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Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept

Hudong Chen
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A lattice Boltzmann algorithm based on a volumetric representation is formulated for achieving properties
consistent with the standard form at finer resolution. In contrast to pointwise interpolation schemes, this
approach can be applied to arbitrary meshes without compromising exact conservation or equilibrium proper-
ties.[S1063-651%98)01709-1

PACS numbeps): 02.70—c, 47.27—i, 51.10+y

. INTRODUCTION incrementAt. The quantityn/ (x,t) [=n;(x,t)+Q;(x,t)]
] . represents a postcollision particle distribution. The difference

The importance of the lattice BoltzmaribB) method for  petween the pre- and the postcollision distributiéhgx, t)
computational fluid dynamic¢CFD) has recently become s ysyally interpreted to be due to a collision process. It

well recognized 1-8]. This method possesses certain cleargiyes the system to a local equilibrium and satisfies some
advantages over conventional CFD methods, such as its eaggsic [ocal conservation conditions

in handling flows with multiple immiscible phas¢8-12],

and the physical implementation of complex boundary con-

ditions. One recent effort is to extend its order of accuracy Z &Qi(x,1)=0, @
and flexibility so that its spatial resolution requirements for

various flow situations may be reduced and may be adaptqgith £=1, ¢, and possiblye, (Eeizlz)v corresponding to

to more general meshes..Attempts at this have already be%qass momentum, and energy conservation, respectively.
made based on the technique of pointwise interpoldtdi One of the simplest forms of); is the Bhatnagar-Gross-

However, such a pointwise representation, as we will realiz

below, has showﬁ difficultiespin preserving certain funda-‘?<r000| (BGK) operatorl 7,16],
mental properties in LB on nonuniform meshes. In this paper At

we present an alternative approach based on a volumetric Qi(x,t)=——[ni(x,t) —nfYx,t)], (©)]
representation, which removes these essential difficulties. T

The concept of using a finite-volume approach in LB was eq : ; e i1
introduced by Benzét al. in 1992 [14]. However, our for- wheren;%(x,t) is the prescribed local equilibrium distribu

T : . .tion function which, as indicated by E@2), has the same
mulat_lon is s_omewhat d|ffere_nt and is worked out SySte.mat"corresponding mass, momentum and energy values as
cally in detail. Furthermore, it perhaps offers a clearer inter- (x1), that is
pretation of the underlying physics. The general algorithm otn' e ’
the present approach is simple and is applicable with explic-
itly defined accuracy to arbitrary meshes. In addition, when E n?q(x,t)=2 ni(x,t)=n(x,t),
used on uniform meshes, the resulting finite-volume Boltz- : !
mann equation is shown to produce the same hydrodynamics
at lower required resolution compared to that of the standard iE cineY(x,t)= iz cini(x,t)
lattice Boltzmann equation. Physically, the present formula- At 7T AL rn
tion implies a possibility of alternative theoretical construc-
tions of subgrid fluid turbulence models based on a Boltz- =n(x,nu(xt),
mann representation rather than the Navier-Stokes L L 4
hydrodynamics. e _

A basic LB system is conventionally represented by the EZ anfi(x = EZ €ini(x.t)
Boltzmann difference equatiofattice Boltzmann equation
(LBE)] on aD-dimensional Bravis lattic&; DT(x,t)

n(x,t)u?(x,t) +n(x,t) —

N

ni(xt+At)=n/(x—¢,t) V xecl;, 1)
where the hydrodynamic quantitiaéx,t), u(x,t) andT(x,t)

wheren;(x,t) (=0) is the particle distribution function for are, respectively, the site-wise particle number, fluid veloc-
momentum staté:i on a lattice sitex at time stept. The ity, and temperature, respectively. According to the above, a

) . . LB dynamic system involves two fundamental steps: advec-
spatial vectors of the s¢¢; ;i =0, .. . b} are links betweena yjon ang collision. Each fundamental step satisfies the re-
site to its specified neighboring sites. PhXS'Ca”y’ Bg.can quired global conservation laws exactly. It has been shown
be interpreted as particles with momentaprhop from lat-  that, with some appropriate choice of lattigesich as two-
tice sitex— ¢ to its indicated destination siteduring a time  dimensional hexagonal or four-dimensional face-centered-
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hypercube latticgstogether with suitable equilibrium forms tion on a valid neighborhood nodE—Aiaﬁy(X) (eLy).
for nf(x,t) as a function of local hydrodynamic variables of Naturally, the optimal choice for obtaining the best local

n(xt), u(xt), and T(x,t), the evolutions of the hydrody- accuracy is fox—A! . (x) to be one of the nearest-neighbor

. L apB
namic quantities governed by such a LB system obey th?\odes of x—& . Theygeometric weight! . (x) for the

viscous Navier-Stokes fluid equations at the Iong-waveIengtlgecond_Oroler interpolation scheme has tﬁgyform
and low-frequency limif2,7,8].

