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Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic
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We present a detailed stability analysis of one- and two-ring solitary waves with central phase dislocation in
self-focusing saturable and quadratic nonlinear media. Varying parameters, we demonstrate transitions between
different filamentation scenarios. An analytical approach is developed for the study of filament dynamics after
ring breakup. Approximate expressions for the angular separation rate of filaments based on the conservation
of the angular momentum and on the conservation of the Hamiltonian are derived and compared. The stability
analysis and analytical results are tested by an extensive series of numerical simulations of the original models,
and good agreement is four(61063-651X98)14609-3

PACS numbds): 42.65.Tg, 42.65-k

[. INTRODUCTION The present paper deals with 2D propagation of electro-
magnetic waves in self-focusing saturable and in quadratic
Solitary wave effects due to optical propagation in non-nonlinear media. Bright solitary waves decaying monotoni-
linear media have been a very active area of theoretical aneglly with distance from the axi@round statesare the most
experimental research ever since self-trapping of an opticdmportant solitary solutions in these media, but they do not
beam due to nonlinear change of refractive index was preexhaust the set of self-trapped solutions. Considering 2D
dicted in the 1960$1]. For review of the early works see, NLS with pure cubic nonlinearity Gagnon and Pftd] built
e.g..[2,3]. The basic model that was studied is the nonlineafWo remarkab_le sets of _analytlc solutions. These_sets are ana-
Schralinger equatiofNLS), which can be derived from the logs of Hermite-Gaussian and Laguerre-Gaussian modes of

Maxwell equations for centrosymmetric nonlinear media in;[.he.tptLopag?tlonI_equatlondln I!r\ea;]r. rﬂed%]' I|r|1 adcertaén
the quasioptical limit. The NLS is of great importance not imit these nonlinéar modes, - which generally depend on

only in nonlinear optics but in most branches of nonlineart.he longitudinal coordinate, transform into selt-trapped SO.IU'
science 23] ']E|ons [14]. hSeveral type.shof sglllta;]ry waveT reportedd by dif-
v . . . erent authors, e.g., with a bright central spot and one or
Both bright and dark spatial solitary solutions of the one- g g P

. . . .~ more radial nodef16], “doughnut” solutions with a nested
dimensional1D) NLS are also exact solutions of the NLS in phase dislocatiopl 7], the “dipole” solution[18], and solu-

two transverse dimension&D), but both are subject t0 @ s with both radial and azimuthal nodEk9], are appar-
transverse modulational instabilityMl) which develops ently special cases of these “nonlinear modes” built by Gag-
along the second transverse coordirf@d]. This instability o1 and Parelt is natural to expect that analogs of these
results in breakup of a bright solitary stripe into a set ofsp|utions can exist in models that in certain limits are close
filaments in the self-focusing ca@], while a vortex chain o the NLS. Indeed, solutions with aright central spot and
forms from a dark solitary stripe in self-defocusing mediaradial nodes have been studied in satur§d®21 and qua-
[4]. These vortices are dark holes, with a nested phase digtratic nonlinear medif22—24. Solutions with adark central
location of orderl at their core, on a bright, stable, back- spot and nested phase dislocation have been also reported in
ground which is infinite(in theory or sufficiently wide(in both saturabl¢25—29 and quadrati¢22,23,28 media.
practicg, wherel is any positive or negative integer. Al The stability of these solutions is a nontrivial issue be-
vortices of order two or mordi.e., |||=2) are unstable, cause the standard stability criterion for the ground states
breaking up into vortices withl|=1, which are stable for [20] is only a necessary condition for the stability of higher-
topological reasons. Optical vortices are themselves a subjeotder solutions with nodes, and has no relevance to Ml. It
of great interest: for an excellent recent review of dark soli-was first shown for saturable nonlineariig1] that many-
tons and vortices sdé&]. ring solutions with a bright central spot are stable with re-
During recent years propagation and MI of bright andspect to purely radial perturbations but unstable with respect
dark solitary waves have been extensively studied not only imo azimuthally dependent perturbations, showing breakup of
the NLS context, i.e., in Kerr-like media, but also in the their rings into filaments. Similar solutions in quadratic non-
quadratically nonlinear and photorefractive media; see, e.glinear media show not only symmetry-breaking azimuthal
[6—11]. Linear propagation of the beams with phase dislocainstability, in analogy with saturable media, but also a novel
tions and the related angular momentum effects have alssymmetry-preserving decay scenario, which is absent for the
been a very active area of reseafd2,13. ground-state quadratic solitoh24].
Note that, while the MIs of the ring and stripe solitary
waves have much in common, there is an important differ-
*Electronic address: dmitry@phys.strath.ac.uk ence between them. Stripes typically have a continuum of
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unstable eigenmodes spanning a finite range of wave nunthe other is derived using the conservation of the Hamil-
bers. In contrast rings have a discrete set of unstable eigetonian. Both formulas give reasonably good gquantitative pre-
modes because of the phase periodicity condition. dictions for the velocities, the formula based on angular mo-

Our special interest here is in self-trapped solutions withmentum being particularly effective. Both formulas give
phase dislocation surrounded by one or more bright ringgmportant insight into the underlying physics of the beam
Breakup of these rings into filaments has been reported iRreakup. The stability analysis and analytical results are
[23,25-29. Existence of these solutions in quadratic nonlin-complemented by an extensive series of numerical simula-
ear media and rigorous stability analysis for both saturabldons Of the original models, which verifies their predictions
and quadratic media were reported by uf2l. In this work and gives detal[ed guantitative mformatlQn on the evolu'qon
we study the filament dynamics after the breakegnamics of b_eams carrying angular momentum in nonlinear optical
here and below means evolution inas the beam propa- media.

