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One-dimensional asymmetric diffusion model without exclusion
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A one-dimensional asymmetric diffusion model on a periodic chain is proposed. The model is defined in
terms of the master equation. In contrast with the asymmetric simple exclusion process, particles are not
subject to the exclusion interaction: each lattice site can accommodate more than one particle. The model is
solved by the Bethe ansatz method and the resulting Bethe equation is analyzed in the thermodynamic limit.
The finite size correction of the energy gap is calculated t@be*?), whereL denotes the length of the
chain.[S1063-651X98)12109-9

PACS numbsg(s): 02.50.Ey,05.70.Ln,64.60.Ht

I. INTRODUCTION metric six-vertex model are connected to those of the usual
six-vertex model through a gauge transformation. Hence the
In a variety of fields of physics, chemistry, and biology, Boltzmann weights satisfy the Yang-Baxter equation and the
there exist a lot of phenomena that can be well described bshodel is easily shown to be integrable. Interestingly, the
stochastic models of many particles. It is interesting thaphysical properties of the asymmetric six-vertex model and
highly nontrivial behaviors of systems at far-from equilib- the asymmetri&X XZ chain are much richer than the original
rium can sometimes be explained by stochastic models desix-vertex model and th&XZ chain. They are still under
fined by rather simple rules. For instance, the onegyiensive investigation®,13—13.
dimensional asymmetric simple exclusion procesSEP is The Bethe equation of the asymmet{X Z chain can be

known to be re_Ievant to the problem; such as interfaC‘:solved exactly in the thermodynamic limii6,17. More-
growth.and traffic flow[1-3. The A.SEP IS a 'aFt'Ce model over, the analysis of the Bethe equation enables us to obtain
of particles that hop to nearest-neighboring sites stochast{—

cally. Each particle moves to the righieft) nearest neigh- he finite size corrections of the low-lying energies of the
boring site with a probabiligDedt (D, d1) in an infinitesi- ~ 25YMMELricXXZ chain[6-9). In particular, for the ASEP,

mal interval dt. Without loss of generality we assume 0 the energy gap was s_hown to scaleHs. 3/2) with L being
<D, <D, hereafter. In addition, particles are subject to"€ l€ngth of the chain. The exponent 3/2 is the same as the
hard-core exclusion: each site is either occupied only by ondynamic critical exponent of the Kardar-Parisi-Zhad#gZ)
particle or empty. The ASEP may seem a too simplifiegeduation in one dimensiofil8], which is a nonlinear sto-
model since the interaction among particles is only througtghastic equation for the height of growing surfaces. This is
the hard-core exclusion. It shows, however, rich nonequiliblausible since the ASEP is believed to be a discretized ver-
rium behaviors and has been intensively studied by mangion of the noisy Burgers equatidB]. The noisy Burgers
researchers. equation and the KPZ equation are related to each other by
An important feature of one-dimensional stochastic modthe change of the variable from “height” to “slope” of
els is that we can sometimes obtain exact solutions by angrowing surfaces. Thus the ASEP is considered to belong to
lytic methods, for instance, the Bethe ansatz and free fermiothe KPZ universality class.
techniqueg4,5]. To apply such methods, it is convenientto  The above-mentioned scaling is considered as a manifes-
formulate the problems by the master equation in the form ofation of the anisotropic critical phenomeh#9,2(. They

the imaginary-time Schdinger equation, often appear in non-Hermitian problems but have not been
well understood compared with the isotropic one. For in-

