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Yang-Lee edge singularity of a one-dimensional Ising ferromagnet with arbitrary spin
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It is shown that for a one-dimensional lattice system in a purely imaginary magnetic field, if the interaction
is finite range, the nature of the Yang-Lee edge singularity is universal, independent of the spin and interaction
strengths. The edge singularity corresponds to the twofold degeneracy of the largest eigenvalues of the transfer
matrix. For the Blume-Emery-Giriffiths ferromagnet, the tricritical point and the edge pseudosingularity may
exist. The tricritical point corresponds to the triple degeneracy of the eigenvalues. The edge pseudosingularity
corresponds to the twofold degeneracy of the nonlargest eigenviB363-651X98)11909-9

PACS numbsgs): 05.50+q, 75.40.Cx, 75.10.Hk, 64.60.Cn

[. INTRODUCTION that phase transition is marked by the occurrence of the two-
fold degeneracy of the largest eigenvalue of the transfer ma-
In 1952, Yang and Le¢l] opened a new way to study trix. For a one-dimension&lD) lattice system in a real mag-
phase transition. They called attention to the zeros of thaetic field, if the interaction is finite range, no phase
grand partition function in the complex fugacity plane. Theytransition occurs at a finite temperature. For the same system
showed that in the thermodynamic limit the zero distributionin a purely imaginary magnetic field, the nature of the Yang-
approaches the positive real axis and gives the transitiohee edge singularity is universal. In Sec. lll the Yang-Lee
point. In application to the ferromagnetic Ising model, theyedge singularity of 1D Ising ferromagnets with spin 1/2, 1,
considered the zeros of the partition function in the complexand 3/2 is studied, respectively. In Sec. IV, the Yang-Lee
magnetic plane and proved the famous circle theorem. Thedge singularity of the 1D spin-1 Blume-Emery-Griffiths
Yang-Lee circle theorem states that the zeros of the partitiomodel is studied. In Sec. V, a summary of this paper is
function in the complex magnetic plane are distributed on given.
unit circle. Later this theorem was extended to many ferro-
magnetic systems, such as the higher-spin Ising mi@el Il. GENERAL CONDITION OF PHASE TRANSITION
Ising models with multiple spin interactions, the quantum
Heisenberg mode[3], the classicalXY and Heisenberg We consider a lattice system in a real magnetic field. We
model[4], and some continuous spin systefb assume that its transfer matrix is given by lak L matrix
Above the zero-field critical temperature, the zeros do notL is finite), whose eigenvalues are obtained from the char-
come close to the redl axis in the thermodynamic limit and acteristic equation
the free energy is not analytic m There exists a gap in the
imaginaryh axis, where zeros are void. Since the gap size A +antttant 2+ +a A +a =0, (1)
depends on the temperature, one can envision a critical line
h=ihy(T.) (herehg is rea) along which the free energy wherea, are coefficients determined by the model. hgtbe
becomes singulas~ (h—ihg)? (here 6 is a critical expo- the largest eigenvalue adl be the total number of the lat-
nend [6—8]. This singularity was termed the Yang-Lee edgetice points. In the thermodynamic limit, the partition func-
singularity by Fisher. Fishd9] proved that the edge singu- tion, the free energy, the magnetization, and the susceptibil-
larities h=ihg, representing zeros lying closest to real val-ity are given, respectively, by
ues of the field, are closely analogous to the conventional

critical point and that the relevant scaling laws are appli- z:)\m, 2
cable. Furthermore, the universality should hold for them too
and the critical exponents of these singularities are indepen- f=F/N=—KT In \,, @)

dent of the detailed lattice structure and interaction strengths,

and depend only on the spatial dimensions and symmetry

property of order parameter. M = _(
Since the edge singularity has the most important influ-

ence on the equation of state of a ferromagnet, there have

af) . 1 g
—| =gt T 4
ah) ~F X, @

been many studies about it. These include the edge singular- oM 92\ N 2

ity in the Ising mode[10], in the hierarchical modélL1], in (—) =B YN ? zm—)\mz(—m) _ (5)
the spherical mod€J12], in the classicain-vector models dh /s h dh

and the quantum Heisenberg modl&B], as well as in the

relation with conformal invariance in two dimensiof4] From Eq.(5), we deduce that the condition of phase tran-
and in the relation with the critical behavior of branchedsition (IM/dh);— o implies that ¢A,,/dh) or (¢*\,/dh?)
polymers[15], etc. become infinity. In order to find the partial derivatives\gf