gate$. This dynamics is strongly affected by the fact that,
due to the phase dislocation, these beams have nonzero dt-SELF-TRAPPED BEAMS WITH PHASE DISLOCATION

bital angular momentum. Like free Newtonian particles, fila- IN SATURABLE MEDIA

ments fly off tangential to the initial ring, vividly demon-- A. Model and stationary solutions

strating conservation of orbital angular momentum in their . ) o

motion [28]. The evolution of the slowly varying electric field enve-

Experimental observations of filamentation of the finite!0P€ € in the nonlinear media is governed by the equation

beams with a nested phase dislocation has been recently rs€e; €.9.(30)

ported for the self-focusing saturabld0,31] and photore- ®

fractive [11] media. The spatial profiles of the input beams 2ikd,E+ F2E+ 2 E+ 2k_OnNL(|)g:01 (1)
used in these experiments did not correspond to self-trapped c

solutions but we believe that the dynamics of filaments stud-Z and X.Y are the lonaitudinal and transverse coordinates
ied in[28] and elaborated below can provide valuable physi-~ =. =" ; 9 n ; X ’
cal insight and reflects key features underlying evolution®0 'S thg carrier fre'quenq'k—nowplc Is the carrier wave
from more general initial conditions. This conclusion is sup-number n the_ medlymmp is the (linean rgfrap'uve index,
ported by similarities between the numerical simulations oi‘andC the \/Ze]00|ty O.f I|ght.|n vacuum. The f|eld'|s sca]ed such
Torner and Petroy32] in which they observed breakup in that| =|£* is the intensity, .and_}NL(l) is the intensity de-
guadratic nonlinear media of input Laguerre-Gaussian mode%endent part of the r.efract|ve index. The form o, de-

with phase dislocation, and the evolution of the correspondpends on _the mt_adlum. e.g., for a Kerr mediog =n,l. In .
ing self-trapped solutions: see below 428,28 most media the index change shows some form of saturation.

Note that the solutions discussed above are assumed to b&" example, In a tvx{o—level mediunm exgted well off reso-
linearly polarized in the transverse plane. For the Maxwel"&Nce the _nonllnear index can be de?’c“bedﬁﬁf nal/(1
equations for a purely azimuthal field propagating in Kerr-+”|5?‘9' W'th, | 5ot the saturation intensity. This is .the ’.“Ode'
like media the existence of a family of many-ring solutions W& Wil use in the present paper. Such a medium is self-
with a dark central spd83] and its azimuthal instabilitj3g4] ~ 0cusingn,>0 (or more generallydny, /dI>0) and self-
have been reported. The model equation studied is like the€focusing in the opposite situation.

NLS, but with an additional term of the form 2 (r is the W(_a now.rescale our variables so as to reduce (Ento
radial coordinateargumenting the usual transverse Laplac-t€ dimensionless form

ian operator. This model has some formal resemblance to the
case of a scalar field with a singly charged vortex, but the

analogy has not been developed by these authors, and Wrough the following substitutionsZ=zly, X=wx, Y

will not pursue it here. _ N T — w2
This paper is an expansion and extension of development wy,  E=Evlsaln/le, where lq=kw and In

of our initial work [28], and is organized as follows. The =G/ (wo|nzlls2) are the diffraction and nonlinezair Iengthvs,
next two sections are devoted to a detailed stability analysit$ @ characteristic transverse length scdle=id,+]d, .
of one- and two-ring stationary solitary waves with phasewe will concentrate henceforth on the model of the self-

dislocations, analyzing both saturable and quadratic nonlinfocusing saturable nonlinearity

i9,E+iV2E+f(|E|HE=0 2

ear media. All these waves are propagation-unstable, break- 5
ing up into filaments, and the physically interesting features f(|E|2)= |El a= ﬂ 3)
lie in the mechanism of filamentation, and the dynamics of 1+alE|? lg’

the daughter filaments. By varying relevant parameters over

a wide range, we demonstrate transitions between differeftere« is a saturation parameter, and clearly the Kerr limit is
filamentation scenarios, and a rich variety of output patternssimply given bya=0. For this reason, and also for compu-
We anticipate that input beams that are in some sense closational convenience, we retai as a scaling parameter,
to these higher-order solitons will show the same classes afven though it can clearly be scaled away.

filamantation behavior. In the last section we develop an ana- It is well known, and qualitatively clear, that under an
lytical approach to the study of filament dynamics after theappropriate balance between diffractive stretching and non-
breakup. We derive two different analytical expressions fodinear focusing [(4~1,,) the electromagnetic radiation can be
the velocity of the filaments in the transverse plane. One iself-trapped forming a self-induced waveguide. Formally this
based on the conservation of the angular momentum, whileeans that Eq2) has nondiffracting solutions of the form
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E(x,y,2)=A(x,y)e'"% () 23

. . 20t 1 23 @

Here k has a sense of the eigenvalue of the corresponding
waveguide mode, which many authors term as the nonlinear 151
wave-vector shift. The transverse profifdx,y) obeys

A(r)

1.0¢

VZA=2[k—f(|A]?)]A O 0.5}

Beam confinement demands exponential decay4dfat in- 0.0 .
finity, which requiresk>0. Multiplying Eg. (5) by .A* and 0o 2 4 6 8
integrating the left-side by parts one gets

—f dxdw}fuz:f dxdyf «— f(].4]?)]].AJ?

>(K—maxf)f dxdy.Al2. (6)

A(r)

Sincef<a ™1, any self-trapped solutions of our model must
have O<k<a 1.