As have been pointed out by Ca al. [17], the LBE Al X)—c
represented by Eq1) can be viewed as just a particular P =[] I A )
first-order finite differencéon a particular mesh spanned by BY oy Aygry ()= A4g, (%)
{G}) approximation to a differential equation in a continuum .

Al g () —Ci )

space
i i
Azl/”ﬁ"'y”,a'( X) - Adﬁ’)/,()'(x)

()

an;(x,t)

- At+G-Vni(x,t) =Qi(xt). (5)

where the subscript ¢’ =a+1(mod2) and o"=«
+2(mod2). Similar definitions apply t8', 8", y', andy".

The reason that Eq1) is able to achieve a correct wscouscJF is readily verified that

hydrodynamics is that the resulting second-order spatial err
term has the same form as that produced via the physical 2 2 2

collision process, so that it can be absorbed to form a new > D piaﬂy(x)zl YV xele, (8)
viscosity definition. This makes the overall method on a uni- a=0 =0 y=0

form mesh second-order accurate as necessary for viscous . . . ) .
hydrodynamics. However, such a redefined viscosity is SenWhlch is the detailed-balance relation necessary to admit the

sitively dependent on the grid resolution and immediatelyPhysical uniform flow as an equilibrium solution of the sys-
breaks down when a general mesh is used. Also, because §M- On the other hand, one can see that the global particle
this reason and some stability considerations, the minimurgOnservation via advection requires the normalizability con-

attainable viscosity value at a given resolution is still Iargerd't'on
than desirable for the purpose of efficiently simulating high 2 2 2
Reynolds number flows. On the other hand, the differential P (xtA . (xN=1 V xerl 9
form of Eq.(5) is in principle not constrained by these limi- a§=:0 32'0 )/ZO s /(X)) e
tations.

Nevertheless, it is convenient to keep using the LBE formThus if the condition is realized, one can show that summa-
of Eq. (1) as our basic starting point. We can construct aniion over all nodes in the system gives
other difference equation on a coarser mesh based on this
discrete system defined on a denser underlying lattice. In so > R(x=¢,t)=> n/(xt) (10)
doing, we must make sure that the new system on a coarser X
mesh recovers the original finer mesh LBE with necessary N .
accuracy for realizing the same viscous hydrodynamics. When boundary conditions are ignored. _ _

Several features of such a scheme are worth noting. First
Il POINTWISE INTERPOLATION AND ITS PROBLEMS of all, it is straightforward to show that the second-order
interpolationﬁ{(x—éi ,t) gives the same result up to the

L A ) . second-order spatial derivativesraa,’s{x—f:i ,1). Therefore, it
mesh is via a pointwise interpolation proced{it&]. Obvi- ) ) h hvdrod cs having th lead-
ously, if the new meslL, is not the original lattice spanned gives rise to the same hydrodynamics having the same lea
) ¢ R o ing order viscous transport coefficient values as that of the

by the basis momentum vectdis}, and ifx is anode of the | BE Second, if the new mesh is a uniform one, then, as in
new meshx— ¢; may not always be another node. Hence thethe original LBE, the global particle conservation is satisfied
quantityni'(x—f;i ,t) needs to be reconstructed according toexactly by the second-order approximation. This is because
the valid information on the new neighborhood mesh nodesP,z,(x) for uniform meshes becomes independenk 0o

To achieve necessary three-dimensioi3f) viscous hy- that the normalizability condition(9) and the detailed-
drodynamics, it can be shown that(x—¢; ,t) must be ap- balance relation(8) are satisfied simultaneously. As a par-
proximated through at least a second-order interpolatioffcular example, we select the neighboring Cartesian mesh
scheme. In particular, its explicit form on a 3D nonuniform nodes ofx—c¢; to be{x— A, ;a,8,y=0,1,2, with
Cartesian mesh can be shown to be

The most direct way to extend E.) onto a more general

o Al =SOI(C; ) A X+sgr(c; ) BA Y
N/ (x—¢,t)=n/(x—¢,t)

