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Photonic band gap formation in certain self-organizing systems

Kurt Busch and Sajeev John
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
(Received 7 April 1998

We present a detailed study of photonic band structure in certain self-organizing systems that self-assemble
into large-scale photonic crystals with photonic band g&B&Gs9 or pseudogaps in the near-visible frequency
regime. These include colloidal suspensions, inverted opals, and macroporous silicon. We show that complete
three-dimensional PBGs spanning roughly 10% and 15% of the gap center frequency are attainable by incom-
plete infiltration of an opal with silicon and germanium, respectively. The photonic band structure of both face
center cubic and hexagonal close packed photonic crystals are evaluated. We delineate how the PBG is
modified by sintering the opal prior to infiltration and by applying strain along various crystallographic
directions. We evaluate the total photon density of states as well as the local density dl.2&8&g projected
onto various points within the photonic crystal. It is shown that the LDOS may exhibit considerable pseudogap
structure even for systems that do not exhibit a complete PBG. These results are directly relevant to quantum
optical experiments in which atoms, dye molecules, or other active materials are inserted into specific locations
within the photonic crystal. When the resonant optical transition of these dopants is tuned close to a pseudogap
or other abrupt structure in the LDOS, novel effects in radiative dynamics associated with a “colored vacuum”
may be realized.S1063-651X98)11509-X]

PACS numbgs): 42.70.Qs, 41.20.Jb, 78.66.Sq

[. INTRODUCTION cladding material for preventing losses in waveguide struc-
tures that contain bends or junctiof3—-25.
Since their proposal in 19871,2], periodic dielectric Nevertheless, it is for visible and near-infrared frequen-

structures exhibiting a complete photonic band ¢gBG cies where PBG materials are likely to have their most im-
have generated considerable attenfida6]. PBG materials portant impact. For example, applications in telecommu-
facilitate the coherent localization of lighf—9], leading to  nictaions may require the fabrication of large-scale three-
novel phenomena in quantum optics as well as importantimensional PBG materials with a gap centered around 1.5
technological applications. Although the band structure ofum. These applications may include the design of zero-
classical scalar waves readily yields complete threethreshold microlasers, light emitting diodes that exhibit co-
dimensional gaps for simple structures such as a face ceifrerence properties at the single photon level, subpicosecond
tered cubic lattice of spherical scattergt§], the vector na-  optical switches, and all-optical transistors. In addition, PBG
ture of the electromagnetic wave equation leads to mucimaterials represent a frontier in photon-atom interaction phe-
more restrictive conditions on the dielectric microstructurenomena and nonlinear optics. The single greatest obstacle to
for the formation of a PBG. Initial difficulties in designing realizing the potential of PBG materials has been the lack of
structures that exhibit a complete PBG were allayed by then inexpensive and reliable means of microfabricating large-
discovery that the diamond lattice of dielectric spheres exscale three-dimensional materials with sizable gaps at near-
hibits such a frequency range for whiflimean wave propa- visible frequencies. In this paper we discuss in detail the
gation is forbidden11]. In the microwave regime, other dia- possibility of overcoming this obstacle using self-assembling
mondlike structures obtained by drilling cylindrical holes in three-dimensional structures based on “inverted opals.”
a bulk dielectric materialwith a refractive index of 36  Starting from a close-packed face centered cubic lattice of
have been demonstrated to exhibit band gap to center fre&SiO, spheregopa) with diameter on the scale of a microme-
quency ratiosA w/ wg as large as 20%12]. Since then, nu- ter, PBG materials with gaps in the range 5-15 % of the
merous structures amenable to layer by layer fabrication andenter frequency may be realized by infiltration of the opal
drilling that possess complete PBG have been suggestesith high refractive index materials such as Si or Ge and
[13-16. A number of structures have already been fabri-subsequently removing the Si@y chemical etching. These
cated with PBGs in the range of millimeter wajjdg-19. structures may exhibit a number of novel effects in quantum
These structures not only confirm the soundness of thand nonlinear optics.

concept of a PBG but also have interesting applications in While linear wave propagation is absent in the gap of a
the microwave to millimeter wave range. For instance, arPBG material, nonlinear propagation effects in the form of
antenna mounted on a conventional dielectric constant sulHtrashort solitary wave pulses can still occur. Recent studies
strate radiates the majority of its radiation into the substraténdicate that as a result of their large group velocity disper-
itself. If the substrate is engineered into the form of a PBGsion near a photonic band edge and complex symmetries,
material with a gap at the radiation frequency, the losses caRBG materials exhibit a much richer variety of nonlinear
be minimized, leading to highly directional transmitters wave propagation phenomena than conventional waveguides
[20,21]. Other applications include angular filtef22] and  or optical fiberd26—-28. In addition, PBG materials exhibit
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different quantum optical features, related to the drastic al- Il. THEORETICAL FRAMEWORK
teration of the photon density of statd30S). A vanishing