This paper is organized as follows. In Sec. Il, it is shownwith respect tch, we differentiate Eq(1) with respect tc,
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L-1 L
A L—1-1 9 L—I_
o 2 (L=hang T > Zoan=0, (6)
&2)\ L-1 L
e 2 (L=hang '™
(7)\ oL—2
+ —m> > (L=D(L=1-1)ar: "2
dh | =0
L-1 L >
a)\m &a.| Lol-1 (?a.| L-l_
+2(7_h|20(|‘ ) —5An +|§O —r7hm =0,
(7)

whereay=1. Since in generah, and their derivatives with
respect tch do not diverge, the condition of phase transitio
requires that

n

L-1
;0 (L-DaaL-'"1=0. (8)

The condition of phase transition is determined by Eds.
and (8). Equation(1) is an algebraic equation of ordér.

YANG-LEE EDGE SINGULARITY OF AONE. ..

4175

From Eqgs.(4) and(5) we obtain the singular parts ™ and
(oM/oh)+,

M ~(b§— 4b2b4) -1z (13)
and

"

——| ~(b5—4byb,) %2 (14)

oh ).

Thus we see that the phase transition conditimrofold de-
generacyrequiresb§—4b2b4=0, which impliesM — . On
the other hand, when the magnetic field is réalshould be
finite. Therefore we find thadbr any lattice system in a real
magnetic field, if its transfer matrix is finite dimensional, no
phase transition occurs at a finite temperature

If L were infinite, we could not have an expansion as Eg.
(9) and the origin of singularity would be quite different.
Thus the above conclusion will not be valid in general.

For a 1D lattice system in a real magnetic field, if the
interaction is finite range, the transfer matrix is finite dimen-
sional, independent of lattice size. So no phase transition
occurs at a finite temperature. For a higher-dimensional lat-
tice system in a real magnetic field, if the lattice size is finite,

Equation(8) acts as a constraint equation to be satisfied byhep s transfer matrix is finite dimensional and no phase

the largest eigenvalue at the critical point. Thus Hg.has

transition occurs. These are well-known fat9,20.

(L—1) distinct roots. Therefore, the largest eigenvalue is por 5 1D lattice system, let us turn our attention to the
twofold degenerate. We obtain an interesting conclusion thghore interesting case in which the magnetic field is purely
for a lattice system in a real magnetic field, the condition Ofimaginary. If all eigenvalues are real, from E8), we know
phase transition requires that the largest eigenvalue of the,__\N- g i the thermodynamic limit and no Yang-Lee ze-
transfer matrix be twofold degenerat@ his solution of the ros aTJpear Therefore, we deduce that in the gap where
square 'a“'c?. spln—l_/z Ising model, (_)nsa{;%] noted that Yang-Lee zeros are absent, the eigenvalues of the transfer
below the critical point, the largest eigenvalue is degeneratﬁqatrix must be real. We can use the general condition of

(twofold degeneragy The occurrence of the twofold degen-
eracy of the largest eigenvalue is a sufficient condition o
phase transitiof17,18.

Let us expand the largest eigenvalue around the critic
point, Ap,=A2+ &\, and determine the critical behavior.
Here A2
satisfies Eqs(1) and (8). Substitutingh, into Eq. (1) and
expanding, we get

L

> AN+ 60 =h,(ON )2+ bg( SN )3+ ba(SN) 4+
=0

=0, 9
where
L—n
bp=2, Cl_ @A)~ " (10
=0
Keeping the larger terms, we get
by+ b3S\ +by(SN)2=0 (11
or
—bs*+/bZ—4b,b
A=A —— % T2 12

2b,

hase transition, Eq$l) and(8), to get the Yang-Lee edge
singularity.
We see that the singularity stems from the square root in

aII:‘q. (12). This means that the critical exponents are universal.

Thus we conclude thadbr a 1D lattice system in a purely

is the largest eigenvalue at the critical point andimaginary magnetic field, if its transfer matrix is finite di-

mensional and the Yang-Lee edge singularity exists, then the
nature of edge singularity is universal, independent of spin
and interaction strengths/Ve will confirm this in later sec-
tions.