5 5 5 +Sgr(ci,z) YAZE, (12)
E;o # ZO Plapy(X) (6)  wherex, y, andz are the unit vectors indicating the three
7_ Cartesian coordinate directiond,, (=X, Yy, or z) repre-
Xn{ (x— A, z,(X),1). sents the distance between two nearest-neighbor nodes along

thex, y, or z direction, respectively. For this case, the weight

! ..(X),t) is the postcollision distribu- takes a simple form

In the aboven; (x— Az,
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Pia;; = pi&Xpiﬁ'ypi,Z, (12)  naturally reduces to cells of equal shape and volume for the
7 7 cases of uniform meshes affii) the mesh node coincides
with with the geometric center of its corresponding cell defined as
Pi’,,-z(Acr_|Ci,0'|)<2A0_|Ci,a|> 1
0 A, 2A, ’ x=——| _xd3x. (15)
V(x) JD(x)
Pi'g_ |Ci,0'| 2A(r_|ci,o'| (13)
Tl A, A, ’ Because we have now a well-defined volumetric measure
given by Eq.(14), the mean distribution function density for
plo_ _ ICi,ol\ [As—ICi,ol cell x can be defined as
2 2A, A, '

Based on physical consideratiof8], we know that exact N O=Ni(XDIV(X),  xeLe, (16)

conservation laws are essential for such a system to realize a o

fully self-consistent and stable microdynamics at all timeswhereN;(x) is the total particle number with momentuzn
even though the method is only second-order accurate ifssiding within cellx.

achieving Navier-Stokes hydrodynamics. Unfortunately, \ye imagine that the space spanned on the original denser

such exact conservation conditions are lost in the abov?attice grids by{&i} is now divided into various subspaces

ff:;?gs'oﬁefrag?'r::]v:sceo'nnsts:eg,:ﬂlo?aafshfr:g iql;oerlcgsmgllggrggpeciﬁed by the cell domains and particles have a continuous
’ ’ Gistribution within each cell domain. If the particles advect

:':rfomdﬁ‘yct)r?(lay z?)(r:r?gt?i-co\r/s;r higci?\rﬁigér?g?eggjr;ieatt:]een:aitactz ccording to the original lattice velocities, then some portion
9 9 f the particles in a cell will move across the cell boundary

gggfnervgggiglse' ;r:z\f);%bl\ﬁgaﬁnth?;em dse‘t)a;ljgéln%ailtaiggsrglz- to other cells. This is a coarse-grained representation of the
P 9 riginal underlying lattice dynamics in the finite-volume

ﬂ)ocr:asl Qﬁgﬁqsaslf;l[]ysfgﬂrrpeerl]l?ste:)l?Ing;l;i?éu;?n?uglgﬁl:rgf, ;0 Lt,?? ense. Note the coarse-grained representation is not an ap-
cent unforced situation More%ver there aregadditional r?ﬁno roximation if the exact particle distributions within a cell
undesirable features in.such a sch’eme For instance, the nur‘;“i}r—e known. The finite-volume attice Boltzmann equation can
ber of neighborhood points used for interpolating a 3D point € described by the generic expression
is relatively large €27) for performing efficient computa-

tions. Another physm?lly u_ndeswaple prob_lem is that at least Ni(ZHAt):Z Fi(7—>;,t), (17)
one of the weightsP,,, is negative. This means that a X/

negative amount of particles propagate in several directions.

Consequently, negative particle distributions may occur

, . S a\tI\lhereNi(Y,HAt) is the total particle number with momen-
some local spatial domains under certain circumstances. —

tum ¢ in cell x at time stept+ At. Fi(ge;,t), referred to
. VOLUMETRIC FORMULATION as the state-flux function, represents the Eumber of particles

ON A GENERAL MESH with momentumg; that cross from celk’ to x during timet
to t+At due to advection. Global particle conservation is
The key problem associated with the pointwise represenguaranteed if the state-flux function satisfies the condition
tation is that the density function is not well defined due to
the lack of a volumetric measure, except for the trivial uni- o o o
form mesh situation in which the sitewise particle number Z Fi(xX'—=x,t)=N/(x",t) V x'eL.. (18
n(x,t) can be interpreted as the number density. x
An alternative formalism is to adopt the finite-volume
concept[14,15. Instead of viewing particles as residing on It is easily recognized that the finite-volume representation
discrete mesh nodes, we imagine a continuum space beirgives the same results if the state-flux function exactly cor-
divided into cells of various shapes and volumes. We camesponds to the original particle dynamics on the underlying

label a cell by the mesh nodeit encloses. The volume of lattice. Specifically, the sufficient condition for achieving the
the cellx is given by original LBE is

V(x)= fD&)dSX, (14) > FilX' —=x,t)=V(x)n! (x—¢ ,t), (19

where the volume integration is restricted in the spatial do- _

main D(x) defined for the cell. The summation of all cell Wheren;j(x—c;,t) is the postcollision state density function
domains should be equal to the entire continuum spatiaatx—éi (e Ly). The proof is trivial by plugging Eq19) into
spaceM of the system; otherwise there is no unique choiceEq. (17) directly. However, to realize up to the correct vis-
of each cell domain. On the other hand, it is advantageousous order hydrodynamics, it can be shown that we require
and convenient to construct them in such a way thait only
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- _ - Ln information. The corresponding state-flux function given by
2 FiX —=x)=V(X)[1-G-V+ 3GG:VV] Egs.(22) and(23) can be integrated to give
X!
X! (x.t)+ O(V?). 20 Fi(x—X" ) =Vi(x.x")[n{ (x.t)
which is an approximation to Eq19) by keeping Taylor +HAIXX) - Vi (xt)
expanded terms to the second order.