EP: _HP 1) stance, while the hard-core exclusion interaction is regarded

dt ' as the origin of the interesting behaviors of the ASEP, the

problem of, i.e., what kind of interactions among particles
Here P andH symbolically denote the probability distribu- bring the process into the KPZ universality class, has been
tion of the system and the transition rate matrix, respectivelyless addressed. Hence more explicit model studies seem im-
Although H is in general non-Hermitian, we call the portant to understand what the universality means for sto-
Hamiltonian. The ASEP is known to be exactly solvablechastic models. In Refd21,22, an asymmetric diffusion
since the Hamiltonian of the ASEP is connected to themodel without exclusion was shown to be integrable and to
Heisenberg Hamiltonian for magnets through a similarityhave the samd& matrix as that of the ASEP. The Hamil-
transformation. To be more precise, the ASEP is a speciabnian of the model is defined in terms of the so-calied
case of the asymmetriXZ chain, which is a non-Hermitian boson operators. Thggboson model is expected to belong to
generalization of the well-knowK XZ chain[6-9]. Besides, the KPZ universality class since it shares the s&meatrix
the asymmetricX XZ chain is related to the asymmetric six- with the ASEP. However, the Bethe equation for the model
vertex model, which is interpreted as the six-vertex model ins somewhat different from that for the ASEP and needs
electric fieldg{10—13. The Boltzmann weights of the asym- some modifications to analyze.
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The main purpose of this paper is to show that we can TABLE I. Particle hopping rates for the MADNmultiparticle-
define an asymmetric diffusion model without exclusion, forhopping asymmetric diffusion modefor the two-particle case. The
which the Bethe ansatz method is applicable and the resulpumbers “0,” “1,” and “2” in the leftmost boxes indicate the
ing Bethe equation is solvable parallel to the ASEP casegarticle numbers on a site. For comparison, the rates for noninter-
Basically, the model is similar to the ASEP: each particle isacting particles are also shown.
an asymmetric random walker. However, more particles than

one can be on the same site and even hop simultaneously to rate (MADM) rate (noninteracting
a nearest-neighboring site. In spite of these differences, thgy oo 1/2] 0
model and the ASEP share quite similar Bethe equations and
hence similar physical properties. The finite size correctiorf2—20 y?[2] 0
of the energy gap is calculated to B¢L ~%?), which is the 2011 1 )
same as that for the ASEP. This suggests that the modePH
presented in this paper belongs to the KPZ universality clas®2—11 % 2y
The plan of this paper is as follows. In the next section, an
asymmetric diffusion model without exclusion is defined. 1102 1 1
The model is shown to be solvable by the Bethe ansatz iRq_, 5g y y

Sec. lll and the resulting Bethe equation is analyzed in Sec
IV. In Sec. V, the finite size correction of the energy gap is

calculated. The last section is devoted to the concluding reFor the ASEP, the hard-core exclusion restricts an allowed

marks. region (the physical region of the coordinatesx;,x, to
X,—Xx1=1. The above master equatié#) applies only for
Il. ASYMMETRIC DIFFUSION MODEL X;—X1>1. Whenx,—x;,=1, we have to employ a slightly
WITHOUT EXCLUSION different equation due to the exclusion. The master equation

for this case is given by
Consider a one-dimensional lattice with periodic bound-
ary condition. We introduce a model with particle number

conservation. With the particle numbeN fixed, let g 26X+ 1) =Pa(X=1x+ 1) + yPy(x,x+21)
Pn(Xq, ... Xy;t) denote the probability that the particles
are located at lattice siteg, . .. xy at timet. Since we do —(1+y)Py(x,x+1;t). )

not distinguish one particle from another, we assuxe ) )
<x,=<---=<xy. We define the process in terms of the mas-We notice that the master equatié) for the boundary of
ter equation forPy(Xy, ... Xy:t) in the following. For the physical region is equivalent to putting the condition
comparison, the definition of the ASEP will also be given.
Before giving the definition for generdl, we proceed (14 7)Pa(X X+ 1) = Pa(X, 1) + yPo(X+ 1x+ 1)
with theN=1 andN=2 cases. For one particle, the process (6)
i_s nothing. but the asymmetric random walk i|j a c.ontinuousm Eq. (4). It is only a matter of convenience whether we
time. PuttmgyzDL/DR (0= +vy=1) and rescaling time, the define the ASEP for theN=2 case by Eq.(4) for
master equation reads X,—X,>1 and Eq.(5) or by Eq.(4) for x,—x;=1 and Eq.
(6).
d Now, for N=2, we define the model to be considered in
gt P16 =Pax= L+ yPaXxH 130 = (1+ y)P1 (1), this paper. First, the physical region of the coordinatgs,
(2 is X,=X,. Whenx;=X,, two particles are on the same site.
The particles do not have hard-core exclusion interaction. If
which is common to the model and the ASEP. Symbolically,we putx;=Xx, in the master equatiotd), there appear the
we represent the proce&®) as functionsP,(x,x—1;t) andP,(x+ 1x;t), of which the vari-
ables are out of the physical region. To avoid such inconsis-
1 y tencies, we impose the following condition:
1001, 01-10, 3
(1+y)Po(x,x—=1;t) = Py(x—=1x—1;t) + yPy(X,X;t).
where “0” and “1” indicate the particle numbers on a site. (7)
Next we consider the two-particle case. We assume that ] ]
each particle performs the asymmetric random walk if theThen the master equation fér(x,x;t) is shown to be
distance between the two particles is sufficiently large.