Ill. 1D SPIN-S PURE ISING FERROMAGNET

The partition function of a 1D spi&-Ising model in the
presence of a magnetic fieldis given by

Z=, ex

N N
p(ﬂZ JSS.1+BhY S|, (19
{si i=1 =1

where §=—-S5,—S+1,....5—1S and J>0. The periodic
boundary condition is imposed so tt&{, 1=S,. The trans-
fer matrix is given by

(Sj|VIS;+1)=exd BISS;+ 1+ Bh(S+Sj,1)/2]. (16)

The transfer matrix is ah XL matrix with L=2S+ 1. Then
the partition function can be expressed as
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=2 ($ilVIS:N(S|VIS:) (Sl VISy)

— —y N N
=Tr VN=A\Y+--- ],

17)

where\,...,\ are the eigenvalues of the transfer matrix,

given by

A +a bt ant 2+ +a A +a, =0. (18

Because of symmetryg,(—h,T)=a,(h,T). We will con-
sider the case wheh is purely imaginaryh=ih,. In this
casea, will be all real.

A. S=1/2
The transfer matrix is
eB(I+2h)/4 g B4

V= .
eBI-2n)4

e B4
The eigenvalues can be determined easily,
N1 .= coshph/2=(sint?gh/2+e A2 (19

We consider the case in whithis purely imaginary. The

two eigenvalues are real or complex conjugate depending on

the value of (sinfBn/2+e~AY). If (sink?gh/2+e #Y)=0,
the two eigenvalues are real ang=\,. In the thermody-
namic limit, we obtain the free energy,

f=—J/4— B~ YIn[coshBh/2+ (sinF?Bh/2+ e~ A3)17?],

(20)
and the magnetization,

\___sinhphi2
 (sintfBh/2+e PI)Vz

(21
Thus we have
oM
oh

The phase transition conditiongt{/dM)+=0, requires that
sint?gh/2+e #I=0. Leth=ih,. The critical line is given
by

_ Bcoshph/2 B sinh Bh/2 coshgh/2
. (sinfPghi2+e A2 (sint?ph/2+e P32 -
(22)

sin B.hol2=e™ FeI2, (23

From above we find that the occurrence of the Yang-Lee
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h

h 12 2n+1
(sinf?%+e“”) =i cosh% tan o

2N

(n=0,1,..,N—1). (25)

We see that if sinfBh/2+e #'<0, Yang-Lee zeros exist
and are given by

h
%Zsmzﬂ

2n+1

sir? N

+e Plecod

N @9

Therefore, we find that in the gap the eigenvalues are real
and no Yang-Lee zeros appear. At the etige +hy(T,),

the eigenvalues become twofold degenerate precisely. On the
rest of the imaginary magnetic field axis, the complex con-
jugate eigenvalues appear and also Yang-Lee zeros appear.

Let us define the critical exponents near the critical line in
the ordinary sensei) M(h=ihg)—(T—T.)? (i) M(T
=T.)—(h—iho)Y?; (iii) the specific heaC(h=ihg)—(T
—=To)™% (iv) x=(dM/oh)(h=ihp)—(T—Tg) 7 (v) the
correlation lengtié(h=ihy)—(T—T¢) ~*; (vi) the spin-spin
correlation functiong(r)—r 97277,

From Egs.(20)—(22) we find thatg=—1/2, 6=—-2, «
=3/2, andy=3/2. Other exponents can be obtained from
the spin-spin correlation function that has been calculated in
[21,22. The result is

g(r)=(1-M?)e "¢, (27)

where

E=[IN(\ /A1 % (28)

Using Eq. (19) we find that &(h=ihy)—(T—T,) 2 as
T—T, and v=1/2. From Eq.(27), we see thaty is not
definite. If we takep= —1, the critical exponents satisfy all
scaling relations: a+28+y=2, B(6—1)=y, y=v(2
—-7), 6=(d+2—-7n)/(d—2+ %), anda=2—vd.