Below we will concentrate on one particular class of self-
trapped solutions of Eq5) namely, those with a phase sin- -2

gularity at the center, which have the form 0 2 4 ‘z 8§ 10 12

A(x,y)=A(r)e"?, (7) FIG. 1. Plots of the field amplituda(r) for 1=1,2,3,x=1, and
a=0.1. (@) One-ring and(b) two-ring solutions of Eq.(8). The

wherer = \x?+y?, 6 is the polar angle, and(r) is the real labels in Figs. 1, 2 denotevalues.

function obeying

B. Stability
2A 1dA 12 Having found these stationary solutions, their stability is a
D — —A=2[k—f(A?)]A, (8y  hatural question to study. Consider small complex perturba-
dr2 rdr g2 tionse(z,r,6) of the stationary solutiof7),

— ikz+il 6
Physicallyl must be an integefthere is no phase singularity E(zr,0)=[A(r) +e(zr,0)]e ' (10

for 1=0), .while A(r) must obey the following boundary The general solution of the linearized problem focan be
conditions: expressed as a superposition of azimuthal Fourier modes
| eV (J=0,1,2...) with complex coefficients dependent on
r—0, A(r)—r'co, ) r and z. Therefore looking for the exponentially growing
perturbations that characterize instability, we set
Co ja— h _ *_
r—oo, A(I’)—>Teir\“2K, s(z,r,0)=gjr(r)e”J”'J”+gJ*(r)eXJZ iJo (11)
r
and obtain the following non-self-adjoint eigenvalue prob-
wherec, . are real constants. There is redundancy in(By. lem:
since eitherx or a can be scaled away. We prefer to keep

them both:a to provide transition to the pure cubic nonlin- - Ly AP
earity andk to retain the traditional form of the Vakhitov- 1N305= A2 (- 95, (12)
Kolokolov stability criterion[20] (for more details see next J
subsection - T ,
Equation (8) with boundary conditiong9) were solved whereg;=(g5 ,9;)", f'=df/dA? and
numerically using a second-order finite difference method.
We found that for any nonzero integérone-, two- and r_::} Eiri——(lhl)z et f 4+ A
many-ring solutions with a central phase singularity exist in Jo2rdrodr 20T '

the entire region &.k<a~!; see above an{35]. Typical

radial profiles ofA for different values of are presented in Note that Eq(12) is obviously valid forl =0, i.e., for the

Fig. 1. While these profiles can obviously be approximatedsolitary waves with finite intensity at=0. It can be shown

by analytical technigquetsee, e.g.[14,27) here we confine that for |=0 perturbations proportional to ci%and sié
ourselves to numerical solutions, which have, in principle,are equivalent and can be treated independently. This fact
arbitrarily high accuracy. was implicitly used in Refs[21,34]. Therefore the dimen-
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sion of the eigenvalue problem in the space of real functions 600
can be reduced from X4 to 2xX2 whenl|l=0. This also
follows from the fact that it =0 then Eq.(12) has the solu-
tions g; =*g;*. The presence of a phase singularity de- 400}
stroys this symmetry property and cosine and sine perturba- >
tions cannot be decoupled. g"

The asymptotic behavior of the eigenvectgrsis ) 200+

r—o, gf(r)ﬁr“t‘”ba—’ ,
+ (13) 0 ! ! ! ! L 1
"\/2<T”‘J) 0.0 05 10 15 20 25 30 35
1 K

r—o, gf(r)—ﬁe‘

FIG. 2. EnergyQ vs « for one-ring solutions with=1,2,3 and
where bg,. are complex constants and the branch of thex=0.2. Horizontal lines correspond to a pure Kerr medium,
square root in the exponent must be chosen such that the0.
unstable eigenfunctions are square integrable. The eigenval-
ues of the discrete spectrum corresponding to such eigemsolutions are presented in Fig. 2. We conclude that the one-
functions can lie anywhere in the complex plane outside thging solitary waves are stable with respectlte 0 perturba-
rays (i «,i) and (—i«,—i%), which belong to the continu- tions in the saturable media. For many-ring solutions there is
ous spectrum with extended eigenfunctions. Unstable eigemo comparable approach, nor any simple criterion that is suf-
modes have eigenvalues with )Re>0. They must always ficient for symmetry-preserving stability and numerical
have a counterpart with Rg<0 because of the Hamiltonian checks are always necessary.
nature of our problem; see Sec. IV. The above analytic criterion says nothing about stability

Due to the phaseH—E€ %) and translational E(x,y) againstsymmetry breakingerturbations, i.e., Ml is not ex-
—E(x+ 8x,y+ dy)] symmetries of the our model E¢L2)  cluded even where?, Q>0 holds. Azimuthal MI corre-
has neutrally stable modes fd0,1, i.e., modes with zero sponds to modes witd+#0 having exponential growth, in
eigenvalues. They are general leading tal-fold intensity modulation around the

ring, breaking the cylindrical symmetry of the intensity of

dA | the stationary solution. Faf=1 we might hope for an ana-
) A ) ar A lytic result linked to theg{®) neutral mode, but asymptotic
980)_[_/_\}, 9y”= dA | . (14 expansion shows that this neutral mode is not linked to the
ar 't 3.t
Neutral modes are important for analytic approaches to (@)
stability problems of this type. Asymptotic techniquese, o L5y
e.g.,[8]) can be used to show that the neutrally stable mode B
g\ branches at the point,Q=0 giving instability of any s 10}
bound solution of Eq(8) if s
0.5¢
4,Q<0; (15
. 0.0 .] . X :
hereQ is the energy flux 00 02 04 06 08 1.0
o
Q:f dxdy|E|2. (16)
2.5
Thus the standard stability criterion for the ground states (b)
. - .~ 2.0 }
[20] is also anecessarycondition for the stability of self-
trapped beams with a phase dislocation. S 15t
For pure Kerr media4¢=0) 4,Q=0 and a collapse in- % ’
stability is presenf25]. The evolution of this collapse inis § 100
of polynomial type, therefore it can easily be suppressed by %
an exponential instability if there is one. This is indeed the 0.5t
case in our situation due to the exponential instabilities for
J#0 described below. In case of single-ring solutions with 0.0 TR HPAPENb A
| #0, which have no nodes far>0, a variational approach 0.0 02 04 06 08 10
to the eigenvalue problerfl2) can be applied in a manner o
similar to that done in Ref$20,34]. It shows thay, Q>0 is FIG. 3. Growth rates of the unstable eigenmodes of the one-ring

