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Weak selection and stability of localized distributions in Ostwald ripening
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We support and generalize a weak selection rule predicted recently for the self-similar asymptotics of the
distribution function(DF) in the zero-volume-fraction limit of Ostwald ripenif@®R). An asymptotic pertur-
bation theory is developed that, when combined with an exact invariance property of the system, yields the
selection rule in terms of the initial condition, predicts a power-law convergence towards the selected self-
similar DF, and agrees well with our numerical simulations for the interface- and diffusion-controlled OR.
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In a late stage of a first-order phase transition a two-phastime like t¥("*2) and the number of domains decreases like
mixture undergoes coarsening, or Ostwald ripeni@R), t ("2 put the coefficients in these scaling laws are
when the minority phase tends to minimize its interfacialdependent.
energy under the condition of a constant volufhe3]. De- The self-similarity and related scalings were discovered
spite numerous works, OR continues to attract attention bothy LS [1,2] in the case oih=1 (diffusion-controlled OR
in experimen{4] and in theory{5,6]. Our main motivation in LS arrived at aunique self-similar DF (we will call it the
studying this problem has been an attempt to resolve an ollimiting solution) and ruled out other possible solutions. In
selection problenfdescribed belowthat created much con- the first papef1], the other solutions were rejected as non-
troversy. normalizable with respect to Ed2). In the case oih=0

The “classical” formulation of the problem of OR, valid (interface-controlled OR this argument was repeated by
in the limit of a negligibly small volume fraction of the mi- Wagner[3]. However, already in their second pagpét on
nority domains, is due to Lifshitz and Slyoz@vS) [1,2] and  the same subject LS realized that no problem with normal-
Wagner[3]. In this formulation, the dynamics of the distri- ization arises for initially localized DFgthat is, for those
bution function(DF) F(R,t) of the domain sizes is governed with a compact support @t=0). This correction was appar-
(in scaled variablgsby the continuity equation ently overlooked in the literature.g., Ref[7]) until Brown

[8] addressed the other solutions and found them numerically
- i) (1) for n=1. This created a long-standing controvefsge, e.g.,
R. R/’ [9]) and the first step towards resolving it was made in the
case ofn=0 [6]. It was noted that a DF, initially localized
whereR(t) is the critical radius for expansion or shrinkage on an interva[ O,R,,(t=0)], always remains localized on a

of an individual drop, whilen is determined by the mass (time-dependentinterval [0,R,(t)]. Furthermore, ifF (R,t
transfer mechanism. The dynamics are constrained by con=() is describable by a power laf,[R,(t=0)—R]* in

F 4 VF)=0, V(R _1
EJrﬁ( )=0, V( ,t)—@

servation of the total volume of the minority domains the close vicinity ofR=R,(t=0), then for anyt>0 the
. leading term in the expansion &f(R,t) in the vicinity of

f R3F(R,t)dR= Q= const. (2) R=Rgy(t) has the formA(t)[ R(t) —R]*. Invariance of the

0 exponent\ under the dynamicél) and (2) implies a selec-

tion rule[10] for the “correct” self-similar DF, as there is a
Of great interest are possible self-similar intermediatepne-to-one correspondence between)d< +« and the pa-
asymptotics of this problem and the rule that selects the rekametero [6]. [The limiting solution corresponds to an ex-
evant asymptotics out of many possibilities. Scaling analysigended (noncompadt initial condition or, formally, to\
of Egs. (1) and (2) yields a similarity ansatzF(R,t)  — +c.] More precisely, if a self-similar asymptotics is ever
=t #“®(Rt"") and R.=(t/0)", where u=4/(n+2), v reached, it must be the one selected\byHowever, no at-
=1/(n+2), and o=const. Upon substitution, one finds a tempts have been made to sokeven numericallythe full
family of self-similar DFs for everyn=—1, where each of time-dependent problem with a localized initial DF. Further-
the DFs is localized on a finite intervi0,uy,] of the simi-  more, no stability or convergence analysis for the localized
larity variableu=Rt"”. The DFs can be parametrized by DFs has been performed, so the selection rule proposed in
and the interval of possible values efis determined by the [6] has remained unconfirmed.
requirements of the continuity &f(R,t) on the whole inter-  This paper supports the selection rule along three direc-
val [O,uy,] and normalizability with respect to E@2). For  tions. The first one is to generalize the selection rule for any
each of the solutions, the average domain radius grows iA=—1. The second is to prove the stability of and analyze
the convergence towards the selected self-similar DF. The
third is to verify our theoretical predictions numerically.
*On leave from the Institute of Theoretical and Experimental A meaningful formulation of the stability problem re-
Physics, Moscow 117259, Russia. quires some care. Indeed, each member of the family of self-
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similar solutions for the DF, except the limiting solution, is ymptotics of the unperturbed solution near the poirtl,

