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Fingerprints of classical instability in open quantum dynamics
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The dynamics near a hyperbolic fixed point in phase space is modeled by an inverted harmonic oscillator.
We investigate the effect of the classical instability on the open quantum dynamics of the oscillator, introduced
through the interaction with a thermal bath, using both the survival probability function and the rate of von
Neumann entropy increase, for large times. In this parameter range we prove, using influence functional
techniques, that the survival probability function decreases exponentially at& rdépending not only on the
measure of instability in the model but also on the strength of interaction with the environment. We also show
that k' determines the rate of the von Neumann entropy increase and that this result is independent of the
temperature of the environment. This generalizes earlier results that are valid in the limit of vanishing dissi-
pation. The validity of inferring similar rates of survival probability decrease and entropy increase for quantum
chaotic systems is also discussga1063-651X%98)00610-2

PACS numbg(s): 05.40:+j, 05.45:+b, 03.65-w

[. INTRODUCTION the right-hand side of Eq1) is modified by the addition of a
dissipitive and a decoherence tef?]. When the tempera-
Quantum-classical correspondence for the case of clasdidre is high enough and the dissipation sufficiently low the
cally chaotic systems has been much investigated recentljissipative term may be considered unimportant and the de-
(see, e.g., Ref$1-6]). Expectation values of corresponding coherence term only survives. The nonunitary Wigner func-
dynamical variables begin to diff¢¥,8], as do classical and tion evolution becomes
guantum phase space distributid@sl0], on extremely short

time scales that are typically logarithmic in Planck’s con- . Z A (=1)"

stant. If these studies are taken at face value, therefore, all W={H,W}pp+ nzl m

chaotic dynamical systems, being fundamentally quantum in '

nature, should either be obeying quantum laws of evolution 2nt1y g2n+lyy W

now or be expected to do so in an extremely short time. X T~ TP 2
Observations tell us otherwise, however. IX ap p

Sarkar and Satchelll1], a decade ago, already pointed o e .
out the possible role of environment in the quantum evolu-,;l.—he ?et;she(;ence Ferm I":'hmdt'?fe fiorm of ?f.d!ffumflv_erﬁon'tnbu-
tion of chaotic systems. Recentl§2], Zurek and Paz have lon 1o he dynamics wi iusion coethicien?. 1nis 1s

conjectured an interesting quantitative relation between gital since it i; t_he diffusion resuliing from the opening Of. the
classical chaotic system and its quantum version that is ir§ystem that limits the development of the fine structure in the

contact with a bath. They have considered the Wigner repr = omentlIJm dlreﬁt_lohntthq a critical moment_um_sc?@. The
sentation of the quantum Liouville equation ime scale on which this process occurs is giver[ 1§

1 [0,(0)
. hzn(_l)n &2n+lv 52n+1W TC%X In| —
W={H,W}pg+ 1
{ }PB nZl 22n(2n+1)! ax2n+l ap2n+l ( )

©

; ()

O¢

whereo,(0) is the initial width of a Gaussian wave packet
in the momentum direction. Classical behavior is recovered,
therefore, provided the environmentally induced diffusion
process can prevent the development of fine structure, i.e., if

for a particle in a potentialV(x) moving in a two-
dimensional phase space. Clearly, theerms are a singular
perturbation of the classical Liouville equation, in that the
order of the differential equation is changed. For chaotic sys- Te<Ty . (4)
tems derivatives of the Wigner function with respect to mo-
mentum become large enough to render the quantum correc- However, opening a system to a thermal environment has
tion terms comparable in magnitude to the classical Poissoother consequences as well. In particular, the von Neumann
bracket after theehrenfest timgr,; < (1/\)In(1/4), wherex  entropy of the system, given b®(t)=—Tr p,(t)In p(t),
is a Lyapunov exponent. Therefore, for 7, we expect sig- wherep,(t) is the reduced density matrix of the system at
nificant differences between the classical and quantum de#ne t, will increase; information is lost to the environment
scriptions of the same system. and initially pure, superposition states of the quantum system
We will now consider an environment consisting of har- become classical mixtures in a very short time. Our ability to
monic oscillators to be coupled to the particle. The Caldeirapredict accurately the behavior of a classical system, which
Leggett mode[13,14] will be used for these oscillators. For is exposed to a perturbation of the initial condition, depends
the special case of a high-temperature, Ohmic environmentery much on the nature of the dynamics. It is natural to ask
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whether this is true for the rate of information loss of its determinedentirely by the rate at which the classical system
guantum analog when it is exposed to a perturbing environloses information as a result of its dynamics, namely, the KS

ment. entropy[21].

