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Dynamical temperatures of quartic and Henon-Heiles oscillators

Vishnu M. Bannur
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We have numerically verified the recently proposed formulation of dynamical temperi@XEe,time
average ofV-(VH/|VH|?), by H. H. Rugh[Phys. Rev. Lett78, 772 (1997], using the quartic and the
Henon-Heiles oscillators. We also give a simple, alternative derivation of the dynamical temperature. Our
numerical results agree with theory reasonably well. However, contrary to Rugh'’s claim, we find that it is not
computationally efficient compared to the more generally used form of the dynamical tempeT@t&rei,me
average of momentum square of each particle, especially for a system with large degrees of fiepdeon (
sufficiently largeN, both temperatures approach the same vaIueT%Yuiis easier to evaluate.
[S1063-651%98)04607-9

PACS numbdrs): 05.45+b, 05.20.Gg, 05.76-a

Statistical mechanicéSM) is generally used to study the T4, Recently Rugli8] obtained an expression o that is
macroscopic properties of a system with many degrees Qiqual to the time average of a functiond(t)
freedom. A large number of degrees of freedom gives rise V. (VH/|VH|?), whereH is the Hamiltonian,V is the
ergodic motion of the system in phase space due to frequegfadient operator in phase space. He verified it usingn-
collisions among particles. These collisions are assumed intoupled harmonic oscillatordHO). However, this HO sys-
plicitly and are essential for the success of &M tem is not chaotic while the theory is for a chaotic system. So

Recently it was found that concepts from SM and thermoiit is more appropriate to verify the theory using chaotic sys-
dynamics may be used to study systems with few degrees eéms such as QO or HHO. This is exactly what we present in
freedom, exhibiting chaotic behavior, like quartic oscillatorsthis paper along with a simple alternative derivation of it,
(QO) and Henon-Heiles oscillator®HHO) [2,3]. Or, con-  which follows from SM[1]. Earlier, in Ref.[3], we derived
versely, we can gain a physical insight into the dynamicalnalytic expressions fofg andTg for N degrees of freedom
description of SM using such systerd. In these systems QO. Here we also derive approximate analytic expressions
there are no implicitly assumed collisions and the ergodicityfor Tg and T for a HHO system. Note that in Reff2], Tg
is due to the nonlinearity of the system, which is explicit in @nd Ts are integrals that need to be evaluated numerically.
the Hamiltonian. The dynamical description of SM and ther-Our numerical results show tha approached’s and T§/
modynamics using such models may answer fundament&lf each particle converges 1, when the system is chaotic,
problems such as the Fourier heat law, thermalization of osfor both QO and HHO systems. When the system is noncha-
cillator chains, etc., from first principld&—7. otic, both T® and TY approach constant values, but not

In this paper, we study the temperature of a Hamiltoniaredqual toTs andTg, respectively. In the case of HHO, equi-
dynamical system in the microcanonical ensemble of therPartition of energy still takes place and the corresponding
modynamics. In the literature there are two definitions oftemperature is close tdg and has an origin different from
temperatures derivable from phase space voldids dis-  ergodicity. _
cussed by Berdichevsky and Albef@] and Bannuret al. We consider QO and HHO as two examples to study the
[3], one definition of temperature &= (J In T/JE) %, gen-  dynamical temperatures of a system with firlitedegrees of
erally used in the study of systems with few degrees of freefreedom. We consider here the caseéNo# 2 and the Hamil-
dom [5-7]. Another definition isTs=[d In(dT/JE)/9E]",  tonians are
generally used in SM. Both of the above temperatures ap-
proach the same value in the limit of large degrees of free- (P5+p3) 97 O3 a ,,
dom [2,3]. However, for few degrees of freedom they do He——F—+5 5 T50% 1)
differ. For many calculations, in the literature, the more com-
monly used definition of temperature is the time average of d
momentum square associated with any one degree of fre&
dom. This is what is called the dynamical temperat'ﬁgé, 5 5 5
which is equal toTg, defined above, by the ergodic theorem _ (P1+p2) i 1 i 92
[2,1]. For a chaotic system, left for sufficiently long ting” 2 2 2
associated with each degree of freedom approathesSo
far, the other definition of temperature, namely, has not for QO and HHO, respectively. Heggs andp’s are gener-
been used in any calculations of dynamical systems withalized coordinates and momenta, respectively, anié a
finite degrees of freedom. This is probably because the dyparameter. QO is chaotic far>6. HHO is chaotic for en-
namical temperatureT@') corresponding toTg was not ergy E=1/6 and develops nonchaotic islands as energy is
known and also in SM there is no difference betw@&grand  decreased. Earlier analysis by Berdichevekwl. shows that
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FIG. 1. Dynamical temperatures corresponding @, Tg,, and FIG. 2. Dynamical temperatures corresponding e, Tg,, and
Ts as a function of time for QO with E=1.5 anda=500. Tsas a function of time for HHO with E=1/8 and initial points on