also sufficientfor stability againstsymmetry-preservinger-  solution vsa for k=1.(a) | =1, (b) | = 2. Here and in Figs. 4, 8, 13,
turbations §=0). Plots of the energy v& for the one-ring 15 numbers denot values.
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FIG. 4. Growth rates v& of the most unstable eigenmodes of ~ FIG. 5. Real and imaginary parts of the maximally unstable

the one-ring solution for=1. (a) 1=1, (b) | =2. eigenmodes for one-ring solution®@) =1, J=2, «=0.3, k=1
and (b) 1=2, J=4, «=0.1, k=1. Dashed lines mark the radial

appearance of any instability. However, this obviously doegrofile of the self-trapped solutioA(r).
not forbid the presence of instability for ady=0 including ) _ )
J=1 and we are obliged to study the eigenvalue problen}=1 just three unstable eigenmodels<(1,2,3) appear, with
(12) with a different method. There are several possible nuth€J=2 mode dominating through the whole rangenohnd
merical approaches to solve such problems; see, e.g<- Forl=2 either of the two moded= 3,4 can be dominant
[21,36,37. We chose to reduce E¢L2) to an algebraic ei- depending on the parameter \_/alues. Qenerally the instability
genvalue problem by replacing the differential operators withgets stronger fow—0 and it is practically suppressed for
the second-order finite differences. We apply zero boundarg— 1/x. Suppression of Mlof any naturg with increasing
conditions for some large value ofand appropriate condi- Saturation is a common phenomenon that has also been re-
tions atr =0, as given in Eq(13). 200 to 300 grid points was Ported for_the fundamer_nal _brlght gn_d dark solitons in satu-
usually enough to get good precision. Zero boundary conditable medig5,37]. Considering variations o, for « close
tions for larger is a potential source of problems becauset0 O Or to 1k the instability is again practically suppressed.
weakly decaying eigenvectors require large numbers of gria'hls is _also typical f_or the symmetry-breaking instabilities of
points to maintain accuracy. However, we did not meet suct9ther kinds of the ring structur¢21,27,34.
a situation in any of the investigations described in this pa- We found that the unstable eigenvalues are generally
per. Furthermore, numerical results for the neutrally stabl€omplex. If the instability for an eigenmode disappears
modes were always in good agreement with Edg). within the existence region _of the solitary soI_utlop the imagi-

Numerical analysis of symmetry-breaking perturbationsnary part of the corresponding usually remains finite as its
(J#0) shows the presence of instabilities over a finite rangé€al part vanishes. In particular this holds for the unstable
of values ofJ in every case. The results for the one-ring €igenmode withl=1, and it explains why instability for this
solutions withl=1,2,3, k=1 and @=0.1 were presented mode cannot be captured by asymptotic expansion near the
earlier in Ref[28]. Here we study in detail how variations of neutral modeg!®.
the parameters and of the initial noise level influence We found that the radial profiles of the most unstable
symmetry-breaking instabilities of the one-ring solitary eigenfunctions mainly concentrate around the rings of the
waves withl = 1,2 and two-ring wave with=1. These cases stationary solutions; see Fig. 5. Becadge) is real, it is the
are typical of the breakup of ring stationary waves in satu+teal part of the perturbations that determines the field ampli-
rable Kerr media that carry orbital angular momentum. tude modulation pattern that develops around an unstable

Let us first describe the one-ring solutions. Although, be+ing. Therefore we expect the initially uniform ring will de-
cause of the above-mentioned scaling, all possible situationgelop J,,«x minima andJ,,,x maxima on propagation, where
can in fact be captured by varying just one parameter and,, is the azimuthal index of the perturbation eigenmode
keeping the other fixed, for convenience and ease of intemwith the maximal growth rate. As a consequence, the ring
pretation we plot the growth rates (Rg of the unstable should break up intd ., filaments. However, other eigen-
eigenmodes versus both parameters; see Figs. 3 and 4. Roodes, in particular those with=J,,,,==1, can have com-
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parable growth rates, which can affect the filamentation pro- e
cess and make the output pattern depend somewhat on the .
particular realization of the initial noise.

To test the results of our stability analysis we performed
an extensive series of numerical simulations of &.with
initial conditions in the form

E(r,0)={1+s[q,(r,0) +ia;(r,®)}A(r)e"?, (17

whereq, ; are real functions modeling Gaussian noise in the
interval (—1,1) ands is a constant. Simulation was done on
the polar grid with 128 and 260300 grid points along the
angular and radial coordinates, respectively. The polar grid
prevents the numerical noise effects of discretizing a ring
onto a rectangular grid from unduly influencing the number
of filaments formed. For low noise leves of the order 0.01

or lesg the most unstable eigenmode was clearly dominant
in the majority of simulations. Increasing the noise g0
~0.1 led to the occasional appearancelefJ,, =1 fila-
ments. In most of the simulations the filaments formed from
the same ring had similar intensities. This suggests that the
unstable eigenmode dominating at the beginning of the in-
stability suppresses all the othefBor an exception see Fig.
6(b).]

Examples of the breakup of one-ring solutions withl
into 2 and 3 filaments and with=2 into 4, 5, and 3 fila- 4
ments are presented in Figs. 6 and 7. Parameters and level of (b)
the initial noise are specified in the figure captions. There is
excellent agreement between the predictions of the stability
analysis(see Fig. 3 and the results of these direct numerical
simulation of the original model.

In the case of a pure Kerr mediure € 0) the exponential
growth of the symmetry-breaking perturbations should domi- =
nate over the algebraic growth of the symmetry-preserving
collapse instability. In the simulations for the Kerr case we
indeed first observed filamentation of the ring and subse- 1
guently collapse of the filaments.

