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Short-time dynamics of critical nonequilibrium spin models
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We study numerically the short-time critical dynamical behavior of a family of nonequilibrium models with
up-down symmetry. Our numerical results show that these models, which include the Glauber dynamics as a
particular case, present short-time universality. The expoféstcalculated from the early time behavior of
the time correlation of the total magnetizatiom(t)m(0)) by starting from an initial state with zero correla-
tion length and zero magnetizatidi$1063-651X98)03110-9

PACS numbegs): 05.70.Ln, 05.50+q, 64.60.Ht

I. INTRODUCTION d
aP(a,t)=2 W(a,a")P(a' 1), 1)
Recently, a number of studies on spin models have shown o’
that the concept of universality, which concerns the static . . . .
critical behavior as well as the long-time critical relaxation, WhereW is the evolution matrix and- denotes the collection
has to be enlarged to include also the critical relaxation off all Ising variables{o}. Besides the usual properties
the early time dynamics. It has been shown by JansseNV(o,0')=0 for c# ¢’ andZ ,W(c,o")=0, the evolution
Schaub, and Schmittmaritt], by means of renormalization matrix has the up-down symmetryW(—o,—o")
group analysis, that the short-time critical relaxation displays=W(o,0"). The formal solution of Eq(1) is
universal behavior. Such universality has been verified on
specific models such as the kinetic Ising mofa+7] and , ,
kinetic Potts mode[6,8,9. All these models have micro- P(a,t):z, T(o,0",H)P(c",0), @
scopic reversibility, that is, the stationary state is an equilib- 7
rium state. We may ask then whether nonequilibrium spin hereT—
models may be included in the same universality class as th&Nere —exp{t\_/\l}. . ,
equilibrium models. The magnetizatioM (t), defined by

Nonequilibrium spin models, that is, spin models whose 1 1
stationary state does not satisfy detailed balance, defined by _ _
stochastic dynamics with local rules and with up-down sym- M(t)= N< 2 U‘(t)> _sz (EI Ui) P(o.t), (3
metry, were shown to be in the same universality class as the

equilibrium Ising mode(10]. Numerical calculations of the '\ haren is the total number of sites, should be calculated by
critical exponents on several nonequilibrium models cor-Starting with an initial stat®(,0) with a small magnetiza-

roborate this resul[11-19. This statement concerns only tion my. If such a state is constructed by choosing the state
the static critical behavior and the long-time critical relax- A y ch 9
of each site independently, then we may write

ation. The short-time critical relaxation of nonequilibrium
spin models is not included in this statement but seems to be
a universal behavior as found in numerical simulations on _ 1
the majority vote modef20]. P(o,0)= H 2(1+Mooy), @)

The purpose of the present work is twofold. The first is to
present Monte Carlo simulations on a family of nonequilib-\ynich up to linear terms im, gives
rium models with up-down symmetry. Our results show that
these models, which include the Glauber dynamics as a par- 24N
ticular case, also present short-time universality. The second p(g,o):(_)
aim is to show that it is possible to obtain the exponént 2
related to the early time behavior of the magnetizadibft),
by starting from an initial state witkero correlation length ~ Substituting expressio(b) into Eq.(2) and this into Eq(3)
and zero magnetizatio his is the same initial state used to We obtain up to linear terms img
calculate other properties at early time such as the second
moment of the magnetization and the time-dependent Binder 1\N

M(t)ZZ (E o'i)T(a',o",t)<§)

1+ mo; aj>. (5)

cumulant. Usually the exponemtis calculated by using an
initial state with a small magnetizatian, and by taking the

numerical extrapolatiomy— 0. , 1\N
+moz z oi|T(o,0',1) 2 (Tj' 3] (6)
Il. TIME CORRELATION OF MAGNETIZATION 7T I !

! |
oo

We consider here stochastic models defined on a latticéhe first term on the right-hand side vanishes due to the
whose time evolution is governed by the master equation up-down symmetry and we conclude that

1063-651X/98/584)/42424)/$15.00 PRE 58 4242 © 1998 The American Physical Society



PRE 58

M(t)

lim

mOHO

1
5 _NZ, (EI 0'i>T(a',a",t)<; a'j')PR(a",O),
(7

where Pr(o’,0)=2"N is the state withzero correlation
length and zero magnetizatiomherefore,

M(t)

0

lim

mOHO

1
=N<Z 2 ai<t>oj<0>>EQ<t>. t)

By using this formula in numerical simulation, we avoid the

use of an initial state with a nonzero magnetization and als§

the numerical extrapolatiom,— 0. We just start with a ran-

dom generated configuration and calculate the correlation

function of the total magnetization given by E®).

