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A general analytical method is developed for describing crossover phenomena of arbitrary nature. The
method is based on the algebraic self-similar renormalization of asymptotic series, with control functions
defined by crossover conditions. The method can be employed for such difficult problems for which only a few
terms of asymptotic expansions are available and no other techniques are applicable. As an illustration,
analytical solutions for several important physical problems are presd¢@®063-651X98)14009-9

PACS numbgs): 05.20-y, 02.30.Lt, 11.10.Hi

[. INTRODUCTION decades there were many speculations suggesting that there
exists a phase transition at a particular value of the coupling
Crossover phenomena are ubiquitous in nature. Probablparameter. However, modern highly accurate Monte Carlo
they are much more common than phase transitions. Wheealculations[4] confirm the initial Feynman picturg3],
speaking about crossover phenomena, one usually keeps fmoving that we meet here not a phase transition but a clas-
mind the following picture: A functionf(x), describing a sical crossover.
physical quantity, is continuous in an interveJ<x<x., In the examples mentioned above, of simple anharmonic
but the behavior of (x) in the vicinity of the boundaries of Models, the Kondo effect, and of the FRiich polaron prob-
this interval isqualitatively differentnearx, as compared to |€m, the crossover, when varying a coupling parameter or
x,. The qualitative change of the behavior of this function, {€MPerature, is monotonic. However, there are cases when
asx moves from one side to another side, is commonly unCrOSSOVver is not monotonic. This concerns, for instance, one-
derstood as a crossover ' dimensional antiferromagnet whose characteristics are con-
It is possible to quote hundreds of examples of differentzgﬁr(?ﬁaﬁzgg?f;mn;mjllstgl?érggiglH;es Zilﬁi%'&g gi\i/zg/snon-
g\r/c()j;ocvr?a:ﬁggct);](;?rst)a:enhcs\;ioT?/\r/]ri/eghg:\:scs?:]gl;znnrgtﬁse qvtj:;fzrhqnotonic behavior becoming zero at each half—odd-integer
. _ . spin.
couplm_g tp the strong-couplmg limftL]. Th!s concerns, €.9., A nonmonotonic behavior can often be met in the depen-
the majority of problems having to do with the behavior of yonce of spectra of collective excitations on a wave vector.

energies as functions of a coupling parameter in statisticafnen the crossover from the region of small wave numbers,

physics, quantum mechanics, and field theory. Let us menssresponding to the long-wavelength acoustic regime, to the
tion in this respect the dependence of the spectra of SChr‘?egion of large wave vectors, corresponding to a single-

dinger operators on the anharmonicity parameter for varieparticle regime, can go through a nontrivial intermediate re-
gated anharmonic models. The energy spectrum of SUCgion displaying maxima and minima, associated with max-
models is _ql_Jalltatlver different in the Weak-couph(\geak ons and roton§6—8).

anharmonicity as compared to the strong-couplifgirong We could adduce a number of other examples of cross-

anharmonicity limits. over phenomena related to interesting physical problems. Let

A famous example of a crossover phenomenon is thes just mention deconfinement in nuclear matter, which is
Kondo effect[2] when the behavior of a system changesiaiher a crossover phenomenon than a phase trangitémn

qualitatively at varying temperature. Although this transfor-ihe giscussion if9]). However, we think that it is already
mation goes smoothly, with no discontinuities in thermody-cjear that crossover phenomena are widespread in nature and
namic characteristics, the change of properties is so noticgpat it is important to know how to describe them.

able that one can ascribe a particular point, called the Kondo Tpe description of crossover phenomena occurring in re-
temperature, to a region dividing qualitatively different re- 5)istic statistical systems is usually very complicated. This is
gimes of low and high temperatures. because one needs to find physical characteristics for a wide

Another renowned example of a crossover is thehfith  ange of parameters, which is far from being trivial for com-
polaron probleni3]. Polaron characteristics, such as its eN-plex systems. For example, we have to find a funcfitx)

ergy or effective mass, change qualitatively when varyingy, the whole semiaxis ©x<o. The variablex may repre-
the coupling parameter describing electron-phonon interacs—em’ e.g., a coupling parameter, temperature, or wave vector.
tions. This change happens so explicitly that for about tWCbuite often, one can define, more or less easily, the
asymptotic behavior of(x) near the boundaries of the inter-
val [0,@), that is, whenx—0 andx—oo. Such asymptotic
* Author to whom correspondence should be addressed. expressions may correspond to the weak-coupling and
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strong-coupling limits, to the low-temperature and high- Assume that we are looking for a physical characteristic
temperature expansions, to the long-wavelength and shormpresented by a functiorf(x), in which the variablex
wavelength approximations, and so on. However, in the inchanges in the interv@iD,~). The standard situation is when
termediate region, where there are no small parameters, oniee physical problem under investigation is so complicated
cannot invoke perturbative techniques. It would be nice tahat it is difficult, or even impossible, to find a reasonable
possess a method allowing one to construct interpolation forapproximation for the sought function in the whole given
mulas only from the knowledge of asymptotic expansionsinterval. However, it is often feasible to get an asymptotic

near boundaries. expansion for small variables

There exist several summation techniques, such as Pade
approximation, Borel summation, and conformal mapping, f(X)=px (x) (x—0), 1)
that permit one to ascribe effective sums to asymptotic series ] ] )
[1,10. However, all these techniques are not applicable ifvhere k=0,1,2..., employing a kind of perturbation

principle for the complex problems we are interested in heretheory. Also, it is often possible to find an asymptotic behav-
This is because of the following main reasons. First, all thesér of the function at large variables, say,

summation techniques, to be applicable, require the knowl-
edge of tens of terms in an asymptotic series. Such a luxuri- FO)=Tas(x)  (X—22). @

ous information is usually not available for nontrivial sys- . . L .

tems, for which standardly one is able to derive just a fewThe.n the mtgrpglaﬂon problem cqnssts N answering the fol-
perturbative terms. Then all mentioned summation techlow'n.g qgestlon. What can be said abogt the behavior of the
nigues are useless. Second, the latter are gusimation function n _the whqle |r_1terva[0,oo) being based on the
methods, while we here are concerned withirterpolation asymptotic information in Eqs(1) and (2)? Usually, not

problem. Summation and interpolation are far from being thénuph’ since the asymptotic expressm(rl_is af‘d (2), being :
same. derived in two opposite limits, have nothing in common with

The most known interpolation method is theo-point each other. In addition, perturbative approximations, such as