For the two-ring solitary solutions with=1, we present
just the growth rates for the dominant eigenmodes vessus 0
see Fig. 8. All unstable eigenmodes can be naturally sepa-
rated into two groups. The radial profiles of the eigenmodes
from one group concentrate around the first ring and from
the other around the second ring; see Fig. 9. Because of this
each ring develops its own modulated pattern and breaks up <
into the different number of filaments. We present hisee
Fig. 10 results of numerical simulation faz=0.05 (when FIG. 6. Breakup of the one-ring solution with=1, k=1. (a)
J=2 andJ=6 modes dominate for the first and second ring,®=0-3,5=0.01,z=14; (b) «=0.1,5=0.05,2=7.
respectively and for =0.6 with dominantJ=2 andJ=5
modes. Fora=0.05 the first ring is more unstable and for we suggest that a proper generalization of the averaging
a=0.6 the second ring is more unstable. For the latter situtechniques described {21] may be the most efficient way
ation the instability of the first ring is so weak that its to do it.
breakup did not occur within the propagation distance simu-
lated.

The examples presented in Figs. 6, 7 and 10 show thallltl' SELF_TRAPPEIE gi':'\éi'xv#LHJ:SiE DISLOCATION
filamentation happens over propagation distances from sev-
eral to several tens of diffraction lengths. For small values of The main qualitative features of the dynamics in quadratic
a and optimal initial energy, i.e., adjusting to maximize media of self-trapped beams with phase dislocation are the
the instability, we were able to observe filamentation withinsame as in saturable med28]. The latter model was elabo-
one or two diffraction lengths. rated in some detail in the previous section. In addition, sta-

Finally, regarding the possibility of analytical study of bility in the “quadratic case” has been investigated not only
the stability with respect to symmetry-breaking perturbationsdoy us[28] but also by Torrest al. [23]. Therefore in this

\

T
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A

FIG. 7. Breakup of the one-ring solution with=2, k=1. (a)
a=0.1,5=0.005,z=7; (b) «=0.1,5=0.08,z=4; (c) «=0.6,s
=0.08,z=26.

2.5 v T T

20 \2

growth rate

0.0 0.2 04 0.6 0.8

FIG. 8. Growth rates of selected unstable eigenmodes of the
two-ring solution vsx for k=1 andl = 1. Dashedfull) lines are for
the modes concentrated around the fisgticondl ring.

section we will present our results in somewhat compressed
form, concentrating on gaps in the previous treatments and
on differences from the saturable case.

A. Model and stationary solutions

The evolution of the slowly varying envelopes of the fun-
damental £;) and second harmoni&{) electric fields in a
noncentrosymmetric crystal is governed by the following
equationgsee, e.g.}7]):

2
w .
2iK10,61+ 26, + RE + C—;’ X1EF E,07192=0,

(18)
2
)
c

iokZ_
2 17e=0,

2ik0,E,+ 93Ey+ 03E,+4— xoE%e

wherewy is the carrier frequency of the fundamental wave,
ki=ki(wg) and k,=k,(2w,) are the wave vectors in the
medium, ok=2k; —K,, x1,. are proprtional to the relevant
elements of the nonlinear susceptibility tensor.

We reduce Eqs(18) to dimensionless form

FIG. 9. Real and imaginary parts of the maximally unstable
eigenmodes for the two-ring solutioh=1, «=0.05, k=1. J=2
andJ=6 for the eigenmodes concentrated around the first and sec-
ond ring, respectively. Dashed line: radial profile of the self-trapped
solution A(r).
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FIG. 10. Breakup of the two-ring solution with=1 and «x  Equations(21) have a family of ringlike solutions similar to
=1.(a) «=0.05,5=0.005,z=4; (b) «=0.6,5=0.1,z=26. the case of the saturable medium. However, there is no con-
dition similar to Eq.(6) and therefore just the requirement of
exponential decay of the tails imposes a restriction on the
parameter range where the solitary solutions can exist,

(19 namely, k>max(0;— 8/2). Radial profiles ofA, , for one-
2_ and two-ring cases are presented in Fig. 11. For the many-
El 18E21 . . ) .
ring solutions the fundamental field; has radial nodes but
the second harmonié, always remains positive, though
through the following substitutionsZ=14z, X=wx, Y  having minima close to the zeros of the fundamental. For
=wy, & =E k¢l (I goivx1x2), E,=E,e'P?2k;c?/  large B Egs.(19) can be approximately reduced to the NLS
(Idwéxl), where |4=k,w? is the diffraction length, 3 equation for the fundamental fie[@], and for increasing3
= Skly is the phase mismatch parameter. We neglected sp#he second harmonic tends to carry less and less of the total
tial walk-off effects, thereby implicitly supposing that the energy.A, goes to zero faster tha; asr—0 because the
walk-off length is the longest characteristic length in theorder of the phase singularity for the second harmonic is
problem. We also made the natural cholcgk,=2 in Eq.  double that of the fundamental one.
(19). One of the parameters or B8 can be scaled away from
We look for stationary solutions of Eg&l9) in the form  Egs. (21). However, we like to keep them botl. is not a
very natural parameter for scaling because it can be positive,
En=Anp(r)emlotea = m=12 (20 negative, or zero and we keepbecause of its physical in-

0,6+ 3V2E +EXE,=0,

1

0,E,+ LV2E,+ 5
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terpretation as a nonlinear wave vector correction, and also,
as remarked above, because it is the natural parameter for
investigation of stability.

B. Stability

The weaker character of the nonlinearity compared with
the Kerr case means there is no collapse in quadratic media,
and instabilities are associated with exponential growth of
perturbations. Considering small perturbations of the station-

energy, Q
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ary solutions(20) in the form
em(2.1,0)=Qin(1)EN* P04 gy ¥ (1)ehd* VY, m=1,2
(22

we get the following non-self-adjoint eigenvalue problem

£, A A O

o -A; —L; 0 A, 3
I = ~ H
395 A, 0 LJ+2 0 (]

0 -A 0 -ij
whereg;=(93;,951,95.952)" and
1

. Y1d d 1.,
N T TR

©+

1
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o+

—2k— .