formally unstable with respect to addition of anfinite) tail.
In this case it is the limiting solution that will finally develop

that is, [ 5x°®(x)dx=0 and®,;=O(d,) atx—1.
A family of steady-state solutiony(x) (parametrized

[1,2,9. However, such a perturbation is not always possibleby v,) is obtained from the zeroth-order equation

In addition, the results df6] imply that each member of the
family, except the limiting solution, is formally unstable with
respect to docalizedperturbation that either has a lardey,
than the “unperturbed” DF or the sanf®,, and a smaller

[Vo(X "=X)+Xx—x"""1])(dPy/dX)

+[(N+1)Xx " 2—nuox " 1-4(vy—1)]Py=0. (7)

exponeni. In each of these cases another self-similar solujntegration of this equation in elementary functions is pos-

tion from the same family finally develogas we see in our
numerical simulationsand this situation can hardly be re-

garded as instability. A meaningful formulation of the stabil-
ity problem should therefore deal with initial perturbations

localized on the same interval & as the unperturbed DF

sible forn=-1,0,1, and 2(that is, for most cases of physi-
cal interes{11]). For example, fon=0 one has

and characterized by the same exponent in the close vicinityhere

of R,(t=0).

We will develop an asymptotic linear theory that, com-

bined with an(exac} invariance property of the model, will

enable us to prove, analytically, the stability of each of the
self-similar DFs. This result and our numerical simulations

will confirm the weak selection rulgs]. We will analyze the

Do(X)=CoX(1—Xx)*(X;—X)", 0Os=x=1, 8
41)0_5 U0_5 1
R S A S ©

while Cq, is determined from the conditioﬂiéx%o(x)dx
=Q. This family of solutions is defined for 5v,<2. It

late-time convergence of an initially localized DF towards corresponds to the family afelf-similarsolutions for (R, 1)

the selected self-similar DF and findp@wer-lawdecay in
time for the correspondingnon-self-similay perturbation.

This decay is much faster than the logarithmic decay found

for the limiting solution[1,2]. We will see that not only the

obtained in Ref[6].
For n=1 one obtains

Do=Cox*(1—X)“(X—X_)"2" "1(x; —X)~ 1772, (10)

selected self-similar DF, but also the decay exponent is dgere

termined solely by the analytical propertiesfofR,t=0) in
the close vicinity ofR,(t=0). Our theoretical predictions
show very good agreement with simulations.

We will start with the asymptotic theory. Solving the

. 5U0_6
- 3-2u,’

_ 12— 7U0
"6 g

300

Y27 (6= 4vy)s’
(12)

o

problem analytically is made possible by a change of vari-

ables that employs the compactness of the sup¢R,(t) ]
of the DF. Introduce a scaled drop radius and a new time

Rt)= —— —ft _a 3
ROTR T lorpaey @

and a scaled DF
G(x,7) =Ry (t(1)F(R(X,7),t(7)). (4)

In the new variables Eq$l) and(2) can be rewritten as
(0G1a7)+[v (X "—x) +x—x"""1](9G/Ix)

+[(n+1)x " 2—nux " 1-4(v—-1)]G=0 (5
and [iG(x,7)x%dx=Q, respectively, where v(7)
=Ry(t(7)/R.(t(7)). The functionG(x,7) is nonzero on the
interval 0<x<1 and zero elsewhere.

