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Softening of the phase transition in a two-dimensional Potts model
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Fatih Yagr, Yigit Gundig, and Tarik @lik
Physics Department, Hacettepe University, Beytepe 06532, Ankara, Turkey
(Received 3 April 1998

We have simulated, by using a cluster algorithm, the8 state Potts model in two dimensions with a
varying amount of quenched bond randomness. We have shown that there exists a finite size-dependent
threshold value of the introduced quenched bond randomness for rounding the first-order phase transition and
that this threshold value becomes smaller as the system size increal@e83-651X98)15509-5

PACS numbg(s): 64.60.Cn, 05.70.Jk, 75.10.Nr

The effect of the addition of quenched bond randomnesfence the effects of having metastable states may be more
to classical systems whose pure version displays a contingmphasized. In an earlier wofl,9] on a two-dimensional
ous phase transition is well understood in terms of the Harri®otts model, it was observed that, compared to the local
conjecture[1], which states that the values of the critical operators such as energy and order parameter, cluster related
exponents change only if the specific heat exponeris  (globa) operators are more sensitive to structural changes in
positive. Recently, the introduction of randomness to the systhe system going through a phase transition. Particularly, the
tems undergoing a first-order phase transition has attracted/erage cluster size distribution may give a better indication
much interest. Phenomenological renormalization group arf the order of the phase transition at smaller lattice sizes
guments by Hui and Berkdi2] and rigorous proof of the than that fqr the energy distribution. The average cluster size
vanishing of the latent heat by Aizenman and Wé¢af  ©@" be defined as
showed that bond randomness will induce a second-order 1/ N
phase transition in a system that would otherwise undergo a ACS= _< 2 Ci> ' 1)
symmetry-breaking first-order phase transition. The renor- Nc\i=1
malization group(nonrigorou$ arguments state that any in-
finitesimal amount of bond randomness will drive the systenivhereNc is the number of clusters ar@ is the number of
to possess a second-order phase transition$o2 whered ~ SPins in theith cluster normalized by dividing by the total
is the dimension of space. The numerical evidence for thi§umber of spins. . . .
prediction is provided by Monte Carlo simulation of the two- 1€ @m in this work is to simulate, by using a cluster

dimensional eight-state Potts modél under a certain type algo_rithm, the two-dimensionaj-state Potts model with a
of bond randomnes&]. While the pure model is known to varying quenched bond randomness and to observe the en-

possess a strong first-order phase transition, the simulatiofg9Y and the average cluster size histograms in order to gain

with two sets of randomly distributed ferromagnetic bonds ofmS'ghht Into t.Te qrder fththe phase transition in the system.
two different strengths of certain ratio gave clear evidence of The Hamiltonian of the Potts modgl0] is given by

a second-order transition with 2D Ising exponents. For the

convenience of establishing the histograms, the strong to H:E Kij O .- )
weak bond ratio was chosen s 2 or 10 in Ref[5] and the (i) v

simulations were carried out on lattices of linear size 12

<L =<128. In this context, it would be quite relevant to study Here K;; =J;; /KT, wherek and T are the Boltzmann con-
the changes in the characteristic behaviors of the system witffant and the temperature, respectively, dpds the mag-
respect to the introduction of a gradually increasing degree

of bond randomness as well as its finite size dependence. 10 072 e
Distinguishing the order of a phase transition is one of the sl > ol

major problems concerning computer simulation studies of " ;g

spin systems. The major difficulty, in this respect, arises 5 6l

when the correlation length is finite but larger than the lattice 3

size. In such situations, commonly used tools of identifying 8 4!

the order of a transitiotte.g., by looking for the minima in §

free energy 6] or by considering the probability distributions ol

of energy[7]) may not be indicative. Even if there exist

metastable states, the size of the system may prevent the
observation of the double-peak behavior in the energy distri-

bution. The basic reason for such behavior may be that en-
ergy is a local quantity. Quantities of global nature are ex- FIG. 1. Energy histograms for several valuesr ain a 64x 64
pected to be more sensitive to the correlation length andthttice.
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FIG. 2. Averaged cluster size distributions for several values of ) )
r on a 64x 64 lattice. FIG. 3. Energy histograms far=0.53 on several lattices.