the chaotic region.
even forE<1/6, equipartition of energy takes place. When

the system is chaotic or ergodic then we have 1 dInQ
T OE ®
gH\ | oH\ | oH S
Piop.) ~\P2ap,) T\ Hoq, where Q(E)=[(dS/|VH|)=dl/éE. T(E) is the phase
H ST -1 space volume bounded by energy Hence,
n
:<q2&_q2>:( JE ) =Te, ® 11 aJ dx 1 &f VH .
» | T o)A aEl® wap ©
where the angular brackets indicate the time average, which
is equal to the phase space average. For[@Owe have whered? is the surface element. Note that the surface here
is a constant energy surface and hence a unit vector normal
T'(E :J dp,dp,dg,dg,=CE¥2 4 to the surface i¥ H/|VH|. Next, using divergence theorem,
(E) —E p10p20dq;dQ; (4) we get
and hencél=2E/3 andT¢=2E. 1 19 dFV-(VH/|VH|2)=£f 40D = (D)
For HHO it is not possible to get an exact analytic expres- Ts ) JE Ju<e QJe '
sion for I'(E), as in the case of QO. However, using the (10
same procedure, one can get a useful expansioh (&) in ]
powers ofE whereE is always<1/6. That is, From ergodic theory we know that the phase space average
equal to the time average and herice= Tdsy when the sys-
E 35 tem is chaotic.
I'(E)=nE? 1+§+3—2E2+"'), ) Numerical results on the evaluation of dynamical tem-
peraturesTY and TY for quartic oscillator and Henon-Heiles
and hence oscillator systems are presented in Figs. 1-3 with dynamical
temperatures along the axis and time along th& axis in
E E 29 log scale. Note that in Fig. 1, temperature is also plotted in
Ta=— 1____E2+...) 6
B 2( 4 32 © 0.25 . . . .
and 0.2 J
-
3_ 13, 8 y
Ts=E|1-—-E— —E*+---|. (7) 2 05 1
4 4 g \
E o1k ko.10578
The expressions obtained fog and Tg above are from  F ‘\qu
SM, phase space average XfdH(X;)/dX; and ®(t), re- 005 b - ;‘v(j,\s:&:x ~1<0.05966
spectively, wher; is eitherqg; or p; . Next let us discuss the ' TB
corresponding dynamical quantitie‘t%‘éy has a simple form o o 8 L
T=(p3)=(p3), which immediately follows from Eq(3) 10 100 1000 10000 100000
and TY=1/d(t)), where ®(t) has very complicated ex- !
pression. More detailed derivation @£’ is given by Rugh FIG. 3. Dynamical temperatures corresponding g, Tg,, and

[8] and here we give a simple alternative derivation, whichTg as a function of timé for HHO with E= 1/8 and initial points on
follows from SM. Following Khinchin[1], we have the nonchaotic region.
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log scale. These are time averaged quantities and plotted as The reason for not considering the case vts 1/6 for
functions of time. The time average of an observad(¢) is  HHO is that®(t) has a singularity and numerical results are
defined as not trustable. FOE<1/6, ®(t) has very sharp peaks, but by
1 ft taking enough points in the integration one can get results
(O)(1)= —f O(7)dr. (11)  correct to required accuracy. As the system evolves, when-
tJo ever|VH|=0 or minimum, singularity or peaks occur.