DOS leads to bound photon-atom stafi28.30, suppressed While there are a number of techniques for band structure

issidi. 31 3 d localizati : calculations of electronic crystals, band structures of PBG
spontaneous emissidil,31,32, and strong localization of 1\ iarials have almost exclusively been obtained from the

photons[2,2_9,30,33 .Unlike conventional microca}vities and lane wave expansion meth@WEM). Contrary to the situ-
other confined optical systems, PBG materials supporiion for electronic crystals, the “periodic potentials” in
propagation effects on the scale of the localization length fobgG materials are known from the outset and do not have to
photons leading to different types of cooperative behaviohe computed in a self-consistent fashion. In this paper we use
involving photons and atoms. In a PBG material, photonthe PWEM for computing the band structure of two- and
localization effects render the master equation approach aqfiree-dimensional PBG materials, the total DOS, as well as
standard quantum optics problematic since localization imthe projectedlocal) DOS.

plies highly non-Markovian memory effects in radiative dy-
namics. In addition, it requires a nonstandard treatment that
goes beyond the Born approximatif®4]. Among the phe- )
nomena predicted in this frontier of quantum optics @ye The PWEM is based on the Bloch-Floquet theorem,
collective switching of two-level atoms from the ground to which states that eigensolutions of differential equations with
the excited state with low intensity applied laser fields lead+eriodic coefficients may be expressed as a product of plane
ing to all-optical transistor actiof85], (i) anomalous super- Waves and lattice-periodic functions. Consequently, all peri-
radiant emission rates and low-threshold band-edge lase$lic functions are expanded into appropriate Fourier series.
[33], (ii) low-threshold nonlinear optical responi@6], and  Inserting these expansions into the differential equation re-
(iv) highly nonclassical states of light within the PBG in the Sults in an infinite matrix-eigenvalue problem, which, suit-
form of multiphoton localization and propagating quantumably truncated, provides the eigenfrequencies and expansion
gap solitong37). coefficients for the eigenfunctions.

These very exciting prospects for PBG materials with We begin by computing the dispersion relations for two-
band gaps in the visible region, have triggered numerougimensional PBG materials. They consist of periodic ar-
efforts to manufacture such structures, with periodicity onfangements of infinitely extended and parallel oriented cyl-
the optical scale. Two-dimensional PBG materig88—41] inders with radiusR, embedded in dielectric matrix. Here
have reached band ga@mp]ete in two dimensions and and thrOUghOUt the paper we consider the embedding maitrix
incomplete in three dimensionsround wavelengths of 5 Material to possess a real, frequency-independent dielectric
um and the(electrochemical etchingtechnique is clearly constante,. Similarly, we assume the scattering cylinders,
capable of further downscaling of the structurég]. In three  Spheres, etc., to consist of material with a real, frequency-
dimensions a number of self-assembling photonic crystalfidependent dielectric constaef. To make the problem
already exist. These include colloidal systefd8—45 and  two dimensional we assume that light propagates perpen-
artificial opals[46—48. Unfortunately, these readily avail- dicular to the cylinder axis. The latter defines thexis. For
able photonic crystals do not satisfy the necessary criteria diiture reference we note here that the periodic dielectric con-
high index contrast and correct network topology to producestantep(F) may then be written as
a complete PBG. Theoretical studies, however, indicate the
possibility of complete PBG in closely related structures. Bi- 1 1 1 1
nary colloidal mixture§49] consisting of two sizes of Ti© e.(F) - €_a+ & e
spheres as well as fcc lattices consisting of low dielectric P
inclusions in a connected high dielectric netwéhlenceforth .
called inverted structurgsexhibit sizable PBGs. The latter => nge°T, 2)
possibility has spurred highly interesting work on emulsion G
templating/ 50] and on the infiltration of opals with silicon or R R
germanium[51]. We expect that these techniques will soonwhere R denotes real space lattice vectors aidare the

lead to a large-scale PBG material with a complete threecorresponding reciprocal lattice vectors. The funct&(n)

d|n|1ertﬁ.|onal gap at.near;ylskblg frdeqtugTrgﬁles.b i (ﬁakes on the value one jf|<R,, whereR, is the cylinder
n this paper we investigate in detail the above-mentione adius, and is zero otherwise. We note here that for two-

structures from the viewpoint of optimizing the gap SIZ€ jimensional problems all vectors are understood to have two
through the manufacturing process. We present results on tll:

X . %mponents, whereas for three-dimensional problems all
total as well.as the prqjegte(dpcal)_ DOS of various SUUC- \ectors will have three components. The Fourier coefficients
tures and discuss their implications on the feasibility of :

) . ) . .m¢& are given by

guantum optical experiments in PBG materials. The paper id
organized as follows. In Sec. Il we will introduce the theo-

4 . . . 1
retical and computational framework in which our band néz_J d2r
structure calculations are performed. Section Ill contains our QO J wsc
results on structures that do not posses a complete PBG, such
as colloidal crystals and two-dimensional PBG materialsHere we designate the volume of the Wigner-Seitz cell
Section 1V is devoted to the study of inverted fcc and hcp(WSCQ) by Q. For light incident perpendicular to the cylinder
structures that exhibit a complete three-dimensional PBGaxis, the two transverse polarizations decouple, leaving us
Finally, in Sec. V we summarize and discuss our findings. with two scalar problems. If the electric field is polarized

A. Band structure computation
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parallel to the cylinder axi¢E polarization, the propagation verse polarizations. As a consequence, the full vector prob-

is governed by the scalar wave equation lem has to be solved. We do this following the approach of
Ho, Chan, and Soukouligl1], which is based on the wave
1 [ & I equation for the magnetic field
—| —+—|E(N+—E(r)=0, (4)
€p(r)\ ox= d (o w2
. -VXx VXH(F))+—2H(F)=0, (10)
whereE(r) is thez component of the electric field. Follow- €p(r c
ing the Bloch-Floquet theorem, we expaEdF) as . .
V-H(r)=0. (12)
EK(F):EG Agelrer, ()  The divergence-free magnetic field permits an expansion of

the form

wherek is a wave vector lying in the first Brillouin zone R L
(BZ) that labels the eigensolutions of Ed) [52]. Inserting He=> ; hg eg glktG)r (12)

. . . .. . K G
this expansion into Ed4) and defining the coefficient8;

E||Z+(§|A‘(‘3 yields a symmetric eigenvalue problem whereéx with A\=1,2 denote two unit vectors such that the
, set {ey %1 &~ % k+G! forms an orthogonal triad. The
. Wl . . _
T N S I matrix-eigenvalue equation corresponding to EXD) then
% |k+G||k+G/|’76*G’Bé/_§BG" ®  pecomes

. . . . . ~ ~ ~2 ~1 1
The reciprocal lattice sum is then truncated in order to obtain Lo o e; ez —ez €[ hg
a numerical solution. In our numerical calculations conver- 2 |k+G|[k+G'|ng-g PSP 21 21

gence was established by increasing the number of reciprocal

lattice vectors used to truncate E&) until the final result I h

was independent of the truncation. We found that using 720 _ “k ) (13)
reciprocal lattice vectors closest to the origin yields a con- CZ hé '

verged band structure for the dielectric contrasts we have

considered. Again, following Ref.[11], instead of computing the Fourier

When the electric field is polarized perpendicular to thecoefficients ng_g, directly from Eq.(3), we Compute the
cylinder axis(H polanzanor) the corresponding magnetic |\ atrix €6.6/=€G_g of Fourier coefficients ot (r) for the

field has az componentH(r) only and we may work with  set of reciprocal lattice vectors that define the truncation of

the corresponding wave equation Eq. (13). We then takeng_g: to be the G,G') element of
- - ) the inverse of the matrixg g, . This procedure is known to
i 1 9H) i 1 9H[) w—H(F)zO drastically improve the convergence of eigenvalue computa-
F) ép(F) F) ay ep(F) ay c2 ' tions from Eq.(13) [53,54. Using this technique, we re-
(7)  quired less than 1000 reciprocal lattice vectors to obtain con-
verged band structures. In fact, for most cases 720 reciprocal
Expanding the magnetic field in the form lattice vector produced results that deviated from the con-
i verged results by less than 0.5%. Once Ekf) has been
HE(F)=E C'é ei<l€+é)~r‘, (8) solved for both eigenvalues and eigenvectors, the electric

field corresponding to a given eigenfrequemza,(IZ) can be

computed from Eq(12) using Maxwell’s equation
we arrive at corresponding the symmetric matrix-eigenvalue

equation c o
2 k()= wn(IZ)ep(F)VXan
> (k+6)-(k+G')ng_aCs,=—C&. (9
¢ ¢ =3, |k+G|(htei—hiel)eorr (14
Truncation of the reciprocal lattice sum follows the same ¢
recipe as for Eq(6). Here the subscript labels the bands. Finally, it follows from