netic interaction between sping and o;, which can take sen smaller. In order to obtain better insight into the order of
values 1,2,..,q for the g-state Potts model. In the pure phase transition, we examined the average cluster size distri-
systemKj; is a constant and the value of the transition tem-butions, which were found to yield quite useful information
perature is known for alfj asK.=In(1+/q). In the random concerning the order of the phase transition in the mure
bond Potts model, the couplings are selected from two posistate Potts model pha$g,9]. As shown in Fig. 2, the appar-
tive values with a weak to strong ratie=K,, /K, which are  ent peaks in the small cluster region, which is an indication

chosen randomly from the distribution of having metastable state disappearirfer0.46. The phase
transition studied here on 6464 lattice changes from first-
P(K)=p&(K—Ky)+(1-p)s(K-Ky). order to second-order somewhere in the range 9r46

=0.50, the exact value of which is not attempted here to be
evaluated. The observed threshold value for the randomness
is specific to the lattice size used. Therefore the next step is
to investigate how this threshold value changes with the size
of the lattice. Figure 3 displays the energy histograms for a
fixed value ofr, namely,r =0.53, obtained on different size
lattices. Here, this value of chosen because the system ap-
parently undergoes a weak first-order phase transition for this
amount of quenched randomness. According to the finite size
{scaling arguments conjectured on lattice, for a first-order
pﬁﬁase transition, the valley between the double peaks in the
energy histogram should become deeper and scale as the

about 20 lattice sitegl3], these lattices are considered to bevolume WIFh the Increasing Iattlc_e size. On the other ha.”.d'
the opposite behavior appears in a second-order transition

an indicative set for both large lattice measurements and foénd the double peak structure in the energy distribution

the lattices of the order of the correlation length. Measure—s owly changes to a single Gaussian as the Iattice volume

trgemmzrg;irgogi;bﬁg;gsnzagrsglogr;g?ﬂf:éa]fgﬁiva?]d "’t‘;\:aB comes larger. From the distributions shown in Fig. 3, one
P p g will observe a first-order phase transition on a<@¥ lattice

ltgteigwavl\'/f)?lt(fn trhuenscﬁj fstse%O: tz;g I;?ritrli?f?[‘sﬂl' 4':% a:! Sérrnnl_]' while a second-order on 128128 lattice. One will then need
' P 9 ' to introduce less amounts of randomnésssmaller than

ployed. . . .
We have examined the phase structure of the eight-stat?e253 to regain the double peak structure in the energy dis

Potts model with respect to the quenched randomness in t floution on the 128 128 lattice. Apparently, the observed
. E q - m%reshold value for the amount of quenched impurities for
range starting frontr=1 (the pure caseto r=0.1 (weak

bonds are ten times weakeFor a fixed value of, 20 rep- _the characteristic behavior of the system to change from hav-

licas are created by randomly distributing the strong an n9 a}.ﬂrst-order_ pha;e transition to a second-ordgr one 1S

. : pecific to the finite size of the system under consideration.
weak bonds over the lattice. The histograms for energy ar%his threshold gets smaller and smaller as one moves to-
the average cluster size are obtained by averaging the COMards the infinite systems, which is what we expect accord-
sponding quantities over the replicas. In Fig. 1, we show th '

energy histogram on 6464 lattice for several values of T{:SI g)n:jheBé?;;[rgahzatlon group arguments put forward by

Starting from the pure case, which exhibits a rather strong

first-order phase transition, the eight-state Potts model with We thank W. Janke and D. Stauffer for fruitful discus-
guenched bond randomness displays a double-peak structils®ns and their valuable comments. The hospitality at ZIF,
in the energy histogram down to=0.5; the latter value University of Bielefeld, where part of this work was done, is
corresponds to the case studied in RBf. By further tuning,  gratefully acknowledged. This project is partially supported
one observes a single Gaussian in the energy histogram fby Hacettepe University Research Fund under Project No.
r=0.46, which Gaussian gets sharper as the valueabfo-  95.010.10.003.

When the probabilityp is taken agp=0.5, the duality rela-
tion [11]

(ew—1)(eKs—1)=q

gives the critical valueK{, and K¢ of the corresponding
couplingsK,, andKg.

The two-dimensionadj-state Potts model is known to un-
dergo a first-order phase transition fqe=5 [12]. In our
simulation of the eight-state Potts model, the measuremen
are done on three lattices of the size€,384°, and 128.
Since the calculated correlation lengghof this model is
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