Hence the master equation fBp(x;,X,;t) is mpz(x,x;t)=P2(x—1,x;t)+%Pz(x—l,x—l;t)

d ) — . . ’y2
ﬁPZ(Xl’XZ’t)_PZ(Xl_l’XZ’t)+7P2(X1+1’X2't) +sz(x,x+1;t)+mP2(x+1,x+l;t)
+Pa(X1,X2= 1) + yPa(Xy, X2+ 151) 1 y2

=1+ 55+ v+ 57| P2x,x;t), 8
~ 2014 V)P %o10). @ 2 "7 P @
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where[2]=1+ vy. Similar to the ASEP case, it is equivalent of the MADM and the ASEP can be analyzed in a parallel
to define the model either by E¢4) for x,>x; and Eq.(8)  fashion. Here, for later use, we introduce the so-cafied
or by Eq.(4) for x,=x,; and Eq.(7). To make the defined number:

process clear, we list the particle hopping rates other than Eq.

(3) in Table I. In the table, the particle hopping rates for

noninteracting asymmetric random walkers are also shown. _1- Y"

The process we have defined is different from the noninter- [n]= 1-y-° ©
acting particles in two respects. First, the rates for individual

hopping are smaller than those for the noninteracting par-

ticles when there are two particles on a site {201,02 Of course[2]=1+ v in Eq. (8) is consistent with the defi-
—11). Second, two particles can hop simultaneously to thaition (9). In the limit y— 1, [n] simply reduces ta.

same nearest-neighboring site (202,02—20). To empha- The master equation for the genelaparticle case is de-
size the latter property, we call the model the multiparticle-fined similarly. The physical region of the coordinates
hopping asymmetric diffusion modéVIADM ). X1, ... XN IS Xj11—X=1 and ;=X for j=1,... N

The choice of the conditio(¥) is essential for the follow- —1 for the ASEP and the MADM, respectively. The master
ing computations. It will be shown that the Bethe equationsequation is given by

d N
JEPNORL X ,XN;t)=j21[PN(...,XI-—1, DY XL D= ()P X D],

while the condition at the boundary of the physical region is
(I+y)PnC XX+, o) =Py XX, D PR X+ X+, 00 (J=1,... N=1) (1)

for the ASEP and

(I+y)PnCo XX =1, o) =Py o= 1= 1, . )+ yPaCe e XX, .00 (J=1,... N=1) (12
for the MADM.

For the MADM, one may wonder whether we can write down the master equatid?\foz, . . . Xy;t) when somex;’s
are equal, only in terms d®y(x;, ... Xy;t)’s in the physical region. It is possible to do so by repeated use of12y. In
the case in which the consecuti (M<N) x;’s are equal, it is sufficient to know the equation (X, ... x;t) (X,
=..-=Xy=X). For instance, the master equation RN(X,X,Xz, . . . Xn:t) With X; ; 1>X;(j =3, ... N—1) andx;>x reads
[cf. Eq. (8)]

1
&PN(X,X,X& XN =PI X Xs, L XY ;t)+mPN(x—1,x—1,x3, XD YPN(GX L XS, L XNt
v o
+EPN(X+ IX+1Xs, ... ,xN;t)+Z [PNOGX, o X =1, D) yPNOGX, X
i=3
b1 0] (Nt + ey t) (13
v D= (N= =t X, X, Xz, « .. XNGT).
Y [2] [2] N 3 N
It turns out that the master equation (X, ... X;t) (X;=---=Xy=X) can be rewritten in a compact form in terms of the

g number:

N-l !

