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Moment ratios for absorbing-state phase transitions
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We determine the first through fourth moments of the order parameter, and various ratios, for several one-
and two-dimensional models with absorbing-state phase transitions. We perform a detailed analysis of the
system-size dependence of these ratios and confirm that they are indeed universal for three models, the contact
process, thé model, and the pair contact process, belonging to the directed percolation universality class. Our
studies also yield a refined estimate for the critical point of the pair contact pr¢8a€63-651X98)02410-§

PACS numbds): 05.50+q, 02.50--r, 05.70.Ln

I. INTRODUCTION two-dimensional models exhibiting absorbing-state phase
transition (i.e., between an active phase and one admitting
Testing the universality hypothesis and establishing theno escape or evolutior{4]; all belong to the universality
universality class of the critical points exhibited by variousclass of directed percolatiorb,6]. In the following section
spin models and field theories have been a major preoccupae define the models. Sections Il and IV present our results
tion of statistical physics for some timjé]. In this ongoing for one- and two-dimensional models, respectively. Section
project, the utility of studying a variety of universal quanti- V contains a brief summary.
ties beyond the critical exponents, such as amplitude ratios
and scaling functions, is well established. In particular, ob-
taining values for cumulant ratios of the order parameter has
proved an efficient method for identifying the universality Il. MODELS
cIas;c,[Z]. In many cases, Binder's “reduced fourth cumu- the mogels considered here are all examplemigfact-
lant” q4=1—(p")/3(p®) (herep represents the order param- i harticle systemsMarkov processes whose state space is
eter and the angular brackets denote a stationary aveigage 5 set of particle configurations on a lattice, with transitions
remarkably insensitive to finite-size effects, permitting onej,|ving local processes of particle creation or annihilation

to determine the universality class with a modest computa[7_9]' In the contact processCP) [10], each site of the
tional effort[3]. , o hypercubic latticeZ ¢ is either vacant or occupied by a par-
While critical phenomena in nonequilibrium systems havecie particles are created at vacant sites at a xaid,

beer_1 under intensive stud_y for a good 20 years and contiQyparen is the number of occupied nearest neighbors, and are
versies regarding the universality classes have frequently, iniiated at a unit rate, independent of the surrounding

arisen, moment ratios have not, to our knowledge, been ap;,« ; ; : :
S o : ' onfiguration. The order parameter is the particle densit
plied in this study. Our aim in this paper is to extend the; g P P i

thod t ilibri dels. We f Olt vanishes in the vacuum state, which is absorbing.NAs
method 1o honequilibrium mModels. We 1ocus on one- anfn reases beyonH., there is a continuous phase transition

TABLE I. Density moments for the critical CP. Numbers in from the vacuum to an active steady state; foF\¢, p

parentheses denote statistical uncertainties in the last f®ure N(_)\__)\c)ﬁ- The A model was quiSEd as a simplified de-
scription of surface catalys[41]; in the present notation we
L my m, ms m, may define it as a generalized CP in which the creation rate

(at a vacant siteis A for n>0, i.e., as long as the site has at
20 0.474277) 0.2600@6) 0.156546) 0.1007%5)

40 0.39755)  0.183994) 0.093923)  0.051443)
80  0.333678) 0.130115) 0.056083)  0.025992)
160  0.28001(10) 0.09181(5) 0.03333(3) 0.01302(1) L K, Ky/m?  Ka/K2  my/ml mg/md mylmym,
320  0.235089) 0.064774) 0.019772)  0.0065035)

TABLE Il. Cumulants and ratios for the critical CP.

20 0.0350712) 0.155912) —0.6414) 1.49Q1) 1.4671) 1.27Q1)
40 0.025961) 0.16431) —0.57742) 1.5202) 1.4951) 1.2841)
80 0.018771) 0.16862) —0.5443) 1.5352) 1.5102) 1.2932)
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0.20 TABLE lll. Density moments for the criticah model.
L m; m, ms m,
0.18 20 0.4379210)  0.221448) 0.1230%5) 0.073163)
~_ 40 0.366723) 0.156482) 0.073662) 0.037211)
EN 80 0.307703) 0.110592)  0.0439%2) 0.018782)
x 160 0.258115) 0.0780@3) 0.026091)  0.0093985)
016 320  0.2169(4)  0.055133) 0.015521)  0.0047074)
0.14 nth cumulant of the order parameter; in particular,
3.20 325 3.30 335 3.40
A
2
FIG. 1. Ratio K,/m? versus creation rate. in the one- Kz=mz—mj @
dimensional CP. System sizés=20,40....,320 are in order of and
increasing steepness.
K4:m4_4m3m1_3m§+ 12rn2m§_6mi (2)