B.S=1
The transfer matrix is given by

eBth)  gphi2 e B
v=| e 1 e B2
e Bl g BN2 gBI-h)

The eigenvalues of the transfer matrix are obtained from

edge singularity corresponds to the twofold degeneracy of

eigenvalues of the transfer matrix.
If sinh? gh/2+ e #7<0, the two eigenvalues are complex
conjugate

A1 o= eP coshphi2=xi|sint? ghi2+e A V2], (24)

On the other hand, the Yang-Lee zeros are giverZ 50,
ie.,

A+aN2+a,N+az=0, (29)

where
a;=—[1+eM(ef"+e )], (30
a,=(eM—1)(ef+e P +e?Pl—e 28 (3
az=e A—e?Pl12(efl—e ), (32)

We consider the case in whidhis purely imaginary. All of
a,, a,, and az are real. DefineQ= (3a2—a§)/9 and R
=(9a,a,— 27a;—2a})/54. D=Q3+ R? is the discriminant.
If D=0, the eigenvalues are real,
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25 ' ' wherec=ef* andd=ef"2. The eigenvalues are obtained
from
20f
)\4+ al}\3+ az)\2+ 33)\+a4:0, (41)
S where
=
1.0F a;=—c(d®+d %) —c(d+d 1), (42
0.5F . a,=(c1%—c®)(d*+d %) +(c¥—c8)(d>+d?)
00 ‘ . \ +(c2—c2)+(clB—c18), 43)
0.1 10 100 100.0  1000.0
T ag=(c °—2c 1+ 2¢’—cty(d®+d3)
FIG. 1. The critical lines of 1D Ising ferromagnets. The unit of +(cV=2¢7%+ B+t~ (d+dY), (44
T is k/J.
a;=(1-¢)%1+¢)8(1+c?)®1—-c+c?)
A1=2V=Q cog6/3)=a,/3, (33 X(1+c+ce?)(1+cH2(1—c?+chHc™ 20 (45
A2=2\—Q cog2m/3+ 0/3) —a,/3, (34 We consider the case in whichis purely imaginary. All
of a;, a,, as, anda, are real. Lety; be a real root of the
where co=R/\/—-Q%. The general condition of phase tran- y3—a,y?+ (ajaz—4ay)y+ (4aya,—as—aza,)=0.
sition, Egs.(1) and(8), gives the Yang-Lee edge singularity, (46)
Am+aihi+ak,+a;=0, (36)  Then the eigenvalues are given by the four roots of the equa-
tion, N>+ A N+B.=0, i.e.,
3\2+2a\y+a,=0. (37)
1
Equation(37) gives A= 5[ —A.+ AL -4B.] (47)

Matching Eq.(38) with, say, Eq.(33), gives cos¢/3)=1/2. 1

Thus =7 and \,,=\;=\3. We see that the Yang-Lee N=5[-As— VA% —4B.], (48)
edge singularity does correspond to the twofold degeneracy

of the largest eigenvalue. The condition of the Yang-Legyhere

edge singularity becomes cés —1=R/\/— Q%. Substituting

the expression® andQ into R= — \/— Q2 gives 1 1
Ar=slai=\ai—4a,+4y,], B.=3[y:7 Vyi—4a,l.
a3/27— a%a5/108+ a3/4—a,a,a,/6+ aza3/27=0 (R<O0), (49)
(39

In the gap, the eigenvalues are real. Siag& 0, we identify

wherea,, a,, andag are given by Eqs(30)—(32) with h the largest eigenvalue with

= |h0
Near the critical line §= ), the largest and next largest 1 1 — 1 —
eigenvalues are given by A==zt 3 Vai—da,+4y;+ > JAZ-4B_.

A=+—0Q—a;/3=(v3/3Q)—D. (40 (50
The condition of phase transition requires ﬂﬁt—4a2

We see that the nature of singularity is indeed the same as in

_ 2 _4p 2_ _
the case oB=1/2. Therefore critical exponents are the samegodgglggt ggrég oﬁgito ?HeH:(\szvesri,natlafi?z +S4glth£ edge
in both cases. The critical line is plotted in Fig. 1. P 9 g Y- 9

singularity corresponds t42 —4B_=0, i.e.,

C.S=3/2 [a;— ‘/ai_4a2+ 4y 1°=8[y,+ \/yi—4a4]. (52

The transfer matrix is given by . ) )
We see again that the Yang-Lee edge singularity does corre-

c%® 30?2 ¢ c® spond to the twofold degeneracy of the largest eigenvalue.