! .
= [T]PN(z—l,..a,aw—1,w,...,x;t)+Z?T]PN(w,...,x,x+1,...,x+1;t)
=1 =1

= [ B (14
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It is clear that more particles than one can hop simultaThe periodic boundary condition gives the Bethe equations
neously to the same nearest-neighboring site. A proof of Edfor N=2,
(14) is shown in Appendix A. L L
z7=—AplAn, Z;=—AxulAg. (22)
[lI. CONSTRUCTION OF EIGENFUNCTION

For the generaN-particle case, we set in E¢LO)
BY BETHE ANSATZ METHOD

.+ — a— Ent
Let the word “energy” mean the eigenvalue for the Pu(Xg, oo X =€V PN(Xg, o Xy (29)
eigenstate of the process. It is not necessarily a real numbgnere
The real part of the energy corresponds to the decay rate of
the eigenstate. Since the MADM is a stochastic model, the . <
real part of the energy is larger than or equal to zero. The  Pn(X1, ... 'XN):ME@ As) oM Zo(1) " Zoiny
state with energy zero corresponds to the stationary state of N (24)
the system. If we assume the existence of a unique stationary
state, the system goes to the stationary state irrespective blfere the symbo&y denotes all permutations &f numbers
the initial condition when the time—oc. The stationary state {1, ... N} and o is an element ofSy. The energyEy is
of the MADM on the periodic chain is rather trivial for each simply the sum of the energies bf particles,
particle numbeN: every possible configuration witN par- N
ticles has an equal weight.

In order to study the time-dependent properties of the sys- EN:JZ €z
tem, we need information about the excited states. In particu-
lar, the long time behaviors of the system strongly depend offhe coefficientsAjl ’’’’ i\ are fixed by Egs(12). They are
the fI!’St excited state. In this section, we construct the eigengitten in a product of the coefficients;, (22),
functions of the MADM by the Bethe ansatz method. The
discussion below is analogous to those for the Heisenberg
spin chain[23] and the ASEP[24]. The resulting Bethe A jN_lle'[lsN Al (26)
equation will be analyzed in the next section.

We proceed with théN=1 andN=2 cases, and present |mposing the periodic boundary condition on Ea4) gives
the formulas for generdll. First we consider thbl=1 case. the Bethe equation,
We substitute

(25

N 1+ ‘}/Z]'Z|_(1+ ’y)Z|

_ L__ N—-1
Pilxit)=e"=z" (19 3=(=h |H1 1+yz2—(1+ )z 20
into Eq. (2). The energye; is easily calculated as for j=1, ... N. In the following sections, we shall solve the

Bethe equatior{27) in the thermodynamic limit and calcu-
late the finite size correction for the gap of the ene(@y).
Taking the logarithm of Eq(27) and introducing a new

e=(1-z"H+ y(1-2). (16)

Because of the periodic boundary conditidh(x+L;t)

=P,(x;t), z should satisfyz"=1. variablea by
Second, we consider thd=2 case. Assuming the time 1+ yel@
dependence as expE-,t), we set in Eq(4) z 1= —, (29
1+e'“
Pa(Xq,X2;t) =€ F2'Py(Xq,X5), 17
we have
where N
U= 2T 42, O(ay ) (29
aj))=—Ij++ aj,qp).
Pa(X1,%0) = A1sZy' 2+ AiZ,'2)° (18) R o

The energ)E, is the sum of the energies of the two particles, Here we have defined the functiop§(a) and@(a,B) by

= 1+ ye'®
E, €, €, (19 0%(a)=—iln 3’_ (30)
1+¢€'”
The condition(7) fixes the two-particleSmatrix A,/ A, as
. [
A 1+yz2,-(1+7)z, - Sln"{VJF E(a—ﬂ)}
Ay 1tz (At vz 20 ®(a,B)=0(a—p)=—iln i ,
Sin?‘{ v— E(a—ﬁ)}
In the sequel, we employ the normalization (31)

:1+72J2k_(1+7)zk_ (21) With y=exp(-2») (0<w<wx). A choice of the sefl;}

Ik Zi—Z will be shown shortly. The advantage of using the variable
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is clear. To solve the integral equation resulting from the 1 (a+ib

Bethe equation in the thermodynamic limit, it is essential R(d)*‘gf K(a=p)R(B)dB={(a), (37
that the function® (a,8) depends on the difference of the “atib
argumentsy and 8. The function® (a) appears also in the