Padeapproximatior{11], which should not be confused with Eq. (1), usually result in divergent series. When one is lucky

the standard Padapproximation[10]. However, the former enough, Qealing Wit.h a more or less easy case, so that tens of
method, being a derivative of the latter, shares all its deﬁperturbatlve terms in Eq1) could be calculated, one could

ciences. Among the most important shortcomings of'Padé:r\]lzllf]% stci)vne]esEnmor(\;nastajiyer?aetlr]c,tnsﬁ(i:::IqHL:)E\B/\;Qindee(/teonailr?(:srtljii
approximants we mention the following: the necessity of 9 : '

having many perturbative terms, the appearance of unphys: lucky case, the found effective sum may have, and usually

cal poles, the ability to deal only with the so-called compat- as ngtotnngFto do W'thl’ tht?w Ilmt(12) (l;rorg anoth_er sr|]de ct)rf1 thle i
ible variables, the possibility of describing only those func-ax's[ ). For example, the standard case is when the limi

tions that have at infinity a power-law behavior with rational (2) corresponds to an exponential behavior. If one uses Pade

powers, and the impossibility to correctly treat nonmono-2PProximants or any other techniques based on them, for

tonic crossover. These difficulties are well known and re-f[?VStancg’ iiiﬁaarilrrfu?:nznﬁdlﬂf’r or;ie r?omvsr?i tﬁ annenff?ck;
peatedly discussed in literatuf#0-18. In addition, we re- e su € torm ot rational fractions, ch cannot be

mind the reader that the Padgproximation is rather a mat_ch_ed with an exponental. In the I?SS lucky but more
numerical method. realistic case, when only a few perturbative terms are known,

In the present paper we advance amalytical approach all these summation techniques become in principle useless.

for treating interpolation problems of arbitrary nature. This oW tcouldl vxt/_e prfoceecil in such oJI[!fﬁcm:EIt c;?sesdl?zgder to find
approach is free of the shortcomings typical of the two-point"’m_l'_r;1 er:?of‘t'g.” ormuia cgn?ecamg tq 7 ag : ' d how t
Padeapproximation. What also makes this approach more € first thing we need 1o do 1S 1o unhderstand how o

general than any other known methods is the possibility ofXtract ur?eful ||nfor:cnat|(.)n_t- f|r<:m a (fJIl};ergent _slegluenlf[:e
using it for those difficult cases when just a few asymptotic{pk(x)} when only a few iniial terms of 1t are avaiaole.
ould be nice to reconstruct the sequefipg(x)} in such a

terms are available and no other method is applicable. w/ o ” e, Havi |
illustrate the approach by applying it to several difficult way as 1o Improve Its convergence properties. Having only a
few terms, we cannot resort to the standard summation tech-

problems with monotonic as well as nonmonotonic cross- e : .
over. We would like to stress that the physical problems w iques. Nevertheles_s, a reconstruction is possible with the
elp of control functions[19,2Q. Let us denote the proce-

consider not only illustrate the wide applicability of the sug- £ introduci trol funci
gested approach but are also of interest as such. Therefm%l,Jre of introducing control functions as

the interpolation formulas we derive present analytical solu- _

tions for important physical problems. Celpu(X)}=Py(x,), ()

wheres=sy(x) is a set of functions such that the sequence
{P(x,s)} has better convergence properties thpp(x)}.

The interpolation approach we advance here is based ohhe name “control functions” reflects their role in control-
the ideas of our previous papers. However, since we do nding convergence. The introduction of such functions can be
assume that a reader in the common audience is already welbne in several ways. Generally, any procedure of obtaining
acquainted with these ideas, we provide here a clearly undee sequence of approximations consists of three elements: a
standable description of the method in general, complementalculational algorithm, an initial approximation, and addi-
ing it by those particulars that are necessary for adjusting itional transformations. For example, by introducing a relax-
to the interpolation problem. ation or damping parameter into the numerical Newton

Il. GENERAL APPROACH
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method, one can improve the convergence of the a2} properties. Now we have to concretize in what sense the

Under a given calculational algorithm, one may include conproperties of {P,(x,s)} should be better than those of

trol functions in an initial approximatiorPy(x,s), after {p(x)}. The greatest achievement would be if the trans-

which all the following approximations also become depenformed sequencgP,} is such that we could notice a relation

dent ons. This variant of introducing control functions is between subsequent terg andP, . ;. If so, we would be

probably the most widely used. One takes an initial Hamil-able to map the low-order terms to those of arbitrary high

tonian, Lagrangian, or action as depending on trial paramerder. That is, having just a few initial terms of a sequence

eters that are defined as control functions by imposing afP,}, we could extrapolate them to higher ordersafefin-

addition condition such as the minimal-difference conditioning an effective limitP* of this sequence. To formulate a

[19,20,22—-26 or the minimal-sensitivity conditiof27—-32.  relation between subsequent terms of a sequence of approxi-

Such conditions are, of course, heuristic. For simple casesnations means to define the property of self-similarity be-

such as zero-dimensional and one-dimensional oscillatorsween these terms. This can be calleddpproximation self-

for which perturbative terms of arbitrary order can be ob-similarity [39-43. To formulate the latter, we need to

tained, one may define control functions directly from theinvoke some further transformations. To this end, let us de-

condition of convergence of these termskas~ [33-35.  fine an expansion functior(¢,s) by the equation

Finally, if a calculational algorithm with an initial approxi-

mation have been fixed, one may introduce control functions Po(x,8)=¢, X=X(¢,S). (6)

by subjecting the resulting asymptotic series to additional

transformations. These can be either a change of variable§hen we introduce an endomorphism

with the reexpansion of the given series in powers of new

variables, or a transformation of a series itself. An example Yr(¢,8)=P\(X(¢,9),5), (7)

of the former case is the order-dependent mapping and of the, _ »

latter is the Borel-Leroy transformatidi]. However, these With an initial condition

transformations require the knowledge of the analyticity

properties of the sought functions itself, which is rarely

available. f
To our mind, a transformation that one wishes to apply to

. L ! reads

an asymptotic series in order to construct an analytical ap-

proach must satisfy three main stipulatiori: It must be _

generalto be applicable to any function without requiring PrX.8)=Yi(Po(x,5).9). ©

the knowledge of its properties that are not known. The soIeBy these definitions, the sequenpg(e,s)} is bijective to

assumption involved should be the existence of the soughiip, (x o)1, The property of self-similarity between the terms
function. (ii) It must besimpleto permit an analytical inves- of the sequencéy,(¢,s)} is written as[39-43
tigation. At the same time, simplicity is usually a requisite kA

for generality. (ii) It must beinvertible with a uniquely Vi ol ©,9) = Vi(Yo(¢,5),5). (10)
defined inverse transformation. This is evidently necessary to P PR

return from a transform to the function itself. In addition, it Thjs is nothing but the semigroup propewy, ,=YyxYp - The
would be desirable to have an apparent interpretation of thgs|ation (10) is reminiscent of a functional equation of the

y0(¢!S)E¢= (8)

ollowing from Eq.(6). The transformation inverse to E()

meaning of the chosen transformation. _ renormalization groupl,44]. However, here there is a prin-
These stipulations are satisfied by the algebraic transforsipg| difference. Renormalization-group equati¢hsi4] re-
mation[36-38 whose general form is late a function with scaled variables with the function itself.