¢392 cd cl ¢3¢t We can start with the general condition of phase transi-
V= 3 3o | tion, Egs.(1) and(8), which gives Eq(41) and

c3 ¢! cd? c3d

c® ¢ 30! 32 93 4)\fn+3a1)\ﬁ1+2a2)\m+a3=0. (52
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We obtain the same result as it should be. The critical line isrdering in H&-He* mixtures. The model can be used as a
plotted in Fig. 1. lattice gas model to describe phase transitions in simple and
From Eq.(49), we see that the nature of singularity is multicomponent fluid§24]. The model is now considered a

indeed the same as in the caseSef1/2. Therefore critical standard model in the tricritical phenomd2%®]. The Hamil-

exponents are the same in all cases,1/2,1,3/2. tonian is given by
IV. 1D SPIN-1 BLUME-EMERY-GRIFFITHS MODEL H= _Z [JSSJ+KS|23,-2+ 1 LSiSj(SJrSj)_ASzJFh%],
The spin-1 Ising model with nearest-neighbor exchange i (53

interactions, both bilinear and biguadratic, and with a
crystal-field interaction was introduced by Blume, Emery,whereJ, K, L, andA are interaction strengths. For the 1D
and Griffiths[ 23] to describe phase separation and superfluictase, the transfer matrix is given by

(SiIVIS 1) =exd BISS 11+ BKS'S?, 1+ 5 BLS;S 1 1(S;+ S5 1) — 5 BA(ST+ S, )+ 5 Bh(S+S, )], (59
or explicitly
eBU+K=A+L+h)  oB(-A+h)2 eB(—I+K=4)
v=| ep-a+ne 1 e BA+h)2

eB(—3+K-4) e BA+TNR2  gBI+K-A-L-h)

The eigenvalues of the matrix are obtained from

A3+aN2+a,N+ag=0, (55)

where
a;=—[1+efIrK-8)(gh(=h=L) 4 gh(ht+L)y] (56)
a,= —e P (et @ BNy 4 @BIHK-L)(gB(L+N) 4 g=BL+N)) 4 g2B0+K-A)_g=2B(0-K+4) (57)
a3:e72B(J7K+A)_eZB(J+K7A)_2e7ﬁ(J7K+2A)+eB(J+K72A)(eBL+efﬂL). (58)

Following the same analyses as in the preceding section, wgenerate. It is easy to show that, n&a 0 or 2, no singu-
find that the edge singularity is still given by E®9). The larity appears. Therefore, this ispseudosingularity

nature of singularity remains the same as in the previous The ferromagnetic condition requires that<£0, h=0)
cases. be the unique critical point whemis real. On the other hand,

If 6=0 or 2m, i.e., R=—Q3, then the eigenvalues are in order to guarantee the existence of edge singularity, the
Am=N1=2V—Q—a,/3 and \,=XA3=—+—Q—a,/3. This solution of Eq.(39) for h must be purely imaginary. Also in
means that the nonlargest eigenvalues become twofold déie gap the eigenvalues must be real. These considerations

give L=0 andJ>0, under which the Yang-Lee circle theo-

2.0 T T
2'5 T T T
1.5r 1 20f
[= 1.5‘
-~ ~ i
£ 10 s
Q.
1.0F
0.5f .
o5k
0.0 .
0.1 1.0 100 100.0  1000.0 0.0 : ‘ '
T 0.1 1.0 100 1000  1000.0

1
FIG. 2. The typeA critical line of a 1D BEG ferromagnet. The

unitof Tisk/J. L=0,K=1.5], andA=0.5]. The solid line is the FIG. 3. The typeB critical line of a 1D BEG ferromagnet. The
critical line and the dotted line is the pseudocritical line. unit of T is k/J. L=0,K=0.5J, andA=1.25].
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25 T T .
030" 1
o /
i 2
1-5_ :':. 7 g 0.20_ .':: 1
(=1 N :
-~
o B
1-0r ] 0.10F ]
051 ] L
0.00f ot ¥ .
oob , ‘ 0.1 10 100 1000  1000.0
0.1 10 100 1000 1000.0 T

! FIG. 5. The typeD pseudocritical line of a 1D BEG ferromag-

FIG. 4. The typeC critical line of a 1D BEG ferromagnet. The Net. The unit ofT is k/J. L=0, K=2J, andA=4J.
unit of T is k/J. L=0, K=0.5], andA=4J. The solid line is the

critical line and the dotted line is the pseudocritical line. but no_edge singularity exists. The pseudocritical line is

shown in Fig. 5. We call this kind of pseudocritical line type

D.
rem is valid. We now discuss several cases. If A<O0, the solution of Eq(39) for h is not purely imagi-
nary and the Yang-Lee circle theorem is not valid.
A.J+K—-A>0
C.J+K—-A=0
If J+K>0, asT—0 andh—0, a;— —2efU+K=4) 4,
*)ezﬁ(‘]"'K_A)’ and asﬂ_ez.B(J"'K_A)_ So R— |f A>O, asT—0 andh—>0, a1—>_3, a2—>3, anda3—>

