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Softening of the phase transition in a two-dimensional Potts model
under quenched bond randomness

Fatih Yaşar, Yiğit Gündüç, and Tarık Çelik
Physics Department, Hacettepe University, Beytepe 06532, Ankara, Turkey

~Received 3 April 1998!

We have simulated, by using a cluster algorithm, theq58 state Potts model in two dimensions with a
varying amount of quenched bond randomness. We have shown that there exists a finite size-dependent
threshold value of the introduced quenched bond randomness for rounding the first-order phase transition and
that this threshold value becomes smaller as the system size increases.@S1063-651X~98!15509-5#

PACS number~s!: 64.60.Cn, 05.70.Jk, 75.10.Nr
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The effect of the addition of quenched bond randomn
to classical systems whose pure version displays a con
ous phase transition is well understood in terms of the Ha
conjecture@1#, which states that the values of the critic
exponents change only if the specific heat exponenta is
positive. Recently, the introduction of randomness to the s
tems undergoing a first-order phase transition has attra
much interest. Phenomenological renormalization group
guments by Hui and Berker@2# and rigorous proof of the
vanishing of the latent heat by Aizenman and Wehr@3#
showed that bond randomness will induce a second-o
phase transition in a system that would otherwise underg
symmetry-breaking first-order phase transition. The ren
malization group~nonrigorous! arguments state that any in
finitesimal amount of bond randomness will drive the syst
to possess a second-order phase transition ford<2 whered
is the dimension of space. The numerical evidence for
prediction is provided by Monte Carlo simulation of the tw
dimensional eight-state Potts model@4# under a certain type
of bond randomness@5#. While the pure model is known to
possess a strong first-order phase transition, the simula
with two sets of randomly distributed ferromagnetic bonds
two different strengths of certain ratio gave clear evidence
a second-order transition with 2D Ising exponents. For
convenience of establishing the histograms, the strong
weak bond ratio was chosen asr 52 or 10 in Ref.@5# and the
simulations were carried out on lattices of linear size
<L<128. In this context, it would be quite relevant to stu
the changes in the characteristic behaviors of the system
respect to the introduction of a gradually increasing deg
of bond randomness as well as its finite size dependenc

Distinguishing the order of a phase transition is one of
major problems concerning computer simulation studies
spin systems. The major difficulty, in this respect, aris
when the correlation length is finite but larger than the latt
size. In such situations, commonly used tools of identify
the order of a transition~e.g., by looking for the minima in
free energy@6# or by considering the probability distribution
of energy @7#! may not be indicative. Even if there exis
metastable states, the size of the system may preven
observation of the double-peak behavior in the energy dis
bution. The basic reason for such behavior may be that
ergy is a local quantity. Quantities of global nature are
pected to be more sensitive to the correlation length
PRE 581063-651X/98/58~4!/4210~3!/$15.00
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hence the effects of having metastable states may be m
emphasized. In an earlier work@8,9# on a two-dimensional
Potts model, it was observed that, compared to the lo
operators such as energy and order parameter, cluster re
~global! operators are more sensitive to structural change
the system going through a phase transition. Particularly,
average cluster size distribution may give a better indicat
of the order of the phase transition at smaller lattice si
than that for the energy distribution. The average cluster s
can be defined as

ACS5
1

NC
K (

i 51

NC

Ci L , ~1!

whereNC is the number of clusters andCi is the number of
spins in thei th cluster normalized by dividing by the tota
number of spins.

The aim in this work is to simulate, by using a clust
algorithm, the two-dimensionalq-state Potts model with a
varying quenched bond randomness and to observe the
ergy and the average cluster size histograms in order to
insight into the order of the phase transition in the system

The Hamiltonian of the Potts model@10# is given by

H5(
^ i , j &

Ki j ds i ,s j
. ~2!