Bethe equation for the ASER6,17]. The only difference in where
the Bethe equations for the 0MADM and the ASEP is the d sinhy
explicit forms of the functiorp®(«). {(a)=—p(a)=— —, (39
Different sets{l;} correspond to different energy eigen- da costy+coga+iv)
states of the system. In particular, the stationary state corre- q inh(2
sponds to the choice K(a):_@(a):sm“—y)_ (39)
da cosh2v) + cowx
N+1 _ » .
lji=———+] (32 We want to solve Eq(37) and obtain the explicit expression
of R(a).
for j=1, ... N, whereas the first excited state is associated W€ introduce the transformation—u=a—ib (f—uv

= B—ib) to obtain integrals running over the real axis from

with the set
v=—a to v=a. After this transformation, the functions
N+1 p°(@) and R(a) depend on the parametérand will be
|j=—T+j (33 denoted byp°(u,b) and R(u,b), respectively. Equations

(36) and (37) are rewritten as

forj=1,... N—1 andly=(N+1)/2. 1 (a
p°(u,b)=2wF(u,b)+Ej O(u—v)R(v,b)dv,
—a

IV. BETHE EQUATION IN THE THERMODYNAMIC (40)
LIMIT
In this section, we analyze the Bethe equati@f). The +ifa _ _
discussions proceed parallel to those for the asymmetric six- R(u,b) 27 7aK(u v)R(v,b)dv={(u,b), (4D

vertex mode[16,17] in spite of the difference of the function

p°(@). As is often the case, the Bethe equat{@@) cannot  where

be solved explicitly for finiteL and N. We consider the _

thermodynamic limitL,N—oco with N/L=p fixed. One then b)= — sinhw

assumes that the solutiofg;} for the Bethe equation are f(u,b)= costv+cogu+i(b+v)]’

distributed densely along a smooth cufén the complexa

plane in the thermodynamic limf.0,11]. From the symme- In the following we seth>0 anda=— 7. The choices are

try of the Bethe equation, the curv@ is symmetric with  valid for the ASEP and are expected to hold for the MADM

respect to the imaginary axis. The endpoints of the c@ve as well from the numerical calculations for smhlland N.

are denoted by-{a+ib) and @+ib). Next, letR(a)L/2w  We first solve the integral equati@al) by the Fourier trans-

denote the density of the roots on the curve. In addition, onéormation. We expand the functiotqu),{(u,b),R(u,b) in

defines a functiorF («) such thatdF/de=R(«)/27 along the Fourier series:

the curve withF=0 at the midpoint ofC.
The normalization of the functioR(«) is

(42)

X(u)= E |nu, (43)
1 (a+ib "

— R(a)da=p=F(a+ib)—F(—a+ib). -

27 ) —atip where X stands forK,{,R. The Fourier coefficient&,, are

(34 the same as those given[ih6],

SinceF(—a+ib)=—F(a+ib) due to the above-mentioned v _ a2y
K,=e , (44)
symmetry, we have
o andZ, are calculated as
F(a+ib)=%. (35
2 0 (n=0),
o . Zo=1 o(_ 1yn—1n(b+v)ng; 45
In the thermodynamic limit, the Bethe equatit29) has the tn=) 2(=1)" *e® Msinhny)  (n<0). (49
form

1 rarib In terms of the Fourier coefficients, the integral equation
atl A .
pO( a,) — 27TF(a’) +_J @(a_ B)R(ﬂ)dﬂ (36) (41) IS rewritten as
27 ) —a+ib i o
Ra[1-Kn]={¢,. (46)

Taking the derivative with respect @ in Eq. (36), we get
the integral equation for the density of the rod®&x): Hence, forn# 0, we get
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0 (n>0)
Ra=1(-)"e"™ (n<o0). (47)
Inserting Eq.(47) into Eq. (43), we find
. eiufb
R(U,b)ZRO—m. (48)

The coefficientR, is not yet determined since the E@.6)
becomes trivial when=0. The coefficientfio is fixed by the
conditionR(#,b)=0 [17] as

(49

Next we expresp=N/L in terms of the parametds.
Settingu= — 7 in Eq. (40) and using Eq(35), we find

po(— 7 b)=7Tp—iJW O(—7—v)R(v,b)dv. (50
, 2] . ,

From (30), the left-hand side is shown to be

1—e (b+2)

p°(—m,b)=—i In{—_IO (51)

The second term on the right-hand side is rewritten as

1f”® R(v.b)dv= — — i R.J
on . (=7—v)R(v,b) U__En: _ n¥no

(52)
whereJ,,’s were calculated in17],
Jn:—fw O(—m—v)e ™dy
( 27i
(~D)" == (12 (n>0)
2 —

-
(—1)“77'(1—&””) (n<0).

