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Fingerprints of classical instability in open quantum dynamics

Paul A. Miller and Sarben Sarkar
Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom

~Received 24 April 1998!

The dynamics near a hyperbolic fixed point in phase space is modeled by an inverted harmonic oscillator.
We investigate the effect of the classical instability on the open quantum dynamics of the oscillator, introduced
through the interaction with a thermal bath, using both the survival probability function and the rate of von
Neumann entropy increase, for large times. In this parameter range we prove, using influence functional
techniques, that the survival probability function decreases exponentially at a ratek8 depending not only on the
measure of instability in the model but also on the strength of interaction with the environment. We also show
that k8 determines the rate of the von Neumann entropy increase and that this result is independent of the
temperature of the environment. This generalizes earlier results that are valid in the limit of vanishing dissi-
pation. The validity of inferring similar rates of survival probability decrease and entropy increase for quantum
chaotic systems is also discussed.@S1063-651X~98!00610-2#

PACS number~s!: 05.40.1j, 05.45.1b, 03.65.2w
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I. INTRODUCTION

Quantum-classical correspondence for the case of cla
cally chaotic systems has been much investigated rece
~see, e.g., Refs.@1–6#!. Expectation values of correspondin
dynamical variables begin to differ@7,8#, as do classical and
quantum phase space distributions@9,10#, on extremely short
time scales that are typically logarithmic in Planck’s co
stant. If these studies are taken at face value, therefore
chaotic dynamical systems, being fundamentally quantum
nature, should either be obeying quantum laws of evolut
now or be expected to do so in an extremely short tim
Observations tell us otherwise, however.

Sarkar and Satchell@11#, a decade ago, already pointe
out the possible role of environment in the quantum evo
tion of chaotic systems. Recently@12#, Zurek and Paz have
conjectured an interesting quantitative relation betwee
classical chaotic system and its quantum version that i
contact with a bath. They have considered the Wigner re
sentation of the quantum Liouville equation

Ẇ5$H,W%PB1 (
n51

`
\2n~21!n

22n~2n11!!

]2n11V

]x2n11

]2n11W

]p2n11
~1!

for a particle in a potentialV(x) moving in a two-
dimensional phase space. Clearly, the\ terms are a singula
perturbation of the classical Liouville equation, in that t
order of the differential equation is changed. For chaotic s
tems derivatives of the Wigner function with respect to m
mentum become large enough to render the quantum co
tion terms comparable in magnitude to the classical Pois
bracket after theEhrenfest time, t\}(1/l)ln(1/\), wherel
is a Lyapunov exponent. Therefore, fort.t\ we expect sig-
nificant differences between the classical and quantum
scriptions of the same system.

We will now consider an environment consisting of ha
monic oscillators to be coupled to the particle. The Calde
Leggett model@13,14# will be used for these oscillators. Fo
the special case of a high-temperature, Ohmic environm
PRE 581063-651X/98/58~4!/4217~9!/$15.00
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the right-hand side of Eq.~1! is modified by the addition of a
dissipitive and a decoherence term@12#. When the tempera-
ture is high enough and the dissipation sufficiently low t
dissipative term may be considered unimportant and the
coherence term only survives. The nonunitary Wigner fu
tion evolution becomes

Ẇ5$H,W%PB1 (
n51

`
\2n~21!n

22n~2n11!!

3
]2n11V

]x2n11

]2n11W

]p2n11
1D

]2W

]p2
. ~2!

The decoherence term is in the form of a diffusive contrib
tion to the dynamics with diffusion coefficientD. This is
vital since it is the diffusion resulting from the opening of th
system that limits the development of the fine structure in
momentum direction to a critical momentum scalesc . The
time scale on which this process occurs is given by@12#

tc'
1

l
lnS sp~0!

sc
D , ~3!

wheresp(0) is the initial width of a Gaussian wave pack
in the momentum direction. Classical behavior is recover
therefore, provided the environmentally induced diffusi
process can prevent the development of fine structure, i.e

tc!t\ . ~4!

