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Braid description of collective fluctuations in a few-body system
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A few-body system of magnetic holes is studied both experimentally and numerically. Notions from braid
theory are used to describe the motion in a very compact manner. The time histonyaginetic holes moving
in a plane is represented by arstrand braid, and the fluctuations of the signed crossing number is investi-
gated. A wide range of dynamical behavior is observed. For certain parameter values the fluctuations are highly
intermittent, and there is a hierarchical ordering of the dynamics in both space and time. In this case the motion
is well modeled by a one-dimensionaliwyewalk. [S1063-651X98)00910-6

PACS numbg(s): 05.40+j, 05.45+b, 75.50.Mm, 83.10.Pp

[. INTRODUCTION between two glass plates, and forced to move about each
other by a rotating magnetic field. They interact by dipolar
How can one most simply characterize the dynamics oforces, and for low values of the driving frequency the mag-
systems with several moving interacting particles? It has eametic holes line up in chains which are able to follow the
lier been proposed that braid theory makes a compact spaetating field. This type of behavior results in a twisting of
tiotemporal description of the dynamics in two-dimensionalthe strands representing the trajectories of the magnetic holes
systems possiblgl—3]. By plotting the position of an object in space-time. There is a competition between the magnetic
in space versus time, one obtainspace-timaliagram of the  dipolar forces and the viscous forces from the carrier fluid.
motion of that object. A moving particle will generate a one-As the driving frequency is increased due to the relatively
dimensional curve. Several particles in motion will generatehigh viscosity of the ferrofluid, the chain of microspheres has
a set of braided curves. This is a way of “freezing” the to split up into smaller chain pieces which rotate with the
dynamics, and the frozen dynamical structure,libed, be-  field for a short while. In addition, there is also a rotation of
comes the time history of the moving particles. By investi-the whole collection of chain pieces as one unit in terms of a
gating the topology of the braid it is possible to gain insighttwisting of the space-time trajectories. The total twist in a
into the particle dynamics. Braid theory is a subfield of knotbraid can be found, and it is possible to extract phase por-
theory, and has been a rich source of insight into severataits of the periodic modes by the braid analysis
areas of physics lately. For example, there has been some The behavior may become rather complex and aperiodic
theoretical work by Moore who looked at the motion rof if there is not full rotational symmetry of the magnetic field.
particles in two dimensions in general, and proved that anyA complete mapping of the modes of motion is then nearly
braid type can be realized as a set of trajectories in sominpossible to construdi7], and one might instead focus on
dynamical systerfil]. Mc. Robie and Thompson used braids some other characteristics of the braid and try to describe
to describe the intertwining of a set of phase curveghese in order to map out the dynamic phase behavior. One
(x;(t),x;(t)) in a one-dimensional dynamical systef#].  such characteristic parameter is the signed crossing number,
There are astrophysical applications as well. Magnetic feathe writhe, of the space-time braids plaited by the magnetic
tures on the Sun can walk randomly about each other due tooles. In this work the time sequence of the writhe has been
the turbulent convection below the surface. Berger hastudied, and we show that the behavior ranges from periodic
shown that a braid representing the time history of theséo random motion. For certain values of the parameters of the
motions provide topological information about the magneticdriving magnetic field the dynamics is intermittent, and a
field above the surface, i.e., in the solar corqbd The hierarchical ordering takes place in both space and time. The
physical realization of using knots as a space-time descriprotational part of the motion of the holes is then well mod-
tion of the motion of magnetic holes was introduced byeled by a one-dimensionalevy walk where large fluctua-
Skjeltorp[2,3]. Later, notions from braid theory have been tions lead to a socalleduperdiffusivebehavior, i.e., an en-
used to obtain a symbolic description of the dynamics ofhanced diffusion[9]. The potential for suchanomalous
magnetic holes in a rotating magnetic fi¢&l. Braid theory  diffusive behavior exists in any physical situation where
made a simple topological description of the few-body dy-there is some hierarchical ordering of the processes. This
namics possible, and the extraction of periodic orbits wa®rdering can take place in both space and time, and anoma-
straightforward[7]. The objective of the present work is to lous diffusion has been shown to be intimately connected to
extend some of these earlier ideas, and show how to studye notion offractal space and timgl0,11. Recently several
collective fluctuations in a system of magnetic holes byauthors have investigated the connection between anomalous
means of braid theory. transport and ey statistics. The ey walk describes par-
Magnetic holes are nonmagnetic voids in a magnetidicularly well Hamiltonian chaos such as diffusion of tracer
fluid, and may be realized by dispersing polystyrene microparticles in a two-dimensional floj12], and phase diffusion
spheres in a ferrofluifi8]. The magnetic holes are confined in Josephson junctiorid 3].
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Ferrofluid monodisperse micrometer-sized sphdre8] dispersed in a
magnetized ferrofluid. In the present experiment the size of
the spheres used was @6n. A limited number of spheres
could be picked out and collected by a hand held magnet
when viewed in a microscope. The experimental cell was
placed within a system of two pairs of coils, producing a
magnetic field rotating within the sampky plane. In order
to record the motions of the microspheres we used a video
camera connected to an optical microscope and a worksta-
tion to extract the positions of the microspheres. Long time
sequences of the motion could be analyzed in real time, and
converted into a braid notation.