(—1/18)e*F3 K-8 <0 andR=— y— Q3. (T=0,h=0) isa —1, andR—0 andQ—0. This is a marginal case. We have
critical point. We have calculated critical lines with different C@lculated several cases. Itis found that either the edge pseu-
sets of K,A). We found the following phenomendi,) If _dosmgulanty(type D) or the edge lsmgularlthype B) ex-
there exists @ pointT,, ih,) satisfyingQ=R=0, i.e., 3, o> depending on the combinations &f K, and 4, as
—a?=27a;—a’=0, then the critical line exists between 0 shown in Figs. 3 and 5. I <0, the solution of Eq(39) for

h is not purely imaginary and the Yang-Lee circle theorem is
<T.<T,. The end point is the tricritical poinfl¢, ih;). The valid? y ginary g
tricritical point corresponds to the triple degeneracy of the

eigenvalues. Near the tricritical point, the nature of singular-
ity is identical to that of the edge singularity. Therefore the
tricritical exponents are all the same. The pseudocritical line We have shown that phase transition is marked by the
of the edge pseudosingularity emerges also from the tricritioccurrence of the twofold degeneracy of the largest eigen-
cal point, as shown in Fig. 2. The physical picture is that invalue of the transfer matrix. For a 1D lattice system in a real
the gap the eigenvalues are real and no Yang-Lee zeros afragnetic field, if the interaction is finite range, no phase
pear. At the edge’ the non|argest eigenva|ues become twdansition occurs at a finite temperature. For the same system
fold degenerate precisely. On the rest of the imaginary magh & purely imaginary magnetic field, the nature of the Yang-
netic field axis, the eigenvalues become complex and Yand-€€ €dge singularity is universal, independent of spin and
Lee zeros appear. We call this kind of critical line type Interaction strengths. The critical exponents satisfy all scal-
(ii) If the tricritical point does not exist, the shape of the:cnlgd rglatlons. The ?‘Ee Ismgul?nty correlspondfs ttr? ”:e thO'
critical line is similar to that of a pure Ising ferromagnet with old degeneracy ot the fargest eigenvalues ot the transier
S=1. AsT,—, B.h, approaches 2/3, as shown in Fig. 3 matrix. F_or a one-dimensional spin-1 Blum.e-Emery-Grlffl'Fhs
We (;all thics typ;e <§f %ritical line typd ' "7 model withL=0 andJ>0, the Yang-Lee circle theorem is

) : . valid in general, except for some special cases. For some

If J+K <0, the solution of Eq(39) for h is not purely 9 b b

. . . X ; combinations ofl, K, andA, the tricritical phenomenon and
imaginary and the Yang-Lee circle theorem is not valid.  {he edge pseudosingularity exist. The edge pseudosingularity

corresponds to the twofold degeneracy of the nonlargest ei-
B.J+K-A<0 genvalues. The tricritical point corresponds to the triple de-
If A>0, asT—0 andh—0, a;——1, a,—0, andas generate eigenvalues._ The tr_icritical exponents _are_the same
—.0. SOR—1/27>0 and (T=0, h=0) is not a critical point. 25 those of the edge singularity. For some combinatiods of

We have tried several different sets f,0). We found the K, and A, only the edge pseudosingularity exists, but the
following phenomena(i) For some combinations af, K, ang-Lee C”C'?‘ theor_em IS SF'” \./a“d' A” or_1e-d|men5|onal
and A, the critical line begins from a tricritical point and I_S|_ng models_ with ar_bltrary spin, including hlgher-or_der an_d
ends at infinity. The rest is the pseudocritical line, beginning!Nité-range interactions, belong to the same universality
from T=0 andh=0 and ending at the tricritical point, as c/ass Of the edge singularity.

shown in Fig. 4. We call this kind of critical line typ@. (ii)
For other combinations al, K, and A, no Yang-Lee edge
singularity exists. However, the edge pseudosingularity ex- This work was funded by Pohang University of Science
ists. To our surprise, the Yang-Lee circle theorem is validand Technology.

V. CONCLUSION
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