However, opening a system to a thermal environment
other consequences as well. In particular, the von Neum
entropy of the system, given byS(t)52Tr r r(t)ln rr(t),
wherer r(t) is the reduced density matrix of the system
time t, will increase; information is lost to the environme
and initially pure, superposition states of the quantum sys
become classical mixtures in a very short time. Our ability
predict accurately the behavior of a classical system, wh
is exposed to a perturbation of the initial condition, depen
very much on the nature of the dynamics. It is natural to a
4217 © 1998 The American Physical Society
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4218 PRE 58PAUL A. MILLER AND SARBEN SARKAR
whether this is true for the rate of information loss of
quantum analog when it is exposed to a perturbing envir
ment.

As a first step towards answering this question~see also
@15,16#! Zurek and co-workers have considered the inver
harmonic oscillator@17# of unit mass with Hamiltonian

HS5
p2

2
2

l2x2

2
. ~5!

This is intended as a model of instability and, in fact, t
dynamical behavior in phase space is dominated by a hy
bolic point at the origin. The unstable and stable directio
and the rate at which initial phase space distributions exp
and contract in these directions, respectively, are determ
by l. In this sense we calll an instability parameter anala
gous to a Lyapunov exponent in a classical chaotic syst
Indeed, at any point on a trajectory the sum of the Lyapun
exponents is zero. For a chaotic trajectory there must be
pair of nonzero Lyapunov exponents.

However, there are a number of reasons why we sho
question any conclusions drawn as to the implications fo
real chaotic system based on so simple a model. First, t
are no quantum corrections to the Wigner function evolut
for this quadratic potential. The model does not allow
these influences on the dynamics, which, though small in
presence of an environment in comparison to the class
terms, nonetheless are generallyalways present. The stable
and unstable manifolds associated with all hyperbolic po
in Hamiltonian chaotic systems intersect both one ano
and those associated with other hyperbolic points@18#. In
this way homoclinic and heteroclinic points are formed. T
stable and unstable manifolds of the inverted oscillator in
sect only at the hyperbolic origin in phase space. Clea
therefore, the effect that the complicated distribution of h
moclinic points might have on the open dynamics is n
taken into account. Neither, of course, is the effect of hete
clinic points.

Notwithstanding these objections, however, the inver
oscillator remains a tractable model of instability both fo
closed system and for an open system in the presence o
environment. As such, it deserves attention for the insigh
might give regarding the qualitative and maybe quantitat
behavior of genuine, open quantum analogs of classic
chaotic systems.

The entropy production rate has been considered in
limit of high temperature and low dissipation. This entail
using the approximate Wigner function evolution in Eq.~2!.
Zurek and Paz show@12# that after a time determined b
both l and the strength of the interaction with the enviro
ment the rate of entropy increase approaches a constan

Ṡ→l, ~6!

i.e., thequantumentropy production rate is determined,
this approximation, by theclassical instability parameter.
Given that the classical Lyapunov exponent to whichl is
analogous is equal to the Kolmogorov-Sinai~KS! entropy of
the system@19#, this is indeed a remarkable characterizati
@20#. It suggests that after a time, a quantum, classically c
otic system loses information to the environment at a r
n-
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determinedentirely by the rate at which the classical syste
loses information as a result of its dynamics, namely, the
entropy@21#.

In this paper we will examine once more the ‘‘toy’’ mode
of Zurek and Paz. Apart from entropy production we w
consider the experimentally relevant survival probabil
function. We will not be restricted to the assumption of lo
dissipation made by others@12#. As we will show, the
asymptotic behavior of both the survival probability functio
and the rate of entropy increase willnot be determined byl
alone but byl in a specific combination with the dissipatio
parameter~which determines the strength of interaction wi
the environment!. Our approach does not use the mas
equation approach of Zurek and Paz but rather Feynm
Vernon influence functional techniques@22#. This allows a
straightforward analysis of strong coupling of the system
the environment.

The remainder of this paper is organized as follows.
Sec. II we define the initial state of both the system and
environment, determine the time evolution of the reduc
density matrix of the system generally, and describe a
how this allows us to calculate the von Neumann entro
S(t). We specify the nature of the environment more expl
itly in Sec. III, leaving us in a position to consider finite
temperature evolution. In Sec. IV we shall define the survi
probability functionP(t), calculate it for the inverted oscil
lator, and discuss its significance for quantum chaotic s
tems. In Sec. V we show analytically our generalization
Eq. ~6! for the finite-temperature case. We state our conc
sions in Sec. VI. Finally, the Appendix contains the mo
tedious details of the calculations.