FIG. 1. Schematic view of the experimental setup with plastic When a ferrofluid sample containing monqd'Sperse micro-
microspheres submerged in a magnetized ferrofluid. Two pairs o$Pheres is placed in a uniform magnetic figld the voids
coils are used to produce a magnetic field rotating in(tg plane.  created by the microspheres acquire an apparent magnetic

dipole momentsz antiparallel to the external field:

The experimental system and the model have been thor- . -
oughly discussed elsewhdi® 14,15. A short description of = =VyxerH. 1)
our experimental system is given in Sec. Il. Section Il gives
an introduction to braids and describes the fluctuation anal
sis used. The results will be presented in Sec. IV, and finall
in Sec. V, some concluding remarks will be made.

Microscope

Micro-
spheres

Here,V is the volume of a microsphere angs is the effec-
Yiive volume susceptibility of the ferrofluiB]. We used cir-

ycularly or elliptically polarized magnetic fields rotating
within the sampldx,y) plane with angular velocity

Il. EXPERIMENT AND MODEL H(t)=(H, cog wyt),eH, sin(wyt)) 2

Figure 1 shows our experimental system with magnetiavith e =H, /H, as a measure of the field anisotropy.
holes confined by two glass plates to a nearly two- The dipolar interaction energy of magnetic holes of di-
dimensional geometry. The magnetic holes consisted ofmeterd is given by

é K2 3LAY)-Fy 2
U(Fl,rz,...,rn,t)Z 1>] ri”] r5
o if any rj;=<d,

] if all ry;>d
()

ij

wherer;=r;—f; is the vector joining the centres of the in- magnetic holes is equal to 1. The equations of motion were
teracting microspheres ang=(x;,y;). The components of simulated using a fourth order Runge-Kutta algorithm, and
the magnetic force acting on tht#h magnetic hole are given compared with our experimental results.

by For a static magnetic field the minimum energy state is
reached when all the microspheres are arranged in a linear
chain oriented along the direction of the field. As soon as the
field starts to rotate in the plane, the chain tries to follow the
rotation of the field but with a phase lag due to the viscous
whereé denotes eithex or y. The system is overdamped due counterforce that slows down the motion. As long as the
to the large viscosity of the ferrofluid, and we may thereforefrequency is sufficiently low, the chain as a whole is able to
neglect inertial forces. Thus, we assume that at any time thfollow the rotation of the field. However, above a well de-
velocity of theith magnetic hole is proportional to the force fined threshold frequency, the phase lag crosses a critical

n

J
Fi,,_s:_g,j a—ng(rl,rz,...,rn,t), 4)

given by Eq.(4): value and the chain may temporarily split into shorter pieces.
With the existing experimental setup it is possible to grab
%_ = 5) and digitize up to 25 images per second, which gives us a

dt =PFie continuous motion picture of the particle dynamics. A two-

dimensional projection of théx,y,} space-time braid traced
where 8= (37nd) %, and 7 is the viscosity of the ferro- by the motion of five magnetic holes is shown in Figa)2
fluid. Equations(3)—(5) can be transformed into a dimen- Due to the relatively high viscosity of the ferrofluid, the
sionless form suitable for numerical integration by lettingchain of microspheres has to divide into two smaller pieces
H,=1 andB=¢. By this choice of parameters, the threshold containing two and three microspheres. These smaller pieces
angular velocity for the stable rotation of a single pair of are able to rotate with the field. One magnetic hole is inter-
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FIG. 3. The generators of the four-strand Artin braid grdéap