As a first step towards answering this questisae also In this paper we will examine once more the “toy” model
[15,16]) Zurek and co-workers have considered the invertedf Zurek and Paz. Apart from entropy production we will
harmonic oscillatof17] of unit mass with Hamiltonian consider the experimentally relevant survival probability

function. We will not be restricted to the assumption of low
p2  A%x? dissipation made by othergl2]. As we will show, the
HS:E T o (5 asymptotic behavior of both the survival probability function

and the rate of entropy increase wilbt be determined by

This is intended as a model of instability and, in fact, the@lone but byx in a specific combination with the dissipation
dynamica| behavior in phase Space iS dominated by a hypep.aramet.e(WhK:h detel’mlnes the Strength Of Interaction W|th
bolic point at the origin. The unstable and stable directionghe environment Our approach does not use the master
and the rate at which initial phase space distributions expan@duation approach of Zurek and Paz but rather Feynman-
and contract in these directions, respectively, are determinedernon influence functional techniquég2]. This allows a
by \. In this sense we call an instability parameter anala- Straightforward analysis of strong coupling of the system to
gous to a Lyapunov exponent in a classical chaotic systenth€ environment. _ . _
Indeed, at any point on a trajectory the sum of the Lyapunov  The remainder of this paper is organized as follows. In
exponents is zero. For a chaotic trajectory there must be onaec. |l we define the initial state of both the system and the
pair of nonzero Lyapunov exponents. environment, determine the time evolution of the reduced
However, there are a number of reasons why we shouldensity maitrix of the system generally, and describe also
question any conclusions drawn as to the implications for &0w this allows us to calculate the von Neumann entropy
real chaotic system based on so simple a model. First, ther&(t). We specify the nature of the environment more explic-
are no quantum corrections to the Wigner function evolutioritly in Sec. lll, leaving us in a position to consider finite-
for this quadratic potential. The model does not allow fortemperature evolution. In Sec. IV we shall define the survival
these influences on the dynamics, which, though small in therobability functionP(t), calculate it for the inverted oscil-
presence of an environment in comparison to the classic&®tor, and discuss its significance for quantum chaotic sys-
terms, nonetheless are generaﬂways presenﬂ'he stable tems. In Sec. V we show analytica”y our generalization of
and unstable manifolds associated with all hyperbolic point&d- (6) for the finite-temperature case. We state our conclu-
in Hamiltonian chaotic systems intersect both one anothe$ions in Sec. VI. Finally, the Appendix contains the more
and those associated with other hyperbolic po[itd]. In  tedious details of the calculations.
this way homoclinic and heteroclinic points are formed. The
stable and unstable manifolds of the inverted oscillator inter- Il. REDUCED DENSITY MATRIX DYNAMICS
sect only at the hyperbolic origin in phase space. Clearly,
therefore, the effect that the complicated distribution of ho-
moclinic points might have on the open dynamics is not We shall consider as our initial state the wave function
taken into account. Neither, of course, is the effect of hetero-
clinic points. a1
Notwithstanding these objections, however, the inverted $(x;,0) = (b/m) ex
oscillator remains a tractable model of instability both for a
closed system and for an open system in the presence of
environment. As such, it deserves attention for the insights
might give regarding the qualitative and maybe quantitative
behavior of genuine, open quantum analogs of classically
chaotic systems. b2
The entropy production rate has been considered in the <x-2>= — 2
limit of high temperature and low dissipation. This entailed ' 2 7%
using the approximate Wigner function evolution in E).

A. Initial state

—(X;—Xo)?

sz +ip0xi> ’ (7)

ﬁgr which it is easily verified that

(Xi)=Xo,

Zurek and Paz shoWl2] that after a time determined by (p)="po,

both A and the strength of the interaction with the environ-

ment the rate of entropy increase approaches a constant 2
. (PP)=——+ps,
S\, 6) 2b

i.e., thequantumentropy production rate is determined, in (Ax»)z(Ap)Zzh—z

this approximation, by thelassical instability parameter. : 4’

Given that the classical Lyapunov exponent to whiclis

analogous is equal to the Kolmogorov-SiiiS) entropy of  i.e., a state of minimum uncertainty. However, we shall be
the systenj19], this is indeed a remarkable characterizationconcerned with density matrices and their evolution, so we
[20]. It suggests that after a time, a quantum, classically chadefine the normalized initial density matrix corresponding to
otic system loses information to the environment at a rate/(x;,0) above by
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pS(Xi rxi,lo)Ew*(Xi!O) ‘ﬁ(xi/,O)
=Nexd —e(x?+x/?)+ax+a*x/], (8)

where the normalization constanfis given by
X5
N=(b\m) ! ex ~2) 9)

with e=(2b%) ! anda=xq/b%+ip,.