II. REDUCED DENSITY MATRIX DYNAMICS

A. Initial state

We shall consider as our initial state the wave function

c~xi ,0!5~bAp!2 1/2 expS 2~xi2x0!2

2b2
1 ip0xi D , ~7!

for which it is easily verified that

^xi&5x0 ,

^xi
2&5

b2

2
1x0

2 ,

^p&5p0 ,

^p2&5
\2

2b2
1p0

2 ,

~Dxi !
2~Dp!25

\2

4
,

i.e., a state of minimum uncertainty. However, we shall
concerned with density matrices and their evolution, so
define the normalized initial density matrix corresponding
c(xi ,0) above by
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rS~xi ,xi8,0![c* ~xi ,0!c~xi8,0!

5N exp@2e ~xi
21xi8

2!1axi1a* xi8#, ~8!

where the normalization constantN is given by

N5~bAp!21 expS 2
x0

2

b2D , ~9!

with e5(2b2)21 anda5x0 /b21 ip0 .
We assume now that the system is put into contact w

an environment at timet50. We will use as our environmen
tal model a bath of independent harmonic oscillators in th
mal equilibrium at inverse temperature 1/kBT. This allows us
to write the initial, uncorrelated state of thecombinedsystem
in operator form as

r̂SE~0!5 r̂S~0! ^ r̂E~0!, ~10!

where

^xi ur̂S~0!uxi8&5rS~xi ,xi8,0! ~11!

as defined in Eq.~8! and r̂E(0) defines the thermal environ
ment

r̂E~0!5)
n

H F12expS 2
\vn

kBT D G
3(

m
expS 2

m\vn

kBT D um&^muJ , ~12!

i.e., in a factorized form because of the choice of nonint
acting modes.

B. Time evolution propagator

The initial state being so defined, we now concentrate
the time evolution. We assume the Hamiltonian of the co
bined system to be

HSE5HS1HE1HI , ~13!

whereHS has been given in Eq.~5!,

HE5(
n

S pn
2

2
1

vn
2qn

2

2 D , ~14!

i.e., the Hamiltonian of our chosen bath with canonical co
mutation relations@qn ,pm#5 i\dn,m , and

HI52x c~ t !(
n

qn , ~15!

the Hamiltonian of interaction describing the~possibly time-
dependent! coupling of the inverted oscillator, through it
position variable, to the position variable of each of the e
vironmental oscillators.

The combined system and environment, initially in t
pure product state of Eq.~10!, will, of course, evolve uni-
tarily under the action of the HamiltonianHSE of Eq. ~13!.
We will be interested in thereduceddensity matrix of the
h

r-

r-

n
-

-

-

system at some later timet.0, which we write asr̂ r(t). To
arrive at this expression the path integral method of Feynm
and Vernon is employed@13,22#. The initially uncorrelated
state allows us to calculate the evolution kernel for the
duced density matrix in the position basis in the followin
way:

r r~xf ,xf8 ,t !5E dxiE dxi8Jr~xf ,xf8 ,tuxi ,xi8,0!rS~xi ,xi8,0!,

~16!

where

Jr~xf ,xf8 ,tuxi ,xi8,0!

5E
xi

xf
DxE

xi8

xf8Dx8 expH i

\
~S@x#2S@x8# !JF @x,x8#,

~17!

whereS is the action of the system andF is the influence
functional. Note thatF51 in the absence of an environmen
The propagatorJr has been calculated explicitly@23,24# by
Koks, Matacz, and Hu and we quote here their result

Jr~xf ,xf8 ,tuxi ,xi8,0!

5
b2

2p\
expF i

\
~b1S fD f2b2S fD i1b3S iD f2b4S iD i !

2
1

\
~a11D i

21a12D fD i1a22D f
2!G , ~18!

where we have used the more convenient sum and differe
coordinates defined by

D[x2x8, S[~x1x8!/2, ~19!

while b1 ,...,b4 and a11, a12, and a22 are time-dependen
terms defined entirely by the spectral density and temp
ture of the thermal environment. We will define them expl
itly below when we specify the nature of the environme
more precisely.