Fully three-dimensional PBG computations proceed in arthe orthonormality of eigenvectors of Ed.3) that the Bloch
essentlally analogous fashion. The periodic dielectric Confunctlonan : and én ; obey the orthonormality relations
stant ep(r) defines a three-dimensional lattice and corre- '
sponding three-dimensional reciprocal lattice vectors. The J & H
Fourier expansion of t{,(F) is given by Eq.(1), where the k(T
Fourier coefficientgcf. Eq. (3)] are now determined by in-
tegrating over the three-dimensional WSC. However, in 3 o U
three dimensions, there is no decoupling of the two trans- d*r ep(r)E”"‘(r)'En’,k’(r)_‘s(k K)Onn - (16)

(I’) 5( k )5nn’ ’ (15)



PRE 58 PHOTONIC BAND GAP FORMATION IN CERTAN . .. 3899

B. Photon density of states 1 :

Transmission experiments on PBG materials usually do o9 ¢

not probe all the details of the dispersion reIatioq(IZ)

directly, but rather measure the number of states available fo
a given direction of propagation. Integrating this number of _ 0.7 |
states over all directions describes the average behavior ¢

the structure under consideration yielding the total DOS. 5 08¢

Mathematically, the total DOSI(w) is defined as _L;;g 05 [
. f’ 04 F
N =3 [ dksw-wk), 0D %

n 1.BZ 03
where BZ stands for the first Brillouin zone. Since the dis- 02t
persion relatiormn(IZ) is generally known only numerically 0.1 -
[by solving Eqg.(13)], thek-space integral in Eq17) has to ‘ . . . . . ‘
be suitably discretized. For our computation we use the lin- 0 01 02 03 04 05 06 07 08 09 1
ear tetrahedron metho@55] in its correctly symmetry wa/2me

weighted form[56]. Details for the evaluation of the two-
dimensional DOS can be found in the Appendix and for
three dimensions we refer to R¢&6].

For_ apphpauon to quantum optical experiments in I:‘E’Gin the visible region, as well as serve as a guide for realizing
materials it is, however, necessary to proceed one step furﬁany of the quantum optical experiments, suggested by
ther. Consider an excited atom at some specific Iocatio%eory[29—37 57,58 ’
within a PBG material. In order for the atom to decay via a R
single-photon process it needs to emit a photon into a Bloch
mode of the PBG material. Consequently, it is the local cou- !l SYSTEMS WITHOUT A COMPLETE PHOTONIC

pling (overlap matrix elemeptof the atomic dipole moment BAND GAP

to photons in this mode that determines the decay rate of the aq mentioned above, PBG materials that do not possess
excited att_)_n{5_7,58]. Assu_ming that an allowed electric di- complete PBGs are readily available and their DOS may
pole transition is the dominant decay channel, we may cOmpeyertheless exhibit rapid variations with frequency, such as
bine (overal) mode availability and coupling to theémode N pseudo-gaps or Van Hove singularities. Sufficiently large
the so-called projected or local DOEDOS) N(w,r) de- fluctuations in the DOS of these materials may therefore pro-
fined as vide a “colored vacuum” for several interesting quantum
optical experiments. For instance, the relevant input param-
- - - eters for the fast optical switching and all-optical transistor
N(w,r)=zn, L_Bzdsk|E“"2(r)|25(“’_“’”(k))' (18 action of Ref.[35] a?e (i) the numt?er of atomF;(ji) the ap-
plied laser field, andiii ) the ratioy, /y_ of the decay rates
between the two closely spaced frequencies= w,;*+ A
representing the Mollow fluorescence sidebands of a two-
level atom. Heraw,, is the transition frequency between the
excited and the ground state of the bare atom Arid the
N(“’):f d3r sp(F)N(w,F). (190  separation of the Mollow side bands of the atom after it is
SC “dressed” by an external laser field. In general, a larger ratio

_ _ _ _ y+ly_«N(w, ,r)/N(w_,r) will enhance the collective
This provides a convenient way of checking the accuracy okwitching effect. However, a ratio as low gs /y_~2 will

our k-space integration. . already produce a sizable effect.
In what follows we will describe the total DOS as well as

the LDOS of self-organizing PBG materials. The LDOS wiill
play a crucial role in spontaneous emission dynamics from
atoms and molecules placed within a PBG material, non- We first consider a colloidal suspension of Fi€pheres
Markovian behavior in the photon-atom interaction, and col-with dielectric constant,~7.35 in watere,~1.77. We as-
lective behavior such as lasing and nonlinear switching efsume a filling ratio off=0.25 of TiO, spheres. Figure 1
fects. In particular, we find that the LDOS may be shows the total DOS for this particular photonic crystal. Here
profoundly different from the total DOS, so that a judicious and in all following graphs we use a dimensionless fre-
choice of where in the PBG material dopant atoms are placeguencyw = wa/2wc, wherea is the lattice constant and