\
Using the explicit forms of the Fourier coefficierf®s, (47),

we have

1 & . .
— 5 > RyJ,=—mRy+i[—In(1—e7?)
n=—w

+In(1—e (®+27)7], (54)

Hence we obtain

(59
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We shall use the following expression for the function
R(u,b):

e—b+iu

R(u,b)=—p— (56)

So far, we have employed the varialate(or u) to solve
the Bethe equation in the thermodynamic limit. To calculate
the finite size correction of the energy gap, it is convenient to
introduce another variableby ¢é=exp(ia) =exp(iu—b). In
this variable, the Bethe equati¢27) and the energiy, (25
take the forms

yg)t iy G
1+§; =) i=1 &§— v’ &7
=y 2T+ THg)’ °9

respectively. Following7], we introduce a functiod, (£¢) of
the complex variable,

RN I S 2 I [ B [1—%/5”
iZ (&)=In oL e +L|21 In&—In 1=y ||
(59
and its derivative,
d
QL(§)=I§d—§ZL(§)- (60)

We refer toZ, (&¢) as the phase function. Taking the loga-
rithm of the Bethe equatio(b7) gives

2
Z(&) =71, (61)

In the thermodynamic limit, the functio®@y(¢) is noth-
ing but the functiorR(u,b) (56) in terms of the variablé:

5
Qw(g):_ _1T§.

(62)

We can obtain the explicit expression of the phase function
Z..(&) by integratingQ..(&¢) [cf. Eq. (60)]. The integration
constant can be fixed as follows. In terms of the variahle
the solutions of the Bethe equations for the stationary state
and its neighboring states form a closed contour; it starts
frome™p/(1+ p), enclosing the origin clockwise and comes
back toe” ™ p/(1+p). If we define£l=e " p/(1+p), we

find

Z.(e¥™E)=—mp.

Z.(£)=mp, (63)

These relations can be used to fix the integration constant,

pP

i1Z,(&)=—IN[&(1+&)]+In (Lrp)ie| (64)
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V. FINITE SIZE CORRECTION OF THE ENERGY GAP briefly summarized in Appendix B with the definitions of
be Anlfl, andYm(y).

First we apply the formula for the phase functidp(¢)
'559) Here we take =f,, where

In this section, we analyze the finite size correction of th
energy (58 for the first excited state characterized by Eq
(33). Assuming appropriate properties of the phase functio
Z, (&) for generalL, we expand the energy gap in powers of

L~ Y2 The real part of the energy gap will be shown to start F(£')=Ing —In 1-y€'1¢) Ing’ + E _7n|(§_/)n_
from the ordeiO(L ~%?). To obtain the finite size correction, 1— &l ¢’ &
we use the following formula: (67)

N § iy i This then leads to an integral equation €@r(¢), which can
121 fé)=—5 J f(E)QLE) — g > [1(&)—f(é€"™)]  pe solved by the Fourier transformation method. Using Egs.
(65 and(67) in Eq. (59) gives

o

+mE:1 Al F1Ym(y)e™, (65)

1+
iZ (§)=In {
: _ _ &(1+¢)
where the seté;} is a solution of the Bethe equation and the
expansion parameter is 1 d¢’

; = pIng+ B8 5 | ) QuE) -
o= \[E (66) (69)

The derivation of the formuld65) is given in[7] and is  where

JE fA(&)

