG. 2. Typical plot of the headway against numberedrcéor
total car number 100, car densipy=0.2, safety distancb.=5.0,
Next, assuming =ry+er, we take into account th®(¢) and inverse I/=1.7 of delay time. The region with the short head-

1/=1.7, h,=5.0

[P R Y (I = N )
T T

correction and get the equation foy as way indicates the density wavgraffic jam), which propagates
backward.
Lry=M[ro], (30)
constant headwaly and optimal velocity/(h). The solution
where of the uniform steady state is given by
L=cax+dy3—3rgox—3dxrs. (31) Xn o) =hn+V(h)t with h=L/N, (37)

To determine the selected value of the propagation veloowhereN is the number of card, is the system size, arfdis
ity ¢ for the kink solution(29), we consider the solvability the car spacingidentical headwaly

condition for Eq.(30): Let y,(t) be small deviations from the uniform solution
. Xn,o(t)1?<n(t)=Xn,o(t)+Yn(t)- Then, the linearized equation
(q’o,M[ro])Ef dX dGMIro], (32) is obtained from Eq(1),
dyn(t+ 7)/dt=V’'(h)Ay,(t), (38
where® is the zeroth eigenfunction of the adjoint operator ] o ] )
Lt whereV'(h) is the derivative of optimal velocity/(Ax) at
Ax=h.
LT®y=0, L'=—cox—a3+3rdiy. (33 By expandingy,(t) =Y exp(kn+zf), one obtains
Fortunately, we find that the zeroth-order solutignitself ze™=V'(h)(e*~1). (39

satisfies Eq(33) and can choos&,=r,. Performing the

integration, we obtain the selected velocity as Let us derive the long wave expansionzfwhich is deter-

mined order by order arouni#~0,

c=6. 34 2=2; Ik+25(iK)%+ 2a(iK) -+ 24 1K),

This value is different from the result of the differential ,
equation model obtained by Komatsu and SE&#. Near z;=V’',

the critical point, we obtain the propagating kink solution:
z,=—V'(2V'7—-1)/2, (40

Axy(H)=he=[6V'(2V' 7—1)/|V"[]M2
XtanH{12(2V' 7—1)}Y4n+ V' (2—2V' 7)t}].
(35) 04

23=V'16—V'372[2+V'27(2V' 71— 1),

h=5.0
The propagating velocity , of jam (kink) is given by
03 |~

vp=V'(2-2V'7). (36) q )

T s v 1h=09
The kink solution (35) obtained from the modified KdV o2l & %
equation agrees with E¢18) by the TDGL equation.

The traffic jam seems to be static from the point of view
of the backward moving frame with velocit36). Thus, the ol &%
jamming transition can be described by both TDGL equation \ .
(16) with a nontraveling solution and modified KdV equation T UT=227 %,

(27) with a propagating solution. 0 L1 it |
0 02 04 0.6

V. LINEAR STABILITY ANALYSIS
FIG. 3. Fundamental diagram of flogvagainst density. There

We apply the linear stability theory to our model. We are two kinds of data points for 4#2.2 and 1#=0.9. For 1f
consider the stability of a uniform traffic flow. The uniform =0.9 below the critical point, there are two discontinuous points
traffic flow is defined by such a state that all cars move withcharacterizing the transitions.
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2,=V'124-V'?7/3+5V'*7%/6 In Fig. 1, we show the plot of maximal headway

'3 ) I ) ) and minimal headway x,,;, against the inverse 1bf delay

—7V'3r2(2V r=1)/4=V'?7(2V' 7= 1)%/4,  {ime where density=0.2, safety distanch,=5.0 and the
whereV' =V’ (h) total car number is 400. The headway out of the jam is nearly
If z,<0, the uniform traffic flow is unstable. We obtain constant but we choose the maximal value among them.

the stability conditionr<1[2V" (h)]. When a small distur- Also, the headway within the jam is nearly constant but we