least one occupied neighbor. Since creation occurs more
readily in theA model than in the CP, the critical creation
rate\; is smaller(1.7417 for theA model versus 3.2978 for
the CP, in one dimensignbut the two modelg¢and indeed
the whole family of generalized contact process#mre the
same critical behavidrl2], namely, that of directed percola-
tion (DP).

The pair contact procesfPCP has a somewhat more
complicated dynamicgl3,14]; transitions occur only in the
presence of a nearest-neighbor pair of particles. Specificall
in one dimension, if sites andi +1 are both occupied, then
the particles at these sites mutually annihilate at a pate
<1, while at a rate - p they create a new particle at either
i—1 ori+2 (chosen at random, each with probability 1/2
provided the chosen site is vacant. The PCP exhibits an ac- -
tive phase fop<p.; above this value the system falls into Inzf u"P(u)du ©)]
one of an infinite number of absorbing configuratiof®ny 0
arrangement of particles devoid of nearest-neighbor pairs is . i
absorbing. While the presence of infinitely many absorbing 'S moidell and size independent. Thus ratios of the form
configurations is associated with nonuniversal dynamics, th8/mmg arezunlversal fofr +js=n, as are cumulant ratios
static critical behavior, which concerns us here, again falls irfuch ask,/K3.
the DP clas$14,17.

In equilibrium spin systems the magnetizati@nm its pro-
jection along a chosen directiptakes positive and negative
values with equal likelihood, but in the present case the order |||, RESULTS FOR ONE-DIMENSIONAL MODELS
parameter is non-negative. This means that we can study odd
as well as even moments of the order parameter. In the fol-
lowing sections we report the first through fourth moments, We studied the one-dimensional CP on periodic lattices of
my,...,ms, where m,=(p"), and the ratiosm,/m;, L=20, 40,..., 320sites, at the critical point\=A\.
ms/m3, mg/m;m,, K,/mi, andK,/K%, whereK, is the  =3.297 84815]. The number of trials in our sample ranges

The argument for universality among moment or cumu-
lant ratios follows the same lines as in equilibriy]. We
first note that at the critical poimh;=AL 4", whereg is
the order parameter critical exponent, is the critical expo-
nent governing the correlation length,is the linear extent
of the system, and\ is a nonuniversal constant. From finite-
size scaling, we have that at the critical point, the probability
%iensity for p satisfies  P(p,L;\¢)=P(p/my)
=(LP":/A)P(pLP'"1|A), where P is a universal scaling
function. It follows thatm,=A"L~"#/".| ., where

A. Contact process

TABLE IV. Cumulants and ratios for the criticdl model.

L K, K, /m? K4 /K3 m, /m3 mg/m3 mg/mym,
20 0.029726) 0.155@4) —0.6084) 1.4922) 1.4652) 1.2691)
40 0.02199%4) 0.16361) —0.5641) 1.52Q1) 1.4941) 1.2841)
80 0.0159144) 0.16811) ~0.5381) 1.5361) 1.5091) 1.2921)
160 0.011376) 0.17071) —0.5222) 1.5452) 1.5172) 1.2961)
320 0.00808%) 0.17182) —0.5128) 1.5493) 1.5212) 1.2982)

0 0.17322) —0.5033) 1.5542) 1.5252) 1.3002)
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0.48 y | - T g T - TABLE V. Density moments for the critical PCP.
L m; m, ms m,
0.46 . 20 0.516548) 0.311784)  0.2081%4) 0.149274)

40 0.431013) 0.218002) 0.122282) 0.073901)
80 0.361283) 0.153272) 0.07215%1) 0.036631)

= 044 i 160 0.30308%) 0.107891) 0.042621) 0.01815%1)
£ 320 0.254484) 0.076041)  0.025211)  0.00901@3)
640  0.2137810) 0.053633) 0.014932)  0.0044805)
042 [ 7
0.40 : ' : ' : ' : B. A model
3 4 5 6 7