C. Reduced density matrix evolution

The final step in calculating the time evolution of th
system is to use Eq.~18! to calculate the reduced densi
matrix r r(t) in the position basis via Eqs.~16! and~8!. One
finds, after some lengthy but trivial algebra,

r r~xf ,xf8 ,t !5
b2N

p 2AD
exp~2G1D f

22G2D fS f2G3S f
2

1G5S f1G6D f1G4!, ~20!

whereN has been defined in Eq.~9! above,

D54\2e21b4
218e\a11, ~21!

and we have made the abbreviations

G15
a22

\
1

1

D H S e

2
1

a11

\ Db3
21

b4a12b3

\
22ea12

2 J , ~22!
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G2522i H b1

2\
2

1

D S b2b3b4

2\
22b2a12e D J , ~23!

G35
2eb2

2

D
, ~24!

G45a* 2A71
a2\2

D
~e2A5!1

2a11\aa*

D
, ~25!

G55x1S 2a\2

D
~e2A5!1

2a11\a*

D D
1y1S 2a* A71

2a11\a

D D , ~26!

and

G65x2S 2a\2

D
~e2A5!1

2a11\a*

D D
1y2S 2a* A71

2a11\a

D D , ~27!

but in which we have also defined

A55
ib4

2\
2

a11

\
, ~28!

A75
1

~e2A5!
S 1

4
1

a11
2

D D , ~29!

y15x1* 5
ib2

\
, ~30!

x25
ib3

2\
2

a12

\
, ~31!

and

y25
ib3

2\
1

a12

\
. ~32!

The expression in Eq.~20! is of a Gaussian form and ca
be diagonalized@25#. The von Neumann entropy

S~ t !52tr r r~ t !ln r r~ t ! ~33!

can therefore be calculated and written in the form

S~ t !52
1

p0
~p0 ln p01q ln q!, ~34!

wherep0 andq are defined by

p05
2AG3

AG11AG3

~35!

and
q5
AG12AG3

AG11AG3

512p0 , ~36!

using Eqs.~22! and ~24! above.

III. ENVIRONMENT SPECIFICATION

A. Generalities

The influence functional used in the determination of t
evolution kernel of Eq.~16! is determined entirely by the
so-called dissipation and noise kernels of the chosen e
ronment. If we now restrict each oscillator in the bath to ha
equal, unit mass we can write

m~s,s8!52E
0

`

dv I ~v,s,s8!sin@v~s2s8!# ~37!

and

n~s,s8!5E
0

`

dv I ~v,s,s8!cothS \v

2kBTD cos@v~s2s8!#

~38!

for the dissipation and noise kernels, respectively, where

F @x,x8#5expH 2
1

\ E
0

t

dsE
0

s

ds8D~s!

3@n~s,s8!D~s8!12im~s,s8!S~s8!#J . ~39!

Here I (v,s,s8) is called thespectral densityof the environ-
ment as we have assumed the oscillators to have a con
ous distribution of frequenciesv @13#. Notice thatm(s,s8) is
independent of the temperature of the environment.

Restricting the discussion now to the case of the inver
oscillator, we can determine the time-dependent quanti
b1(t), b2(t), b3(t), and b4(t), as well asa11(t), a12(t),
anda22(t), by

b1~ t !5u̇2~ t !,

b2~ t !5u̇2~0!,
~40!

b3~ t !5u̇1~ t !,

b4~ t !5u̇1~0!,

and

ai j 5
1

11d i j
E

0

t

dsE
0

t

ds8v i~s!n~s,s8!v j~s8!. ~41!

The functionsui and v i that determine these quantities a
solutions of the differential equations

ü~s!2l2u~s!12E
0

s

ds8m~s,s8!u~s8!50, ~42!
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v̈~s!2l2v~s!22E
s

t

ds8m~s,s8!v~s8!50 ~43!

when the boundary conditions

u1~0!5v1~0!51, u1~ t !5v1~ t !50,

u2~0!5v2~0!50, u2~ t !5v2~ t !51

are imposed.