We need to construct the above state-flux funcfiofx’

—>Zt) based only on information that exists on the new,ynere the purely geometric quantitiag(x,x') Ai(_x x')

mesh nodes. We first introduce the notion of a density d|s:,de Bi(W) are completely determined once the mesh and

tribution n;(x,t) inside each continuous cell domain spacey| the associated cell shapes are specified. These are
xe D(x). Hence

+B(x,x):VVn/(x,1)] (24)

~ — — = Vi(x,X’)Ef _ L d¥%,
J _ () d3x=N/ (x,t)=V(x)n/ (x,t) (2D D(x)ND~'(x")
D(x)
_ VA (% X ) = 3
whereN; (x,t) is the postcollision particle number with mo- VioKXDAI(XX) fD(X)ﬁD—i(X/)(X x)dx, (29

mentumg; in cell x. Using this notion, the state-flux function 1
can be immediately constructed: Advectiondsimply per- Vi(W)Bi(W)EJ S (x=X)(x—x)d3x.
forms a rigid-body translation of the distribution from its DXND i (x)2

original spatial domairi.e., D(x)] to a new domain. AS & | particular, if a Cartesiafnot necessarily uniforjmesh is

result, the fract|on_of particles in the original c&lthat will used, these geometric quantities, as well as the finite differ-
fall into a new cellx’ are the particles initially residing in a ences of the derivatives, can be analytically expressed be-
subdomain ofD(x) that overlaps withD "I(x'). The latter ~ Cause of the simple rectangular cell shapes and integration

represents a domain of space that is a rigid-body translatiopoundaries. However, due to their tedious mathematical ex-
of D(?) by —&. Based on this picture, we can readily pressions, we omit presenting them here. The physical mean-
(I ’

express the state-flux function as ing of Eq.(24) is clear: The quantity/;(x,x") is simply the
overlapping volume between two cells due to advection. If

o _ we had assumed the particle distribution inside a cell to be
Fi(XHX/,t)ZJ‘ _ni(x,t)d3x. (22)  uniform, then the number of particles that move from one

BeIND™x) cell to another would just b¥;(x,x")N/ (x,t)/V(x), which
Apparently, the finite-volume representation producedrivially adds up to give the total particle number defined by
equivalent dynamics if;(x,t) were to correspond to the Eq. (22). Hoyvever, the additional terms In EE@3) do_no_t n
particle distribution on the original underlying lattice. general satisfy Eq(21). [We can recognize that this is be-

TheoremA sufficient condition for achieving Eq20) is ~ ¢8use€ of the second _denvatlve term in Eﬁ3)_-] This does .
not pose a problem with regard to exact particle conservation

to have in the system since it is determined by the condition for the
~ , — — -~ state-flux function(18). For such a purpose, we can simply
ni(x,H=n; (X,) +(x=x)-Vn,_ (X,1) redefine the “self-advection” part of state-flux function by
e including an extra term
+ 3 (X=X (Xx—X):VVn/(xt), (23
- e S o Fi(x—=x,t)=N/(x,t)— >, Fi(x—x',t)
whereV andV'V represent finite-difference approximations X' %X
based on_, to the spatial gradier? and V'V, respectively,
which must be accurate up ©(V?). EJ i hd3x+6i(x 1),  (26)
A detailed proof is given in the Appendix. Here we pro- DOX)ND™'(x")

vide explanations of some essential features. The explicit ) - )

form in Eq.(23) suggests that it is not enough to simply treatWhere the other state-flux functio®r x’#x) are still de-

the distribution as constant inside each cell, which would bdined by Eqs.(22) and (23). Fortunately(shown in the Ap-
the case if the second and third terms were neglected. Indee@endiX, the extra term in Eq(26) does not introduce any
when there are differences in particle densities among cell§Tor in the resulting hydrodynamics. Consequently, the par-
in the vicinity, continuity suggests that the distribution ticle conservation laws are exactly enforced.