X . : choose the minimal value among them. One obtains the
bance is added to the uniform flojwith a constant headway . . . .
) . o o -7 maximal and minimal headways when a density wa
and the optimal velocitysatisfying the above condition, its X n \ways w ity wetaffic

i flow is al table. We obtain th iral stabilit jam) occurs. The full circular points indicate the maximal
gg:}girtrignow IS always stable. Ve obtain the heutral Stabllity 3 g minimal headways obtained from simulation. For a spe-

cial range of density, a jam appears. When a jam occurs, the
=12V’ (h)]. (41) maximal and minimal headyvays (esult in the same vglues for
a constant value of. The simulation result agrees with the
By expanding V’(h) around the critical point Ccoexisting curve obtained from the theory. There is a critical
V' (ho):V' (h)=V'(he) +V"(h.)(h—ho)%2 and replacing point. It is given byh,=5.0 and (1#).=1.95+0.05. When
the expansion into Eq41), we obtain 1/7is larger than ()., no density wave appears.
We calculate the fundamental diagram. The fundamental
h—hg==[2V'(ho)(2V'(he) 7= 1)/[V"(h)[1Y% (42 diagram is obtained for an initial random configuration of
o ) , . , cars without the hindrance. Figure 3 shows the fundamental
This is consistent with the spinodal lin@2). The neutral diagram of flowq against density. Two kinds of data points
stability line near the critical point agrees with the spinodalfOr 1/r=2.2 and 1#=0.9 are indicated in Fig. 3. For 4/
line. =0.9 below the critical point, there are two discontinuous
points characterizing the transitions in the fundamental dia-
VI. SIMULATION gram. Systems with t/below the critical point depicted in
Fig. 3 differ from systems with */above the critical point
by displaying no transition. The gaps appearing in the fun-
damental diagram below the critical point are due to the
metastability{ 33,34). The phenomenon is similar to that ob-
served by Krauss, Wagner, and Gawfaa].

We perform a numerical simulation for our model de-
scribed by Eqgs(1) and(3). Initially, cars are randomly dis-
tributed on the one-dimensional space with car densand
initial velocity vy. The boundary is periodic. In order to
form a single jam, a hindrance is put at a point on the one
dimensional space. We assume that when a car reaches the
hmdrance its car _slow_s down |n$tantly to low veI_OC|ty. In VIl. SUMMARY
time, a localized jam is formed just behind the hindrance.

After the jam is formed, the hindrance is removed. The jam We presented the formulation of the thermodynamic
propagates backward with constant propagation velocitytheory for the jamming transition in traffic flow. We derived
Once the single jam is formed for a special range of densitythe TDGL equation from the car-following model, using the
the jam is stable and does not break up. The jam has a forerturbation method. We showed that the order parameter is
of the kink-antikink. The stable jam occurs at an intermedi-given by the headway and the inverse @&f delay time cor-

ate density. For low density, a jam disappears in time and allesponds to temperature in the conventional phase transition.
cars move freely with nearly maximal velocity. For high We found the thermodynamic potential described by the
density, a jam also disappears in time and a congested urtieadway and ¥/for the traffic flow. We showed that the
form traffic flow appears. Thus, we can make a stable jam oroexisting curve, the spinodal line, and the critical point are
the one-dimensional space for special values of density. Wdescribed by the derivatives of the potential, similarly to the
take the number of cars as 100—400. The safety distance @nventional phase transitions and critical phenomena. We
set ash,=5.0. Figure 2 shows a typical plot of the headwayalso carried out the numerical simulation. We compared the
against numbered carfor total car number 100, car density theoretical result with the simulation result. We showed that
p=0.2, safety distanch.=5.0, and inverse ¥~=1.7 of de- the coexisting curve agrees with the simulation. We derived
lay time. The profile of headway was obtained after a suffithe modified KdV equation from the car-following model
ciently long time. The stable density wave appears with theéind showed the connection between the TDGL equation and
kink-antikink form. The density wave has a symmetric form.the modified KdV equation. We showed that the neutral sta-
The region with the short headway indicates the traffic jambility line is consistent with the spinodal line. We proved that
(density waveé The density wave propagates backwardthe jamming transition can be described exactly in terms of
(from right to lefy) where cars move from left to right. terminology of the phase transitions and critical phenomena.
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