B. Calculation of bi„t…

It is clear from Eqs.~40! and ~42! above that the quanti
ties b1(t) –b4(t) depend only the dissipation kernelm(s,s8)
and not on the temperature of the environment. We will c
centrate on spectral densities of the form

I ~v,s,s8!5
2g0

p
v expS 2

v

vc
D c~s!c~s8!, ~44!

i.e., densities of anOhmic type with an upper or cutoff fre-
quencyvc @13#. Using Eq.~44! in Eq. ~37! we find

m~s,s8!→2g0c~s!c~s8!d8~s2s8! ~45!

asvc→`. A further restriction to the case of constant co
pling constants, i.e.,c(t)51 ; t, enables us to write for the
inverted oscillator

b1~ t !5~2g01k coth kt !,

b4~ t !5~2g02k coth kt !,
~46!

b2~ t !5
k exp~g0t !

sinh kt
,

b3~ t !5
2k exp~2g0t !

sinh kt
.

The shorthand definition

k5Al21g0
2 ~47!

has been used here and we will see that it is an impor
quantity in the sections below. The asymptotic behavior
bi , i 51,...,4, in Eq.~46! for large kt can easily be deter
mined and each is given by one of

b1~ t !→~2g01k!, ~48!

b2~ t !→2k exp@2~k2g0!t#, ~49!

b3~ t !→22k exp@2~k1g0!t#, ~50!

or

b4~ t !→~2g02k!. ~51!

Finally, v1(t) andv2(t) are required for the calculation o
eachai j in Eq. ~41!. Again, for the inverted harmonic osci
lator they are given by
-

-

nt
f

v1~s!5
sinh@k~ t2s!#exp~g0s!

sinh~kt !
~52!

and

v2~s!5
sinh~ks!exp@g0~s2t !#

sinh~kt !
~53!

for sP@0,t#, wheret is the time at which we wish to calcu
late the reduced density matrix.

C. Calculation of the finite temperature ai„t… coefficients

To examine the asymptotic rate of entropy production
the inverted oscillator, in an environment at afinite tempera-
ture, we must, of course, calculate the appropriateai j coef-
ficients. This will allow to analytically derive the asymptot
rate of von Neumann entropy increase. The lengthy det
are relegated to the Appendix. Writingl̂ªl/k and
z:5kt, we find eventually

a11~ t,0!5
ĝ0

~2l̂ sinh z!2

3 (
n50

`

f ~n!S d1~n! f 1~z!

ĝ0

1d2~n! f 2~z!D ,

~54!

a12~ t,0!5
e2ĝ0z

2~ l̂ sinh z!2

3 (
n50

`

f ~n!@d1~n! f 3~z!2d2~n! f 4~z!#, ~55!

a22~ t,0!5
e22ĝ0z

~2l̂ sinh z!2

3 (
n50

`

f ~n!@d1~n! f 5~z!1d2~n! f 6~z!#, ~56!

where the functionsf i(z),i 51, . . . ,6, aredefined in the Ap-
pendix, as ared1(n) andd2(n). Also given in the Appendix
is the asymptotic behavior of each~finite-temperature! ai j .

IV. SURVIVAL PROBABILITY FUNCTION

A. Definition and context

In this section we will consider thesurvival probability
function P(t), defined by

P~ t !5Tr@r~0!r~ t !# ~57!

for a system initially described by the density matrixr~0!. In
particular, we will be interested in the asymptotic behavio

The functionP(t) has been examined before in the co
text of quantum chaos. Tameshtit and Sipe@27# have consid-
ered its behavior in time for both regular and chaotic syste
coupled in a nondemolition fashion to a high-temperat
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thermal reservoir. Using a master equation approach and
dom matrix theory they show that when suitably averag
the behavior ofP(t) displays substantial differences depen
ing on the nature of the underlying dynamics. This functi
has also been examined theoretically for pure states@28,29#,
even for the inverted oscillator model@17#. However, the fact
that it is accessible experimentally@30# makes it a particu-
larly important quantity to examine.

For pure initial statesr(0)5uf(0)&^f(0)u and unitary
evolution uf(t)&5Û(t)uf(0)& we have

P~ t !5 z^f~0!uf~ t !& z2, ~58!

i.e., the probability of the system being in the initial state
a later timet. P(t), as defined in Eq.~57! above, is a gen-
eralization of this applicable to systems that may not be
tially pure and/or for which the evolution in time is nonun
tary.