1d d 1,
rarfar %)

Pure imaginanh ; belonging to the continuous spectrum lie
in the rays (Q¢,i*) and (iQ;,—ix), where Q.
=min(x,2«+ B). Neutrally stable eigenmodes fdr=0 and
J=1 are

CdA;, 1]
ar
A1 dA; |
IR BV R B raarat
g6’ = o ogY)= . (29
2A, dA, 2l
—2A, dr 12
dA, 2l
ar T

Symmetry-preserving J=0) perturbations of the one-ring
solutions are damped for

8KQ=6KJ dxdy(|E4|?+2|E,|®)>0, (25

whereQ is the energy flux. Representative plots@fvs «
are presented in Fig. 12. The instability for negatj®es
related to the existence far, Q>0 of a pair of the eigen-
modes with purely imaginary eigenvaluéwith opposite

0 ] L L
0.0 0.5 10 LS5 2.0

FIG. 12. EnergyQ vs « for one-ring solutions with=1 (thick
lines) andl =2 (thin lineg: B=—3 (dash-dotted lines B=0 (full
lines), and 8=3 (dashed lines

signg lying in the gap iQ.,iQ;). At the pointd, Q=0
these eigenmodes coincide with the neutral mgff and

for larger|B| appear again but with real eigenvalues of op-
posite signs. For the one-ring solitary solution this is the only
route to a symmetry-preserving instability. We found that it
is always suppressed by stronger symmetry-breaking insta-
bilities; i.e., Ml is always dominant in this case.

For cases wher@;(r) changes its sigfi.e., two or more
rings), the criterion(25) is just a necessary condition and we
found a new scenario of symmetry-preserving instability. It
appears in a manner similar to that which we have described
for solutions with a bright central spot and one or more rings
[24]. However, we found that this instability may dominate
the symmetry-breaking one only in a very narrow rang@ of
values, close to the boundary of the solitary wave existence
(B<—1.9 for k=1). This contrasts with the case described
in Ref.[24] (zero angular momentuynwhere the symmetry-
preserving scenario is a major factor for a significant region
of B values.

Plots of the growth rates of the unstable eigenmodes ver-
susg for the one-ring solutions with=1,2 presented in Fig.
13. In the limit of 3> 1 the dominating mode is the same as
the one in the saturable medium for small saturation values,
i.e, for @ close to 0. The growth rates of the dominating
eigenmodes increase linearly with increasirg see Ref.
[23]. An example of the radial profiles of the components of
the most unstable eigenmode is presented in Fig. 14.

The growth rates of the most unstable eigenmodes versus
B for the two-ring solution with =1 are presented in Fig.
15. (These results are restricted o> — 1.9 because for in-
creasingly negativeg8 the many-ring solitary solutions be-
come very wide and extra care is needed in the stability
analysis) Again the localization of the eigenmodes on the
rings suggests that during propagation any ring will break up
into Ja filaments, wherd ., Shows maximum gain on that
particular ring.

These predictions of our stability analysis are fully sup-
ported by simulations of Eq$19) and our comments in the
previous section about saturable media, e.g., about the influ-
ence of noise on the symmetry-breaking instabilities, are also
valid in quadratic media. An example of the break up of the
one-ring solution witH =2 to four filaments is presented in
Fig. 16.
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growth rate

FIG. 15. Growth rates of selected unstable eigenmodes of the
two-ring solution vs8 for k=1 andl = 1. Dashedfull) lines are for
the modes concentrated around fifgtcondl ring.

IV. DYNAMICS OF FILAMENTS

As was shown above, self-trapped beams with a phase
dislocation at the center and with varying numbers of rings
exist as stationary solutions in both saturable and quadratic
nonlinear media. They are unstable against symmetry-
breaking perturbations, breaking up into a set of filaments
during propagation. In this section we extend the analysis of
the dynamics of the filaments outlined by us[R8]. This

FIG. 13. Growth rates of the maximally unstable eigenmodes oftnalysis is based on the conservation laws. Given initial val-

the one-ring solution v@ for k=1. (a) =1, (b) =2.

FIG. 14. Real and imaginary parts of the maximally unstable
eigenmodes of the one-ring solutidr=1,J=3, =0, k=1. (a) is
for the fundamental field andb) is for the second harmonic.
Dashed lines mark the radial profiles of the self-trapped solution

A Ar).

ues of the conserved quantities we show how to predict
featues of the trajectories of the filaments, and even how to
estimate their number.

The conserved Hamiltonian and momenta, which are es-
sential to our present purposes, are introduced by a Lagrang-
ian reformulation of the problems. This also makes it pos-
sible to develop analogies between solitary waves and
particles.

Equations(19) can be written as Euler-Lagrange equa-
tions

J oL oL oL
= ———, M=1,2, (26)
92 3(d,Ey) OER =Xy H(HER)

where the Lagrangian densify is

i
L= > (EX0,Em—c.c)—H. 27)
m=1,2

The corresponding formulas for E(R) can be obtained
by simply omitting the subscriph, and this procedure will
be implied in most formulas below, exceptions being stated
explicitly.

In the aboveH is the corresponding Hamiltonian density,
which for Egs.(19) takes the form

H=3|V, Eq|>+ 5|V, E,|?+ BIE2|>— 3(ESES +c.c),
(28)

while for Eq. (2)

1. (Ig?
, H=§|VLE| - duf(u). (29
0
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FIG. 16. Breakup of the one-ring solution with-2, 8=5, «
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Considering variations of the action integraf
=f2d zfdxdyL with respect to infinitesimal spatial transla-

tions and rotations it can be shown thatdfis invariant
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9L V,E.+
07(07ZEm) L EmTC.C.

i=-3
m=1,2

|~

== _21 ) (EXV Ep—c.C). (32)

I'm

N

By definition P is the linear momentum of the field] its

angular momentum, both expressed in term$lofits linear
momentum density. Solitary wave solutio(i®, (20) carry

zero linear momentun® =0, and nonzero angular momen-
tum, |L|=|1|Qq, whereQ, are the energy invarianfsee
Egs.(16) and(25)], evaluated at these stationary solutions.

