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Short-time dynamics of critical nonequilibrium spin models
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Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318, 05315-970 Sa˜o Paulo, Sa˜o Paulo, Brazil

~Received 30 March 1998!

We study numerically the short-time critical dynamical behavior of a family of nonequilibrium models with
up-down symmetry. Our numerical results show that these models, which include the Glauber dynamics as a
particular case, present short-time universality. The exponentu is calculated from the early time behavior of
the time correlation of the total magnetization^m(t)m(0)& by starting from an initial state with zero correla-
tion length and zero magnetization.@S1063-651X~98!03110-9#

PACS number~s!: 05.70.Ln, 05.50.1q, 64.60.Ht
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I. INTRODUCTION

Recently, a number of studies on spin models have sh
that the concept of universality, which concerns the sta
critical behavior as well as the long-time critical relaxatio
has to be enlarged to include also the critical relaxation
the early time dynamics. It has been shown by Jans
Schaub, and Schmittmann@1#, by means of renormalization
group analysis, that the short-time critical relaxation displa
universal behavior. Such universality has been verified
specific models such as the kinetic Ising model@2–7# and
kinetic Potts model@6,8,9#. All these models have micro
scopic reversibility, that is, the stationary state is an equi
rium state. We may ask then whether nonequilibrium s
models may be included in the same universality class as
equilibrium models.

Nonequilibrium spin models, that is, spin models who
stationary state does not satisfy detailed balance, define
stochastic dynamics with local rules and with up-down sy
metry, were shown to be in the same universality class as
equilibrium Ising model@10#. Numerical calculations of the
critical exponents on several nonequilibrium models c
roborate this result@11–19#. This statement concerns on
the static critical behavior and the long-time critical rela
ation. The short-time critical relaxation of nonequilibriu
spin models is not included in this statement but seems t
a universal behavior as found in numerical simulations
the majority vote model@20#.

The purpose of the present work is twofold. The first is
present Monte Carlo simulations on a family of nonequil
rium models with up-down symmetry. Our results show th
these models, which include the Glauber dynamics as a
ticular case, also present short-time universality. The sec
aim is to show that it is possible to obtain the exponentu,
related to the early time behavior of the magnetizationM (t),
by starting from an initial state withzero correlation length
and zero magnetization. This is the same initial state used
calculate other properties at early time such as the sec
moment of the magnetization and the time-dependent Bin
cumulant. Usually the exponentu is calculated by using an
initial state with a small magnetizationm0 and by taking the
numerical extrapolationm0→0.

II. TIME CORRELATION OF MAGNETIZATION

We consider here stochastic models defined on a la
whose time evolution is governed by the master equatio
PRE 581063-651X/98/58~4!/4242~4!/$15.00
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d

dt
P~s,t !5(

s8
W~s,s8!P~s8,t !, ~1!

whereW is the evolution matrix ands denotes the collection
of all Ising variables$s i%. Besides the usual propertie
W(s,s8)>0 for sÞs8 and (sW(s,s8)50, the evolution
matrix has the up-down symmetryW(2s,2s8)
5W(s,s8). The formal solution of Eq.~1! is

P~s,t !5(
s8

T~s,s8,t !P~s8,0!, ~2!

whereT5exp$tW%.
The magnetizationM (t), defined by

M ~ t !5
1

NK (
i

s i~ t !L 5
1

N(
s

S (
i

s i D P~s,t !, ~3!

whereN is the total number of sites, should be calculated
starting with an initial stateP(s,0) with a small magnetiza-
tion m0 . If such a state is constructed by choosing the st
of each site independently, then we may write

P~s,0!5)
j

1
2 ~11m0s j !, ~4!

which up to linear terms inm0 gives

P~s,0!5S 1

2D NS 11m0(
j

s j D . ~5!

Substituting expression~5! into Eq. ~2! and this into Eq.~3!
we obtain up to linear terms inm0

M ~ t !5(
ss8

S (
i

s i DT~s,s8,t !S 1

2D N

1m0(
ss8

S (
i

s i DT~s,s8,t !S (
j

s j8D S 1

2D N

. ~6!

The first term on the right-hand side vanishes due to
up-down symmetry and we conclude that
4242 © 1998 The American Physical Society
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lim
m0→0

M ~ t !

m0
5

1

N(
ss8

S (
i

s i DT~s,s8,t !S (
j

s j8D PR~s8,0!,

~7!

where PR(s8,0)522N is the state withzero correlation
length and zero magnetization. Therefore,

lim
m0→0

M ~ t !

m0
5

1

NK (
i

(
j

s i~ t !s j~0!L [Q~ t !. ~8!

