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q calculus and entropy in nonextensive statistical physics
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~Received 6 March 1998!

The connection between Tsallis entropy for a multifractal distribution and Jackson’sq derivative is estab-
lished. Based on this derivation and definition of a homogeneous function, aq analog of Shannon’s entropy is
defined. Tsallis entropy can also be accommodated in this formalism. Pseudoadditivity of theq entropies is
proved. We also define aq analog of Kullback relative entropy. The implications of the lattice structure
beneath theq calculus are highlighted in the context of theq entropy.@S1063-651X~98!08809-6#

PACS number~s!: 05.50.1q, 05.70.2a, 02.20.2a
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I. INTRODUCTION

There are many nonextensive systems in nature,
gravitational systems@1#, magnetic systems@2#, Levy-like
anomalous diffusion phenomena@3#, etc., which are un-
tractable within the conventional Boltzmann-Gibbs~BG! sta-
tistics. In such cases, it is impossible to obtain well beha
expressions for response functions of thermodynamic qu
tities, which can provide comparisons with experimental
sults. The main reason for this failure is that BG statistics
an extensive~or additive! formalism. Nonextensive Tsallis
thermostatistics~NTT! @4# was proposed as a formalism su
able for treating nonextensivity of physical systems@5#. It
has been applied with success to many different problem
few examples are finite mass for stellar polytropes@6#, Levy-
like anomalous diffusion@7#, calculation of the specific hea
of nonionized hydrogen atom@8#, velocity distribution of
galaxy clusters@9#, and linear response theory@10#. For de-
tailed reviews on NTT, formalism as well as application
see@11#. A complete list of works on the formalism is als
available on the internet@12#. An important fact about NTT
is that an entire formalism of thermodynamics can be
tended within NTT. One nonextensive quantity that play
useful role in this context is Tsallis entropy@13#. Given a
probability distribution$pi% i 51, . . . ,W wherei is the index for
system configuration, Tsallis entropy is given by

Sq
T5

12(
i 51

W

~pi !
q

q21
, ~1!

whereq is a real parameter, assumed to be positive.W is the
number of accessible configurations and Boltzmann’s c
stantkB has been set equal to unity. Tsallis entropy has so
important properties such as positivity, concavity, a
pseudoadditivity. Asq→1, Sq

T→2(pi ln pi , which is Shan-
non entropy. Thus parameterq describes deviations of Tsa
lis entropy from Shannon entropy. On a different side, qu
tum algebras@14#, q analysis andq special functions@15#
andq-deformed physical theories@16# have been the subjec
of great attention in the last decade. Here the serious inte
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in q deformation lies in more than just modifying the und
formed theory at the phenomenological level. Some theo
have been shown to containq-deformed structure inherentl
in themselves. Thus in@17,18#, underlying aq-deformed for-
malism, there is invariably a lattice structure. The deform
tion parameter can be given in terms of the size of latt
elementary cell. The Barnett-Pegg formalism for the rotat
angle operator is another example@19# where theq param-
eter is related to the dimension of the representation. It w
pointed out recently thatq analysis is naturally suited fo
study of fractal and multifractal sets@20#. An important fea-
ture of these theories is the presence of one~or more! defor-
mation parameterq, which describes deviation from standa
undeformed theories. Usually, forq→1, the formalism re-
verts to the standard one. Recently, Tsallis noted@13# a simi-
larity betweenq numbers used inq-deformed theories and
the entropy of Eq.~1!. Notably the pseudoadditive propertie
of both quantities are alike. Abe@21# suggested the use o
Jackson’sq derivative to form a link between theq calculus
and Tsallis entropy. Erzan@22# has shown that the nonhomo
geneity relation obeyed by the nonextensive free energy
be expressed in terms of theq-difference operator. Also in
@23# the nonextensivity of the classical set theory was sho
to have aq-oscillator structure. These works suggest that
property of nonextensivity has deeper roots inq-deformation
structure, though a complete understanding of this relatio
lacking @24#. This paper attempts to further narrow this ga
We will seek to accommodate entropy, especially Tsallis
tropy, in aq-analytic framework. An interpretation highlight
ing the lattice structure beneath aq framework @17# of en-
tropy will also be given.

The plan of the paper is as follows: in Sec. II, we establ
the relation between Jackson’sq derivative and entropy for a
multifractal probability distribution. We will use a slightly
different definition for entropy than used in@21#. In Sec. III,
we propose a more general definition ofq entropy based on
a definition of a homogeneous function. It is shown th
pseudoadditivity of this entropy follows from pseudoadditi
ity of q numbers. Moreover, Tsallis entropy can also be
commodated in this definition. In Sec. IV, we define theq
analog of Kullback relative entropy based on the above c
siderations. Lastly, before concluding, the lattice struct
behind theq-calculus framework of entropy is highlighted
4147 © 1998 The American Physical Society
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A. Shannon entropy for multifractals

Originally, Tsallis’ proposal was aimed at accommod
ing scale invariance in systems with multifractal propert
to the thermodynamic formalism. Let us also start with
multifractal probability distribution. Fractal attractors of no
linear mappings are of this type. According to the box cou
ing algorithm, we divide thed-dimensional phase space in
d-dimensional cubes~hereby called boxes! with side length
R. Let the number of microstatesW represent the number o
boxes with nonzero probability. For finite value ofR, we
assume a local scaling for the probabilites,

pi5Ra i, ~2!

where$a i% i 51, . . . ,W is the set of crowding indices. Thus, in
manner similar to suggested in@21#, we can write Shannon’s
entropy for the given probability distribution as

2(
i

a i

d

da i
pi52(

i
pi ln pi . ~3!