We assume now that the system is put into contact with

an environment at time=0. We will use as our environmen-

tal model a bath of independent harmonic oscillators in ther-

mal equilibrium at inverse temperatur&dT. This allows us
to write the initial, uncorrelated state of thbembinedsystem
in operator form as

pse(0)=ps(0)® pe(0), (10)
where
(xi|ps(0)|x{ )= ps(x; X/ ,0) (1D

as defined in Eq(8) andpg(0) defines the thermal environ-

ment
~ ﬁwn
pE<0>—1] { 1—exp(— kBT)
mh w
X > exp — n)|m><m|}, (12)
m kgT
i.e., in a factorized form because of the choice of noninter-

acting modes.

B. Time evolution propagator

The initial state being so defined, we now concentrate o
the time evolution. We assume the Hamiltonian of the com

bined system to be

HSE:HS+HE+H|| (13)
whereHg has been given in Eq5),
2 2.2
o pn wnqn
HE—; (2 +—— . (14)
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system at some later tinte>0, which we write ag,(t). To
arrive at this expression the path integral method of Feynman
and Vernon is employefiL3,22. The initially uncorrelated
state allows us to calculate the evolution kernel for the re-
duced density matrix in the position basis in the following
way:

pr(X X :t):f dxif dxi 3y (X¢ X1 ,tXi %] ,0) ps(Xi ,X{ ,0),
(16)

where

Jr (X ,X{ %, %{ ,0)
:infDXLT/;DX' exp[,lﬂS[X]—S[x’])Jf[x,x'],
17)

where S is the action of the system anf is the influence
functional. Note thatF=1 in the absence of an environment.
The propagatod, has been calculated explicit[23,24 by
Koks, Matacz, and Hu and we quote here their result

Jr(xf 1Xf, !t|xi 1Xi,ao)

b, i
" 2mh exﬂ[g(blzfAf—szfAi+b32iAf—b4ziAi)

1
- g(anAizﬁL A (Ai+agAf) |, (18)

where we have used the more convenient sum and difference
coordinates defined by
A=x—x',

S =(x+x")/2, (19

while by,...,b, and ay;, a;,, anda,, are time-dependent

terms defined entirely by the spectral density and tempera-

ture of the thermal environment. We will define them explic-
itly below when we specify the nature of the environment
more precisely.

C. Reduced density matrix evolution

The final step in calculating the time evolution of the
system is to use E(18) to calculate the reduced density
matrix p,(t) in the position basis via Eq$16) and(8). One
finds, after some lengthy but trivial algebra,

i.e., the Hamiltonian of our chosen bath with canonical com-

mutation relationgq, ,pm] =%, m, and
Hi==xc(H)2 ap, (15

the Hamiltonian of interaction describing tkgossibly time-

dependent coupling of the inverted oscillator, through its
position variable, to the position variable of each of the en-

vironmental oscillators.

' bV 2 2
pr(Xs Xg 1) = mexq_rlAf_FZAfzf_FSEf
+T53:+TgA¢+T,), (20
where N has been defined in E¢Q) above,
D=4%12e?+b2+8ehay,, (22)

The combined system and environment, initially in theand we have made the abbreviations

pure product state of Eq10), will, of course, evolve uni-
tarily under the action of the Hamiltoniadsg of Eq. (13).
We will be interested in theeduceddensity matrix of the

a» 1

bsaq-b
_ = 2 4a1203
1=7% b

€ QA
[(§+7b3+ - —2eas,(, (22
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b, 1 [b,bsb,
I,=— |[2h—5(7— brapelt, (23
Zeb§
3= D (24)
242 2a,,hiaa*
Iy=a*?As+ (e=As) D (25
. 2ah? 2a,,hia
5= X1 D (e—As D
a;ha
+y,| 2a* A, + D , (26)
and
2ah? 2a,ha*
F6:X2 T(G_A5)+T
2a,qfia
+y,| 2a* A+ (27)
but in which we have also defined
iby ay
A5—%—7, (28
1 1 a%
e et B 29
. b,
yl:X]_:?! (30)
ibs aj,
XZ_%_7! (31)
and
ibg aj,
y2_ﬁ+ 7 (32)

The expression in Eq20) is of a Gaussian form and can
be diagonalized25]. The von Neumann entropy

S(t)=—1tr p()In p(1) (33

can therefore be calculated and written in the form

1
S(t)y=—- p_o(po In po+qlnaq), (34)

wherep, andq are defined by

24T,

— 3
Po \/F—]_"‘\/F—g, ( 5)

and

T
T, P

(36)

using Egs(22) and(24) above.