B. Survival probability for the open inverted oscillator

We will now examine the effect of the thermal bath on t
survival probability function of the inverted harmonic osc
lator. For simplicity we will consider our initial state to b
centered at the origin of phase space, i.e., we take our in
wave function to be given by Eq.~7! with x05p050. The
initial density matrix is then given by Eq.~8! with a50 and
N5(bAp)21. These initial conditions simplify the form o
the reduced density matrix considerably, leading to Eq.~20!
with G45G55G650. The survival probability function can
now be simply calculated according to Eq.~57! above. We
find

P~ t !5Tr@rS~0!r r~ t !#

5E
2`

`

dxE
2`

`

dx8^xurS~0!ux8&^x8ur r~ t !ux&

5
1

bp2 H G3

~e12G1!~e1G3 /2!2G2
2/4

J 1/2

, ~59!

where we have yet to specify the magnitude of the para
eters of the environment. For the finite-temperature case
can easily determine the asymptotic behavior. Using
asymptotic behavior of eachbi(t) @given by Eqs.~48!–~51!#,
the asymptotic behavior of eachai j (t,0) @given in Eqs.
~A18!–~A20!#, and the definitions of eachG i @Eqs. ~22!–
~24!# we easily see that for a fixed temperature

$~e12G1!~e1G3 /2!2G2
2/4%1/2→C1 ~60!

for large times, whereC1 is a ~temperature-dependent! con-
stant. Consequently, the large time behavior ofP(t) is de-
terminedentirely by that of G3 . As t(z)→` we see from
Eqs. ~51!, ~A18!, and ~21! that D goes to the~temperature-
dependent! constant

Dasym54\2e21~g01k!22~4e\g0!cothS ~g02k!\

2kBT D .

~61!
n-
,

-

t

i-

ial

-
e

e

Now, using its definition in Eq.~24!, the asymptotic behavio
of b2 in Eq. ~49!, and that ofD in Eq. ~61! we find, finally,

P~ t ! ;
t→`

C2 exp@2~k2g0!t#, ~62!

where C2 is another temperature-dependent constant.
have checked the accuracy of this result numerically by c
culating ln@P(t21)/P(t)#, which, if Eq.~62! is to be believed,
hask2g0[k85Al21g0

22g0 as its asymptotic value. Ex
cellent agreement was found. This is a generalization of
result of Heller@6# to the openquantum inverted oscillato
and reduces to it asg0→0, i.e., as the system interacts mo
weakly with the environment, as required. It would be na
ral to conjecture in the spirit of Zurek and Paz@12# that the
behavior in Eq.~62! might be expected to hold for quantiza
tions of classically chaotic systems in interaction with
environment.

V. ASYMPTOTIC RATE OF ENTROPY INCREASE:
ANALYTICAL RESULTS

We are now in a position to derive the rate at which t
von Neumann entropy will increase whenz5kt is large, i.e.,
at long times and/or when the Lyapunov exponent is lar
for the finite temperature case. We can rewrite Eq.~35! as

p05
2a

11a
, ~63!

where we have made the abbreviationaªAG3 /G1. Also,
Eq. ~34! gives

dS

dt
5

d

dt H 2
1

p0
@p0 ln p01~12p0!ln~12p0!#J

5•••5
ṗ0

p0
2

ln~12p0!, ~64!

with the overdot denoting a derivative with respect tot.
Combining Eqs.~63! and ~64!, we find, for all t,

dS

dt
5

ȧ

2a2
lnH 12a

11aJ . ~65!

Therefore, both the entropyS(t) and its rate of changedS/dt
are determined entirely by the time-dependent coefficie
G1 andG3 that arise in the expression for the reduced den
matrix ~20!. @Note that these are both independent of t
center of the initial minimum uncertainty wave pack
(x0 ,p0).]

The asymptotic expression forD given by Eq.~61!, along
with that of Eq.~49!, gives the asymptotic behavior ofG3
defined in Eq.~24!:

lim
kt→`

G35
8ek2

Dasym
exp@22~k2g0!t#. ~66!

Inspection of the asymptotics of the various environmen
terms used to defineG1 in Eq. ~22!, in particular Eqs.~A20!,
~61!, ~A18!, ~50!, ~51!, and~A19!, give
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lim
kt→`

G15
a22~ t→`,0!