Note, however, that the variablea i here can be given a suit
able interpretation, which was a dummy variable in@21#.

B. q calculus and Tsallis entropy

If we replace the ordinary derivative in Eq.~3! with Jack-
son’sq derivative@25#, we get

2(
i

a iD a i

q pi5

12(
i 51

W

~pi !
q

q21
, ~4!

which is Tsallis entropy. Instead of Jackson’s derivative
we use the symmetricq derivative that hasq↔q21 invari-
ance, we obtain the alternate entropy suggested in@21#. In
the following, we concentrate on the entropy based on Ja
son’s derivative. It will be clear in Sec. III that the form~4!
helps one to visualize a more general definition for entro

We argue that although use of ordinary derivative w
respect toa i in Eq. ~3! is mathematically correct, it is no
proper in anoperational sense. Note that in the limit,R
→0, a i→a(x) (x represents the position coordinate
phase space!. Then we have an entire spectrum of differe
crowding indicesa(x). But in practice, as in computation,
fractal object is defined within a finite range of length scal
i.e., Rmin,R,Rmax, whereRmin is large compared with av
erage interatomic spacing andRmax is small compared with
the geometric extent of the object. Thus the number as w
as size of boxes is finite. In this situation, thea i ’s may not be
continuously distributed. So it makes more sense to us
discrete derivative to define entropy than a continuous on
Eq. ~3!. The suitability of theq derivative for multifractals
has been stressed in@20#.

II. GENERALIZED q ENTROPY

In this section, we generalize the definition of entrop
Consider an arbitrary probability distribution$pi% where
pi(a i) is homogeneous function of degreeai and a i is not
necessarily a scaling index. Then by definition
-
s

t-

f

k-

.

t

,

ll

a
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.

a iD a i

q pi5@ai #pi , ~5!

where@ai #5(qai21)/q21 is the Jacksonq number. Then
we define theq entropy as

2(
i

a iD a i

q pi52(
i

@ai #pi . ~6!

As q→1, we get

2(
i

a i

d

da i
pi52(

i
aipi . ~7!

If we identify ai5 ln pi in Eq. ~7!, we get Shannon entrop
on the right-hand side. Alternatively, if we seta i as the local
scaling index, we again obtain Shannon entropy as define
Eq. ~3!. Similarly, by settingai5 ln pi in Eq. ~6! so as to
obtain Shannon entropy in the limitq→1, we get theq
deformed analog of Shannon entropy

Sq852(
i

@ ln pi #pi . ~8!

Defining q entropy in the language of homogeneous fun
tions provides us with theq analog@ ln pi#, of bit of informa-
tion ai5 ln pi @26#. In other words, the definition~5! gives
( i@ ln pi#pi as aq analog of Shannon information. Note that
is nontrivial to say that theq analog of bit number2 ln pi is
2@ ln pi#, but it actually follows from definition~5! of a ho-
mogeneous function as well as power law behavior of pr
ability distribution ~2!.

Now we show that Tsallis entropy can also be accomm
dated in the definition ofq entropy~6!. Takinga i as a scal-
ing index, then equality of Eqs.~4! and ~6! gives

@ai #5
qai21

q21
5

~pi !
q2121

q21
, ~9!

which gives

ai5
q21

ln q
ln pi . ~10!

Thus we can alternatively define Tsallis entropy as thenega-
tive of the mean of@ai # ’s over the probability distribution,
whereai is given by Eq.~10!.

In Fig. 1, we compare the maximum values of the resp
tive entropies for equiprobability distribution of states (W
550). Only entropy values forq,1 and not forq.1 appear
to be physically meaningful, as discussed below in Sec.
As is clear from Fig. 2,Sq8 is also a concave function.

Note that if we writeq511d, then in Eq.~10!, for d
!1, ln q5d, which implies that Tsallis andq entropy are
equal there. The two entropies begin to differ when high
order terms in the expansion of lnq become significant. In
Fig. 3, we show this difference when a second order term
included.

Next we show how the pseudoadditive property ofSq8 as
well as of Tsallis entropy follows very simply from a simila
property ofq numbers. For this purpose, consider two ind
pendent subsystems I and II, described by normalized p
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ability distributions$pi% and $pj%, respectively. Then theq
entropy of the combined system may be written as

Sq8~ I1II !52(
i , j

@ ln pi j #pi j ,

52(
i , j

@ ln pi1 ln pj #pipj

5Sq8~ I!1Sq8~ II !1~12q!Sq8~ I!Sq8~ II !, ~11!

where we have made use of the pseudoadditive propert
Jackson’sq numbers and the fact that probability distrib
tions are normalized. It is interesting to note that pseudo
ditivity of Tsallis entropy emerges because this entropy
be looked upon asq entropy where nowai is given by rela-
tion ~10!.