IIl. ENVIRONMENT SPECIFICATION

A. Generalities

The influence functional used in the determination of the
evolution kernel of Eq(16) is determined entirely by the
so-called dissipation and noise kernels of the chosen envi-
ronment. If we now restrict each oscillator in the bath to have
equal, unit mass we can write

M(s,s’)z—f;dw l(w,s,8")sifw(s—s")] (37

hw

v(s,s')= fxdw I(w,s,s’)cot%m> cod w(s—s')]

0
(38)

for the dissipation and noise kernels, respectively, where

1 rt s
FIX,X ]=exp[ 5 fodsfods A(s)

x[v(s,s’)A(s’)+2i,u(s,s’)2(s’)]’. (39

Herel (w,s,s’) is called thespectral densityf the environ-
ment as we have assumed the oscillators to have a continu-
ous distribution of frequencias [13]. Notice thatu(s,s’) is
independent of the temperature of the environment.

Restricting the discussion now to the case of the inverted
oscillator, we can determine the time-dependent quantities
bi(t), by(t), bs(t), and by(t), as well asa;q(t), at),
anda,,(t), by

bl(t)zuz(t),
b,(t)=uy(0), 40
bs(t)=u,(t),

ba(t)=uy(0),

1
1+4,

aij:

t t
fdsf ds'vi(s)v(s,s")vj(s’). (4]
0 0

The functionsu; andv; that determine these quantities are
solutions of the differential equations

u(s)—N2u(s)+ 2fsds’,u(s,s’)u(s’)= 0, (42
0
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i}(s)—)\zv(s)—ZJtds’,u(s,s’)v(s’)=0 (43)

when the boundary conditions
Uy (t)=v4(t)=0,

Ux(t)=v,(t)=1

u1(0)=v,(0)=1,

u(0)=v,(0)=0,

are imposed.

B. Calculation of b;(t)

It is clear from Eqgs(40) and (42) above that the quanti-

tiesb;(t)—by,(t) depend only the dissipation kerne(s,s’)

FINGERPRINTS OF CLASSICAL INSTABILITY N . ..
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sin t—s)]e S
ve(S)= [ f[K(Sinr()it)xp(yo ) 52
and
0y(S) = sinh(ks)exd yo(s—1t)] 53

sinh( «t)
for se[0t], wheret is the time at which we wish to calcu-
late the reduced density matrix.

C. Calculation of the finite temperature a;(t) coefficients

To examine the asymptotic rate of entropy production of
the inverted oscillator, in an environment afirste tempera-

and not on the temperature of the environment. We will conture, we must, of course, calculate the appropréagtecoef-

centrate on spectral densities of the form

c(s)c(s’), (44)

2’)/0 w
l(w,5,8')=—w exp — —
T we

i.e., densities of al®hmictype with an upper or cutoff fre-

quencyw, [13]. Using Eq.(44) in Eq. (37) we find

u(s,s')—2yqc(s)c(s’)d' (s—s') (45)

asw,— . A further restriction to the case of constant cou-
pling constants, i.e¢(t)=1V t, enables us to write for the

inverted oscillator

by(t)=(— yo+ & coth «t),

ba(t)=(— yo— K coth kt),
(46)
Kk explvyot)
b2(t)= sinhkt ’
_ — Kk exp(— yot)
b3(t)= sinh «t

The shorthand definition

= N2 9g (47)

has been used here and we will see that it is an importarwhere the function$;(z),i=1,

ficients. This will allow to analytically derive the asymptotic
rate of von Neumann entropy increase. The lengthy details

are relegated to the Appendix. Writing:=\/x and
z: = kt, we find eventually

Yo
(2\ sinhz)?

fo()

a(t,00=

di(n)f4(z )+d2(n)f2(z)

70
(54

e~ 0z
ap(t,0)= ——
2(\ sinhz)?