\
5

g0

2\
cothS ~g01k!\

2kBT D , ~67!

i.e., also a~temperature-dependent! constant.
The asymptotic behavior ofa can now be determined

using Eqs.~66! and ~67!:

lim
kt→`

a5j exp@2~k2g0!t#, ~68!

where j is a temperature-dependent, but time-independ
constant. Clearly,a→0 as t→`, which means thatp0→0
too. Considering Eq.~64! as t→` we find

dS

dt
5

ṗ0

p0
2 ~2p01p0

2/21••• !'2
ṗ0

p0
5

2ȧ

a~11a!
, ~69!

where we have used Eq.~63! in the last step. Finally, if we
use the asymptotic expression fora, Eq. ~68!, we find

dS

dt
;

kt→`

k2g05k8. ~70!

This result gives the asymptotic rate of entropy increase
situations where energy dissipation is important and can
be neglected. Asg0 determines the strength of the couplin
to the environment, we can now see that the rate at which
unstable, possibly chaotic system will lose information to
environmentdoes depend on the coupling strength@26#.
Note, however, that this asymptotic rate reduces to
asymptotic rate found previously in the weakly coupled
gime

dS

dt
;

kt→`

Al21g0
22g0'l when g0!l, ~71!

as required.

VI. CONCLUSION

In this paper we have used the inverted harmonic osc
tor to model instability in open quantum systems. We ha
found that both the survival probability function and the v
Neumann entropy increase depend, for large times, on
degree of instability in the systemand on the strength of
interaction with the environment in a simple way. The pu
pose of studying such an elementary system is to build
some degree of intuition as to the behavior of quantum c
otic systems coupled to an environment.A priori the claims
of applicability of an inverted oscillator to modeling a ch
otic system should be treated with caution. We will no
discuss to what degree the results for the oscillator can s
as a guide to actual quantum behavior in chaotic system

With regard to the survival probability function predictio
we mention the study by D’Arianoet al. @31# of classical and
quantum structures in the kicked-top model. No environm
was included in their model, but they have shown that
survival probability function ~autocorrelation function in
their paper! provides an excellent means with which to com
pare classical and quantum invariant structures~periodic
points!, at least for predominantly regular kicked tops. Th
nt

in
ot

an
e

e
-

-
e

he

-
p

a-

ve

t
e

situation changes when most of the tori have been destro
We are currently examining the influence a perturbed evo
tion has on this correspondence. Practically, the surv
probability function can be obtained from an experimen
spectrum~see the comments by Heller in@6# and also@30#!
and is a useful concept in studies of molecular spectra.
longest events in the time domain determine the broaden
of the peaks in the spectrum for an unstable periodic or
with the width being given by the classical Lyapunov exp
nent. Our result, Eq.~62!, suggests that this may change
the presence of an environment due tog0 .

For the entropy production prediction we mention tw
studies of the quantum kicked rotor model@1,2,7# evolving
as it interacts with a perturbing environment@20,32#. In the
first @20#, the constant von Neumann entropy production r
was calculated for various values of the nonlinearity para
eterK of the system. The Lyapunov exponentl can be ap-
proximated byl' ln(K/2) for largeK and alinear depen-
dence of the constant entropy production rate on
Lyapunov exponent was found, i.e.,

Ṡ5al1b, ~72!

wherea andb are constants determined by the environme
Moreover, this behavior is seen in the mixed phase spa
resulting from low values ofK provided one considers onl
local Lyapunov exponents to be relevant. In the second st
@32# an initial state is perturbed unitarily as it evolves in tim
with the possible perturbations at each time step being ta
from an ensemble. Averaging over the possible realizati
requires that the state of the system be described by a de
matrix as it is mixed. In this way the entropy can increase
is shown that the eventually constant rate at which an ini
coherent state produces entropy depends to a great de
upon where in phase space the center of the wave pack
situated: The more chaotic the area of initial localization,
quantified by a locally averaged Lyapunov exponent,
larger the constant entropy production rate.