Equation (31) for the angular momentum is just the
paraxial approximation for the optical orbital angular mo-
mentum per unit lengtfil3]. The angular momentum carried
by light beams has attracted much recent interest. It has been
predicted, and proved experimentally, that Laguerre-
Gaussian beams with azimuthal mode indesarry orbital
angular momentuns per photon12]. Frequency doubling
of such a beam has been sho}@8] to generate a second
harmonic with doubled azimuthal mode indek 2

Both our models2), (19) have the property of Galilean
invariance, e.g., in the quadratic medium:

(Ep,Ez,1)—(E1€'®,E0e??,§), (33)

where

O=3(f-302), E=f—vz o=Tv,+]v,,

Under this transformation, a structure with zero linear mo-

mentum is boosted t®®=Qu, therefore we can expect
analogies with Newtonian mechanics wighplaying the role

of mass. In particular, a fundamental soliton, which has no
intrinsic angular momentum, will have orbital angular mo-
mentumL=rXxQu about the origin, providedr| is larger
than the soliton size. It follows that if the total field can be
regarded as a superposition of several separate localized
structures, e.g., solitons, we can expect the dynamics of these
structuregwhile they remain well localizedo be somewhat
similar to the dynamics of mechanical particles.

For simulation of the soliton dynamics we used a split-
step algorithm on a Cartesian grid with initial conditions
obtained on the polar grid as described in Sec. Il. Once the
number of filaments is established the transition from one
grid to the other does not cause any significant loss of pre-
cision. As a further check, conservation of energy, Hamil-
tonian, and momenta was monitored during the simulations.

We found numerically that filaments formed due to the
azimuthal modulational instability do not diffract with propa-

under these transformations the following two quantities argyation, but remain well localized and solitonlike. By super-

integrals of motion:
ﬁzf dxdyil, (30)
Ezf dxdyrxI1. (31)

Herer =ix+ ]y and

imposing images of the transverse intensity distribution at
different z values we found thathese filaments move out
along tangents to the initial ring, carrying away its orbital
angular momentumsee Fig. 17 for the case of a saturable
medium. Several figures in RdR8] show this behavior for
both saturable and quadratic media and different valués of
Because, once fully formed, the filaments seem to behave
like simple, free Newtonian particles, we now examine
whether their number and dynamics can be predicted on the
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N
En= 2 Bra(xy)en (22 m=12; (34
n=1

hereJn have a sense of the “transverse velocities” of the

filaments. In other Wordzin characterize the propagation di-
rections of the solitary waves with respectztaxis. B,,, are
assumed to be bell-shaped complex functions characterizing

the filaments, localized near the points=v,z. N is the
number of these filaments.

Substituting Eq(34) into (31) gives for the angular mo-
mentum

10 156 20 256 30 35 40
N

E:gl dxdy[rXv,](|Bin|?+2[B2l?). (39

To get Eq.(35) we neglected the overlap of the tails of the
filaments. We now assume thatan be replaced by, and
taken outside the integral, which then reduceg,tpthe total
energy of the filament, and so E5) becomes, for well-
localized, well separated filaments

N
E:n; X Qnln - (36)

This is just the angular momentum of a set of spinless New-
10 15 20 25 30 35 40 tonian particles with masses given kyy. Under the same
assumptionsP=3N_.q,v,,, also the Newtonian form. If the
initial linear and angular momenta are wholly transferred to
the daughter filaments, these expressions_fand P must
equate to those of the original ring soliton, i|&]=1|Q,
andP=0.

We now make another simplifying assumption, restricting
ourselves to cases where the breakup results in a set of the
filaments with approximately equal energies. In this situation
conservation of the two momenta obliges the filaments to
move with nearly equal speed|§g|zv) along paths tangent
to the initial ring. Then in Eq.(36) we can estimate
IrnXvnl=Ruv, whereR characterizes the initial radius of the

solitary solution. In practice we assign&lby an energy-
10 15 20 25 30 35 40 weighted mean:

FIG. 17. Superimposed images of the transverse intensity distri-
bution at differentz values showing soliton trajectories in a satu- f rdrr(AiJr 2A§)
rable medium:a=0.1,1=2. (a) k=1, (b) k=5, (c) k=8. Propa- R= _ (37)
gation distance isAz=10 for (a)—(c). Dotted lines mark the 5 2
intensity maxima of the initial ring profiles. f rdr(Ai+2A7)

Finally, assuming that the entire energy and angular momen-
basis of the quasimechanical considerations. We considéum are transferred to the filaments we get a very simple
only the dynamics of the filaments formed after the breakupexpression for the escape speed:
of the one-ring structures. This is because an essential con-
dition to apply the “mechanical” approaches developed be- _ 1]
low is that the initial structures that undergo filamentation "R (38)
have to produce during their evolution a set of well separated
filaments. Breakup of the many-ring solutions results generPlots ofR versusk for both our models are presented in Fig.
ally in strong interaction between filaments from different 18. Equation(38) holds, under the stated assumptions, for
rings, and so is too complex to consider in the present apboth saturable and quadratic media. Before comparing it with
proach. numerical results, we consider an alternative Hamiltonian-

Let us represent the fields in the form based approach.
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FIG. 19. “Transverse velocities” of filaments in saturable me-
dia vs k for | =2, «=0.1. Triangles mark results of the numerical
simulation. Full line marks results gained through the angular mo-
mentum formula, Eq.(38). Dashed lines mark results gained
through the Hamiltonian formula, E€42). Thick and thin versions
of the dashed lines correspond to the cases of 3 and 4 filaments
respectively.