and an example of a braid composed of thdan

FIG. 2. (a) A space-time plot of five magnetic holes moving in N ) ] )
the (x,y) plane. Thex axis goes into the papetb) The resulting @ Positive crossing adds'1 and a negative crossing adds

braid structure after removal of the total twist from the braiddn ~ —1. The writhe is therefore equal to the number of positive
The periodicity is easily visible, and the repeating braid structure i€£rossings minus the number of negative crossings. As an
indicated with the vertical bars. example, consider the braid in Fig(b3, where We=2. A

second useful number to calculate is the numbemwistsin
changed between the two chain pieces, making the overathe braid. A geometric picture of positive half twistof n
motion complicated. In addition, there is an overall twistingStrands A, is obtained by imagining the strings attached
of the space-time trajectories. The total twist in the braid carto a rod which is given a 180° twist as shown in Fig. 4. A
be extracted by running the braid word through Garside’dwist commutes with all other braid structures, and therefore
word algorithm[17], which can separate the external twist of opposite senses of twist in a braid may be moved nearby to
an arbitrary braid from the local intertwining of the strands.each other and cancel out.

Garside’s solution may be given by meansnofmal forms For small systems of interacting microspheres under full
[18]. Here we shall follow a refinement of this solution due symmetry of the driving field, the repeat period of the mi-
to Elrifai and Morton[19]. crosphere motion is relatively short. This makes a complete

Figure 2b) shows the resulting braid structure after re- characterization of the motion in terms of a sequence of braid
moval of the total twist from the braid in Fig.(@. The generators, a braid word, easy to handle. However, if the
motion proves to be periodic, and it is possible to extractsymmetry is broken as for an asymmetric, elliptically polar-
phase portraits of the periodic modes by this type of analysigzed magnetic field, the rotational motion is in many cases
[7]. For more complex dynamics other approaches ar@periodic, and one has to resort to a statistical description.
needed. In Sec. Ill we describe the fluctuation analysis of thdhere are several ways of doing a statistical analysis of
rotational motion after a short introduction to braid theory. Abraids. In the following we will show that even a simplest
more complete and thorough introduction to braid theory carpossible analysis of the statistical fluctuations of a braid to-
be found in the book by Birmafl8]. pological invariant, like the writhe, can provide valuable in-
formation about the dynamic phase behavior.

The recipe for the fluctuation analysis is now as follows:
Ill. BRAIDS AND FLUCTUATION ANALYSIS we make a video recording of the motion nfmagnetic

A geometric braid is a set of intertwined curves stretch- holes, where the output is a braid word describing the space-
ing between two para||e| p|anes_ In order to describe a braiame braid of the motion. This braid is then divided into what
without having to draw it, one may decompose it into a prod-may be denotedialf period braids One half period braid is
uct of elementary braids; see Fig. 3. Formstrand system Simply the space-time braid describing the motion of the
there existn—1 elementary braids called generators or let-microspheres during one half of the peridaf the rotating
ters and denoted by, 05, ... ,0,_;. The conventions we field; see Fl_g. 5. As the total _bra|d grows with t_mh,ethe_ _
apply here are the following. value of Wr is extracted every time a new half period braid is

(i) The spatiotemporal strands traced by the magneti@laited, i.e., whenever=mT/2, wherem is the number of
holes are running horizontally from left to right, i.e., in the completed half period20]. We sett=m, so that the unit of
direction of the time axis. time is half a period of the rotating field. This approach

(i) The uppermost strand is denoted by 1. results in a time series; WiX. However, this time series

(iii ) An elementary braidr; denotes théth strand cross- does not give a complete topological description of the dy-
ing over the {+1)th strand, while its inversei_1 denotes

theith strand crossinginderthe (i +1)th strand. A
(iv) If none of then strand crosses, we have an identity )\ Np— /\.
braidl,,. = e\’
In order to characterize the structure and complexity of a /
braid, different numbers dbpological invariantscan be cal-
culated. One such number is theithe of the braid, Wr, FIG. 4. A positive half twist in the four-strand Artin braid

which is simply the sum of the exponents of the braid word,group.
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FIG. 5. Schematic illustration of the division of a braid into time
three half period braids. The accumulated value of the signed cross-
ing number Wrf) and the half period variation8 Wr(t) are writ-
ten below the braid.