Ill. DESCRIPTION OF THE MODEL
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favor (o;=+1) or against §;—1) a certain issue. At each
time step a voter may change its position by looking at its
four neighbors. If his position agrees with the position of the
majority of the neighboring voters, its position is changed
with probability p=(1—x)/2. Numerical results show that
the critical point for this model occurs at=0.850+0.002
[14].

(c) The “extreme” (E) model defined byx=1. This
model can also be interpreted as a collection of voters. How-
ever, in this case a given voter does not change its position if
three neighboring voters have the same position as the given
oter. Numerical simulations for this model shows that the
critical point occurs ay=0.710+0.005[15].

With the exception of th& model, all other cases may
also be interpreted as an Ising system in contact with two
heat reservoirs at distinct temperatufs|.

IV. SHORT-TIME SCALING

In this paper we treat one-spin flip models so that the

master equation becomes

d . :

aP(a,t)=2i{wi(a')P(a',t)—wi(a)P(cr,t)}, (9)
whered' denotes the state obtained framby flipping the
ith spin. The ratev;(o) of flipping thei spin is given by

wi(0)=3{1-0ifi(0)}, (10

According to the short-time scaling relatioft§ the evo-
lution of magnetizationM(t) presents a critical initial in-
crease

M (t)~mgt?, (13
wheremy is the initial magnetization and is a new univer-
sal exponent. In order to obtaié from this formula it is
necessary to consider different small but finite valuesgf
and after make a linear extrapolation to fixed poimf. As

where f,(o) is considered to be a function of the nearestW€ have shown in expressid8) this procedure can be im-

neighbors of theith spin. Moreover, by considering the

plicitly carried out by considering the time correlation of the

model to be isotropic in space and with up-down symmetryfotal magnetizatiorQ(t) instead of the magnetizatiav (t)
the most general form df,(o) for a square lattice is given and starting from a random initial configuration. So we ex-

by [15]

fo(o)=(o1+ 0+ 03+ 04)(a+boioy0304), (11
whereo, o5, 03, ando, are the nearest neighbors @f .
For convenience we will define the new parameteendy
by x=2(a—b) andy=4(a+b).

The simulation of the model is performed by choosing a

spin at random. If of the four neighboring spins have the
same sign as the chosen spin, it will flip with probability
where po=(1+y)/2, p;=(1+x)/2, p,=1/2, p3=(1
—x)/2, and p,=(1—y)/2. We consider three particular
cases.

(@) The Glauber G) model given byy=2x/(1+x?). In
general the nonequilibrium models defined by E4$) and
(11) do not have microscopic reversibility except whgn
=2x/(1+x?). In this case it is possible to write

fo((T):taan((Tl+O'2+(T3+O'4), (12)
where K is related tox and y by x=tanhX and y
=tanh K. The rate defined by Eq§10) and(12) is just the

pect the following power-law increase:
Q(t)~tf.

We also calculate the second moment of the magnetiza-

14

tion
1 2
Mz(t):< N i > (15
which obeys, at the critical point, also a power law
1 2
M,(t)~t¢ with (== d——B). (16)
z v
V. RESULTS

For each one of the three models, we used square lattices
with sizesL =8, 16, 32, and 64. The total number of inde-
pendent initial configurations ranged from°1for L =64 to
4% 10° for L=8. Each initial configuration was generated by
setting the spin of each site up or down with equal probabil-

Glauber dynamics whose stationary state gives the statity and independent of each other. After that we allow the

properties of the nearest-neighbor Ising model defined on
square lattice. The critical point for this model is
={In (2+1)}/2=0.44069, which gives x=.2/2
=0.707 11 and/=2./2/3=0.942 81.

(b) The majority vote ¥) model defined by =x. This

aystem to evolve in time according to the local rules whose
parametersx andy are fixed at the critical parameters of
each model. For th& model, we used the exact critical
parametersx,=/2/2=0.707 11 andy.=2+/2/3=0.942 81.
For theV model we present results fot,=y.=0.851, and

model is interpreted as a collection of voters that are either ifior the E model we present results fax,=1 and y.
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exponentsgB and v for the two-dimensional Ising model,
namely, 3=1/8 andv=1, the exponent can be obtained
from the relationz=(d—28/v)/{. We then gez=2.18 for

i the G model,z=2.21 for theV model, andz=2.22 for theE
model.