xngo f(n)[dy(n)f3(2)—dy(n)f4(2)], (55

e—z;oz
ap(t,)=————
(2\ sinhz)?

xgo f(n)[dy(n)fs(2)+dy(n)fe(2)], (56)

.,6, araefined in the Ap-

quantity in the sections below. The asymptotic behavior ofpendix, as arél,(n) andd,(n). Also given in the Appendix

lr:)r;i,n:ez %’;\nd each is given by one of
b1(t)—= (= ot «), (48)
b,(t)—2k exd — (k— yo)t], (49
ba(t)— — 2k exd — (k+ yp)t], (50)
or
bs(t)— (= vo—x). (51)

/4, in Eq.(46) for large «t can easily be deter- is the asymptotic behavior of ea¢finite-temperaturgea;; .

IV. SURVIVAL PROBABILITY FUNCTION
A. Definition and context

In this section we will consider theurvival probability
function Rt), defined by

P(t)=Trp(0)p(1)] (57)

for a system initially described by the density mawi®). In
particular, we will be interested in the asymptotic behavior.
The functionP(t) has been examined before in the con-

Finally, v 1(t) andv,(t) are required for the calculation of text of quantum chaos. Tameshtit and Sipé| have consid-
eacha;; in Eq. (41). Again, for the inverted harmonic oscil- ered its behavior in time for both regular and chaotic systems
lator they are given by coupled in a nondemolition fashion to a high-temperature
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thermal reservoir. Using a master equation approach and raiNow, using its definition in Eq(24), the asymptotic behavior
dom matrix theory they show that when suitably averagedof b, in Eq. (49), and that ofD in Eq. (61) we find, finally,
the behavior oP(t) displays substantial differences depend-
ing on the nature of the underlying dynamics. This function P(t) ~ Cy exd —(x—yo)t], (62)
has also been examined theoretically for pure st@829, e
even for the inverted oscillator moddl7]. However, the fact
that it is accessible experimentallg0] makes it a particu-
larly important quantity to examine.

For pure initial statesp(0)=|#(0)){#(0)| and unitary

evolution| ¢ (t))=U(t)| #(0)) we have

where C, is another temperature-dependent constant. We
have checked the accuracy of this result numerically by cal-
culating IfP(t—21)/P(t)], which, if Eq.(62) is to be believed,
hask— yo=k'=+\?+ yoz— vo as its asymptotic value. Ex-
cellent agreement was found. This is a generalization of the
) result of Heller[6] to the openquantum inverted oscillator
P()=[#(0)[ #()%, (58 and reduces to it agy—0, i.e., as the system interacts more
weakly with the environment, as required. It would be natu-
i.e., the probability of the system being in the initial state atrg| to conjecture in the spirit of Zurek and Pgi2] that the
a later timet. P(t), as defined in Eq(57) above, is a gen-  pehavior in Eq(62) might be expected to hold for quantiza-

eralization of this applicable to systems that may not be initions of classically chaotic systems in interaction with an
tially pure and/or for which the evolution in time is nonuni- environment.

tary.

V. ASYMPTOTIC RATE OF ENTROPY INCREASE:
B. Survival probability for the open inverted oscillator ANALYTICAL RESULTS

We will now examine the effect of the thermal bath onthe  We are now in a position to derive the rate at which the
survival probability function of the inverted harmonic oscil- yvon Neumann entropy will increase whes «t is large, i.e.,
lator. For SImp'ICIty we will consider our initial state to be at |0ng times and/or when the Lyapunov exponent is |arge,

centered at the origin of phase space, i.e., we take our initigbr the finite temperature case. We can rewrite &%) as
wave function to be given by Eq7) with xo=py=0. The

initial density matrix is then given by E@8) with a=0 and 2a
N=(b\m) L. These initial conditions simplify the form of p0:1+ a’
the reduced density matrix considerably, leading to 26)

with I'y=T's=T"g=0. The survival probability function can where we have made the abbreviatian=I'3/T";. Also,
now be simply calculated according to E&§.7) above. We  Eq. (34) gives