FIG. 6. Space-time braid of seven magnetic holes moving sub-
jected to a rotating magnetic field. The field is circularly polarized
(¢=1.0), and the motion is periodic with a slow twisting which is

namics, as there are several combinations of crossings Gf9inNing to show.

strands which result in the same value of ¥yr(Neverthe-

less, our primary goal now is to study the aperiodic motionodic, and the results have been described in detail elsewhere

of the magnetic holes and the fluctuations in the patterns df7]. However, in order to obtain an intuitive understanding of

the strands. In addition to the total writhe as a function ofwhat we do, we first illustrate the fluctuation analysis by

time, we are also interested in the successive half periodescribing how it works for the periodic case before moving

variations defined by on to describe more complex aperiodic dynamics. Only ex-
perimental results are presented unless stated otherwise.

S Wr(t)=Wr(t)—Wr(t—1), (6)
which might be thought of as an averageithe velocity A. Periodic behavior
6 Wr(t) equals the writhe Wr of half period braid number For a circularly polarized fields(=1.0) the solution is
see Fig. 5. periodic. The frequency,=0.25 Hz is above the critical

The maximum value whicts Wr can achieve equals the frequencyf,~0.13 Hz for stable rotation afi=7 magnetic

number of crossings in a half twist, i.e.6 Wn)ma=n(N  poles[7]. The linear chain of microspheres is therefore un-
—1)/2. This means that the motion nfmagnetic holes can  staple, and splits into two smaller units containing three and
be described by a series of half period braids witiVre — four microspheres each; see Fig. 6. Both these units are able
[—n(n—1)/2n(n—1)/2], each representing the dynamical {5 rotate with the field without breaking up into smaller
behavior during half a period of the rotating field. The writhe pieces. In addition to this internal motion, the whole chain
velocity is @ good measure of the rotational motion in therptates in the direction of the magnetic field resulting in a
system, and a large value 6Wr indicates a high degree of tyisting of the space-time braid describing the motion of the
rotational motion, i.e., large chain pieces are able to rotatgnicrospheres. A careful inspection of Fig. 6 reveals a small
with the field. Whens Wr= (6 Wr) may, the whole chain of  gegree of twisting. Figure 7 shows the half period variations
microspheres rotates in unison with the magnetic field. Sincg\wy as a function of the time measured in units of half
the preferred direction of rotation of the magnetic holes is i”periods.5 Wr=9 for most of the half period braids, which is
the direction of the rotating field most of the crossings of thejgentical to the number of crossings of the strands in the half
space-time strands are positive, afdiVr>0. However, for  neriod braids. The strands of the half period braid represent-

certain parameter values the whole chain rotates in the ofing the motion of the three microspheres crosses three times
posite direction to that of the magnetic field resulting in a

negativetwisting of the space-time bra[@]. The total Wr is

15 T T T T T

still positive, since the smaller chain pieces rotates in unison
with the magnetic field. A positive total Wr is always the 14
case for the spatiotemporal braids in the present system. .
IV. RESULTS =12
=

In the following analysis we limit ourselves to study the w 11
dynamics ofn=7 magnetic holes. The number=7 was oMb bl
chosen more or less arbitrarily—it is not too smaifi (
=2,3,4) to make the motion relatively simple, and it is not 9@ b dm l bm o
too large f>10) to make a full analysis very time consum- g . . , .
ing. However, we observe qualitatively similar statistical be- 0 20 40 60 80 100

havior for all n up to n=20 magnetic holes, which is the
maximum number analyzed in this study. We fix the driving
frequency tof,= wy/2m=0.25 Hz and vary the anisotropy  FIG. 7. Half period variations Wr vs dimensionless time
parametere. Different types of dynamical behavior are ob- measured in units of half a period of the rotating field for the mode
served, ranging from periodic to intermittent and random.of motion shown in Fig. 6. Lines are drawn between the points
For circularly polarized magnetic fields the motion is peri- which indicate the value of Wr for half period braid numbet:
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whereas the strands describing the motion of the four micronot contained in one half period braid, and the ratio between
spheres crosses six times, i.e., a total of nine crossings; séee average twist frequency,fand the driving frequenci,

Fig. 6. In addition, the slow twisting of the braid results in is incommensurate. This results in some small variations of
higher values ofs Wr at approximately fixed time intervals. & Wr(t) whenever one half twist is about to be completed.
The variations of these values 6iWr can be explained by However, the periodic behavior is quantified by calculating
the following argument: One complete half twist is usually the autocorrelation function defined by