So a renormalization-group equation describes motion with

respect to function variables. In our case, EfD) relates

different approximations from the sequergg}. Therefore,

the self-similarity of the approximatiofiL0) defines motion

with respect to approximation orders that play the role of

CJf(x)}—a(x,s) discr_ete time. In t_he I_anguage_: of_dynamical theory, a (_jy-
b(x.s) =f(x). namlce}l system with d|scretfa time is ca!led a cascade..Slnce

' the trajectory{y,(¢,s)} of this cascade is, by construction,

One of the simplest variants of Ef), as applied to a term  bijective to the sequence of approximatiofBy(x,s)}, a

Cs{f(x)}:a(x,s)+b(X,S)f(X), (4)

wherea(x,s) andb(x,s) are any functions guaranteeing the
uniqueness of the inverse transformation

C U C{f (0} =

pk(x) of a sequencgpy(x)}, is family of endomorphismgy,|k=0,1,2 ...} can be named
the approximation cascadpt5,46. An important feature of
C{Pr(X)}=Py(X,5) =X5py(X). (5 this cascade is that the self-similarity of the approximation

(10) is a necessary condition for the fastest convergence

This variant is not only simple but also has a transparenf42,43.
meaning wherp,(x) is akth-order truncated series in pow- For the purpose of developing an analytical theory, it is
ers ofx. Then the transformatiofd) effectively increases the not convenient to deal with discrete time. It would be desir-
approximation order fronk to k+s. able to pass from the discrete index0,1,2 ... to acon-

Assume that, in some way, we have introduced controtinuous variable e[0). This can be dong39-42 by in-
functions constructing from an initial sequenfg(x)} a  troducing an endomorphism(¢,s) such thaty; has the
transformed sequencgP,(x,s)} with better convergence same group property
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Vit A®,9)=Y(Y®,5),S) (11) whereP,=P\(x,s), Py=P;(x,s,7) is a quasifixed point,
and 7 is the minimal time necessary to reach this quasifixed
asy, in Eq. (10) and the values point.
Substituting the cascade velocity8) into the evolution
Vile,s)=Vy(e,s) (t=k) (12 integral (19), we can find a quasifixed poim; . Then we

need to make a transformation inverse to the algebraic trans-
at integert coincide. The so-defined family of endomor- formation (4),
phisms{y|te[0,°)} forms anapproximation flowand the

conditions(11) and (12) define theembeddingf a cascade Pk (X,8,7)=Cg {PF(x,s,7)}. (20)
into flow [45,46. From the relation(11) with continuous ] ) . )
time, it is easy to derive the Lie evolution equation The resulting approximar(®0) is, as is clear from Eq(19),
a function ofP,_, that is, ofp,_,, which can be written as
J
Eyt(‘P,S)th(ytyS), (13) pl’(csz(pk—l)'
_ o We may repeat the renormalization proceduredgr,, ob-
with the velocity field taining
9 ¥ =Fe(Fr_1(Pr_2)),
oy, 9)= i lim=yi(e.). 1) Pe=FFicalpic2)
<Pﬂyttﬂ0&t

and so on. Afterk steps of such a procedure, called self-
similar bootstrag 38], we arrive at

Pk =Fk(Fr—1(- - -F1(po))- - -).

Yi+r ng
fyt vi(¢,8) T 15 In short notation, the latter can be presented as a quasifixed-
point equation
To study the properties of an approximation flow, we may . .
invoke powerful techniques of dynamical theda7—50. Pic = Fi(Pic-1)-
What we need to obtain at the end is an effective limit of
the sequencéP,(x,s)}. Since the latter is bijective to the
trajectory{y,(¢,s)} of the approximation cascade, the limit
of {P,} is in a one-to-one correspondence with a stable fixed - -
point of the cascadf45,46. A fixed point is defined as a {8182 oSy {2 T
zero of velocity. The cascade velocity can be written as theys 5 control functions. which can be denoted as
Euler discretization of the flow velocitfy2,43, which reads '

Equation(13) can be rewritten in the integral form

(21)

As long as Eq.(21) implies ak-step renormalization, the
resultingp; will contain two sets

9 pE:p:(X!Svak)-
U8 =Vir1(@:8) ~Yil ¢:8) HASZ Y @,9), (16) Now it is time to recall the main aim of the present paper,
that is, to suggest an approach for treating crossover phe-
where As is a variation of a control function. Since this homena. Therefore, we must remember the asymptotic con-
variation is not known, we cannot find an exact zero of thedition (2) and require that the found approximati(#i) sat-
velocity (16), but can find only its approximate zero defining isfy the condition
a quasifixed point. For instance, we may set o

Pk (X,S¢, T =Fas(X)  (X—0). (22

0
As£yk(<p,s)=0, (17 This defines the sets,=s.(x) and 7,=(x) of control
functions. With the found control functions, we obtain the

which is satisfied if eitheAs=0 or gy, /ds=0. In both the final self-similar approximant
cases, the velocityl16) becomes . e, = =
k(X)zpk (X,SK(X),’TK(X)). (23)

What makes the present paper different from our previous
; - . ; ublications is thesystematic use of the asymptotic condi-
This and several other ways of defining quasifixed points an lons of type (22) for defining control functions. The sug-

the related velocities have been analyzed in detail in Refs. . . S
[51-53. The motion in the space of approximations, near agested procedure is designed to self-similarly connect the left

quasifixed point, is described by the evolution integf) f”md right asymptotic expansions of a funqtion on a given
which can be w’ritten as ' interval. For concreteness, we have considered above the

connectinig procedure from the left to the right. However, as

. d is evident, the same procedure can be followed from the right

f Perr 2% _ , (19)  to the left, that is, starting from an asymptotic expansion at
P Uk(¢:S) the right boundary of the intervl,~), whenx—~, and

v(@,S) =Yk+1(¢,S) —Yi(®,S). (18
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then connecting the obtained approximant with the

asymptotic form at the left boundary, whexe-0. In any

case, we shall arrive at an approximant whose structure is

governed by the quasifixed-point equati@i).
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Sk ATk
n=—-—, B&=—7F7n (34)
k nkaé l/nk