. (—=D¥n+1)---(n+k-1) n(g)"
G(&)=In 1+§ +5—;m§ 2 [2 E e (Y. (69)
Here and hereafteX , indicates the sum over all integans We obtain the expression for the phase funcgé),
o 1)k 1+6 1 & <
Zu=impt 0 3T b Yay)e™ ity S S b (06) - G V)™
m=1 k=1 kgc &e +&  mmm1k=l
(70)
with
_(_1)k—l a\n\ (g)n
g(é) = e go(n+1)...(n+k—1)l_a‘n‘ AR (72)
If we seté=¢. in Eq. (70), we find
i 1)K
0= 3 b Ve, (72
m=1 k=1 kgc

due to Eq.(B1).
Having determined the phase functiah (¢), we next apply Eq.(65 to the energy(58). We setf=fg, where
(1—v)fe(€) is the one-particle energil6) in terms of the variabl€. It reads

g c n— n n
fe(O=137~ 1+yg‘§( 1" L= y"E (73
Applying the summation formulé5) for the energy yields
E L dé iy ‘ ”
vl f feOQUE 7 + 5 TFelé) —Te(&e®™)]+ X AdlfelYn(y)e™ (74)

The first term on the right-hand side is calculated as

n

d
fE<§>QL<§>—§= > n(-1)"G_,, (75)

ﬁ § n=1
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whereG,, denote the Fourier coefficients &f(£):

G(a:g Gné". (76)

Moreover, the definition ofA,[f] (B7) together with the
explicit form of fg(&) (73) gives

nS n(n—1)---(n—k+1
Adlfel== 3, S, by k,( :
k=1 n=k !
X(—1)"(1—yMenk. )
Thus we obtain
EN B ® m 1 k+1 N
1_,}/_”]2::1 k§=:1 bm,k[_ 1+§c Ym(y)8
=mZ:2 gz b kCrl £c]Ym(Y)e™, (79)
with
(1+ &) Tkt
Cll&]=(-1)k 1 : ¢ (79)

K(1+g)kHigt

Here we have used E@72) to eliminate theO(e) term in
the series.

For the calculation of th®(e?) andO(&?®) terms, we can
simply set §C=§2=e*”‘p/(l+p). After some computa-
tions, we obtain

N omi(1-2p) S+ 2(3+ P
(80)
where C is a constant given in[7]. Numerically,

C=6.50.... Theexpansion(80) shows that the real part

of the energy gap i©(L % in the lowest approximation.
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the master equation for the probabilB(x;, . . . Xy;t) of
finding N particles on lattice sites,, ... xy at timet. The
master equation is given by E¢LO) with condition (12).
Condition (12) is translated into the master equation for
Pn(X1, ... Xnst) with somex;’s being equal. Especially
the master equation foPy(X, ... Xt) (X;=:--=Xy=X)
turns out to be written in a compact forfi4) using theq
number(9). In contrast with the asymmetric simple exclu-
sion processASEP), each lattice site can contain more than
one particle. In addition, more particles than one can hop
simultaneously to the left or right nearest neighboring site.
This is the reason why we have called the model the
multiparticle-hopping  asymmetric  diffusion  model
(MADM). The most remarkable feature of the model is that
the model can be solved quite parallel to the ASEP. The
eigenfunctions of the model are constructed by the conven-
tional Bethe ansatz method. The resulting Bethe equation has
been analyzed in the thermodynamic limit. The finite size
correction of the energy gap is calculated to ®&.~%?),
wherelL is the length of the chain. This scaling law is the
same as that for the ASEP. It suggests that the model defined
in this paper is in the Kardar-Parisi-Zhang universality class.

In this paper, we have only considered the model with
stochastic interpretation. Similar analysis should be possible
for a generalized model without such interpretation. It would
be interesting to pursue the similarity, for instance, with the
asymmetricXXZ chain. Besides, the Bethe equation for the
g-boson model if22] can be analyzed in a similar manner,
though some modifications are needed. The problem is now
under investigations and the results will be reported in future
publications.

ACKNOWLEDGMENTS

The authors would like to thank K. Hikami for fruitful
discussions and comments. This work is partly supported by
Research Fellowship of the Japan Society for the Promotion
of Science for Young Scientists.

This suggests that the MADM belongs to the KPZ universal-

ity class.