([6 Wr(7)— (8 Wr(7))][8 Wr(r+1t)— (5 Wr(7))])
([6 Wr(7)—(6 Wr(7))]%)

C(t)= , )

where the brackets indicate averaging over all timesndt B. Random fluctuations

is a time-interval C(t) is then a measure of the spatiotem-  aq explained above, W] increases steadily with time
poral correlations in the system, that is, it measures the cogjye to the large majority of positive crossings of the space-
relations between half periods braids separated iif pe-  time strands. In order to observe the fluctuations more easily
riods in time. Figure 8 shows the result of calculating thethe average increasing trend is subtracted from the original
autocorrelation function fog =1.0. A clear indication of pe- value of Wr(¢). The difference is denoted by W)(:

riodic behavior is seen, where the period equals the time it -

takes to complete one half twist. As seen from the figure it Wr(t)"=Wr(t)—ts Wr (8
takes about 11 half periods of the driving field before one -

half twist is completed, i.e., for the whole chain to completeWhere é Wr is the average value of Wr(t) averaged over

a 180° rotation. the total number of half periods:

The motion of the seven magnetic holes is periodic and 1 N
similar for all values of _the_ aniso_t_ropy parameter down _to 5 Wr= — E 5 Wr(t). 9
£~0.85. Ate~0.85 the first instability occurs, and the chain N =1

piece containing four microspheres is unstable and splits into . o ]
two pairs of microspheres; see Fig. 9. However, this happendoW, for £<0.85 the motion becomes aperiodic. Figure

at fixed time intervals, which are equal to the time it takes tol0@ Shows Wr¢)" for ¢=0.80. The associated half period
complete one half twist, that is, the previously defined peYariations are shown in Fig. 1. Figures 10c) and 1Qd)
how the same quantities fer=0.70. The half period varia-

riod. Figure 8 shows the autocorrelation function, and the® . ) : .
period fore =0.85 is similar to that foe =1.0. However, an tions ?Wr(t) are siill deflned_ acco_rd_|r_19 to _E(QG). Using
o . . : Wr(t)" instead of Wrf) in this definition will only shift
additional peak is observed in the figure for0.85 due to SWIH) by W d the fluctuati il b tered
the 4—2+ 2 instability. At lower values ok further insta- r(t) by i ran € fuctuations wi _e centere
bilities occur and the motion becomes aperiodic. around zero instead of arour@iWr. For bothe=0.80 and
0.70, the motion of the magnetic holes was recorded for a
total of 10 000 half periods of the rotating field, and the
braids can then be divided into a total of 10 000 half periods

] braids. Only short sequences of the whole time series are
1 1 shown in Fig. 10 in order to resolve the fluctuations.
Figure 11 shows the autocorrelation functiGft) for the
two cases. It decays exponentially with a time correlation
= 0 e=1.0 length of about 30 half periods. This is a clear indication of
T random behavior with only short time correlations. In addi-
1 i o o
4-“ Ny, w——
£=0.85 e N
2 1 1 1 1 1 ck. A nmrn
0 20 40 60 80 100 120 w ~
t y
-2 t-1 t
FIG. 8. Plots of the autocorrelation functi@{t) characterizing time
the half period variation$ Wr(t) for e =1.0 (upper curvg¢ and e
=0.85 (lower curve. The time intervalt is measured in units of FIG. 9. The first instability of the mode of motion depicted in

half a period of the driving field. In both cas&Xt) fluctuates Fig. 6. The chain piece containing four microspheres is not stable,
around zero, but foe =0.85 the data are shifted relative to the and divides into two smaller pieces containing two microspheres
ordinate axis for clarity. each as indicated by the arrow.
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FIG. 10. (a) Time evolution of the signed crossing number yt(of the space-time braid describing the motion of seven magnetic holes
whene=0.80. Timet is measured in units of half a period of the driving field) The associated half period variatioA3nr(t). (c) and
(d) show the same quantities fer=0.70. In all four cases just a limited range of the total time series is displayed in order to resolve the

fluctuations.

tion to calculating the autocorrelation function, we focus at-characteristic of random processes with independent incre-

tention on the dynamics of the variations ments. The deviations from the straight line in the figure for
t>1000 is a finite size effect due to the limited time range in
S Wr(t,n)=Wr(7)' —Wr(7—1t)’, (100  the data set.