To show explicitly what the structure of the approximantiS used. In the same way we get

px is, let us take an initial expansiga(x), asx—0, in the
form of a standard power series

k
P(X) =2, ax".
n=0

(24)
Employing the algebraic transfor(), we have
k
Pu(x,8)= >, ax"*s. (25)
n=0
Equation(6) reads
Po(X,8)=agx’= ¢, (26)
from which the expansion function is
1/s
¢
=2 27
For the endomorphisr{i7) we get
k ® 1+n/s
Vid@,8)= 2 ap| — (28)
n=0 =%)
The cascade velocit{l8) becomes
1+(k+1)/s
v(.S) = a+a| - (29
0

Substituting Eq(29) into the evolution integral19), we find
a quasifixed pointP} , after which we need to make the
inverse transformatiof20),

Py (X,8,7) =X "SP§ (X,S,7). (30
This results in the expression
ka7 ik
|~k K k

P (X,8,7) = pkfls(x)_saéﬁ—k/sx (31)
Let us note that whes— o,

. * ak k

lim pg (X,S,7)=pg-1(X) exp a—orx , (32

S—

which explains how naturally exponentials appear in our ap

proach[38].
The quasifixed-point equatiq@l), as applied to Eq31),
gives
Pk =[(Pk—1) "M+ Bix ], (33
where, for brevity, the arguments @f = pj (X,S¢,7) are
not written down and the notation

P =[(Pf_ o) YM-14 By XK 1]k
and so on down to
p3 =[(p7)*"2+Box?]"

and

P} =(pg"+Byx)",

wherepy=a,. This shows that the structure of E®3) is a
sequence of nested roots. For instance, a third-order approx-
imant looks like

p3 ={[( pém1+ B1x)"1 /"2 B,x2]"2 M+ Boyx 3,
Control functionss, and 7, are to be found from the
asymptotic conditior(22). Because of the relatiof84), this
is the same as defining the powers and amplitudesB, .
The equalitieg34) are nothing but a change of variables, so
that instead ob, and r, we may considen, andB, as new
control functions. For practical purposes, we may at once
write down akth-order approximant in the form of E¢33)
and directly definen, andB, from the condition(22). If the
latter gives several solutions for control functions, then we
should opt for the solution that leads to the decreasBof
with increasingk. This follows from Eq.(33), from which it
is evident thatp} tends to a fixed poinp* if and only if
By—0 ask— oo,

Before considering complex physical problems using the
method we have described, let us illustrate it by a simple
example of the one-dimensional quartic anharmonic oscilla-
tor. Consider the dimensionless ground-state ene(gy as
a function of the coupling, or anharmonicity, parameger
€[0,°). In the weak-coupling limit, whelg— 0, perturba-
tion theory result$54] in the expansion

e(g)=ap+a;g+a,g’+azg3+a,g’, (35
where
_1 _3 B 21
aO_Ea al_Zy az__gv
_333 B 30885
BT 76 BT 128

In the strong-coupling limit, wheg— o, the asymptotic be-
havior is known[55,56 to be

e(9)=Aog™+A;g B+ A0 T+ Ag R (36)
with the coefficients
Ay,=0.667 986, A;=0.143 669,

A,=—0.008 628, A;=0.000 818.
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Starting from the linear approximatiop;(g)=a,+a;(9) tem than just numbers. As an example, we may mention the

from Eq. (35), we find geometric spectral inversion in quantum mechap&g58.
1A .
PT(g,n1,B)=(a, *+B1g)™, lll. FRO HLICH POLARON
which is the first approximation from E¢B3). Requiring the The Frdlich optical polaron problerf3] is an interesting
validity of the asymptotic condition physical example of a crossover about which there existed a
controversy lasting for around 30 years. Some researchers,
pf(g.nl.Bl)onglls (g—), analyzing the polaron ground-state eneef) as a function

. L 3 of the electron-phonon coupling paramederfound an indi-
we findn; =3 andB;=A;=0.298 059. From here we could cation of a phase transition from a state of a freely moving
recalculates, andr using the relationg34); however, thisis  weak-coupling polaron to a localized state of a strong-
not necessary since, as is explained above, npwnd B, coupling polaron(see the discussion [i5]). One such indi-
play the role of control functions and what we need finally cation has been suggested by Gri&g. However, as mod-
are exactlyn, andB,.. The quantityn, can be called aross-  ern investigations shoj#], there is no phase transition in the
over indexandBy a crossover amplitudeWith the foundn;  polaron problem, but the latter is an example of a classical
andB,, we define, analogously to E@3), the first-order crossover between the weak-coupling and strong-coupling

self-similar approximant limits.
1 In the weak-coupling limit, the ground state of the polaron
ef(g)zpalf(g, 3 A3) has an asymptotic behavior

e(a)=a,a+a,a’+aza® (a—0), (41)
for the ground-state energy, which is written
with three well-established terni$5,60,61, in which

e1(g)=(ag+Agg)™" (37)
_ , , a;=—1, a,=—1.59196X10 2,
Comparing the values of E€37) with numerical result§55]
that can be treated as exact, we see that the maximal error, a;=—0.806 070< 10" 3.

for g=0, of Eq.(37) is —6.8%, occurring ag~0.7.

Similarly, we find the second-order self-similar crossoverin the strong—coupling limit, Miyak¢62,63 obtained
approximant

=Aga’+A,+ A2 —0
€3 (g)=[(a?+ Cg)**+ B,g?] "% (38) Sl = Aot T ety T ez (42
where
where the two first terms in the asymptotic expan(i86)
are used an€=0.1971 and3,=A5=0.0888. The maximal Ao=—-0.108 513, A,=-2.836, A,=—4.864.
error of EQ.(38) is —2.9% atg~0.3. Continuing the proce-
dure, we get the third-order approximant The terms of the weak-coupling expansion are known here

with a better precision than those of the strong—coupling
e3(9)={[(ad"**+C10)**+ C,0%1"%+B3g%Y°, (39  expansion. In addition, the coefficiea; decreases ds in-

. 0 creases, whilé\, increases witlk. Therefore, here we have
with C;=0.1116, C,=0.0784, anB;=A,=0.026 48. The o construct self-similar approximations from the right to the
maximal error of Eq.(39) is —1.7% atg~0.1. In fourth  |eft, that is, starting from the perturbative expressida),
order, we obtain we find a self-similar approximag («), with control func-

tions defined from the asymptotic condition
€7 (9)=({[(a5™* D1g)**+ D,g?]""*+ D3g% 1% ymp
*

+ B4g4)1’12, (40) €y (a') 2eas(a) (a'—> 0),

where D;=0.0625, D,=0.050 05, D3=0.0131, andB, in which e,4(«a) is given by Eq.(41). The accuracy of the