In summary, we have studied the dynamical temperatures
of QO and HHO and compared with temperatures, derivable
from statistical mechanics using the ergodic theorem. The
dynamical temperatures obtainable by time averaging mo-

X . - . . mentum squares of the particles was discussed earlier by

we discussed in Re{3], for =500 the system is chaot|c' Berdichevsky and Alber{i2] for HHO and Bannuet al.[3]
and for smallera phase space contains a lot of nonchaotlcf O. H h derived and ified th "
islands. We can see thaf) approacheds andT% of each > QO. Here, we have rederive g, ond verred e recently
particle approaches tdg. Initially, both the temperatures proposed dynamical temperatufks’, by Rugh[8], which
show large fluctuations and then settle around the expectdgPTeSPonds to the usual temperature used in $yland
vaIues.Tgy approaches close t@g at t~5000, which is have compared it with the earlier results 3. We have
faster than that oT s, which is att~5x 10* as we see from also derived approximate analytic expressionTgrand Tg
the figure. Att=5x 1CP, the percentage difference between for HHO which reproduce the approximate straight line plot
Ts and Tgy is ~1.5% and that ofTg, and Tg, are both betv\/_eenTB andE, _shov_vn in Fig. 9 of Ref[2], which was
~0.2%. This gives an idea of the convergence of dynamicabtained by numerical integration.
temperatures to their corresponding SM temperatures. For In conclusion, we found tha is a reasonable definition
a=0 or 2 the system is integrable aﬁ'(gyg&TB and Tdsy of dynamical temperature, derivable from statistical mechan-
#Ts. ics based on the ergodic theorem. In both of our models, QO

For HHO, we have takenE=1/8 and henceTg and HHO, which have different properties and symmetries,
~0.059 66 andrs~0.106 93 from Eqs(6) and(7). The ex-  T¢ asymptotically approacheEs, as expected, when the
act values arég=0.059 657 andls=0.105 78, which are system is almost chaotic, where@®’, from our study of
obtained by numerical evaluation of the integral equationHHO, asymptotically approachel even for systems that
Egs. (3.5 in Ref. [2]. Results are plotted in Figs. 2 and 3. are nonchaotic. Hencd,z may not be an appropriate tem-
Figure 2 is for the initial points on the chaotic region and weperature. However, for systems with large degrees of free-
see the convergence of dynamical temperatures to the corrdem one may usE‘éy as a temperature because, for laige
sponding SM temperatures. At=5x1C°, the percentage Tg~Ts and the expressiof(t), for example, QO withN
difference betweenTlg and T‘S’,y is =~0.01% and that of degrees of freedom, is very complicated to handle. In fact,
Tg1, Tgo is~2.1% and~0.3%, respectively. Figure 3 is for the evaluation oﬂ'g}’ is not as efficient a§'gy for large N.
the initial points on the nonchaotic islands ahg of each  This justifies our usual notion of temperatureTd¥, which
particle converges to a value closeTtg but not exactlyTg, is deSy for a statistical systemN—c0). Our present study
whereasT‘éy approaches a value clearly not equal Tg. also reconfirms our earlier thermodynamic and SM treatment
Equipartition of energyTgyl=Tgy2, in this case, may be due of chaotic systems even with only two degrees of freedom.
to the resonance coupling between two oscillators as pointeéis a future work, it would be interesting to reanalyze the
out by Berdichevsky and Alberf]. Note that in all above earlier work on the Fourier heat law, thermalization of oscil-
cases dynamical temperatures oscillate around corresponditajor chains, etc[5—7] using this definition of temperature,

The values ofTg and Tg are marked on thg axis at the
right.

Figure 1 is for a QO system with parameté&s-1.5, «
=500.0, and henc&z=1.0 andTs=3.0 from Eq.(4). As

SM temperatures with decreasing amplitude with time. TY, whereN is finite.
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