may be crucial for the success of quantum optical experidenotes the vacuum speed of light. We observe two sharply
ments. In addition, we investigate band structures, the totaising flanks around ®=~0.62 [N(0.600)=0.137 and
DOS, and the LDOS of materials that are yet to be fabri-N(0.632)=0.307] and @~0.90 [N(0.864)=0.230 and
cated. We hope that this will provide some insight for suc-N(0.936)=0.633]. Consequently, within 5% and 8.5% inter-
cessfully manufacturing PBG materials with complete PBGsvals around the center frequency the total DOS changes by

FIG. 1. Total DOS for a fcc lattice of TiQspherege~7.35 in
water (e~1.77). The filling ratio for TiO, is 25%.

whereEn,g(F) are the Bloch functions of Eq14). The total
DOS can be recaptured from the LDOS using Ed):

A. Colloidal suspension of TiQ, spheres in water
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(b) wa/2re FIG. 3. Two-dimensional band structui@ (E polarizatior) and

FIG. 2. Local DOS at the center of TiGpherega) and midway corresponding two-dimensional DA$) for a triangular lattice of
between two adjacent TiOspheres(b) for a fcc lattice of TiQ air_cylinde_rs_ etched into macroporous silic@=11.9. The filling
spheres(e~7.35 in water (e~1.77). The filling ratio for TiQ, is  ratio for air is 67%.

25%. This is illustrated in Figs. & and 3b) and Figs. 4a) and
4(b), where we display the two-dimensional band structure
and DOS forE andH polarization, respectively. The struc-
ture consists of a ftriangular array of air cylinders in
macroporous silicond,~11.9) with a filling ratio of 33%
silicon[41]. The sharp peaks in the DOS are a manifestation
of Van Hove singularities characteristic of two-dimensional
lattices. Such two-dimensional band gaps may provide the
testing ground for a variety of nonlinear optical soliton phe-
nomena predicted in Ref26-29.

However, for inhibition of spontaneous emission in quan-
) ) tum optical phenomena, the full three-dimensional DOS has

B. Two-dimensional structures to be considered. The corresponding three-dimensional dis-

Another class of photonic crystals with incomplete three-persion relation must be computed by solving the full vector
dimensional PBGs are periodic arrays of infinitely extendedproblem Eq.(10) rather than Eq(4) or (7). Similarly, the
cylinders, the so-called two-dimensional PBG materials. Inntegration in three-dimension& space, Eq(17) or (18),
particular, for propagation directions perpendicular to thehas to be performed with an appropriate cutoff in tie
cylinder axis, triangular lattices of air voids in macroporousdirection. In the present case of a triangular lattice khe
silicon were shown to possess overlapping two-dimensionadpace integration domain is a hexagonal prism and the cutoff
PBGs for the two possible transverse polarizatip#®41.  is determined byk,"= (w/c)max(\e,, Ve,). Figure 5 dis-

factors of 2.24 and 2.75, respectively. Further insight is pro
vided through Fig. @). There we show the LDOS for this
photonic crystal projected onto the center of a J&phere.
Clearly, the flank afo=0.62 is reduced, whereas the flank
around@=0.9 is drastically increased to about 4:1. Simi-
larly, Fig. 2b) shows the LDOS projected onto a point mid-
way between two TiQ@ spheres. We observe that for this
location, the flank afw=0.62 is enhanced to about 5:1,
whereas the flank arouri@=0.9 is strongly reduced.
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07 F ] ) .
L propriate network topology for creation of a complete PBG
; 06 ¢ E in three dimensions. The diamond or diamondlike structures
£os5c ] known to possess complete gaps are very expensive to mi-
£ crofabricate by either reactive ion etching or layer by layer
@ 04 growth on the length scales required for PBGs in the visible.
2 03 L Moreover, these techniques lead to relatively small samples
of length less than ten lattice constants. Self-assembling
02 structures hold the promise of very large size samples with
o1 PBGs in the visible. Binary colloids are discussed at length
' in Ref. [49], but may be very difficult to realize. Here we
00 0'1‘ 6'2 0'3 0'4 0'5 o'é ‘0'7- olel YR concentrate on photonic crystals based on inverted opals.
b) ) | ) | wa/'m ' : ’ : These are manufactured by using either emulsion templating