within a cell domain would not be a constant if a finer grid ~ Unlike the pointwise interpolation scheme, it is important
were present. As one can see diredity. the Appendix, O r.ea}hze that the equilibrium condmgn is also automatically
these additional gradient terr¥n/ (x.t) andV Vn’ (x.t) are satisfied by Eqs(24) and (26). This is because when the

necessary to produce correct convection and diffusion hydrdluid is spatially homogeneougn/ (x,t) =n;(x,t)=n;], the
dynamic properties for an arbitrary mesh. Therefore, wegradient terms vanisfand so doe#;(x,t) in Eq.(26)]. Plug-
should reconstruct them based on the available neighborhogging it in Eq. (17) we have
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_ _ neighbor mesh nodes along theCartesian coordinate direc-
VOeon =2 Vi(x' xn;. 27 tion.
X After straightforward volumetric integrations, we arrive at

the algorithm for the finite-volume supergrid lattice Boltz-

Hence the constant density distribution is an equilibrium so k i -
mann equation on a uniform Cartesian mesh

lution of the dynamic equation if

R — 1 1
2 Vil X)=V(x). (28) Ni(GEHAD =2 > > Fi(x—Al, —xt), (29)

=0 =0 =0 apBy

This is indeed the case due to the volumetric measure de- . ) o
fined above. Note, as mentioned previously, that this propWhereA, s, has the same form as E@.1), but its subindices
erty is not automatically satisfied in the pointwise interpola-0nly go up to 1. The state-flux function has the explicit form
tion scheme. Equatiofl7), together with Eqs(24) and(26),

completely specifies the finite-volume coarse-grained latticer, (x—x+A! . t)= PLLXPZyPiy‘Z[Ni'(X,t)JF SN/ . (x,1)],

Boltzmann algorithm on any general mesh. py haby (30)

IV. SUPERGRID LATTICE DYNAMICS where the weights have the simple forms, the same as for an

The above basic formalism is valid for any choice Oflmear interpolation,

mesh. However, it is in fact quite useful to apply the present

method even to a uniform Cartesian mesh. In particular, we plo_q_ 1,0l
can choose the mesf. to be the same lattice as for the 0 A,
original LBE but with coarser resolution, so that each new

cell now becomes a block containing an integer multiple of o lcigl
original cells. If we definé andc as the linear dimensions Py7= A
of the coarser and the origi[r)1al cells, respectively, then each 7

new cell containgvl=(A/c)" original cells. As discussed : . ; - |
previously, the standard LBE produces higher than desirabl\(lal/hICh are positive for the choice Oﬁ"/TanC'*"LI

viscous effects at a given lattice resolution. In contrast, the " b) and o=x,y,z. The quantity oN;g,(X1),

present formulation is essentially a higher-order numericaYvhICh is caused by a virtual spatial inhomogeneity within a

scheme: It produces the same viscous hydrodynamics in thcee"’ Is defined as

long-wavelength limit with a coarser resolution as the stan-

dard LBE. The physical reason why the present system is SN/ . (x t)EE[(za_l)(l_Pi,x)Gi(x t)
capable of accomplishing this is the fact that the particle Lyt 2 @ s
distribution within a cell has virtually a nonuniform profile, i i
while it is simply a constant for the original LBE. Another +(2p-1)(1- Plﬁ’y)Gly(X’t)

reason is related to having a more relaxed Courant condition +(2y—1)(1- PG (x,1)] (32)
in the formulation. Compared to the pointwise interpolation yomemes

scheme, the present volumetric scheme is more efficient as i . N
b Where G!(x,t) is a consequence of a finite-difference ap-

numerical algorithm and also possesses much clearer physi- . flon(onl . first-ord aap th
cal meaning as a self-consistent dynamical system. Physp__roxma lon(only requires a first-order accurgdp the gra-

cally, the present formalism can be interpreted as a “bloclﬁ'ent along ther Cartesian coordinate. Explicitly, these can
spin” representation of the original finer mesh LB system. It e expressed as
has been generally argued that a coarse-graining realization .
of an underlying continuurfor fine grained process is more G, (1) =(1—w,)[N{ (x+sgr(c; ) A,0,t) =N/ (x,1)]
accurate than that of the conventional finite differencing .
[18]. +W,[ N/ (x,t) = N{ (x—sgr(c; x) A o, 1)]. (33