:A(l)2: 0.007 89. The maximal error of E(10) is —1.3% at  found self-similar approximantsi () can be evaluated by

g~0.1. The sequence is uniformly convergent, which can b&€omparing them with the values(«) obtained by Monte

seen from the monotonic decrease of errors from about 7%arlo numerical calculationg},64]. As usual, the accuracy

to 1%. of self-similar crossover approximants is the worst in an in-
We would like to emphasize that our aim in the presentermediate region, where a weak-coupling expansion is con-

paper is to suggestsystematic analyticahethod permitting Nnected with a strong-coupling one. For the polaron energy

one to derive explicit expressions describing crossover phegy (@), the maximal error occurs at~ 10.

nomena. The advantage of having accurate analytical formu- The first-order crossover approximation gives

las, as compared to numerical results of numerical methods,

is in the simplicity of analyzing such formulas with respect e} (a)=—a(1+Ba?)'?, (43

to the variation of parameters entering these formulas. Also,

having an analytical formula corresponding to a measurablevith B=A2=0.011 775. The maximal error of E(43) is

guantity often gives more information about the studied sys—10.5%. The second-order approximant is
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_2 8
, T= \[E= 4.607, (48
where By=0.159 468 andB,=A%%=0.002 679. The maxi-
mal error of Eq.(44) is —4.54%. Finally, we may find the andJ;,, is given[68—70 by the equation
third-order self-similar approximant by taking account of all
three known terms in Eq41). This yields mev dg

e5(a)=—all+a(BotBoa?®I¥,  (44) T

* _ 2
B*(J)=-23 5

w

nD.

ef(a)=—af{l+a[Co+ a(Cy+Cya?)¥29416 (45 3 B*(9)

16/5 The last integral can be calculated explicitly and the result
where C0:0152 804, C1:0049 617, and C2:AO may be presented in the form

=0.000 819. The maximal error of Ed45) is —1.5%.

Again, we see that, with increasing order of the approxima-
tion, the accuracy of the found crossover approximants im- D (Jiny) = '“(T_k)’
proves from an error of about 10% to about 1%. The very
simple formula(45) gives the same accuracy as the Feynman 1 7 72
variational calculation§3,65]. d(z)= 2775 In(z) — 5 % (49
IV. KONDO EFFECT where w stands for the typical external parameters of the

roblem(temperature and magnetic figldnd T, is the typi-

One of the most remarkable examples of crossover phe§a| internal energy scale, or the Kondo temperature

nomena is given by the Kondo effd&]. The behavior of the
system, consisting of a local impurity spin and conduction 1

electrons, interacting by means of an antiferromagnetic ex- Tk=DJT/26XF< —537" gJ)- (50
change of strengtld, changes from asymptotically free at

high temperatures to that of the impurity screened by anrpis expression for the Kondo temperature has the same

electronic lump, via the crossover region whose onset i$orm as the famous Wilson numerical RG result
characterized by the Kondo temperature estimatedr,as

=D exp (—1/23), whereD stands for the Fermi energy of ~ 1

electrons. We consider below only the case of a single- Tk=D(J)(ZJ)”ZGXF{—§+1-582423)
channel Kondo model with the impurity local moment equal

to 1/2. Most of our knowledge about the problem come
from the exact Bethe-ansatz soluti@6,67], from the field-
theoretic renormalization groufRG) [68—70, and from the
Wilson numerical renormalization groyigl]. It was pointed
out in Ref.[72] that the Bethe-ansatz solution cannot be

extrapolated beyond the coupling constdnof order one determined by Eq(49) increases to infinity ase goes to

(see alsd 73]). Field-theoretic RG results are valid _only. at zero, in agreement with the numerical RG and strong-
J<1 as well. On the other hand, the strong-coupling “m'tcoupling limit [71,72,74.

J— oo of the Kondo model was considered in Rgf2]. Only

the numerical RG treatment of the Kondo problem is valid,

formally, for arbitraryd. We suggest below a simple analyti-

cal approach valid for arbitrary. Extreme caution is needed when any kind of perturbative
Within the framework of the field-theoretic RG in its ap- or nonperturbative approach is applied to the one-

plication to the Kondo crossover, the central role is playeddimensional Heisenberg antiferromagnet of arbitrary $pin

by the so-called invariant charge or effective electron-Even such a general method as the Bethe ansatz failS for

electron couplingd;,, [68—70, measuring the intensity of >1/2. Nevertheless, the crossover approach can be of use in

electron-electron interactions via the impurity spin. Thethis situation.

field-theoretic Gell-Mann-Lows function could be defined

using the perturbation theory in the weak-coupling limit

[68—70Q

%Nhereﬁ(‘]) is known to have a power series expansiod in
[71]. The origin of the linear correction in the exponential
can be traced, therefore, to the strong-coupling limit. To our
knowledge, other analytical approaches, including the Bethe-
ansatz solution, cannot capture it. The effective interaction

V. ONE-DIMENSIONAL ANTIFERROMAGNET

A. Autocorrelation function

The Bethe ansatz, despite its failure in the general case of
B(I)=-232+23% (J<1) (46) S>1/2, allows one to find the magnetic properties of the
Heisenberg antiferromagnet{&F) spin chains of arbitrary

or by means of a sophisticated bosonization technique in th&Pin, when a maximum of two deviations is allowed from the

strong-coupling limif 72] completely alignedferromagnetig state[75]. The magneti-
zation curve and pair correlations had been obtained explic-
B(J)=—c, ¢~0.377 (J—=). (47)  itly for a strong magnetic field, close to the spin-flip transi-

tion. The expression for the autocorrelation functi@rn
The left crossover approximation, satisfying by design both=(S{Sg), as a function of the numbe¥ of spinsS, has a
known limits, can be obtained giving an improved, self-very simple and transparent form. In RE?5], an equivalent
similarly renormalized Gell-Mann-Low function guantity
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0, (& 2 Consider the case &f—hg, S=1. Upon a rapidinstan)
Fo(N)= ey —(N—S) switching off of the magnetic field down to the valbe=0,

S the correlations between spins should change from the be-
. . . havior typical of the universal regime to that of the nonuni-
is presentedand compared tq nu.mencal dats a function versal regime, dominated bg states. One may suspect,
of the parameteor (demagnetization therefore, that the typical time interval of relaxation of physi-
cal properties, such as the pair correlation function of spins
and the magnetization, would be radically different f&r