We studied the one-dimensionalmodel on periodic lat-
InL tices of L=20, 40,..., 32Gites, at the critical poink =\,
FIG. 2. Scaled lifetime* = 7/L”I"t versus system size in the =1.74173[15]. Sample sizes range from >@.06 for L
PCP. Diamondsp=0.07708; circles, 0.07708; squares, 0.07710; — 20 10 2X10° for L=320; the maximum duration of each
triangles, 0.07712. sample realization (_extends from 20(!_1%20_) to 2x10*
(L=320). The density moments are listed in Table IlI; cu-
mulant ratios are listed in Table IV. The latter take values

. very similar to those found for the CP.
from 2 1P for L =20 to 2x 1(° for L=2320; the maximum

duration of a trial extends from 400 & 20) to 16 000 [
=320). Each trial starts from a fully occupied lattice; we
extract moments from the results for the surviving sample
when it has relaxed to the quasistationary state. In this model, the order parametgris the density of
The CP density moments are listed in Table I. Ratios aré!€arest-neighbor - particlepairs. We studied the one-

listed in Table II; the entries fot=o represent extrapola- dimensional PCP on periodic latticeslof=20, 40, ..., 640
tions from least-squares quadratic fits to the déta L sites, forp=0.077 08, 0.077 09, 0.077 10, and 0.077 12. The

=40) for the various ratios as functionslof . From Table sample sizes range from 10(” L=20 to 2>.< 10.5 for L
2 . 2. =640; the maximum duration of each realization extends
Il we see thatk,/m7 converges more rapidly that,/K5:

B from 200 to 106. Previous work yieldedp.=0.0771(1)
betweerl =160 and 320 the value of the former changes byr13 14 hyt we decided to try to sharpen this estimate. To

about 0.8% and the latter by about 2%. The ratiegm3,  this end we analyzed the scaling of the lifetim@,L), de-
mg/m3, andms/m;m, are remarkably stable, changing by fined as follows. Starting with all sites occupied, the prob-
only about 0.3% between the two largésivalues. Similar  ability that a trial survivesremains activeuntil time t de-
trends are seen for the model and the PCisee below. cays in proportion to efp-t/r(p,L)]. At the critical point,

We also determined moment ratios for off-critical valuesthe lifetime has a power-law dependence on the system size
of \; in Fig. 1 we pIothlmf versush. As L increases, the 7(p.,L)~L"I""+, while for p#p. deviations from a power
point at which the curves intersect rapidly approackgs law are seen. In Fig. 2 we plot th=Inrp,L)

[We find that the crossing points, (L,2L) for each pair of ~—(v/v.)InL versusIr, usingy) /v, =1.5822, the value for
successive values followsh ¢, (L,2L) =\ (=) +constL.2,  the DP class in +1 dimensiong15]. It is evident that the

with A, () =3.2978%8), consistently with the best avail- data forp=0.077 09 are consistent with a power law, while
able estimate fok..] those for the othep values are not, allowing us to conclude

that p.=0.077 0905). The order parameter moments, for
p=p.=0.077 09, are listed in Table V; cumulant ratios are

C. Pair contact process

TABLE VI. Cumulants and ratios for the critical PCP.

L K, K, /m3 K, /K3 m, /m3 mg/m3 mg/m;m,
20 0.0449213) 0.16836) —0.661023) 1.5358) 1.51Q41) 1.29256)
40 0.03223() 0.173494) —0.5553643) 1.555(@5) 1.5271) 1.30144)
80 0.02277%) 0.174577) —0.51525) 1.55938) 1.53076) 1.30325)
160 0.016036) 0.17461) ~0.50144) 1.5591) 1.531(1) 1.30346)
320 0.01127%) 0.17421) —0.4962) 1.5581) 1.5301) 1.30289)
640 0.00794%) 0.174Q3) —0.4973) 1.5584) 1.5294) 1.3033)