VI. CONCLUDING REMARKS

In this paper, we have proposed an asymmetric diffusion

APPENDIX A: MASTER EQUATION WITH SAME
VARIABLES

In this appendix, we confirm Eq14) from Egs.(10) and

model of many particles. The model is defined in terms of(12). First we prove the relations

N-~1

P N-1
Py(z,2—1,...,2 = 1;t) = [ ] ]PN(:L‘—
N-1 1
Py(Z,.. g, —Lit)= mPN(x—

AN-1
1,,..,z—l;t)+—[N] Py(z,...,%;t),
(A1)
z-—l't)+'y[N—1]PN(:z: R 17
T BTy e

by the induction. FON=2 they reduce to a single defining relatiéf). We assume that the relations are valid far From

the relations folN, we have
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N -1
PN+1(.’E,.’L‘— 1,...,(17 — 1,t) = [W]—JP]\HJ(&I—
_L 1
PN+1(.’Z},. . 1 t) = PN+1(

[N]

ONE-DIMENSIONAL ASYMMETRIC DIFFUSION MODH. . ..

z—1,...
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AN-1 N
1, ..,:c—l;t)+——[-1WPN+1(:v, LT,z — 1it),
A2
~ z—1t)+ [N—_—HPN iz, ...,z t). "2
] ) Y [N] + g sty

Solving the system of the equations and using the formul@omparing Eq(B1) with Eq. (63), we see thatd becomes

[N—1][N+1]+yN"1=[N]? for the g number(9), we ob-
tain the relationgAl) for N+ 1.

Now we prove Eq.(14) again by the induction. FoN
=2, Eq.(14) reduces to E(8). We assume Eq14) is valid
for N and derive it forN+1. We want to setx;=---
=Xn+1=X in EQ.(10) for theN+1 case. This is done in two
steps. For the functionPy,(Xq, -, Xn+1:t) with Xg
. =Xy=X, we can use Eq.14) for N. We then find

small for largeL. Assuming the analyticity ofiZ, (£)/d¢ at
&., the inverse functiori,fl of Z_ (&) is put in the form

ZiH(mp= )=t 2 an(—iNHIO™ (B2
Consider the sum of the forrEjN:lf(gj) where the set

{£;} is a solution of the Bethe equati@h?). Due to Eq.(61),
the sum is written in the form

d
—Pnii(2,. .., 2, ZN415 ) N N o
dt l > fgn=2t ZLl(Tli) - (B3)
N N-I j=1 j=1
= iP (z—-1 z-1,7 Z, TN+1;t)
= IX_; T v P Eree s THENTD To evaluate the sum, we use a form{#g
N 4 N-l ! N _ N 1
+ ; [TPNH(’m, LS+, 2+ 1 2Nt) ]Zl f(j)= L f(t)dt+§[f(N)+ f(1)]
14+ °°f(Nt)—f(1t)
-3 T Pya(a,... ¢ o4t zf -7 7 B4
2T Sy (B4
+Prnyi(zy. ..,z TN — 15t) ~ . . .
wheref(s,t)=[f(s+it)—f(s—it)]/2i. After some calcula-
+vPysa(z, ..., T, TN41 + 1;1T) tions, we obtain Eq(65) with the definitions ofy, Y, (y).
andA,[f],
—(14+79)Pys1(z,y ... 2, zN41s L) (A3) ml ]
= 6L/, B5
SettingXy+1=X in EqQ. (A3), using the second equation of y m 5
Egs.(Al) and noticing the formula YY) = YO (y) + (—iy—1)™ = (—iy+)™,
N 1
_ m+
2 i e (&4) Y%(y)=RE< iy
for theq number, we obtain Eq14) for N+ 1. Thus we have I NFTFO = (—ivEi—Dm
proved Eq.(14) for any N(=2). +Ef (Ziy+i+t y+i )
I Jo e”‘— 1
APPENDIX B: SUMMATION FORMULA (B6)
In this appendix, we give some definitions related to the m oy
summation formula(65). First we assume that the phase Am[f]zz ka(k)(fc), (B7)
function Z, (&) for finite L has a vanishing derivative at a =1 k!
certain value of and definet, by the relationdZ (&.)/dé " K w
=0. SincedZ..(£2)/d¢=0, &, is expected to be close & m| _ m
for largeL. In addition, defines by the relation mE:l Ame mE:k Bm, 2™, (B8)

Z (&) =mp—ié. (1)

wheref(® denotes théth derivative off(&).
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