(63

find
ds d 1
P(t)=Tr[ps(0)p,(t)] rrinr il a[po In po+(1—po)IN(1—po)]
= wdxfwdx’x 0)[x"Wx'|p,(t)|x bo
[* ax[” axtxipsobrx vl P o
1 r 1/2 po
= —2[ 3 5 , (59 with the overdot denoting a derivative with respecttto
bre| (e+2Iy)(e+1'3/2)=T5/4 Combining Eqs(63) and (64), we find, for all t,
where we have yet to specify the magnitude of the param- dS « 1—a
eters of the environment. For the finite-temperature case, we rT Fln 1t al (65
o

can easily determine the asymptotic behavior. Using the
asymptotic behavior of eadh)(t) [given by Eqs(48)—(51)],
the asymptotic behavior of each;;(t,0) [given in Egs.
(A18)—(A20)], and the definitions of each; [Egs. (22)-
(24)] we easily see that for a fixed temperature

Therefore, both the entrof(t) and its rate of changgSdt
are determined entirely by the time-dependent coefficients
I'y andI'; that arise in the expression for the reduced density
matrix (20). [Note that these are both independent of the
center of the initial minimum uncertainty wave packet
(X0,Po)-]

The asymptotic expression fér given by Eq.(61), along
for large times, wher€, is a(temperature-dependgrgon-  with that of Eq.(49), gives the asymptotic behavior &f,
stant. Consequently, the large time behaviorPgf) is de-  defined in Eq(24):
terminedentirely by that of I';. As t(z)—« we see from

{(e+2T)(e+T3/2)—T3/4Y2C, (60)

Egs.(51), (A18), and(21) that D goes to thetemperature- . 8ek?
dependentconstant lim I's=5—exf —2(k—yo)t]. (66)
Kt—0o0 asym
(yo— k)i Inspection of the asymptotics of the various environmental
— 2.2 2_ -
Dasyni=4%"€“+ (yo+ k)~ (4ehyo)cot 2kgT terms used to defing, in Eq. (22), in particular Eqs(A20),

(61 (61), (A18), (50), (51), and(A19), give
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a(t—=,00 7y, (vo+ k)t situation changes when most of the tori have been destroyed.
D W) (67)  We are currently examining the influence a perturbed evolu-
tion has on this correspondence. Practically, the survival
probability function can be obtained from an experimental
The asymptotic behavior ofr can now be determined spzc_t rum(seef tlhe comm_ents bg_ Hellfe r [6|] anld also30]) h
using Eqs.(66) and (67): and is a useful concept in studies of molecular spectra. The
longest events in the time domain determine the broadening
lim a=¢ exp — (k= yo)t], 68  Of the peaks in the spectrum for an unstable periodic orbit,
ktoo with the width being given by the classical Lyapunov expo-
nent. Our result, Eq(62), suggests that this may change in
where £ is a temperature-dependent, but time-independerthe presence of an environment dueyp

lim Ty=

Kt—o

i.e., also atemperature-dependerdonstant.

constant. Clearlyg—0 ast—, which means thap,—0 For the entropy production prediction we mention two
too. Considering Eq(64) ast—o we find studies of the quantum kicked rotor modél2,7] evolving
. . ) as it interacts with a perturbing environmédg0,32. In the
dS po ) Po —a first[20], the constant von Neumann entropy production rate
at p_g( —Pot+pg/2t-)~— p_o - m (69) was calculated for various values of the nonlinearity param-

eterK of the system. The Lyapunov exponentan be ap-

where we have used E¢63) in the last step. Finally, if we Proximated byx~In(K/2) for largeK and alinear depen-

use the asymptotic expression fer Eq. (68), we find dence of the constant entropy production rate on the
Lyapunov exponent was found, i.e.,

ds , .
g KT Yo=K (70 S=a\+b, (72)

Kt—o

. . : ) .wherea andb are constants determined by the environment.
This result gives the asymptotic rate of entropy increase iMoreover, this behavior is seen in the mixed phase spaces

situations where energy d?ssipation is important and Ca,nnqiesulting from low values oK provided one considers only
be neglected. Ay, determines the strength of the coupling 54| | yapunov exponents to be relevant. In the second study
to the environment, we can now see that the rate at which afg5) an initial state is perturbed unitarily as it evolves in time
unstable, possibly chaotic system will lose information to thei, the possible perturbations at each time step being taken
environmentdoes depend on the coupling strengf26].  fom an ensemble. Averaging over the possible realizations
Note, however, that this asymptotic rate reduces 10 thegaqires that the state of the system be described by a density
asymptotic rate found previously in the weakly coupled re-mairix as it is mixed. In this way the entropy can increase. It
gime is shown that the eventually constant rate at which an initial
ds coherent state produces entropy depends to a great degrge
il N2+ yg_ Yo=\A When yy<A\, (71 upon where in phase space the center_of _the wave packet is
Kt situated: The more chaotic the area of initial localization, as
_ quantified by a locally averaged Lyapunov exponent, the
as required. larger the constant entropy production rate.
We conclude, therefore, that there is indeed some value in
VI. CONCLUSION using the toy model considered in this paper and otf2b
as a model of instability in open quantum systems. The con-
jectures that follow from it should be tested in more systems
hat are classically chaotic.