[50] or infiltration of artificial opals with high dielectric ma-
FIG. 4. Two-dimensional band structu@ (H polarization and  terial[51]. As we demonstrate below, the quality of currently

corresponding two-dimensional DA®) for a triangular lattice of ~available artificial opal§46—48 makes their controlled in-

air cylinders etched into macroporous silicer=11.9. The filing filtration a goal worth striving for.

ratio for air is 67%.

plays the total three-dimensional DOS for the same structure A. Artificial opals

as in Figs. 3 and 4. Clearly, there is no complete three- Artificial opals themselves come as close-packed struc-

dimensional PBG for such a structure. The two-dimensionalures of monodisperse Sj@pheres with dielectric constants

gaps now manifest themselves in fluctuations of the threeranging frome,=2.1 for bulk SiQ down to e,=1.59 for

dimensional DOS. In particular, the gaps of thepolariza-  spheres of diameter 0.2m. Similar to the case of TiQ

tion appear to have a more profound effect on the threespheres in water, no complete gap is found for any filling

dimensional DOS than do the gaps of tHepolarization.  ratio f of the SiQ, spheres. A typical total DOS is shown in

However, the overall fluctuations of the three-dimensionalrig, 7.

DOS are weaker than in the case of the fcc lattice of ,TIO  However, it has long been known that the inverted fcc
spheres in water. structure, i.e., close-packed low dielectric spheres in a high
For the structure considered above we find a sharp variadielectric matrix possess a complete PB&S]. We present
tion in the total DOS aroun@~ 0.43 with magnitude 2:1. At below a detailed study of inverted structures that are cur-

locations midway between adjacent cylinders this variation isently being manufactureib1].
reduced[Fig. 6(@)], whereas it is shifted tG~0.46 and
enhanced to about 3:1 at the center of the cylindéig. B. Infiltration of opals with various dielectrics

6(b)].

The recipe of producing inverted structures from artificial
opals is to infiltrate them with a high dielectric material and
to subsequently etch out the Si®pheres, leaving behind a

The results of the preceding section demonstrate the neonnected network of high dielectric material with filling
cessity of a three-dimensional photonic crystal with the ap+atios around =0.26(“Swiss cheese structure$.’The etch-

IV. INVERTED OPALS



3902 KURT BUSCH AND SAJEEV JOHN PRE 58

1 T T 1 T T T T T T T T
09 r 09 r b
08 f 08 f 1
—_ 07 - 0.7
Sost o6t
oy o
< <
£05 ¢ 505
< 2
< <
g 04 g 04 -
o) Q
R o3| A o3l
02 r 02
01 [ 01 L
0 1 Il 1 1 1 L L 0 Pl R | el e b e e by e b v e b e by
0O 01 02 03 04 05 06 07 08 09 1 0o O01 02 03 04 05 06 07 08 09 1
(a) wa/2me wa/27c
1 . . FIG. 7. DOS for a close-packed fcc lattice of silica spheres
09 - (€~2.1) in air (opal.
0.8
. 07 ¢
é,’ 1 et g
S 06F 0.9
Eo05¢
.g 08 F M““:
~ L >—o—o—e—e—t=3—4—4""1
8 0.4 0.7 ﬁ?y’ ““"‘N::::t< _,.f"c
o3t “-\“N/ “‘\\
06
P Q PPt , | [*osseerest
L 3
0.1 04 [ 1
0 1 L 1 1 1 L 1 L 1 L |
0 01 02 03 04 05 06 07 08 09 1 03 r ]
(b) waf2me o2 b ]
FIG. 6. Three-dimensional LDOS midway between two adja- 44 ¢ 1
cent cylinderga) and at the center of the cylindefls) for a trian-

gular lattice of air cylinders etched into silicda~11.9. The filling (@) 0 X
ratio for air is 67%.

