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The connection between Tsallis entropy for a multifractal distribution and Jackgaiésivative is estab-
lished. Based on this derivation and definition of a homogeneous functgpanalog of Shannon’s entropy is
defined. Tsallis entropy can also be accommodated in this formalism. PseudoadditivitycpEtitepies is
proved. We also define g analog of Kullback relative entropy. The implications of the lattice structure
beneath they calculus are highlighted in the context of theentropy.[S1063-651X98)08809-6

PACS numbdss): 05.50+q, 05.70-a, 02.20--a

[. INTRODUCTION in q deformation lies in more than just modifying the unde-
formed theory at the phenomenological level. Some theories
There are many nonextensive systems in nature, likdave been shown to contaipdeformed structure inherently
gravitational system$l], magnetic systemg2], Levy-like inthemselves. Thus if17,18, underlying ag-deformed for-
anomalous diffusion phenomeri@], etc., which are un- malism, there is invariably a lattice structure. The deforma-
tractable within the conventional Boltzmann-Gil{BG) sta-  tion parameter can be given in terms of the size of lattice
tistics. In such cases, it is impossible to obtain well behaveg|ementary cell. The Barnett-Pegg formalism for the rotation
expressions for response functions of thermodynamic quatyngle operator is another exampled] where theq param-
tities, which can provide comparisons with experimental ré-te; s related to the dimension of the representation. It was
sults. The main reason for this failure is that BG statistics 'Spointed out recently thag analysis is naturally suited for
an extensivelor additive formalism. Nonextensive Tsallis study of fractal and multifractal sef&0]. An important fea-
thermostatistic§NTT) [4] was proposed as a formalism suit- ture of these theories is the presence .of tovemore defor-

able for treating nonextensivity of physical systefg$. It . . i .
has been applied with success to many different problems. Aation parameteq,' which describes deviation from.standard
undeformed theories. Usually, fay— 1, the formalism re-

few examples are finite mass for stellar polytrop@&s Levy- ) o
like anomalous diffusiofi7], calculation of the specific heat Verts to the standard one. Recently, Tsallis n¢fs] a simi-

of nonionized hydrogen atorf8], velocity distribution of larity betweenq numbers used mq—deformedl'gheones aqd
galaxy clusterg9], and linear response theof%0]. For de- the entropy of Eq(1). Notably the pseudoadditive properties
tailed reviews on NTT, formalism as well as applications,of both quantities are alike. Ab21] suggested the use of
see[11]. A complete list of works on the formalism is also Jackson’sy derivative to form a link between thgg calculus
available on the interngtl2]. An important fact about NTT and Tsallis entropy. Erzg22] has shown that the nonhomo-

is that an entire formalism of thermodynamics can be exgeneity relation obeyed by the nonextensive free energy can
tended within NTT. One nonextensive quantity that plays &e expressed in terms of tledifference operator. Also in
useful role in this context is Tsallis entro§¢3]. Given a  [23] the nonextensivity of the classical set theory was shown
probability distribution{p;};—1 . . w wherei is the index for  to have ag-oscillator structure. These works suggest that the

system configuration, Tsallis entropy is given by property of nonextensivity has deeper rootsjideformation
W structure, though a complete understanding of this relation is
1- 2 (py) lacking[24]. This paper attempts to further narrow this gap.
. =" We will seek to accommodate entropy, especially Tsallis en-
Sq:q_—lr (1) tropy, in ag-analytic framework. An interpretation highlight-

ing the lattice structure beneathgaframework[17] of en-

whereq is a real parameter, assumed to be positWas the ~ tropy will also be given. _ _
number of accessible configurations and Boltzmann’s con- The plan of the paper is as follows: in Sec. II, we establish
stantkg has been set equal to unity. Tsallis entropy has soméhe relation between Jacksomjslerivative and entropy for a
important properties such as positivity, concavity, andmultifractal probability distribution. We will use a slightly
pseudoadditivity. Agj—1, Sg—>—2pi|n p;, which is Shan- different definition for entropy than used [i21]. In Sec. Ill,
non entropy. Thus parametgrdescribes deviations of Tsal- We propose a more general definitiongpentropy based on
lis entropy from Shannon entropy. On a different side, quana definition of a homogeneous function. It is shown that
tum algebrag14], q analysis andy special functiond15]  pseudoadditivity of this entropy follows from pseudoadditiv-
andqg-deformed physical theorig46] have been the subject ity of g numbers. Moreover, Tsallis entropy can also be ac-
of great attention in the last decade. Here the serious interesbmmodated in this definition. In Sec. IV, we define the
analog of Kullback relative entropy based on the above con-
siderations. Lastly, before concluding, the lattice structure
*Electronic address: raman%phys@puniv.chd.nic.in behind theg-calculus framework of entropy is highlighted.
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A. Shannon entropy for multifractals aipgi pi=[a]p;. (5)