By using this formula in numerical simulation, we avoid th
use of an initial state with a nonzero magnetization and a
the numerical extrapolationm0→0. We just start with a ran-
dom generated configuration and calculate the correla
function of the total magnetization given by Eq.~8!.

III. DESCRIPTION OF THE MODEL

In this paper we treat one-spin flip models so that
master equation becomes

d

dt
P~s,t !5(

i
$wi~s i !P~s i ,t !2wi~s!P~s,t !%, ~9!

wheres i denotes the state obtained froms by flipping the
i th spin. The ratewi(s) of flipping the i spin is given by

wi~s!5 1
2 $12s i f i~s!%, ~10!

where f i(s) is considered to be a function of the neare
neighbors of thei th spin. Moreover, by considering th
model to be isotropic in space and with up-down symme
the most general form off 0(s) for a square lattice is given
by @15#

f 0~s!5~s11s21s31s4!~a1bs1s2s3s4!, ~11!

wheres1 , s2 , s3 , ands4 are the nearest neighbors ofs0 .
For convenience we will define the new parametersx andy
by x52(a2b) andy54(a1b).

The simulation of the model is performed by choosing
spin at random. Ifn of the four neighboring spins have th
same sign as the chosen spin, it will flip with probabilitypn
where p05(11y)/2, p15(11x)/2, p251/2, p35(1
2x)/2, and p45(12y)/2. We consider three particula
cases.

~a! The Glauber (G) model given byy52x/(11x2). In
general the nonequilibrium models defined by Eqs.~10! and
~11! do not have microscopic reversibility except wheny
52x/(11x2). In this case it is possible to write

f 0~s!5tanhK~s11s21s31s4!, ~12!

where K is related to x and y by x5tanh 2K and y
5tanh 4K. The rate defined by Eqs.~10! and~12! is just the
Glauber dynamics whose stationary state gives the s
properties of the nearest-neighbor Ising model defined o
square lattice. The critical point for this model isK
5$ ln (A211)%/250.440 69, which gives x5A2/2
50.707 11 andy52A2/350.942 81.

~b! The majority vote (V) model defined byy5x. This
model is interpreted as a collection of voters that are eithe
o

n

e

t

,

tic
a

in

favor (s i511) or against (s i21) a certain issue. At each
time step a voter may change its position by looking at
four neighbors. If his position agrees with the position of t
majority of the neighboring voters, its position is chang
with probability p5(12x)/2. Numerical results show tha
the critical point for this model occurs atx50.85060.002
@14#.

~c! The ‘‘extreme’’ (E) model defined byx51. This
model can also be interpreted as a collection of voters. H
ever, in this case a given voter does not change its positio
three neighboring voters have the same position as the g
voter. Numerical simulations for this model shows that t
critical point occurs aty50.71060.005@15#.

With the exception of theG model, all other cases ma
also be interpreted as an Ising system in contact with
heat reservoirs at distinct temperatures@13#.

IV. SHORT-TIME SCALING

According to the short-time scaling relations@1# the evo-
lution of magnetizationM (t) presents a critical initial in-
crease

M ~ t !;m0tu, ~13!

wherem0 is the initial magnetization andu is a new univer-
sal exponent. In order to obtainu from this formula it is
necessary to consider different small but finite values ofm0
and after make a linear extrapolation to fixed pointm0 . As
we have shown in expression~8! this procedure can be im
plicitly carried out by considering the time correlation of th
total magnetizationQ(t) instead of the magnetizationM (t)
and starting from a random initial configuration. So we e
pect the following power-law increase:

Q~ t !;tu. ~14!

We also calculate the second moment of the magnet
tion

M2~ t !5K S 1

N(
i

s i D 2L , ~15!

which obeys, at the critical point, also a power law

M2~ t !;tz with z5
1

zS d2
2b

n D . ~16!

V. RESULTS

For each one of the three models, we used square lat
with sizesL58, 16, 32, and 64. The total number of ind
pendent initial configurations ranged from 105 for L564 to
43105 for L58. Each initial configuration was generated b
setting the spin of each site up or down with equal proba
ity and independent of each other. After that we allow t
system to evolve in time according to the local rules who
parametersx and y are fixed at the critical parameters o
each model. For theG model, we used the exact critica
parametersxc5A2/250.707 11 andyc52A2/350.942 81.
For theV model we present results forxc5yc50.851, and
for the E model we present results forxc51 and yc
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50.715. We calculated the value of the dynamical quantit
whose averages giveQ(t) and the second momentM2(t), at
each Monte Carlo step. We repeat the same procedure
number of initial configurations from which the averages
obtained at each time step.