Both the autocorrelation function and the variance show a
where bothr andt is measured in units of half a period of the crossover from periodic to random behavior for relatively
rotating field. By setting=1 in this equation, one regains short times. The flat region in the plot of the variance tfor
the definition of the half period variations in E(f). It is
important to notice that we select the complete sehafi- 10
overlappingrecords separated hiyhalf periods. Varying the
time intervalt enables us to study the fluctuations of Wf(
on different time scales. A standard method of extracting
information about the fluctuations in a time series is to cal-
culate the variance of the successive variations in that time
series. The variance of the variations defined in @@) as a
function of the time intervat is given by the following ex-
pression:

a?(t)={[ 8 Wr(t,7)— {8 Wr(t,7))]?), (11)

where the brackets indicate averaging owerFigure 12
shows the variance for both=0.80 and 0.70 calculated
from Eq.(11). The figure indicates random fluctuations over £ 11, Plots of the autocorrelation functi@ft) for &=0.80
a relatively large time span. After an initial time span of (ypper curve and e =0.70 (lower curve. The time intervalt is
about 30 half periods, the data approach the behavior measured in units of half a period of the driving field. In both cases
C(t) fluctuates around zero, but fer=0.70 the data are shifted
o?(t)octtO (12)  relative to the ordinate axis for clarity.
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FIG. 12. Variance o?(t) characterizing the increments
8 Wr(t,7) versus time intervat for £=0.80 and 0.70. The time
interval is measured in units of half a period of the driving field. ol . . .
The two dashed lines are the best fits to the experimental data with 0 2000 4000 6000 8000 10000
slopesn=1.0 in the regiort € (50,1000). t

<30 half periods is consistent with the short time behavior FIG. 13. Time evolution of the signed crossing number tr(

of C(t). For short times the motioappearsperiodic, and of the space-time braid describing the motion of seven magnetic
the magnetic holes apparently try to find a periodic solutionholes in an elliptically polarized field witls =0.55 (upper curve.
Relatively many of the half period braids show a division of Timet is measured in units of half a period of the driving field. The
the whole chain into the usual two chain pieces Containindowermost curve shows the associated half period variations
three and four microspheréBig. 6) or a division into three o Wr(t).

chain pieces(Fig. 9. However, these solutions are only
stable for short times, and the motion appears random f
longer times.

ostep lengths. This model of a e motion was proposed by
Klafter, Blumen, and ShleshingE®]. Each time the chain of
microspheres separates into smaller pieces, a new step of the
N o _ i _ random walk is started. The separation times are defined as
C. Critical behavior, intermittency, and Levy motion the times the chain pieces stay separated from each other,
The motion of the seven magnetic holes seems to be chagnd they are power law distributed with an exponent equal to
acterized by random fluctuations downete-0.62, where an  the exponent of the distribution of the step lengths. This is
interesting type of behavior is observed. At this value of thealways the case for a one-dimensionavyevalk, where the
anisotropy parameter there is a finite probability for smallervelocity is independent of the step lend@8].
chain pieces to stay separated from each other for long times. Figure 13 shows Wi}’ for £ =0.55 with the associated
This behavior bears some resemblance to the one describbalf period variationss Wr(t) plotted below. The driving
earlier for two magnetic hold®1]. It was shown that when frequency is stillf ;=0.25 Hz. The motion of the magnetic
£<0.70 the dynamics of two magnetic holes can be modelettoles was recorded for 10 000 half periods of the rotating
by a fractal time random walk22]. In that case the motion field, and the braids can thus be divided into a total of 10 000
consists of short step rotations of the pair axis interrupted byalf period braids. Clearly, the dynamical behavior differs
waiting times where the two microspheres separate, and nisom the one observed in the previous case. The fluctuations
motion of the pair axis takes place. The distribution of thesgare much larger, and the figure also shows long steps in
waiting times shows a power law tail with an exponent de-Wr(t)" with a constant velocitys Wr(t). There is adistri-
pending on the magnetic field anisotropyHowever, in the bution of step lengths, or equivalently a distribution of time
situation studied in this paper the separated chain pieces réntervals where long steps in W)( are observed. During
tate with the field, and rotational motion therefore takesthese long time intervals the microspheres move in a regular
place during the times that they are separated. This leads toraanner, with the chain of magnetic holes divided into three
quite different statistical behavior, and the fluctuations of thesmaller pieces which rotate with the field. Two of these chain
signed crossing number will be highly intermittent, and apieces contain two microspheres whereas the third one con-
hierarchical ordering takes place in both space and time. Th&ins three, and the mode of motion is similar to the motion
separation time exponent depends on the anisotropy pa- during the instability occurring fog =0.85; see Fig. 9. The
rametere of the magnetic field, and seems to decrease with #hree chain pieces stay separated from each other for long
decreasings. We believe that the mechanisms behind thetimes and the half period variatiorsWr(t)=5 during the
separation of the chain pieces are similar to the mechanisngeps, as seen in Fig. 13. This value equals the number of
behind the separation of two magnetic holes described igrossings of a half period braid describing 2+ 3 magnetic
detail earlier[21], but we have not been able to find any holes rotating with the field. When the chain pieces are
simple relationship betweea and ¢ as was found for two forced together again, the magnetic holes move in an aperi-
magnetic holes. odic way for some time before they separate once more. The
The overall motion can be modeled by a continuous-timedynamical evolution is intermittent, and thus consists of both
one-dimensional ey walk with a power law distribution of quiescent and more chaotic phases which alternate tempo-
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FIG. 14. Plots of the distributioN(ts,>t) of separation times
t for e=0.55. The dashed line is the best fit to the experimental dat
in the regiont € (20,1000).