a
S
-
ke
2
=~

1

ing out of the SiQ enhances the dielectric contrast, which in 09 ¢

turn leads to larger gaps. Moreover, the presence of air void: 0.8
rather than solid Si© will greatly ease the injection of o7t
atomic vapors with which quantum optical experiments canz
be carried out and also facilitates the infiltration by active Z 0-6 ©
materials such as conducting polymers and dyes for lasef g5 |
applications. In Figs. @& and 8b) as well as Figs. @ and 5
9(b) we present the band structure and corresponding totag
DOS of an inverted fcc and hcp structure consisting of close-~ 0.3 |
packed air spheres in a silicon matrix with dielectric constant
e,~11.9. We observe that the fcc structure possesses
pseudogap between the fourth and fifth bands arownd 0.1t
~0.524 and a complete 4.25% band gap between the eight
and ninth bands with a center frequencyw® 0.794. Simi-
larly, the hcp structure exhibits a less pronounced pseudoga{;
between the eighth and ninth bands aroii 0.364 and a FIG. 8. (a) Band structurda) and corresponding DO®) for a
complete 2.8% gap between the 16th and 17th bands with dose-packed fcc lattice of air spheres in silider-11.9.
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09 [ FIG. 10. Dependence of the gap size as a function of index of
refraction for a close-packed fcc lattice of air spheres in a high
08 [ dielectric matrix.
~07F L : o
8 C. Effect of sintering and incomplete infiltration
=]
; 0.6 ¢ The manufacturing process of infiltrated opals itself sug-
Zost gests two possible approaches to enlarging the RB&in-
iﬁ/ tering the artificial opal prior to infiltration, improves the
2 0.4 : stability of the structure and makes it easier to handle. With
B o3l sintering, the formerly touching spheres are now bonded by a
tubelike connection. Infiltrating this sintered structure will
result in an inverted structure with a slightly smaller filling
01 F ratio of high dielectric materialii) In practice, the infiltra-
tion of a close-packed opal structure may lead only to an
00 o1 o0z 03 04 05 06 o7 incomplete occupation of the void regions between the,SiO
(b) wa/2me spheres. This can be modeled by assuming that the high in-

_ dex material(Si or Ge “wets” the surface of the SiQ
FIG. 9. Band structurea) and corresponding DO%) for a  spheres up to a certain thickness. After removal of the, SiO

close-packed hcp lattice of air spheres in sili¢err11.9. Note that  the resulting structure consists of air spheres coated with
the lattice constant of a close-packed hcp lattice is, by a factor of

V2, smaller than the lattice constant of the corresponding close- 7
packed fcc lattice.

center frequency ®~0.570. The occurrence of the 6
pseudogap as well as the complete gap between higher bant
for the hcp structure stems from the fact that the hcp crystalg 5 :

constitutes a hexagonal lattice with a two atom basis. In ad-§

dition, the lattice constants of fcc and hcp structure differ by % 4l
a factor of\/2, so that the pseudogap and complete gap occu%
at roughly the same frequencies for both structures.
Figure 10 shows the dependence of the gap size of the
inverted close-packed fcc lattice as a function of the back-
ground index of refraction. Materials such as silicom (
~3.45) and germaniumni=4.0) produce band gaps of a
relative sizeA w/wy=~4.25% andA w/wqy~7.35%, respec-
tively. Figure 11 displays the dependence of the relative gar 7
size for the mvertgd silicon fcc structure on t'he ra<_j|ps of the %'33 0.54 0_55 0"36 057 0.58
air spheres. Obviously, there exists an optimal filling ratio Radius of air spheres /a
for slightly overlapping spheres that maximizes the gap.
While the difference from the close-packed structure is FIG. 11. Dependence of the gap size as a function of radius for
small, this raises the interesting question whether a morae fcc lattice of air spheres in silicofe~11.9 near close packing.
clever approach for removing material from the close-packedhe sphere radius is measured in units of the cubic lattice constant
structure would lead to a larger band gap. a. r=al/\/8~0.353@ corresponds to exact close packing.
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FIG. 12. Cross-sectional view through an incompletely infil-  0.38 0.42 0.46 0.5 0.54 0.58 0.62
trated opal. After etching out the SjGpheres, the incomplete in- Radius of coating sphere /a
filtration of silicon (gray) results in additional air voids between

hollow spheres, which appear as triangular or diamond shaped holes /G- 14. Dependence of the gap size as a function of radius of
on the surface of the cut. coating for a close-packed fcc lattice of air spheres coated with

silicon (e~11.9. The coating radius is measured in units of the
high dielectric material rather than consisting of air sphere§uPic lattice constara.
in an entirely filled high dielectric matrix. This structure with
a small interstitial void between air spheres is depicted irof a true network topology since sintering improves the con-
Fig. 12. nectivity of the air fraction. Once the sintering radius ex-
Figure 13 shows the dependence of the relative gap sizeeeds a certain value, infiltrating the sintered opal does not
of the inverted fcc structure on sintering the artificial opaldeposit enough high dielectric material to sustain the band
prior to infiltration. Here we assume that sintering the artifi-gap and it quickly collapses.
cial opal leads to the formation of tubes connecting the Figure 14 displays the dependence of the gap size of the
sphere centers of adjacent touching spheres. Accordingly, wieverted fcc structure on the degree of incomplete infiltra-
plot in Fig. 13 the gap size of silicon-infiltrated artificial tion. Again, we choose to plot the results of the silicon-
opals on the radiuR; of the sintering tube. Clearly, there is infiltrated artificial opal, where silicon is now assumed to
a drastic enhancement of the gap size for a tube radiurm a coating of the closed-packed air spheres. We observe
aroundR,~0.133, wherea is the lattice constant of the fcc that a slightly incomplete infiltration actually leads to a
lattice. This result is consistent with similar results obtainedstrong enhancement of the gap size compared to the com-
by Chanet al. [14] for the A7 structure. Both cases support pletely infiltrated structure. For a coating radius Bf
the concept that PBG formation is enhanced by the presence0.445 (corresponding to about 21% total volume fraction
of silicon) the gap size of the incompletely infiltrated struc-
77 . . . . . . . ture is doubled compared to the fully infiltrated one. Once
again, as the infiltration becomes more and more incomplete,