=1/2 andS= 1. To be more specific, consider another physi-

. o . cal propertyl’, an effective interaction of two spin flips,
HereS; stands for the magnetization of a spin-flip phase andyich can be presented in the vicinity of the saturation field
is controlled by the magnetic field, so that close to the 5g 5 function ofS and hs—h [76]:

saturation fielch;=4S [75] one has

o=1—

A

2 h
St 2 h|* T(Sh)~ s=\/4—= (59
Ns 1T as iR N Brsey T+1-1s 5
Finally, F is presented in the form As h—hg, T remains positive for arbitrary spins and the

system enters the universal regime, when all equilibrium
physical properties for arbitrary spins could be derived from
the “Bose gas with repulsion” moddl76—78. As h is in-
stantly set to zero, the magnetization should readjust itself
The last term in Eq(51), proportional to (5—1)2, clearly ~ from the values near to the saturation to the zero magnetiza-
distinguishes an extra contribution from the so-calléd tion. The expressiofb4) for I' can still be used in this situ-
states, typical forS=1 and absent foiS=1/2, with high  ation as an estimate of the effective interaction of two spin
probability of having two spin deviations on the same siteflips, at least at the initial stage of relaxation. Then, from Eqg.
[75]. An exact, independent &, value (54) it follows that I'(S=1/2h=0)~ —3.64, i.e., acquires
the negative sign, which is different frofi(S=1,h=0)
~8.89. The functiod’(S,h=0) has a peak &=1 and then
saturates aS— o to the positive value 2. The negative sign
of I'(S=1/2) means an attraction of two spin flips and rapid
is known too[75] and can be used as an asymptotic condi-collapse of the magnetized state to a state without magneti-
tion. Let us continue the expansi@bl) from the region of zation, while positivel'(S=1) means repulsion and much
small o to the region ofe~1, along the stable trajectory, longer relaxation time for the magnetization. That is, we can
ending atc=1 at the valueF,=3. In order to extend the expect anranomalously slow relaxatioof the magnetization
validity of Eq. (51) for S=1 let us add to Eq(51) one more  for spin 1, after an instant switching off of the magnetic field
trial term ~ — ¢® and find the corresponding effective time from the value close to saturation down to zero, compared to
from the crossover condition at the boundary point. The selfthe case of spin 1/2.

similar bootstrap procedure leads to the crossover approxi-

mations B. Ground-state energy

1
Fo(a)z%—az+§w252(25—1)2a4 (o<1). (51)

2
Fo=3 (0=1, S=1)

o 1 Spin-wave theory gives for the ground-state eneEggf
Fo(o)= S1+09)’ S=3. (52)  the Heisenberg AF spin chains in the one-dimensional case

the expansion in powers of inverse spirsXsee[79] and
references therejin

1
-3 m?S%(2S—-1)%0?

Fo(o)= % ex;{ —oSexp

Y
~_ 2 - ~
E=-S1+ 55 Y 0.7. (55)
Acd?
- =
xex S2(25-1)2 . 5=l (53 The self-similarly renormalized expression, following from

Eq. (55), is

where A=87/7?=0.253. At S=1, F¢(o) agrees both

gualitatively and quantitatively with the data of Fig. 3 from E*—_ 2 ex;{lr) (56)
Ref. [75], the maximal error being=4%. The behavior of 2S

F& (o) for S=1/2 andS=1 is qualitatively similar(univer-

sal regim¢ only asc—0 (h—hg), whereC states are sup- and atr=1, E*(S=1)=—1.419, approximating the “ex-
pressed by a magnetic field and is different for all finiteact” numerical result—1.401 [80] with an accuracy of
o(h<hg) due to the contribution fronT states(nonuniver-  1.285%, which is an improvement compared to the error
sal regim¢. The onset of the regime dominated Bystates —3.64% of the expressiofb5), corresponding to “bare”
may be related to the inflection point of the cuvg(o) for  spin waves. FoB=2, E* = —4.765, in excellent agreement
o~0.5, emerging foilS=1 and absent foB=1/2. with the exact numerical resutt 4.761[81].
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The error, calculated for the renormalized expres¢i A at k=, while the latter case is gapless. In the limit of
for S=1/2, is equal to 13.54%, becoming much worse thariarge S, Haldane used an approximate mapping onto the
—4.06% for the bare spin waves, as compared to the exa€@(3) nonlineare model, leading to the following behavior
valueEy= —0.443 15/30]. An attempt to improve the result of the gap[5]:
for S=1, choosing the effective time from the exact result )
at S=1/2, gives the error of-5% asS=1, suggesting that A~Sexp(—mS), S—=. (62)

betweenS=1/2 andS=1 some new physical mechanism Strictly speaking, the formula(62) describes only the

the groLnd-sate energies for quantum spins based oy e0" P of the full dependence and does ot take into
the renormalization of the spin-wave formula. On the otheraccou.m the ‘.‘fast”.part, describing the gap oscﬂlaﬂons with
hand, a successful estimation of the ground-:.;tate energyfcrhar.]gmg spin, with zeros at half—odq-lnteger spins and

o . °T9Y 1 axima at integer values. Nowadays, it is established be-
S=1,2, based on a %/expansion, suggests that a similar

mechanism works for ab=1 and quite an accurate estimate yond a reasonable doupB2] that for the half-odd-integer

can be obtained from the formu(&6). Spins
Motivated by the existence of exact results for the auto- 1 3 5
correlation function, we assume that the ground-state energy A=0 |S= 505 5] (63

could be expanded arourig, in powers ofS— 3, i.e., intro-

1

dulce a trialS—3 expansion around the exact solution&t  For small integer spin§=1,2, the values of the gap are

=3 known from extensive numerical calculations. We suggest
below a simple way to estimate for arbitrary integer spins,
1 1 L 2 h
E~—||Eq| +AlS—=||, S—=. (57)  based on the self-similar renormalization of a t&at ; ex-
2 2 pansion for the Haldane gap and the knowledge of the

asymptotic form(62), as S—, together with the demand
for the absence of the gap for half—odd-integer spins.
Let us write the trial expansion for the gap in the vicinity

The coefficientA will be determined by matching E@57)
with the expression for the ground-state enefgy as S

- of the pointS=3 in the following form, satisfying the con-
Following the standar_d prescriptions of Sec. Il, we obtain the A~ay| S— | +as S—=| +ayl S— _)
left crossover approximation 2 2 2
1112 1\° 1
E*=—| Vol + S-z) L A=2[E 2 (59 Tas| S=3) toor [S2g) (64

with E*(S=1)=—1.359, approximating the exact result Wherea, are positive. Following the general prescriptions of
with the percentage error 6f3%, being only slightly better Sec. Il, one can self-similarly renormalize E@4) to the
than the spin-wave result. In order to check the idea abourm
1\2 1\]m
= [1‘(?1(8‘5”

similar mechanisms, forming the ground-state energySor
=1, we rewrite Eq(59) in the form A*=a,
E* =~ [$"+(24[Eol ~ 1) S+ (|Eol — VIEo[ + 1/4)] L2 .
(60 x exp{ Cz( s 5) [1—%( 53
and consider Eq60) as another form of the $/expansion.
Applying to Eq.(60) the procedure of self-similar renormal- We require that Eq(65) agree with Eq(62), asS—c, and
ization, we obtain also that atS=3/2, A=0. Choosing the unknown coeffi-

cients and powers in Ed65) so as to satisfy the required

2}. (65)