For the particular case of a uniform Cartesian mesh, the
formulation presented here becomes significantly simplifiedThe choice of the parameter, is rather arbitrary and cor-
The specific reason for the significant simplification is that,responds to the chosen type of finite-difference for spatial
because of some self-cancellations, the second derivativéerivatives. Specifically, a central difference is realized if
terms in Eqs(23) and (24) can be omitted without sacrific- w,=1/2, while an “upper-wind” scheme corresponds to
ing accuracy in the resulting hydrodynamics. This featurew,=1. An analysis indicates that the greater valuengf
can be verified directly by showing that the expresqia#)  leads to more positive hyperviscous effects and the system is
without the second-derivative term still gives rise to E2f) always stable as long assGw,<1. To demonstrate such
on a uniform mesh. Also, because of the exclusion of theeffects, a series of numerical simulations of transverse sinu-
second-derivative terms, ER1) now becomes exactly sat- soidal shear momentum decays was performed using the
isfied. All the geometric quantities defined above for a uni-volumetrically formulated Boltzmann algorithm for the ratio
form Cartesian mesh can be easily calculated analyticallyA/c=8. The corresponding measured viscosity values are
For example, the cell volume is jus(x)=V=A,A/A,, presented in Fig. 1. The solid line represents the theoretical
whereA, (o=x,y,2) is the distance between two nearest-value of the regular viscosity associated with the underlying

(31)
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0.10 simpler forms, but the weights defined in E§1) are posi-
0,00 ] tive definite as opposed to those in E@3). It has a form

x equivalent to a first-order pointwise interpolation. As a con-
0-0% 7 sequence, the positivity constraint for the distribution func-

tion can be explicitly enforced locally via the condition

Ni (x,t)+ 6N/ ,5,(x,t)=0. BecauseN/(x,t)=0, the en-
0-0 ] forcement can be implemented easily by appropriately con-

> 0.05 trolling the magnitude ofdN; ,z.(x,t) through reducing

G! (x,t) since the latter can be multiplied by any factor with-

out compromising the conservation conditi(8#).

0.07

0.04

0.03 -

V. DISCUSSION

0.02 o

0.01 4 N In this paper we have presented a volumetric formulation
1 S 5 . of the lattice Boltzmann dynamics. With properly chosen
e T e e e e e forms of the state-flux functions, both exact conservation
1 laws and equilibrium balance conditions are achieved as in

the original LBE. In addition, the positive-definite nature of
FIG. 1. Measured viscosity (in lattice unit3 as a function of  the particle distribution functions can be explicitly enforced.
wavelengthl in cell unit. T=0.42 and7=0.5025. The solid line The overall algorithm results in a self-consistent physical
represents the theoretical value of the regular viscosity. The crossedynamical system, not merely a numerical method. Its mac-
circles, and pluses are for,=0, —0.04, and—0.08, respectively. roscopic properties obey Navier-Stokes hydrodynamics up to
the same viscous order of accuracy as the standard LBE on a
LB model. For the particular underlying BGK LB model finer lattice grid. The general formulation is applicable to an
used for these tests, its theoretical expression is given by arbitrary mesh. As a reduced case on a uniform Cartesian
mesh, the algorithm reduces to a significantly simple form
V:(E_ E) and shows an advantage over those based on some second-
2] order interpolation schemes. It can be viewed as a block spin
realization of the underlying LBE on a lattice of finer reso-
whereT is the local temperature. From the measurement, wéution [18].
see that the volumetrically averaged Boltzmann system pro- However, the present supergrid averaging approach does
duces the same asymptotic viscosity value as that of the uproduce different(generally higher hyperviscous effects
derlying fine grid LB at the long wavelength limit. However, compared to that of the original underlying LBE on a finer
the overall effective viscosity values form some cusplikeresolution lattice. This property has been verified numeri-
shapes that peak at small wavelengths. This is an indicatiocally, demonstrating that the overall measured viscosity
of an existence of hyperviscosity properties. Differentvalue increases as the flow length scale reduces. By trying
choices ofw,, results in different hyperviscosity values. With various values ofv,, without sacrificing stability, we can
a carefully chosen value off,, such hyperviscous effects adjust or minimize such hyperviscous effects. An empirical
can be minimized without causing instability. optimal value to achieve a minimum hyperviscosity value is
It can be directly verified algebraically that the state-fluxatw,~ —0.5c/A ;, wherec is the lattice unit of the original
function given above exactly satisfies the particle conservalattice. On the other hand, such a hyperviscosity effect is not
tion condition entirely undesirable or unphysical. Borrowing the eddy vis-
cosity concepf19], the unresolved spatial variations indeed

1 1 1 tend to generate cusplike dissipations at short wavelengths
> D D Fi(x—x+ Aiab,y,t) close to the resolution boundary. Therefore, we do not need
a=0 5=0 y=0 to necessarily eliminate it but to properly control its form

101 1 and magnitude.
=> > > ngngP;ZNi’(x,t)zNi’(x,t). (34) The volumetric approach is easily generalized to achieve
a=0 =0 y=0 a physical boundary conditions. For simplicity, we discuss

the no-slip condition for the supergrid regular lattice case.