We will see in a moment that a self-similar solution for
F(R,t) corresponds to &teady-statesolution for G(x, 7).
Therefore, we are looking for the solution in the form

G(X,7)=Py(x)+ P (x)e4+--- | ©

v(7)=vot+v,€97+---
whereq is a(sought foj complex number. Botl®y(x) and

®,(x) are localized on the intervdD,1]. The perturbation
must not change the normalization conditi@ and the as-

X+=(—1%9)/2, s=[(vo+3)/(vo—1)]*% and O<x=<1.
This family is defined for 6/5v,<3/2.

For anyn, we will need to know the behavior @b y(x)
and®(x) in the close vicinity ofx=1. A simple analysis of
Eq. (7) yields ®o=Hy({) %, where{=1—x, Hy({) is an
analytic function on the intervdD, 1], Hy(0)+#0, and

B (n+4)vo—n_5

- n+2—(n+1)vy’ (12)

o
The solution for ®y(x) exists if O<a<w, that is,
+5)/(n+4)<vy<(n+2)/(n+1). This interval of permit-
ted values oy, is non-empty for anyn=— 1. [The case of
n=—1 is the simplestH({)=const.]
Now we go to the first order in Eq5):

[vo(X "—X)+Xx—x"""1](dP,/dx)
+[g—(N+1)x "2—nuogx "1-4(vy—1)]P,
=v, (X=X N (dPy/dx)+(4+nx ""Hdy]. (13

For a giverw 1, this linear equation can be solved in quadra-
tures[12]. We will need only the leading asymptotics of the
solution in the close vicinity ok=1, so we write down the
solution as

D= {"x1(0) + Pxa(0),

where B=a—q[n+2—(n+1)ve] %, x; and x, are ana-
lytic functions on the interval0,1], andx; 0)#0. The so-

(14
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lution exists if ReB=0, which implies Reg<(n+4)vg—n

—5. One can chechk posteriorithat this inequality holds.
Equation(14) will be used later. At this stage we notice

that the still undetermined “eigenvaluedf must be selected

by the initial condition. To make this selection possible, we

should exploit arfexac} invariance property of Eq1). Con-
sider the initial value problendR/dt=V(R,t), R(0)=R,
that describes the characteristics of EL). If the solution of
this problem,R(t;Ry), is known, the solution of Eq1) can
be written in the form

F(R,t)=Fy(Ro(R,t))IRy(R,1)/ 4R, (15

where Ry(R,t) is the function inverse tdr(t,Ry) with re-
spect to the argumemR,. R(t,Ry) is an analytic and mono-
tonic function of R,. Therefore, the inverse function
Ro(R,t) is also an analytic function oR and soF(R,t)
preserves its analytic form along the characteristiRs
=R(t;Ry), including the “edge” characteristicR(t).

We assume a power-law behavior B{R,t=0) in the
close vicinity ofR=R,(0). More precisely, we assume that

Fo(é)=£10,(&)+ £'20,(§), (16)

where ¢{=R,(0)—R>0. Here\; and\,>\, are arbitrary
positive numbers such that,—\;#1,2,...andg,(£¢) and
0,(£) are analytic ag=0 such thatg; ,(0)#0. In view of
the analyticity property mentioned above, E@5) can be
rewritten as

F(R,t):(f,))\lhl(gl,t)+(§,)}\2h2(§,,t), (17)

where ¢’ =R, (t) —R>0, while hy(¢&',t) and h,(&',t) are
analytic functions o’ at £’ =0 andh, 4(0,;t) #0.