We conclude, therefore, that there is indeed some valu
using the toy model considered in this paper and others@12#
as a model of instability in open quantum systems. The c
jectures that follow from it should be tested in more syste
that are classically chaotic.
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APPENDIX

In this appendix we will give the explicit definitions of th
functions f i , i 51, . . . ,6,d1(n), and d2(n) used to write
the finite-temperature expressions for eachai j in Eqs.~54!–
~56!. We will also derive their large-time limits~A18!–
~A20!.

Once again we will choose constant coupling constant
the Ohmic spectral density of Eq.~44! and we will also as-
sume a large but finitevc . This allows us to write

I ~v,s,s8!'
2g0v

p
. ~A1!
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To calculate the finite-temperature noise kernel of Eq.~38!
we will now formally expand the coth function in a powe
series@33# and integrate term by term. Formally then

n~s,s8!5
2g0

p (
n50

`
22nB2n

~2n!! S \

2kBTD 2n21

3E
0

`

dv v2ncosv~s2s8!. ~A2!

B2n are Bernoulli numbers. Defining

f ~n!ª
22nB2n

~2n!! S \

2kBTD 2n21

, ~A3!

we can rewrite this formal expansion as

n~s,s8!52g0(
n50

`

f ~n!d ~2n!~s2s8!, ~A4!

i.e., as an infinite sum of derivatives of thed function. This
expression can now be used in Eq.~41!, with Eqs.~52! and
~53!, to calculate eachai j . Writing l̂ªl/k, ĝ0:5g0/k, and
z:5kt, we find

a11~ t,0!5
ĝ0

~2l̂ sinh z!2

3 (
n50

`

f ~n!S d1~n! f 1~z!

ĝ0

1d2~n! f 2~z!D ,

~A5!

a12~ t,0!5
e2ĝ0z

2~ l̂ sinh z!2

3 (
n50

`

f ~n!@d1~n! f 3~z!2d2~n! f 4~z!#,

~A6!

a22~ t,0!5
e22ĝ0z

~2l̂ sinh z!2

3 (
n50

`

f ~n!@d1~n! f 5~z!1d2~n! f 6~z!#,

~A7!

where

dH12J~n!ª
k2n

2
@~ ĝ021!2n6~ ĝ011!2n# ~A8!

and

f 1~z!ªĝ0
2cosh 2z1ĝ0sinh 2z2exp~2ĝ0z!112ĝ0

2,
~A9!
f 2~z!ªĝ0sinh 2z1cosh 2z2exp~2ĝ0z!, ~A10!

f 3~z!ªcoshz@exp~2ĝ0z!21#2ĝ0sinh z@exp~2ĝ0z!11#,
~A11!

f 4~z!ªĝ0coshz@12exp~2ĝ0z!#1sinh z@exp~2ĝ0z!21#

12ĝ0
2sinh z, ~A12!

f 5~z!ª12l̂2exp~2ĝ0z!2ĝ0exp~2ĝ0z!

3~ ĝ0cosh 2z2sinh2z!, ~A13!

f 6~z!ªĝ0@exp~2ĝ0z!~ ĝ0sinh 2z2cosh 2z!11#.
~A14!

Asymptotics of aij

It is easy to show that

f 1~z!

sinh2z
→

z→`

2~ ĝ0
21ĝ0! ~A15!

and

f 2~z!

sinh2z
→

z→`

2~ ĝ011!. ~A16!

These expressions allow us to determine the asymptotic
havior of a11(t,0) defined in Eq.~54!. We find

lim
t→`

a11~ t,0!5
ĝ0

4l̂2
(
n50

`

f ~n!S d1~n!

ĝ0

@2~ ĝ0
21ĝ0!#

1d2~n!@2~ ĝ011!# D
5

ĝ0~ ĝ011!

2l̂2
(
n50

`

f ~n!~ ĝ021!2nk2n.

~A17!

One next uses the definition off (n) in Eq. ~A3! and the
formal power series expansion of the coth function to der
the desired expression given in Eq.~A18! below. To derive
Eqs.~A19! and ~A20! we proceed along similar lines:

a11~ t,0!→2
ĝ0k

2
cothS ~g02k!\

2kBT D , ~A18!

a12~ t,0!→ke2~12ĝ0!z cothS ~g01k!\

2kBT D ,

~A19!

a22~ t,0!→
ĝ0k

2
cothS ~g01k!\

2kBT D . ~A20!
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