The additional contribution to fluxesN; ,4,(x,t) plays the ~ The extension to the general mesh does not pose any funda-

role of redistributing particles among the fluxes but does nothental differences. A no-slip condition for simple lattices

contribute any net change. can be realized at the kinetic level via the basic bounce-back
Several features of the present formulation can be comProcess as defined by the simple relation

pared to those of the pointwise interpolation scheme. First of .

all, because the summation upper bound is now 1 in(29). N/ (x—¢;,t) =N/, (x,1),

instead of 2 in Eq(6), the number of neighboring points is

significantly reducedi.e., it is now 8 instead of 37 Though wheirex is a valid cell location adjacAent to Ehe boundary and

it requires an additional calculation & (x,t) at each node, x—¢; lies outside the fluid domair«=—c;. The exten-

this also requires only nearest-neighbor information. Hencsion to the supergrid case is straightforward. For xelbja-

this algorithm is more local. Second, not only do they havecent to the boundary, the generalized bounce-back process is
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to replace in Eq(29) the state quxe§i(x—ALBy—>x,t) as- Where

sociated with the nonexistent ceTle,:x—A'aB7 by Fix(x

—x+Al,. 1) defined in Eq.(30). Obviously, x+ AL, =x
—ALp,- Without the additional termssN; 5. (xt), the 1 - — =

above can be easily understood to be equivalent to the basic + 5 (X=X)(X=X):VVni(x,1). (A2)
bounce-back process. On the other hand, there is an addi-

tional step in the extended bounce-back process for the sg,q quantityé(;—g) is a Kronecker delta function. The
pergrid case. That is, we need to properly construct th
terms,oN/ . (x,t) according to Egs(32) and(33). In fact,

M) =n{ (X0 +(x=%)- Vn{ (x,t)

$unction 6,(x,t) is determined by the conservation condition

i,aBy
al we need to do is to replace eithelN/(x o o o
+sgn(ciyx)A(,&,t) or Ni’(x—sgn(ciyx)A(,&,t) by Ni’*(x,t), Z Fi(x—x",t)=N/(x,t) =V(xX)n{ (x,t). (A3)
X!

depending upon whether x+ sgn(ci,X)A,,fr or X

—sgn(ciyx)A,,& is a nonexistent cell site. It can be immedi- By directly substituting Eq(Al) into the left-hand side of

ately verified that the overall bounce-back process describelq. (A3) we get

above for the supergrid lattice algorithm maintains mass and

energy conservations in the system exactly. Because it i — = PN a3

volves fewer neighborhood sites and no negative propag & Fi(x—X 't)_; {JD( ni (x,t)dx

tions as opposed to the pointwise interpolation schgl3g

the current implementation of the no-slip boundary condition = = f

_ b ) . +vn/(x,t)- [ _  _

is more efficient and has a more clear physical meaning. ' DX)NDI(x')

Furthermore, in this volumatric representation, a no-slip sur-

face is understood to be effectively located on the edges of n Eggn_r (x.t):

these supergrid cells and the distances from the centers of 2 PR

these cells to the surface are naturally one-half of the cell

unit (i.e., A/2). As we know, this is necessary to produce a X(x—7)d3x] + &(Zt). (A4)

second-order accurate boundary condifiaf].

Finally, we wish to suggest as a preliminary concept that .

the volumetric(block spin constructions of the Boltzmann Using the definition ok as a geometric center defined by Eq.

level representation may perhaps offer a possible alternativels), the following essential properties are easily demon-

in formulating large eddy turbulence models. Instead of im-strated:

posing an eddy viscosity form such as in the mixing-length

approximation or deriving large-scale properties based on a f dox— J’
<~ JDND (X)) D

X)ND I (x')

(x—x)d3x

. (x=x)
D(x)ND~'(x")

_d3x=V(x),

Navier-Stokes level representatipb®], we may systemati- ®

cally coarse grain the Boltzmann dynamics in which advec-
tion is essentially linear. The fundamental quantities that the

volumetric scheme is calculating are the state-flux functions 2. f - (x—;)d3x=f 7(x—;)d3x=0,
in the block averaged Boltzmann system. It is important to x' JDeONDTI) D)
point out that the state-flux functions contain more informa- (AS)

tion about the fluid properties within given scales than sim-

ply the fluid velocity field. Eddy-viscosity effects, and per- % J' - (X—Y)(X—;)dE’X:J' (X=X (x—x)d3x.
haps more, can be generated by such an alternative approacR. Jox)nb~'(x') D(x)