Under the transformatiofB8) and(4) the variablesR and
F are multiplied by some quantities independent Rf
Therefore, we can rewrite Eq$16) and (17) in the new
variablesx and r as follows. The initial DF is now

Go(X)=£6101(5) + £2g5(¢),
wheregj({) andg,(¢) are analytic a=0,g; 0)#0 and

>0, (18

we recall thatt=1—x. Correspondingly, the time-dependent

DF G(x,7) can be written as
G(x,7)=¢"thi(L,7)+ M2hy(L,7),

whereh;(¢,7) andhj(¢,7) are analytic functions of in ¢
=0 andh; ,(0,7) #0.
The exponenta.; and\,, prescribed by the initial con-

>0, (19

ditions, remain invariant. Hence the long-time asymptotics of

Eqg. (19) should coincide with that given by Eq$6) and
(14). A direct comparison yielda=\A; andB=\,. The first
equality is nothing but gweak) selection rule for the self-
similar solution and the selected valuewgf is

_(N+2)N+n+5 20
VO N+ A +n+4 (20
The second equality determings
3(N2— A1)
—Qq= (21

(N+21)N;+n+4°
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FIG. 1. Convergence of an initially localized DF with=1
towards the selected self-similar OB) with vy,=7/5 (solid line).
Numerical solutions are shown by dotted lines at time moments
t=20 (a), 100 ), 500 ), and 1000. The inset shows the conver-
gence ofv(t) towardsvy="7/5.

One can see that q is real and positive, which means sta-
bility.

Returning to the “physical” variableR andt is easy.
Indeed, evaluatindr,,(t) for the self-similar solution, we
obtain Ry, (t)=[(n+2)(vo—1)t]¥""2). Then, using Eq.
(3), we see thae9"=t"", a power-law decay in the physical
time. Here

_ 3(A2—Nyp) -0,

(n+2)(\1+1)

If we limit ourselves to an important particular case of a
single “nontrivial” exponent in the initial DF, Gy(x)
={"g(¢) [where g({) is analytic andg(0)#0], then
G(x,7)={M(Z,7), whereh(Z,7) is an analytic function of
¢ andh(0,7) #0. Now, using Eqgs(6) and (14), we obtain

3
AT T DAtn+a’
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FIG. 2. Convergence exponents predicted analytidditig) and
found numerically(squaresfor different\.
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unless the linear term in the Taylor seriesgfl) at {=0
vanisheqd13]. This yields the power exponent

shows convergence of an initially localized DF(R,0)
=R(5—R)" with A =1, towards the selected self-similar DF
(8), for which Eq.(20) predictsvy=7/5. The inset shows
convergence ob(t) towardsvy=7/5. The convergence ex-
ponentl’,,=0.76 found numerically agrees very well with
our theoretical predictiof;,=0.75. Figure 2 shows the con-
In the limit of A\ —o, we obtainl'— 0. Clearly, it corre- \éerggnce exponetnﬂégg(l’,]) f;)hundthnumei_rlcelllly foFr dlffg;[e;(t;\.

T : ood agreement wi e theoretical curlg,=
sponds to the logarithmically slow decay obtained for the+1)] is seen. We also observed good agreement between the

limiting solution [1,2]. Therefore, both the self-similar DF eory and simulations in the case of the diffusion-controlled
and the power-law decay rate of a small perturbation aroun R ny: 1

it are uniquely determined by the asymptotics of the initial We have demonstrated in this work that only weak selec-

DF in the close vicinity of the maximum domain S 5, ig possible in the classical model of OR. To get@ng

=Rn(0). i selection rule, one obviously must go beyond the classical
We verified the theoryin the casesi=0 and 1 by per- 46|, One way of extending the classical model is an ac-

forming extensive numerical simulations with Bj) and an .t of fluctuations. This and related issues are discussed in

explicit equation forR, that follows from Eqs(1) and(2).  gnother papef15]. To the authors knowledge, it was David
As the dynamics is extremely sensitive to small changes i\ kessler who coined the terms “weak” and “strong” se-
the vicinity of R=R,(t), we needed an algorithm that pre- |oction.

served the compactness of the DF and kept a high accuracy

near the edge poiflR=R,(t). A simple and efficient La- This work was supported in part by a grant from the Israel
grangian algorithm was developé#l4] that satisfied these Science Foundation, administered by the Israel Academy of
requirements. Typical simulation results for the interface-Sciences and Humanities, and by the Russian Foundation for
controlled ORNh=0, are presented in Figs. 1 and 2. Figure 1Basic ResearckGrant No. 96-01-01876
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