In this paper we have used the inverted harmonic oscilla
tor to model instability in open quantum systems. We hav
found that both the survival probability function and the von
Neumann entropy increase depend, for large times, on the
degree of instability in the systemmnd on the strength of
interaction with the environment in a simple way. The pur- P .A.M. would like to thank the King's College London
pose of studying such an elementary system is to build upssociation for financial support.
some degree of intuition as to the behavior of quantum cha-
otic systems coupled to an environmeftpriori the claims APPENDIX
of applicability of an inverted oscillator to modeling a cha-
otic system should be treated with caution. We will now In this appendix we will give the explicit definitions of the
discuss to what degree the results for the oscillator can senfgnctions f;, i=1,...,6,dy(n), anddx(n) used to write
as a guide to actual quantum behavior in chaotic systems. the finite-temperature expressions for eaghin Egs.(54)—

With regard to the survival probability function prediction (56). We will also derive their large-time limitgA18)—
we mention the study by D’Arianet al.[31] of classical and  (A20).
quantum structures in the kicked-top model. No environment Once again we will choose constant coupling constants in
was included in their model, but they have shown that théhe Ohmic spectral density of E¢44) and we will also as-
survival probability function (autocorrelation function in sume a large but finite;. This allows us to write
their papey provides an excellent means with which to com-
pare classical and quantum invariant structu¢psriodic 2yow (A1)

pointg, at least for predominantly regular kicked tops. This Hw,s,8")~ T
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To calculate the finite-temperature noise kernel of &)

we will now formally expand the coth function in a power

series[33] and integrate term by term. Formally then

270 * 22n82n 3 2n—-1
v(s,s')=—
7 f=o (2n)! \2kgT
xf dw w?"cosw(s—s'). (A2)
0
B, are Bernoulli numbers. Defining
22nB2n h 2n—1
fM=5mr (27 (A3)
we can rewrite this formal expansion as
v(s,8')=2y,>, f(n)s@(s—s"), (A4)
n=0

i.e., as an infinite sum of derivatives of tldfunction. This
expression can now be used in E41), with Egs.(52) and

(53, to calculate each; . Writing A=\ k, Yo: = Yol k, and
z.= kt, we find

Yo

all(t:o): - _
(2\ sinhz)?
xZ f(m| 200 o |,
70
(A5)
ap (t,0)= AeL
2(\ sinhz)?
XnZo f(n)[dy(n)fs(2)—da(n)fa(2)],
(A6)
e 2%02
a22(tao): - _
(2\ sinhz)?
xgo f(n)[dy(n)fs(2)+dy(n)f4(2)],
(A7)
where
K2n
dizy(m) = [(%= D"+ (%+1)*"] (A8)
and
f1(2) :=yo2cosh Z+ yosinh Z—exp(2y,2) + 1— o2,
(A9)
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f,(2) :=yosinh 2+ cosh Z—exp(2y02), (A10)

f4(z) :=coshz[exp(2y02) — 11— yosinh Z[exp(2y,2) + 1],
(A11)

f4(2) :=yocoshz[ 1—exp(27y,2) ]+ sinh Z[exp(2yoz) — 1]

+2y03sinh z, (A12)
f5(2):=1—\2exp(2702) — YoeX 2Y02)
X (yocosh Z—sinh), (A13)
f6(2) == Yol €XP(2702) (yoSinh 22— cosh Z) +1].
(A14)
Asymptotics of a;;
It is easy to show that
f1(2)
— 2(y0*+ ¥o) (A15)
SNtz 7.
and
fo(z
A2 2('y0+ 1). (A16)
sintfz .,

These expressions allow us to determine the asymptotic be-
havior of a;4(t,0) defined in Eq(54). We find

lim ay4(t,00= 2 f(n) () Y02+ o)1
t—oo 4)\ n=0 ')/0
+dy(n[2(yp+1)]
=Y(— E f(n)(yo—1)2"k?",
2)\2 n=0

(A17)

One next uses the definition dfn) in Eqg. (A3) and the
formal power series expansion of the coth function to derive
the desired expression given in E§18) below. To derive
Egs.(A19) and(A20) we proceed along similar lines:

70 (yo—w)
ay4(t,00—— N cot W) , (A18)
_¢1-2 (yot KT
a(t,00— ke (1772 W ,
(A19)
Yok (Yot KT
azz(t,O)—> T CO W (A20)



PRE 58 FINGERPRINTS OF CLASSICAL INSTABILITY N . .. 4225

[1] G. Casati and B. V. ChirikovQuantum ChaogCambridge World in Quantum TheorySpringer-Verlag, Berlin, 1996
University Press, Cambridge, 1995 and references therein; W. H. Zurek, Prog. Theor. PBgs.
[2] L. E. Reichl, The Transition to Chaos in Conservative Classi- 281(1993.
cal Systems: Quantum Manifestatiof&pringer-Verlag, Ber- [15] R. Schack and C. M. Caves, Phys. Re\5& 3387(1996.
lin, 1992. [16] R. Schack and C. M. Caves, Phys. Rev5& 3257(1996.

[3] A. M. Ozorio de Almeida,Hamiltonian Systems: Chaos and [17] G. Barton, Ann. Phys(N.Y.) 166, 322(1986.
Quantization(Cambridge University Press, New York, 1988 [18] A. J. Lichtenberg and M. A. LiebermaRegular and Chaotic
[4] M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics Motion (Springer-Verlag, Berlin, 1992

(Springer-Verlag, Berlin, 1990 [19] Y. B. Pesin, Russ. Math. Surve®®, 55 (1977).
[5] F. Haake,Quantum Signatures of Chad$pringer-Verlag, [20] P. Miller and S. Sarkatunpublishedl
New York, 1990. [21] C. Beck and F. Schiyl, Thermodynamics of Chaotic Systems

[6] Chaos and Quantum Physics, 1989 Les Houches Lectures, Ses- (Cambridge University Press, Cambridge, 1993
sion LI, edited by M. J. Giannoni, A. Voros, and J. Zinn- [22] R. Feynman and F. Vernon, Ann. Phy.Y.) 24, 118(1963.
Justin(North-Holland, Amsterdam, 1991 [23] B. L. Hu and A. Matacz, Phys. Rev. B9, 6612(1994.

[7] G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Ford, 8to- [24] D. Koks, A. Matacz, and B. L. Hu, Phys. Rev. &b, 5917
chastic Behavior in Classical and Quantum Hamiltonian Sys- (199%; 56, 5281(1997.
tems edited by G. Casati and J. Ford, Lecture Notes in Physic$25] E. Joos and H. D. Zeh, Z. Phys. 59, 223(1985.

Vol. 93 (Springer-Verlag, Berlin, 1979 [26] W. H. Zurek, Phys. Scrto be publishef
[8] F. Haake, M. Kus, and R. Scharf, Z. Phys6B, 381(1987. [27] A. Tameshtit and J. E. Sipe, Phys. Rev48, 8280(1992; 47,
[9] H. J. Korsch and M. V. Berry, Physica 8 627 (198)). 1697 (1993.
[10] S. Habib, K. Shizume, and W. H. Zurek, Phys. Rev. L8&€. [28] P. Pechukas, Chem. Phys. L&86, 553 (1982.
4361(1998. [29] J. Wilkie and P. Brumer, Phys. Rev. Lef7, 1185(1991J).
[11] S. Sarkar and J. S. Satchell, Physic2® 343(1988. [30] J. Pique, Y. Chen, R. Field, and J. Kinsey, Phys. Rev. G&t.
[12] W. H. Zurek and J. P. Paz, Phys. Rev. L&®, 2508 (1994); 475 (1987).
G. Casati and B. V. Chirikovibid. 75, 350 (1995; W. H. [31] G. M. D’Ariano, L. R. Evangelista, and M. Saraceno, Phys.
Zurek and J. P. Paibid. 75, 351(1995; W. H. Zurek and J. Rev. A 45, 3646(1992.
P. Paz, Physica B3, 300(1995. [32] R. Zarum and S. Sarkar, Phys. Rev5E 5467(1998.

[13] A. O. Caldeira and A. J. Leggett, Physical®1, 587 (1983. [33] Handbook of Mathematical Functionatl. Bur. Stand. Appl.
[14] D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu, and Math. Ser. No. 55, edited by M. Abramowitz and I. Stegun
H. D. Zeh, Decoherence and the Appearance of a Classical (U.S. GPO, Washington, DC, 1965