Originally, Tsallis’ proposal was aimed at accommodat-
ing scale invariance in systems with multifractal propertieswhere[a;]=(q%—1)/q—1 is the Jacksom number. Then
to the thermodynamic formalism. Let us also start with awe define theg entropy as
multifractal probability distribution. Fractal attractors of non-
linear mappings are of this type. According to the box count- _ Pl = h
ing algorithm, we divide thel-dimensional phase space into Z @ P Z Laulp:- ©
d-dimensional cubeghereby called boxeswith side length
R. Let the number of microstaté# represent the number of As g—1, we get
boxes with nonzero probability. For finite value Bf we q
assume a local scaling for the probabilites, _Ei a Epi: —E ap, @
I

pi= Rai, (2)
) o ) If we identify a;=In p; in Eq. (7), we get Shannon entropy
where{ai}i-1, . w is the set of crowding indices. Thus, in a on the right-hand side. Alternatively, if we set as the local
manner similar to suggested|ia1], we can write Shannon’s  scaling index, we again obtain Shannon entropy as defined in

entropy for the given probability distribution as Eq. (3). Similarly, by settinga;=Inp; in Eq. (6) so as to
d obtain Shannon entropy in the limg—1, we get theq
_ = nno deformed analog of Shannon entropy
Ei a'dai Pi EI piln p;. ©)
Note, however, that the variabte here can be given a suit- Se=— EI [In pilp;. ®

able interpretation, which was a dummy variablg 24].
Defining q entropy in the language of homogeneous func-
B. q calculus and Tsallis entropy tions provides us with thg analog[ In p;], of bit of informa-
tion a;=In p; [26]. In other words, the definitior5) gives
2i[In pilp; as aq analog of Shannon information. Note that it
is nontrivial to say that thg analog of bit number-In p; is

If we replace the ordinary derivative in E@) with Jack-
son’sq derivative[25], we get

w —[In p;], but it actually follows from definitior(5) of a ho-
1—2 (p)d mogeneous function as well as power law behavior of prob-
i=1 ability distribution (2).
-2 @Dl p=—— @ Y 2

-1 Now we show that Tsallis entropy can also be accommo-
dated in the definition of entropy(6). Taking «; as a scal-
which is Tsallis entropy. Instead of Jackson's derivative, ifing index, then equality of Eq$4) and(6) gives

we use the symmetriq derivative that hagj—q~?! invari-

ance, we obtain the alternate entropy suggested@in In [a]= g*-1 (p)9'-1 9)
1

o]

the following, we concentrate on the entropy based on Jack- q-1  gq-1
son’s derivative. It will be clear in Sec. Ill that the for(4) o
helps one to visualize a more general definition for entropyWhich gives
We argue that although use of ordinary derivative with
respect toa; in Eq. (3) is mathematically correct, it is not a-=Eln pi. (10)
proper in anoperational sense. Note that in the limiRR ' Ing '

—0, aj—a(x) (x represents the position coordinate in ) , ,
phase spageThen we have an entire spectrum of different | "US We can alternatively define Tsallis entropy asrtbga-

crowding indicesx(x). But in practice, as in computation, a tiveé Of the mean ofa;]'s over the probability distribution
fractal object is defined within a finite range of length scalesWherea; is given by Eq.(10). _
In Fig. 1, we compare the maximum values of the respec-

i.e., Rmin<R<Ryax, WhereR,,, is large compared with av- : X " TR
erage interatomic spacing amj,,, is small compared with tive entropies for equiprobability distribution of stated/ (

the geometric extent of the object. Thus the number as weff" °0)- Only entropy values fay<1 and not foq>1 appear

as size of boxes is finite. In this situation, thgs may notbe  1© P physically meaningful, as discussed below in Sec. V.
continuously distributed. So it makes more sense to use 4S IS clear from Fig. 25, is also a concave function.
discrete derivative to define entropy than a continuous one in Note that if we writeq=1+4, then in Eq.(10), for &

Eq. (3). The suitability of theq derivative for multifractals <1, Ing=4, which implies that Tsallis ang entropy are
has been stressed [ia0]. equal there. The two entropies begin to differ when higher

order terms in the expansion of ¢nbecome significant. In
Fig. 3, we show this difference when a second order term is
included.

In this section, we generalize the definition of entropy. Next we show how the pseudoadditive propertyShfas
Consider an arbitrary probability distributiofp;} where  well as of Tsallis entropy follows very simply from a similar
pi(a;) is homogeneous function of degragand «; is not  property ofg numbers. For this purpose, consider two inde-
necessarily a scaling index. Then by definition pendent subsystems | and Il, described by normalized prob-

Il. GENERALIZED q ENTROPY
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FIG. 1. Comparison of entropies for equiprobability distribution
at W=50, as a function of parametqr

FIG. 3. Deviation of maximum Tsallis entropy from maximum
S[] when the second order term ih=q—1 is included in Ing, for
W=50.
ability distributions{p;} and{p;}, respectively. Then the
entropy of the combined system may be written as also define they analog of Kullback relative entropy based
on the definition ofg entropy(6).