Once formulated, we can use such a block averaged Boltz-

mann algorithm to perform large scale turbulent flow simu-We immediately see that E¢A4) becomes

lations. On the other hand, the resulting large-scale hydrody-

namic equations may also be derived via a Chapman-Ensko (N P =\ (e (v

transformation of such a Boltzmann systgad]. gXZ Fibx=x",0=V0oni (x.t)

1~-~ _ _
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D(x)
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APPENDIX: PROOF OF THE THEOREM Thus

A i Eqgs(22), (2 2 h — 1-~ _ _
ccording to Eqs(22), (23), and(26) we have ai(x,t)=—§VVni’(x,t):f =X (x=0dx,
D(X)
RO 0= [ Rondx (A7)
D(x)ND~'(x") . i -
- With these expressions, the finite-volume LBE/) be-
+ 6;(x,t) S(x—x"), (A1) comes
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_ _(x—x")d3x

x")ND ~'(x)

Ni(x,t+At)=, {n((?,t) d3x +Vn{(7,t)-f
x’ D(

D(x')ND (%)

1 — — — _

+ —VVni’(x’,t):f _ _(x—x')(x—x’)d3x} +6,(x,t)+0O(V3). (A8)
2 D(X)ND I (X)

In the above, we haie replac&jby V., keeping in mind that their difference @(V?3) or higher. Taylor expanding E¢A8)

up to O(V?) aroundx, we get

Ni(x,t+At) =, [ ni’<2t>+<?—_>'Vn(<Zt>+%@—x)(x’—B:Wn{(Zt)

X

xf o dXH[VN () + (X =X)-VVN (x,1)]
D(x")ND ~'(x)

><f _ _(x=x)d3
D(x")ND~'(x)

1 — — — _
+ VN (x| (X=X (x=x")d3x | + 6,(x,t) +O(V3). (A9)
2 DX)ND ()
Lets examine the quantity
> f _ L (x=x)d¥*x=> f _ _7(x—7)d3x—f _ (X' —x)d3]|. (A10)
% JD(X)ND(x) " D(x")ND " }(x) D(x’)ND "} (x)
However, it can be realized that by shifting the domain of integration we have
> f _ xdx=, f'* 7(x—f:i)d3x=f _(x—c;)d3x (A11)
N D(x")ND~'(x) X' D'(x")ND(x) D(x)

whereD/(x') is the domain ofD(x’) rigid-body translated by distanag. Therefore, together with Eq§A5), Eq. (A10)
becomes

> J _ (x=x)dx=—GV(X)— 2, (?—?)J d3x. (A12)
< JD(x)ND7( X' )

X) )N~ ')
Inserting the result of EqA12) into Eq. (A9), with the properties in EqA5), we get

Ni(x,t+ A1) =V[n{ (1) = G- Vn/ (x,1)]

+> (?—Y)-VVn{(Zt)-f _(x=x)d%
N D(x’)ND~'(x)
1 _
— (X' =x)(X'=Xx):VVn/(x,t) | _ _d3
2 D(x")ND~'(x)
1 _ _ _ _
+—VVni’(x,t):f _ (X=X (x=x")d3x | + 6,(x,t) + O(V3). (A13)
2 D(X)ND (%)
|
If we further write in the above then Eq.(A13) is simplified to become
f X)) (=X dx Ni(x,t+At)
D(x")ND~'(x)
_ =V (1) = G- Vn/ (x1)]
=f — o [x=x)(x=x)
D(x")ND (%) 1 _ _ _
o VYR (DY | - (x=x)(x=x)d3x
—(X=X) (X" =x) = (X" =X)(X—=X) 2 X' JD)NDTH(x)

+ (X' =X (X —x)]d3, (A14) +0,(x1)+O(V3). (A15)
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The second term on the right-hand side of the above equatiqqi(;t_,_ At)

can be further simplified, - . — 1n _
=V(X)[n/ (x,t) =¢-Vn{(x,t)+ 3GG:VVn/(x,)]

_ — 1 _ _ _
S| X P 2vwmGon: [ (xR
< Joa)np i 2Van (x,1): D&)(x X) (X—x)d>x
B B +6,(x,t) + O(V3). (A17)
=> f,_ _(X—X—G)(x—x—¢;)d3x _ . _ _
x' JD'(x")ND(x) Comparing this result to EqA7) for 6;(x,t), we finally
arrive at the conclusion of Eq20), that is,

=f _(X—X—G)(x—x—¢)d3 - L
D(x) Ni(x,t+At)=Z Fi(x"—x,t)
:fD(;)(X—;)(X_;)dBX+V(;)6i6i (A16) :V(;)[ni/(zt)_ai.vni/(zt)

so that we have +166:VVN/ (x,1)]+O(V3). (A18)
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