2|6 -1 i -
Ex* — —Szexp< L) 61) conditions, we arrive at
S 2

1

with E** (S=1)=—1.393 and the error0.57%. ForS 1\2 (S— 5)
=2, E** =—4.72 and the error is equal t8 0.86%. We A*—(S— 5) exp ———3— | (66)

again conclude that for the ground-state energy a simple S——

crossover formula exists, covering the region from large 2

spins to the small quantum sp&v= 1. where the value &= 2 is defined as the limit from the right,

S—32+0. AtS=1, A*=0.412, in good agreement with the
C. Haldane gap exact numerical value 0.4108B0]; at S=2, A*=0.025,
Haldane[5] conjectured the existence of radically differ- agreeing by an order of magnitude with the numerical value
ent elementary excitation spectra for arbitrary integer and.085(5)[81] and in better agreement with the value 0.05,
half—odd-integer one-dimensional Heisenberg spins, theuoted in Ref[83]. The formula(66) can be generalized by
former case being gapped with the smallest value of the gapequiring that the exponential in E¢66) should have the
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form of an expansion in & as S—o« and zeros atS . 1 3
=5, 2 2 ..., which yields 4 =1+4—Szex 27 r=2.21. (70)
1\2 3\3
1)\2 (5—5 (S— 5) At S=1/2, z=4 (square lattice we obtain from Eq.(70)
A* _(s— —) exp — + 3 Z* =1.189, in excellent agreement with the results obtained
2 (S— E) (S— §> by different method$87]. At S=1/2, z=6, the case corre-
2 2 sponding to a simple cubic latticB=1.11, i.e., the quantum
5\4 715 corrections to the spin velocity remain important.
53 [s3
+ 715 + 9.7 + ... , (67) VI. COLLECTIVE EXCITATIONS
(S_ §) S- 5) The knowledge of the elementary excitation spectrum is

one of the key points for the description of many-body prob-
where again the values &=(2n-+1)/2 are defined as the lems. Dealing with this extremely complicated problem, one
limits from the right. The value of the gap &1, given by  often encounters the situation when the elementary excitation
Eq. (67), remains practically the same as above, whil&at spectruma (k) is known for two different regions of the
=2, A*=0.068. The gap, when described by the formulawave vectork. In the hydrodynamic regiok—0, the form
(67), practically vanishes for all intege=3, in agreement (k) could be determined either from experiment or theo-

with the conclusion of Ref.81]. retically. In the short-wavelength regid—, a dispersion
corresponding to free particles should recover. Using the
D. Other characteristics self-similar renormalization, it is possible to reconstruct

. ) w(k) for arbitrary k. Consider some problems of this kind
Self-similar approximants can be constructed for Otherfrequently occurring in condensed matter physics.
characteristics as well. Here we briefly mention only a

couple of examples. Staggered magnetizalioof the anti-

ferromagnetic anisotropic Ising-Heisenberg model of spin A. Bogolubov spectrum
1/2, as a function of the anisotropy paramejefequal to The case of a linear ik spectrum, a&—0, and of qua-
zero for the Ising and one for the Heisenberg mpdedn be  sifree massive particles, s+, is of the most general type
presented as expansion, valid at sma(i84,85, when Bose systems are considered. This kind of behavior is
inherent to Bose systems and does not depend on the details
E(y):l_yz_lyzl___._ (68) of an interaction potentia[6]. Consider the case of an
4 anomalous sound dispersion, corresponding to an instability

) of the spectrum, als increase$7]. The following asymptotic
At y=1, according to Re{.85], the long-range order param- expressions are available:

eterw.,.=3?(y) should disappear, i.e%(1)=0. Let us con-

tinue the expressiol68), from the region ofy<1, to the w(k)=ck(1+vyk?), y>0 (k—0),
region of y~1, satisfying the boundary condition for the
disappearance of the long-range order. Then the left cross- 2
over approximation o(K)=—— (k—). (72)
2m*
2*(7)=(1—72)6XD<—374) (69)
4 Here ¢ is the velocity of sound,y is responsible for the

o ] » . instability of the spectrum, anah* is the effective mass. The
satlsges t2he right boundary condition. Comparing; |eft crossover approximation can be derived following the
=[2*()]* with the extrapolation of numerical data, pre- standard prescriptions of Sec. I, which gives a result identi-

se_nte_?j in Fig. 30 of Refl85], we found that they almost cal to the Bogolubov spectrum of a weakly nonideal Bose
coincide. as:

. . .9
At zero temperature, the dispersion, known from the lin-
ear spin-wave theory, is modified by the facfom the spin-
wave velocity and the expansion fdrin powers of the in- o* (k) =ck
verse coordination numberzZlvas obtained86,87:

1+

=
. (72

2m*c

Z=1+ i ..., Note that in distinction from the microscopic Bogolubov ap-
4Sz 1657 proach, valid for a diluted Bose system, the form(re)
may be used for arbitrary densities, assuming that the param-

We continue this expression from the small values aftd/ etersc and m* are taken from experiment. It looks rather
arbitrary z, while the value of spin is fixed, and determine intriguing that the same formulé&’2), which is usually de-
the effective timer from the exact value oZ=m/2, atS  rived with some lengthy calculations, can be immediately
=1/2, z=2 [87]. The left crossover approximation has the obtained by self-similarly interpolating the simple
form asymptotic expressio(v1).
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B. Liquid helium spectrum In analogy to the case of Mewe find the spectrum
Consider the case when more terms in the hydrodynamic K\ 4
I|_m|t are available, but the anomaIOL_Js dispersion coeffi- w* (K)=ck| [exp (—|v|k®)]*+ (76)
cient v is very small. Also, free particles are replaced by 2m*c
quasifree “dressed” particles with an effective mass.
The asymptotic behavior of the spectrum is However, since phonons in liquid Flare intertwined, in the
) A region of intermediate wave vectors, with other collective
o(k)=ck(1+ yk°—6k*), =0, 6>0 (k—0), excitations, it is impossible to observe rotons.

k? B C. Spectrum with a gap
wk)=—— (k>1A"1). (73

2m* Assume that the spectrum has a gapkas0, and pos-
sesses a minimum at this point, while, lkas e, it becomes
This situation is typical for liquid H& where y=0 linear:
+0.05 A, 5=0.29+0.03 A* [88, and m*=2 )
—3m(He") [89]. The crossover approximant derived from o(k)=A+ak a>0 (k—0),
Eq. (73) reads

w(K)=vk (k—»). (77)