Here Ki j 5Ji j /kT, wherek and T are the Boltzmann con
stant and the temperature, respectively, andJi j is the mag-

FIG. 1. Energy histograms for several values ofr on a 64364
lattice.
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netic interaction between spinss i and s j , which can take
values 1,2,. . . ,q for the q-state Potts model. In the pur
system,Ki j is a constant and the value of the transition te
perature is known for allq asKc5 ln(11Aq). In the random
bond Potts model, the couplings are selected from two p
tive values with a weak to strong ratior 5Kw /Ks , which are
chosen randomly from the distribution

P~K !5pd~K2Kw!1~12p!d~K2Ks!.

When the probabilityp is taken asp50.5, the duality rela-
tion @11#

~eKw
c
21!~eKs

c
21!5q

gives the critical valuesKw
c and Ks

c of the corresponding
couplingsKw andKs .

The two-dimensionalq-state Potts model is known to un
dergo a first-order phase transition forq>5 @12#. In our
simulation of the eight-state Potts model, the measurem
are done on three lattices of the sizes 322, 642, and 1282.
Since the calculated correlation lengthj of this model is
about 20 lattice sites@13#, these lattices are considered to
an indicative set for both large lattice measurements and
the lattices of the order of the correlation length. Measu
ments are done about the transition temperature and at
temperature 53105 iterations are performed following th
thermalization runs of 53104 to 105 iterations. For all simu-
lation works, the cluster update algorithm@14,15# is em-
ployed.

We have examined the phase structure of the eight-s
Potts model with respect to the quenched randomness in
range starting fromr 51 ~the pure case! to r 50.1 ~weak
bonds are ten times weaker!. For a fixed value ofr, 20 rep-
licas are created by randomly distributing the strong a
weak bonds over the lattice. The histograms for energy
the average cluster size are obtained by averaging the c
sponding quantities over the replicas. In Fig. 1, we show
energy histogram on 64364 lattice for several values ofr.
Starting from the pure case, which exhibits a rather stro
first-order phase transition, the eight-state Potts model w
quenched bond randomness displays a double-peak stru
in the energy histogram down tor 50.5; the latter value
corresponds to the case studied in Ref.@5#. By further tuning,
one observes a single Gaussian in the energy histogram
r 50.46, which Gaussian gets sharper as the value ofr cho-

FIG. 2. Averaged cluster size distributions for several values
r on a 64364 lattice.
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sen smaller. In order to obtain better insight into the order
phase transition, we examined the average cluster size d
butions, which were found to yield quite useful informatio
concerning the order of the phase transition in the pureq-
state Potts model phase@8,9#. As shown in Fig. 2, the appar
ent peaks in the small cluster region, which is an indicat
of having metastable state disappear forr 50.46. The phase
transition studied here on 64364 lattice changes from first
order to second-order somewhere in the range 0.46<r
<0.50, the exact value of which is not attempted here to
evaluated. The observed threshold value for the random
is specific to the lattice size used. Therefore the next ste
to investigate how this threshold value changes with the s
of the lattice. Figure 3 displays the energy histograms fo
fixed value ofr, namely,r 50.53, obtained on different siz
lattices. Here, this value ofr chosen because the system a
parently undergoes a weak first-order phase transition for
amount of quenched randomness. According to the finite
scaling arguments conjectured on lattice, for a first-or
phase transition, the valley between the double peaks in
energy histogram should become deeper and scale as
volume with the increasing lattice size. On the other ha
the opposite behavior appears in a second-order trans
and the double peak structure in the energy distribut
slowly changes to a single Gaussian as the lattice volu
becomes larger. From the distributions shown in Fig. 3, o
will observe a first-order phase transition on a 64364 lattice
while a second-order on 1283128 lattice. One will then need
to introduce less amounts of randomness~r smaller than
0.53! to regain the double peak structure in the energy d
tribution on the 1283128 lattice. Apparently, the observe
threshold value for the amount of quenched impurities
the characteristic behavior of the system to change from h
ing a first-order phase transition to a second-order one
specific to the finite size of the system under considerat
This threshold gets smaller and smaller as one moves
wards the infinite systems, which is what we expect acco
ing to the renormalization group arguments put forward
Hui and Berker@2#.
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f
FIG. 3. Energy histograms forr 50.53 on several lattices.
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