III. q ANALOG OF KULLBACK ENTROPY

Kullback relative entropy@27# measures the informatio
gained in going from a probability distributionp0 to another
one p. In the literature, generalized Kullback entropy is a
tracting attention within the framework of NTT@28#. We can

FIG. 1. Comparison of entropies for equiprobability distributi
at W550, as a function of parameterq.

FIG. 2. Concavity of different entropies.q parameter is set a
0.8.
of

d-
n

also define theq analog of Kullback relative entropy base
on the definition ofq entropy~6!.

Consider the difference@ai #2@ai
0#, whereai5 ln pi and

ai
05 ln pi

0 . The average weighted against the new probabi
distribution gives theq analog of the Kullback relative en
tropy,

Kq~p,p0!5(
i

pi~@ai #2@ai
0# !. ~12!

In the limit of q→1, we get the standard Kullback relativ
entropy. UsingKq(p0,p)5( i pi

0(@ai
0#2@ai #), we obtain the

q analog of the symmetric sum,

Dq~p,p0!5Kq~p,p0!1Kq~p0,p!

5(
i

~@ai #2@ai
0# !~pi2pi

0!. ~13!

Each term in the sum is positive and is zero ifpi5pi
0 . Thus

this function appears suitable for a metric in the function
space of probability distributions@29#.

IV. q ENTROPY AND LATTICE STRUCTURE

Finally, we remark on the lattice structure that underl
the q calculus framework of entropy. A natural lattice a
ready exists, because we partition the phase space into b
of equal sizeR. The lattice constantR can be identified with
uq21u. Thusq→1 limit also impliesR→0. The finite size
of the boxes causes coarse graining of the phase space
result the information we would have about the structure
the distribution is also coarse grained. Thus, we empha
that the values of q entropies should be greater than
Shannon entropy, which is shown here as the limit ofq→1
case. We note that both Tsallis andq entropy~9! satisfy this
condition forq,1 ~Fig. 1!. The divergence ofq entropy can
also be explained because asq→0, the size of the boxes
increases, which causes more loss of information and t
gain in entropy.

As a physical example, in the sandpile model of se

FIG. 3. Deviation of maximum Tsallis entropy from maximu
Sq8 when the second order term ind5q21 is included in lnq, for
W550.
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4150 PRE 58RAMANDEEP S. JOHAL
organized criticality@30#, the size of sand grain can represe
the lattice constantuq21u. Changing the lattice constant ca
change the profile of the sandpile, which is equivalent
using wet/dry sand or larger/smaller grains. Nonextensiv
can be important in this system because of the presenc
self-similarity for a range of spatial and temporal scales@31#.

One can look at the lattice structure of Tsallis entro
from a different viewpoint. By definition, the homogeneo
function pi has a discrete spectrum that can be written
p0 ,qp0 ,q2p0 , . . . ,qW21p0, whereW is the number of mi-
crostates and we assumeq,1. In pi space, we can speak i
terms of the so-calledq lattice. In fact, relation~10! is the
exact transformation considered in@17#, which maps from
the q lattice ~in pi space! to an equidistant lattice~in ai
space!, with lattice constant of lnq. Moreover, due to nor-
malization of probability distribution, we have a constra
that helps to determine the initial pointp0. Thus

p01qp01q2p01•••1qW21p051, ~14!

which givesp051/@W#. We have used the expansion pro
erty of theq number,@W#511q1q21•••1qW21. Thus as
q→1, the distribution tends to the equiprobability distrib
tion.

V. CONCLUSION AND OUTLOOK

We have presented aq generalization of the concept o
entropy. Tsallis entropy, which specifically deals with no
extensive systems, can also be accommodated in this for
ism. We have also defined theq analog of Kullback relative
s.
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entropy, which is another quantity of interest, especially fo
q-deformed metric in the functional space of probability d
tributions and for statistical inference. Finally, it is argu
that the lattice structure that arises from the box-count
algorithm provides the required lattice, which is inheren
present behind aq-calculus framework.

The applicability ofq entropySq8 , in physical problems
appears to be of immediate importance. Of course, foq
511d and up toO(d2), the q entropy and Tsallis entropy
are the same. But for farther deviations ofq from unity, they
give different results.

The definition of entropy in terms of homogeneous fun
tions can be useful for thermodynamic systems with discr
dilatation symmetries, such as spin systems on hierarch
lattices @32# ~see also@22#!. Again in thermodynamic con-
text, nonadditivity of bit cumulants of different subsystem
indicates correlations between those subsystems@26#.
Broadly speaking, suppression of correlations without cha
ing $pi% causes increase of entropy. We have argued~Sec. V!
that coarse graining of the probability distribution shou
imply rise in entropy. This poses an interesting questi
How does aq description of entropy affect correlations b
tween subsystems? Theq analogs of bit numbers discusse
in Sec. III may play a useful role here.
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