Consider the differencéai]—[a?], wherea;=In p; and
al=In p°. The average weighted against the new probability
distribution gives theq analog of the Kullback relative en-

tropy,

3‘3““'):12; [In pi;1p;j »

=—iEj [In pi+In p;]pip;

=Sy()+SIN+(1-a)SyHsy(h, (1D Kq(p.p%) =2 pi(lai]-[a]). (12

where we have made use of the pseudoadditive property of L .

Jackson'sq numbers and the fact that probability distribu- N the limit of qelbwe get the standard Kullback relative

tions are normalized. It is interesting to note that pseudoadeNtroPy- UsingKq(p”,p) =2ipi([a7]—[ai]), we obtain the

ditivity of Tsallis entropy emerges because this entropy caffl @nalog of the symmetric sum,

be looked upon ag entropy where nova; is given by rela-

tion (10). ' Dq(P,p%) =Kq(p,p%) +Kq(p%p)
. g ANALOG OF KULLBACK ENTROPY :Z ([ai]—[a’ D (pi—pD). (13

Kullback relative entropyf27] measures the information . _ - . Lo
gained in going from a probability distributign’ to another ~Each term in the sum is positive and is zer@iit=p;’. Thus
onep. In the literature, generalized Kullback entropy is at- this function appears suitable for a metric in the functional

tracting attention within the framework of NTR8]. We can  space of probability distributioni29].

0.5 I/ IV. g ENTROPY AND LATTICE STRUCTURE
045 1 Tsa’%is - Finally, we remark on the lattice structure that underlies
04 Shannon —— 7 the q calculus framework of entropy. A natural lattice al-
0.35 - qg=0.8 ready exists, because we partition the phase space into boxes
03 L i of equal sizeR. The lattice constarR can be identified with
Entropy0.95 | 1 |g—1|. Thusg—1 limit also impliesR— 0. The finite size
‘ of the boxes causes coarse graining of the phase space, as a
0.2 q result the information we would have about the structure of
0.15 4 i the distribution is also coarse grained. Thus, we emphasize
01 | that the values of q entropies should be greater than the
T Shannon entropywhich is shown here as the limit of— 1
0.05 N case. We note that both Tsallis agdntropy(9) satisfy this
0 ' ' ' . condition forg<1 (Fig. 1). The divergence off entropy can
0 0.2 0.4 b 0.6 0.8 1 also be explained because @s+0, the size of the boxes

increases, which causes more loss of information and thus
gain in entropy.
As a physical example, in the sandpile model of self-

FIG. 2. Concavity of different entropies. parameter is set at
0.8.
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organized criticalityf 30], the size of sand grain can represententropy, which is another quantity of interest, especially for a
the lattice constarlj— 1|. Changing the lattice constant can g-deformed metric in the functional space of probability dis-
change the profile of the sandpile, which is equivalent tdributions and for statistical inference. Finally, it is argued
using wet/dry sand or larger/smaller grains. Nonextensivitythat the lattice structure that arises from the box-counting
can be important in this system because of the presence afgorithm provides the required lattice, which is inherently
self-similarity for a range of spatial and temporal sca&s. present behind g-calculus framework.

One can look at the lattice structure of Tsallis entropy The applicability ofq entropyS;, in physical problems
from a different viewpoint. By definition, the homogeneous appears to be of immediate importance. Of course,qfor
function p; has a discrete spectrum that can be written as=1+ § and up toO(4§?%), the q entropy and Tsallis entropy

P0.APo.4%Po. - - - 4" 1Py, whereW is the number of mi-  are the same. But for farther deviationsepfrom unity, they
crostates and we assumec 1. In p; space, we can speak in give different results.
terms of the so-calleq lattice. In fact, relation(10) is the The definition of entropy in terms of homogeneous func-

exact transformation considered [iti7], which maps from tions can be useful for thermodynamic systems with discrete
the g lattice (in p; space to an equidistant lattic&in a; dilatation symmetries, such as spin systems on hierarchical
spacg, with lattice constant of Ij. Moreover, due to nor- lattices[32] (see alsd22]). Again in thermodynamic con-
malization of probability distribution, we have a constraint text, nonadditivity of bit cumulants of different subsystems

that helps to determine the initial poipt. Thus indicates correlations between those subsyste26].
) W1 Broadly speaking, suppression of correlations without chang-
PotdPotq“pot - -+q" "Po=1, 149 ing {pi} causes increase of entropy. We have arg&at. \)

that coarse graining of the probability distribution should
imply rise in entropy. This poses an interesting question:
How does ag description of entropy affect correlations be-

tween subsystems? Thyeanalogs of bit numbers discussed

in Sec. Il may play a useful role here.

which givespy=1[W]. We have used the expansion prop-
erty of theq number[W]=1+q+qg?+---+q"“ 1. Thus as
g— 1, the distribution tends to the equiprobability distribu-
tion.

V. CONCLUSION AND OUTLOOK
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