In Fig. 1, we show the time evolution ofQ(t) defined in
expression~8! for the three modelsG, V, andE. The slopes
of the straight lines fitted to the data points give, in the pla
lnQ(t) versus lnt, the exponentsu50.191 for theG model,
u50.190 for theV model, andu50.188 for theE model.

In Fig. 2, the second moment of the magnetizationM2(t)
is plotted against time, for the three above-mentioned mo
and for L564. The slopes of the straight lines fitted to t
data points give, in the plane lnM2(t) versus lnt, the expo-
nentsz50.804 for theG model,z50.793 for theV model,
andz50.790 for theE model. Using the exact values for th

FIG. 1. Time evolution of the time correlation of magnetizati
Q(t) for the three modelsG, V, andE, and for values ofL58, 16,
and 32. The straight lines are fitted to the data points correspon
to L532 and have slopes 0.191, 0.190, and 0.188, forG, V, andE,
respectively. For clearness the data points corresponding toV andE
were shifted in they direction by 0.25 and 0.5, respectively.

FIG. 2. The second moment of the magnetizationM2(t) against
time, for three modelsG, V, andE, for L564. The straight lines
fitted to the data points have slopes 0.804, 0.793, and 0.790, foG,
V, andE, respectively.
s,
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e

e

ls

exponentsb and n for the two-dimensional Ising model
namely,b51/8 andn51, the exponentz can be obtained
from the relationz5(d22b/n)/z. We then getz52.18 for
theG model,z52.21 for theV model, andz52.22 for theE
model.

The errors were estimated in two stages. First we mea
the statistical deviations by the standard procedure in wh
the total measurement of a given quantity is divided in
number of statistically independent measurements. The
ond stage is related to the systematic errors coming from
uncertainty in the location of the critical point. The system
atic errors were estimated by fixing other values of the
rametersx and y that are inside the deviations around t
critical values as given by previous studies of theV @14# and
E @15# models. Using this procedure we obtained the valu
u50.19060.005 andz52.2160.03 for the V model andu
50.18860.008 andz52.2260.04 for the E model. For the
G model we have to consider only the statistical errors, si
the critical parameters are exact, and we get the resulu
50.19160.002 andz52.1860.02.

According to Huse@2# the quantityQ(t) as given by Eq.
~8! behaves, at early times, ast (d2lc)/z, which allows one to
write u5(d2lc)/z or lc5d2uz. Using our results ofu
and z obtained for theG model we getlc51.5860.01,
which agrees fairly well with his numerical calculations,lc
51.5960.02 ford52 @2#.

From our results foru andz we can also obtain the valu
of the exponentl related to the short-time behavior of th
autocorrelation function̂s i(t)s i(0)& by using the scaling
relation l5d/z2u5lc /z. Using our results for theG
model, we getl50.7360.01, which agrees with the resul
obtained by Okanoet al. @6#.

VI. CONCLUSION

We have shown numerically that models that do not ha
microscopic reversibility but possess up-down symme
have the same short-time universal behavior as the Gla
~kinetic Ising! model. The models analyzed here give valu
for the exponentu that are the same within the errors. A
three values are consistent with a unique universal value
our result for theG model is in excellent agreement with th
results by Grassberger@21# for the Ising model. The same
can be said about the exponentz obtained from the second
moment of the magnetization. Our result for the Glaub
model is in good agreement with the results by Grassbe
@21# and Nightingale and Blo¨te @22# and in excellent agree
ment with the high-temperature series expansion, namelz
52.18360.005@23#. We have also shown that the time co
relation of the total magnetizationQ(t) defined by Eq.~8!
equals the ratioM (t)/m0 in the limit m0→0, which allows
us to writeQ(t);tu for short times.

We remark that the issue of short-time universality f
distinct updating algorithms has been investigated by ot
authors. In the case of the kinetic Ising and Potts mod
studied in different lattices by different updating algorithm
such as the heat-bath and Metropolis algorithms@6,7#, the
same short-time universal behavior was found, after a mic
scopic time that is different for each algorithm. With th
exception of theG model, the updating rules that we hav
considered here describe systems whose stationary stat

ng
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not satisfy detailed balance. In this case the stationary sta
not knowna priori and the models are defined only throu
their dynamics, that is, by the local rules and the updat
procedure. Changing the updating algorithm will change
model. Despite the absence of detailed balance, short-
universal behavior is abserved for models with up-do
l.

a,

a,
is

g
e
e

n

symmetry, after a microscopic time that is different for d
tinct models.
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