The errors were estimated in two stages. First we measure
the statistical deviations by the standard procedure in which
the total measurement of a given quantity is divided in a
number of statistically independent measurements. The sec-
ond stage is related to the systematic errors coming from the
1 uncertainty in the location of the critical point. The system-
atic errors were estimated by fixing other values of the pa-
rametersx andy that are inside the deviations around the
critical values as given by previous studies of thgl4] and

%00 20 40 6.0 E [15] models. Using this procedure we obtained the values

Inz 9=0.190+ 0.005 andz=2.21+0.03 for the V model and

FIG. 1. Time evolution of the time correlation of magnetization =0.188+ 0.008 andz=2.22+0.04 for the E model. For the
Q(t) for the three model§&, V, andE, and for values of. =8, 16, G model we have to consider only the statistical errors, since
and 32. The straight lines are fitted to the data points correspondinghe critical parameters are exact, and we get the regults

to L=32 and have slopes 0.191, 0.190, and 0.188Gfo¥, andE, =0.191*+0.002 andz=2.18+0.02.
respectively. For clearness the data points correspondigated E According to Husd?2] the quantityQ(t) as given by Eq.
were shifted in they direction by 0.25 and 0.5, respectively. (8) behaves, at early times, #8-29/Z, which allows one to

write §=(d—\.)/z or \;=d— 6z. Using our results off
and z obtained for theG model we geth.=1.58+0.01,

=0.715. We calcul_ated the value of the dynamical quantitiesyhich agrees fairly well with his numerical calculations,
whose averages giv@(t) and the second moment,(t), at  —1 59+0.02 ford=2 [2].

each Monte Carlo step. We repeat the same procedure for a prom our results fod andz we can also obtain the value

number of initial configurations from which the averages areys e exponent related to the short-time behavior of the

obtained at each time step. , . autocorrelation functioo(t)a;(0)) by using the scaling
In Fig. 1, we show the time evolution @(t) defined in  (g|ation N=d/z— 9=\./z. Using our results for theG

expressior(8) for the three model§, V, andE. The slopes  mgde|, we get =0.73+0.01, which agrees with the results
of the straight lines fitted to the data points give, in the plang,ptzined by Okanet al. [6].

INQ(t) versus In, the exponent®=0.191 for theG model,
0#=0.190 for theV model, andf=0.188 for theE model.

In Fig. 2, the second moment of the magnetizatiby(t)
is plotted against time, for the three above-mentioned models e have shown numerically that models that do not have
and forL=64. The slopes of the straight lines fitted to the microscopic reversibility but possess up-down symmetry
data points give, in the plane My(t) versus Irt, the expo-  have the same short-time universal behavior as the Glauber
nents{=0.804 for theG model,{=0.793 for theV model,  (kinetic Ising model. The models analyzed here give values
and{=0.790 for theE model. Using the exact values for the for the exponen® that are the same within the errors. All

three values are consistent with a unique universal value and

28 ' ‘ our result for theG model is in excellent agreement with the
G results by Grassbergé¢®l] for the Ising model. The same
can be said about the exponenbbtained from the second
moment of the magnetization. Our result for the Glauber
model is in good agreement with the results by Grassberger
[21] and Nightingale and Ble [22] and in excellent agree-
ment with the high-temperature series expansion, narzely,
=2.183+0.005[23]. We have also shown that the time cor-
relation of the total magnetizatioR(t) defined by Eq.(8)
equals the ratidM (t)/mg in the limit my— 0, which allows
us to writeQ(t)~t? for short times.

We remark that the issue of short-time universality for
distinct updating algorithms has been investigated by other
. ‘ authors. In the case of the kinetic Ising and Potts models,
40 45 50 55 studied in different lattices by different updating algorithms

Inz such as the heat-bath and Metropolis algoritH®g], the

FIG. 2. The second moment of the magnetizafibs(t) against Same short-time universal behavior was found, after a micro-
time, for three model$S, V, andE, for L=64. The straight lines Scopic time that is different for each algorithm. With the
fitted to the data points have slopes 0.804, 0.793, and 0.79@,for exception of theG model, the updating rules that we have
V, andE, respectively. considered here describe systems whose stationary states do

VI. CONCLUSION

<

InM,
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not satisfy detailed balance. In this case the stationary state symmetry, after a microscopic time that is different for dis-
not knowna priori and the models are defined only through tinct models.

their dynamics, that is, by the local rules and the updating

procedure. Changing the updating algorithm will change the ACKNOWEEDGIMENT
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