FIG. 16. Variance o?(t) characterizing the increments
a5Wr(t,7-) vs time intervalt when ¢=0.55. The time interval is
measured in units of half a period of the driving field. The dashed
. . . . . line is the best fit to the experimental data in the region
rqlly In-an 'nt?rSpersed way. D,u“ng the separation times th?e (20,1000). The fitted line is extended beydrd1000 for clarity
signed crossing number Wj( increases at a constant rate ;4 for comparison with the numerical daall line).
causing the large scale fluctuations seen in Fig. 13. We will
show that the motion is well modeled by a one-dimensional
Lévy walk with a distributione(t) of quiescent time inter-
vals or separation timesThe tail of this distribution follows
a power law

|aw decay over almost three decades in time, indicating long
range correlations in the half period variatiofiavr(t),

C(t)oct™?, (15

@(t)oct (et D) (13)
with the exponenty=0.34+0.12. According to theory23],
characterized by an exponemt The numbeiN of separation gne expectsy=a— 1 for a one-dimensional vy walk with

timestsep larger thant goes as constant velocity whemyr>1.0. This is in good agreement
with our observations.
N=N(t.>t :f to OVt ot 14 'Further conflrmatlon of the proposed\l;emotlon}s ob-
(tsep=t) t #(Lsep) dlsep (14 tained by calculating the variane€(t) of the fluctuations of

the experimental data using Ed.1), as shown in Fig. 16. In

Figure 14 shows the distributidd of separation timesex-  the same figure we also display the results from a numerical
tracted from the time series shown in Fig. 13. It is possible tasimulation of the motion of the magnetic holes. In that case
fit the data to a power law with an exponemt=1.27 the dynamics was recorded for 500 000 half periods, and the
+0.13 fort>20. parameters were the same as in the experiment. There is a

We want to find out how these long tails in the distribu- good fit of the data for long times to
tion influence the behavior of the autocorrelation function.
The experimental data @(t) in Fig. 15 is fitted to a power a?(t)oct?, (16)

10° e T ' with an exponenty=1.74+0.03 for the experimental case.
experiment

——- slope =-034 The numerical data approach the same behavior for longer
times. In both cases a super diffusive behavior is observed
with >1. As Fig. 16 shows, there is a finite size effect in
the experimental data above approximately 1000 half peri-
ods, which is due to the limited time range in the data set.
This observation is consistent with the results of the numeri-
E cal simulation, where the super diffusive behavior extends to
longer times as the length of the time series increases. The
exponenty is related to the separation time exponenby
7n=3—«a, whena>1.0[23]. Our results are consistent with
this exponent relation.