% 0.17382) —0.4933) 1.5582) 1.5293) 1.3033)
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0175 o TABLE VII. Density moments for the critical CP in two dimen-
I sions.
L m m m m
0.170 | ! 2 * ¢
10 0.157066) 0.032282) 0.007811) 0.00212@3)
20 0.090276) 0.010781) 0.0015222) 0.00024164)
Né' 0.165 i 40 0.0520(8) 0.0035873) 0.000292€3) 0.000026984)
Ev ' - 80 0.03008) 0.0011972) 0.00005641) 0.0000030Q1)
160 0.017361) 0.00039985) 0.0000109(®®) 0.335(1)<10°°
0.160 -
matem,/m5=1.553), my/m3=1.52713), andmg/m;m,
I =1.30%2), for the DPclass in 1 dimensions. Our results
0.155 ————"———"> ol for the cumulant ratik ,/K3 are more scattered; we esti-
000 001 002 003 004 005 mate the value of this ratio as0.50(1) for the DP class in

1/L 1+1 dimensions.

FIG. 3. K,/m? versus 1L for one-dimensional models at their
critical points.O, CP; +, A model; X, PCP. IV. CONTACT PROCESS IN TWO DIMENSIONS

In this section we report results for the two-dimensional
given in Table VI. CP at the critical poink =\ .=1.6488[16]. We studied sys-
In Fig. 3 we plot the ratioKzlmi versusL "1 for each of tems of LXL sites with L ranging from 10 to 160 and
the three one-dimensional models. For the CP andAhe sample sizes ranging from>310° for L=10 to 1C for L
model we observe a very similar, nearly linear approach to & 160. The maximum duration of a trial runs from 1000 for
limit. The PCP ratio initially approaches its limit more rap- L=10 to 1¢ for L=160. We calculate moments from a
idly than the CP ané model do, overshoots it, and for large sample of 16 maximum-duration trials fot. =10 to L =80
L, approaches the limit from above. Thus it would appearand of 5000 such trials for the largdst Density moments
that the dominant correction to scaling for the size depenand ratios are given in Tables VII and VIII, respectively. As
dence ofP(p,L) is different in the PCP from that in the CP in one dimension, the moment ratios;/m3, my/m;m,,
and theA model. Based on the extrapolations listed in Tablesand m,/m3 are quite stable. Estimated limiting values, ob-
Il, IV, and VI, we conclude that for the DP class int1  tained from quadratic least-squares fits to the datalfor
dimensionsK,/m{=0.173%5), with the uncertainty figure =20, are given in Table VIII. Figure 5 shows thag/m,m,
a subjective assessment based on the degree of regularity fid m4/m§ have a similar, nonmonotonit dependence,

the data. resembling that of the one-dimensional PCP.
The ratios mg/m3 and m,/m5 in the three one-
dimensional models are plotted versus?! in Fig. 4. As V. SUMMARY

before, the CP andé model exhibit very similar trends and

the PCP ratios have a nonmonotonic approach to their appar- We have determined order parameter moments and cumu-
ent limits. (Though not shown in Fig. 4, the same in fact lant ratios for one- and two-dimensional models in the di-
applies tom;/m;m,.) Based on our extrapolations, we esti- rected percolation universality class. In one dimension, we

1.56
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FIG. 4. Same as Fig. 3, but fam3/mf (points joined by solid FIG. 5. Moment ratiosmg/mf (points joined by solid linesand

lines) and m4/m§ (dashed lines m4/m§ (dashed lines for the CP in two dimensions.



4270 DICKMAN AND KAMPHORST LEAL da SILVA PRE 58

TABLE VIII. Cumulants and ratios for the critical CP in two dimensions.

L K, K, /m? K, /K3 m, /m3 my/m3 mg/(m;m,)
10 0.007611) 0.308%3) -0.1693) 2.0346) 2.0161) 1.5414)
20 0.00263(2) 0.32294) -0.1153) 2.0798) 2.0681) 1.5645)
40 0.000883¢7) 0.32674) —0.0904) 2.0937) 2.0832) 1.5704)
80 0.000294) 0.32694) —0.0895) 2.0958) 2.0842) 1.5716)
160 0.000098Q) 0.32645) —0.0884) 2.0948) 2.0822) 1.5705)
% 0.32575) —0.0884) 2.0938) 2.0801) 1.5691)

studied three different models, the contact process, thp.=0.077 090(5) for the critical point of the one-
closely relatedA model, and the pair contact process, anddimensional pair contact process. In two dimensions, we de-
confirmed the universality of their cumulant and odd- andtermined cumulant and moment ratios for the basic contact
even-moment ratios. We also derived an improved estimatprocess.
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