ments to be ground-state solitons. Note that in &§) the
first term inside parentheses is fully defined by the initial
FIG. 18. Average radius of one-ring solutions xs (a) Satu-  conditions, but the second is an implicit functionMf Since
rable mediumg=0.1; (b) Quadratic media@=0. Full and dashed EQq. (38) does not depend dN comparison between E(38)
lines correspond tb=1 andl =2, respectively. and Eq.(42) leads to a direct estimate of the numidérof
daughter solitons without numerical simulation or stability
Conservation of the Hamiltoniahl = [dxdyH suggests analysis.

another way to estimate. Substitution of Eq(34) into H, For our model systems we present in Figs. 19 and 20
under the same approximations as were used to ge38.  examples ofy versusk obtained from the numerical simu-
gives lation compared to the formulas given by E@38), (42). In

N N both models there is near-perfect agreement of ©B§),
Ho=S h.+ }2 2 (39 based on angular momentum conservation, with numerical

L An¥n - simulation. There is less good agreement with E4p),
based on the conservation of the Hamiltonian, though the
Equation(39) links the initial HamiltonianH, with the sum  qualitative behavior is correctly predicted. One reason for the
of the “intrinsic” Hamiltonians h,, of the individual fila- discrepancy could be radiation, which we neglected in mak-
ments calculated in their rest frames and of the “kinetic ening these estimates. If so, it would seem that the radiation
ergies” arising from their transverse motion, the latter againcarries away energy and Hamiltonian more efficiently than

conforming to the particle analog. linear or angular momentum. Alternatively, the daughter
The Hamiltonians of the initial stationary solutioKg), solitons may be in an excited state. Certainly, internal shape
(20) are respectively given by oscillations are apparent in the simulations and also in Fig.

17 (though exaggerated by the superposition of a finite num-

H0=—KQO+27TJ rdr(f(AZ)A— JOAZduf(u)), (40)

1.6 T T T L

14} i
Hoz—KQoJmTf rdrAZA,. (41 12k
Considering the initial state as a composite of the final s or
one, the last term in E439) can be interpreted as a “nega- 08r

tive binding energy,” which induces breakup and transforms

S osl
to kinetic energy of the fragments. s
Supposing again that there dxeidentical filaments, i.e., 041
h,=h, q,=0q, we get the following formula for the speed: % A
0 1 2 3 4 5
Hyo h x
p2=2| 02— —|. (42) ) _ . .
Q q FIG. 20. “Transverse velocities” of filaments in quadratic me-

dia vs k for =1, B=0. Triangles mark results of the numerical
For practical use of Eq(42) we chooseN that fixesq  simulation. Full line marks results gained through the angular mo-
=Qy/N, and then we can find for this q by using energy- mentum formula, Eq.(38). Dashed line marks results gained
Hamiltonian diagramgsee, e.g.[39]), assuming the fila- through the Hamiltonian formula, E¢42).
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ber of images at discrete timesThese questions demand  Solitons have been observed to spiral around each other
more detailed investigation, which we postpone to futurebecause of a balance between either in-phd4dé or inco-
work. herent[42] attraction and repulsion due to nonzero angular
The approaches presented above can be in fact applied ggomentum. Here, in contrast, we have nearly free quasisoli-
any initial field distribution that produces a set of well sepa-tons, with dynamics dominated by angular momentum con-
rated filaments with close intensities, e.g., they can be Us%rvation_ |nteracti0n forces may p|ay a minor ro'e in parti_
tq analyze breakup of Laguerre-Gaussian beams carrying Ofioning the energy among the filaments, but the daughter
bital angular momentum. , solitons rapidly cease to interact and fly off along straight-
In physical units Eq(38) states that the angular diver- jine trajectories tangentially to the initial ring without any
gence of the filaments is just the diffraction angle of a bean%piraling. Note that a side view of the filaments [i80]
W'th rad_lus;):Rw multiplied by the ordefl| of the phase shows rectilinear trajectories with no obvious evidence of
singularity, any spiraling, so it seems possible to achieve such angular
momentum dominated dynamics in practical experiments.
(43 Initializing model equations(2),(19) with self-trapped
beams with phase dislocatidplus nois¢ we demonstrated

where \ is the wavelength of the lightfor the quadratic ~that their initial nonzero angular momentum transfers to the
case, the SH field has half the wavelength but doublélthe filaments and they fly out tangentially from the initial ring.
value, and so the divergence is the same for both ficldis ~ We developed two semianalytic approaches to the filament
link between a linear quantity, the diffraction angle, and thedynamics, in analogy with classical mechanics, one of them
nonlinear phenomenon of azimuthal instability suggests afased on Hamiltonian conservation and the other on conser-
analogy with the linear approach to soliton theory developedation of angular momentum. Although both approaches
in [40]. give gqualitatively valid estimates for the “transverse veloc-
ity” (angular divergengeof the filaments, the latter appears
to be more general and gives also an excellent quantitative
agreement with numerical results. The numResf daughter
Ringlike solutions with a phase dislocation nested at theilaments is in most situations roughly twice the angular mo-
center and exponentially decaying tails exist in self-focusingnentum index, and thus depends relatively weakly on the
saturable and in quadratic media. They are quite differengther parameters. Taken together, the two approaches based
from the “classical” optical vortex soliton supported by a on conservation laws yield an independent estimate\fan
defocusing nonlinearity5], which is a dark spot with a reasonable accord with estimates based on simulations and

phase dislocation on a broad, stable, bright background. Dyon stability analysis, both of which require considerable
namics of the solutions studied here is characterized by aztomputational labor.

muthal modulational instability which leads to breakup of
the rings into a set of the filaments. This sort of dynamics has
already been experimentally observed, both in a saturable
alkali vapor[30,3] and in photorefractive medid 1]. This
shows that these solitary solutions, some properties of which We thank the authors of Ref$5,23,29 for supplying
can be more or less rigorously studied theoretically, reflectopies of their manuscripts prior to publication. D.V.S. ac-
the main features of the dynamics of input beams used iknowledges financial support from the ORS. This work was
experiments. partially supported by EPSRC under Grant No. GR/L 27916.
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