A Lévy walk is a fractal generalization of Brownian mo-

! tion, and it is possible to relate the diffusion exponerto

FIG. 15. Plots of the autocorrelation functi@(t) characteriz- the fractal dimension of space and time. In this simple model
ing the successive half period variatiofdVr(t). The time interval  Of diffusion, space and time are coupled, and a step in space
is measured in units of half a period of the driving field. The dasheds associated with a certain time span. The ensemble of time
line is the best fit to the experimental data in the regioninstants where jump events occur, form a fractal set with
te(1,3000). fractal dimensiord; :
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a, a<1 magnetic holes generates a braid in a three-dimensional
1, a>1. (17)  space-time. By studying the fluctuations of the signed cross-
ing number a wide range of different dynamical behavior is
When do the stopover points form a fractal in space? Arobserved, ranging from periodic to random motion. For cer-
ordinary Brownian trajectory wiggles so much that it is ac-tain parameter values the fluctuations were shown to be
tually two dimensional, independent of the dimension of thenighly intermittent and a hierarchical ordering takes place in
embedding space. For awyewalk, where l=a<2, the en-  poth space and time. In that case the motion is well modelled
semble of stopover points form a set with fractal dimensionOy a one-dimensional vy walk with a power law distribu-
d; [23]: tion of step lengths which determines the fluctuation behav-
2 ior. The dynamical evolution consists of both quiescent
= (18 (regulay and more chaotic phases which alternate temporally
3-a in an interspersed way.

Thus, for the case studied here, the ensemble of stopover !N conclusion, our experimental model system is simple
points form a fractal set withd, =1.15. The coupling of and well defined, with precision control of all the parameters.

space and time througt, andd, is explicitly given by an This, coup!ed with computer simulations in good agreement
expression for the diffusion exponent with experiments, allows us to look for general features of
nonequilibrium phenomena.

dt:

d,

2d,
n=d—=3—a, (19)
r

. . . . . . ACKNOWLEDGMENTS
which is consistent with the above considerations.

This work was supported in part by the Research Council
V. CONCLUSIONS of Norway (S.C). We want to thank A. Berge at NTNU in

Collective fluctuations in a few-body system of magnetic Trondheim, and Dyno Particlé®\.S) for kindly providing
holes have been studied. The two-dimensional motion of the microspheres used in these experiments.

[1] C. Moore, Phys. Rev. Let#Z0, 3675(1993. [13] T. Geisel, J. Nierwetberg, and A. Zacherl, Phys. Rev. L%=tt.
[2] A. T. Skjeltorp (unpublishedt also see Ref3]. 616 (1985. _
[3] A. T. Skjeltorp, Physica 213 30 (1995. [14] G. Helgesen and A. T. Skjeltorp, J. Appl. Phy&9, 8277

[4] F. A. Mc. Robie and J. M. T. Thompson, Int. J. Bifurcation (1992. . ) .
Chaos Appl. Sci. Eng3, 1343(1993. [15] G. Helgesen, P. Pieranski, and A. T. Skjeltorp, Phys. Rev. A

42, 7271(1990.
[5] M. A. Berger, Phys. Rev. LetfZ0, 705(1993. ’ . .
[6] P Pierangki S )(/:Iausen G. Helgesen, and A. T Skjeltorp[le] J. Ugelstackt al, Adv. Colloid Interface Scil3, 101(1980.
Piwys Rev L,ett.77 1620(i996 ’ C " Produced under the trade name Dynospheres by Dyno Particles
) ' ' ' ) ) A.S., P.O.B. 160, N-2007 Lillestro, Norway.
[7] S. Clausen, G. Helgesen, and A. T. Skjeltorp, Int. J. B|furca-[17] E. A. Elrifai and H. R. Morton, Q. J. Matt2, 479(1994).

tion Cha_os Appl. Sci. Engto be published [18] J. S. BirmanpBraids, Links and Mapping Class Groupnnals
[8] A. T. Skjeltop, Phys. Rev. Let61, 2306_3(1983' of Mathematical Study Vol. 8ZPrinceton University Press,
[9] J. Klafter, A. Blumen, and M. F. Shlesinger, Phys. Rev33\ Princeton, 1974

3081(1987. [19] F. A. Garside, Q. J. Mati20, 235 (1969.
[10] M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, Nature [20] The equations of motiof8)—(5) are periodic with period/2.

(London) 363 31 (1993. [21] S. Clausen, G. Helgesen, and A. T. Skjeltorp, Physic238
[11] J. Klafter, M. F. Shlesinger, and G. Zumofen, Phys. Today 198 (1997).

49(2), 33(1996. [22] M. F. Shlesinger and B. D. Hughes, Physica 19 597

[12] T. H. Solomon, E. R. Weeks, and H. L. Swinney, Phys. Rev. (19812).
Lett. 71, 3975(1993. [23] X.-J. Wang, Phys. Rev. 45, 8407(1992.