The left crossover approximation can be readily obtained,

671/6
w*(k)=ck . (74 . |
2m*c leading to the expression

[exp(— 6k*) 16+

2

The expression74) generalizes the Bogolubov spectrum (79

(72). The main difference originates from the region of the
intermediatek~1. The formula(74) describes the experi-
mental data for the elementary excitation spectrum of liquidanalogous to the spectrum of the Bardeen-Cooper-Schrieffer
He? [88] both qualitatively, predicting the existence of a ro- model of superconductivity.

ton minimum even for the bare mass* =m(He%), and

guantitatively, with the maximal percentage error of about D. Dynamical scaling

20%. The value of the effective masgs* =2—3m(He)
may have some relation to the formation of two-particle an
three-particle correlated statf®0]. We took above for esti-
mates the value of the sound velocity equal to 2.4
x10* cmis.

o*(k)=A\/1+ %
A

d The_charact_eristic frequency.(¢,K), appea_ring in the
dynamical scaling hypothes|8,93] and proportional to an
inverse characteristic relaxation time of an order parameter,
has two asymptotic forms, depending on the ré&tip, where
Our approach to deriving the spectrum for arbitrrgor- { stands for the inverse correlation length. We shall discuss
below only the behavior of density-density correlations in

responds to the Feynman approdéb], in which only the .~ . . ) |
information about the short-wavelength and Iong-wavelengtr|1'qu'd systems{8]. Asymptotic expansions in the hydrody

parts of the structure fact@(k) are used. Then, instead of hamic regime K(§<1) and in the fluctuation regimek(Z
. >1) are known:

the  phenomenological Feynman  formula w(k)

=k2/2mgk), we apply the self-similar renormalization. The

result is a Bogolubov-type formula. Thus a bridge between w¢(Z,k)=D+k?

the Bogolubov and Feynman approaches to the spectrum of

Bose system§91] is established. The formul@4) is better

qualitatively than the original Bogolubov spectru(dl), wo( £, K)=AK

since it predicts the maxon-roton region, and better quantita-

tively than Feynman formulas, especially in the roton region. . e . .
Here the Feynman formula works with an error of aboutWhereDr is the thermal diffusivity and is the dynamical

100%, while Eq(74), in the worst case, gives an error about critical index, which cannot be determined self-consistently
10%. Our formula74) is a three-parameter representation ofWithin the framework of the dynamical scaling. The value of

the spectrum of liquid He with parameters, 5, andm* B IS estimated aB=1 [94] or B=3/5[95]

coming from the regions of long-, intermediate-, and short- ASSume that the values afandA are known. Then one
wavelengths, respectively. can reconstruct the analytical expression for the characteris-

The case of a stable soundlike spectrumkas0, and of tic frequency for arbitrank/, obtaining the left crossover

quasifree particles, ak—, can also correspond to a aPProximation
collective-excitation branch in liquid Hg92]. The follow-

2

1+B|=] +---

'

B>0 (k<1)
) 7 )

2

1+A 2] +--.

Kk

(E>1) 79
A

21n
ing asymptotic expressions are available: w¥({,k)=D+k? 1+C ;) } , (80)
— _ 2
w(k)=ck(1-[y[k%) (k—0), where
2 2/(z—2)
A z
w(k)= k—c0). 75 —g2 _-_
()Zm*( ) (75 cg(DT> ., n=5-1.
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For z=3 [8] we obtainn=1/2. If now we plug into the procedure from an expansion either near the left or near the
expression(80) the dependences &ft~€”” * and{~¢€” on  right boundary, we may distinguish the left and right cross-
the distancee from the critical point[8], then we recover over indices and, respectively, the left and right crossover
immediately the well-known relation between the critical in- times. Similarly, the resulting expressions for the sought
dicesz, y, v, anda, that is,z=2+(y—a)/v (all defini- function may be called the left and the right crossover ap-
tions are standard and may be found in Ré&f), which  proximations.
represents one of the central results of the dynamical scaling The form of the resulting self-similar approximations de-
hypothesis. From this scaling relation, the dynamical criticalpends on the properties of the asymptotic expansions used.
index could be estimated from the values of the three otheMathematically equivalent expansions lead to the same form
indices. of crossover approximations. For example, compare the
ground-state energy of the Fiach polaron as a function of
VII. CONCLUSION the coupling parameter and the spectrum of collective exci-
tations as a function of the wave vector. The weak-coupling

We suggested a general approach to describing crossovggries in powers of the coupling parameter is analogous to
phenomena of arbitrary nature. The approach permits one e |ong-wavelength spectrum in powers of the wave vector.
construct an accurate approximation for a function in therhe strong-coupling limit for the optic polaron is similar to
whole domain of its variable from asymptotic expansionsthe short-wavelength limit for the collective spectrum. As a
near the boundaries. The minimal information needed to Obresun' the crossover approximation for the po]aron energy
tain a self-similar interp0|ati0n formula is two terms of an has the same dependence on the Coup“ng parameter as the
expansion near one of the boundaries and the limiting valugrossover approximation for the collective spectrum on the
at another boundary. Having only three such terms, it is alwave vector. Thus, physically different quantities may have
ready possible to get a reasonable approximation for thghe same mathematical representation as a function of the
sought function in the total crossover region. When Morecorresponding variables. Keeping this in mind, we may say
terms are available, the procedure may be continued, imhat there existlasses of universalitgf crossover phenom-
proving the accuracy of approximations. An important fea-ena.
ture Of the method iS that the Self-Similar crossover apprOXi— It is Worth emphasizing that the crossover approximations
mants always preserve the correct structure of the asymptotigerived by applying the approach developed usually combine
expansions at both boundaries of the interpolation regiongood accuracy with simplicity. This suggests that the self-
This is a clear advantage of the self-similar approach as congimilar renormalization provides a natural tool for extracting
pared to often used heuristic interpolations that may spoil thégne maximal information from very short perturbative series
structure of the asymptotic expansions. that are impossible to analyze by other methods. Moreover,

The possibility of obtaining accurate approximations fromthis makes us think that self-similarity, in some sense, is
extremely scarce information, when no other methods workhidden in asymptotic series. This is why the self-similar
is based on the following three point$) the idea of a self-  renormalization becomes a natural effective tool of extract-
similar renormalization group treating the transfer from oneing such hidden information. The different physical ex-
approximation to another as the evolution of a dynamicabmples presented in this paper prove as well that this is also
system, the approximation cascadé) the requirement that a general tool applicable to arbitrary crossover phenomena.
this evolution be invariant with respect to algebraic transfor-
mations; andiii) the use of control functions providing the ACKNOWLEDGMENTS
stability and convergence of procedure.

Control functions introduced under the algebraic self- We are grateful to E.P. Yukalova for many discussions
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