6 ] the band gap eventually disappears altogether as there is not
enough high dielectric material to sustain a band gap.

25l i We have performed similar studies on the hcp structure
g and found analogous dependences of the gap size on the
3 1 background dielectric constant, sphere radius, radius of sin-
34 ] tering tubes, and coating radius for incomplete infiltration.
3 Overall, the gap size for a given inverted hcp structure is
83 1 generally a little smaller than the gap size of the correspond-
a ing inverted fcc structure.
&)

N

D. Tuning the PBG through the application of strain

Another line of thought concerns the mechanical manipu-
lation of the artificial opal prior to its infiltration with high
dielectric material. Exerting not too large pressure on the
opal will result in slight deviations from the fcc or hep close-
packed structures. The effect may be twofold. First, the po-

FIG. 13. Dependence of the gap size as a function of radius o$ition and size of the complete gaps may be changed, thereby
sintering tubes for a close-packed fcc lattice of air spheres in silicollowing one to tune the PBG material. Second, applying
(e~11.9. The tube radius is measured in units of the cubic latticestrain reduces the symmetry of the photonic crystal relative
constanta. to that of the unstrained PBG material. This lifts certain de-

0 1 1 1 1 Il 1 1 1
0 002 004 006 008 01 012 014 0.16 0.18
Radius of sintering tubes /a
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FIG. 15. Dependence of the gap size as a function of the devia- FIG. 16. Dependence of the gap size as a function of the devia-
tion of thez axis from the cubic axis for a close-packed fcc lattice tion of the body diagonal from ideally cubic for a close-packed fcc
of air spheres in silicolie~11.9. The structure is pressured along lattice of air spheres in silicofe~11.9. The structure is pressured
the z axis. See the text for details on the distortion paraméter along the cubic body diagonal. See the text for details on the dis-

tortion parametep.
generacies of the lattice structure and holds out the possibil-
ity of opening the pseudogaps of these structures into contiowever, is not sufficient to convert the pseudogap between
plete PBGs. bands 4 and 5 of the fcc structure into a full band gap.

1. Pressure along the cubic axis on a fcc structure 2. Pressure along the body diagonal of a fcc structure

As a first example, we consider applying pressure along a An alternative way of straining the fcc crystal is to exert
cubic axis of the fcc lattice of close-packed spheres. Thigpressure along the cubic body diagonal. This changes the fcc
leads to a deformation of the crystal structure in which theresymmetry to a rhombehedrical o7 symmetry and is
is a reduction of the lattice constant for this particular direc-expressed by the set of primitive lattice vectors
tion. By virtue of the incompressibility of the spheres them-
selves, this also leads to an increase in the lattice constant . a
perpendicular to the axis of applied pressure. Taking the axis 3125(1’1'5)v (23
of applied force to be the axis, the original fcc structure
changes to a face centered tetragonal lattice, which is de- a’

scribed by the primitive lattice vectors 52:?( 1,6,1), (24)
. oa
alz?(lllio)! (20) > a,
33:7(5,1,1), (29
- a
a;=-(1,0¢/a’), (21)  wherea’=a/\1+ §%/2 and § parametrizes the resulting de-
formation. This deformation may conveniently be described
, by the anglea between any two primitive lattice vectors,
53:%(0,1’0/61,)_ (22) which in the case of an unstrained fcc structure is 60°. In

terms of the paramete? we have coa=(1—26)/(2+ ). In

Fig. 16 we display the dependence of the relative gap size on
The parameters anda’ are defined through a strain param- the distortion parametes. As in the case of pressure along
eter 5, which measures the deviation of the strained latticethe cubic axis, we observe a closing of the gap as the pres-
from the unstrained fcc lattice. In particular=a(1—5) is  sure is increased. Increasing the pressure beyond a certain
the side length of the distorted cube along the direction of/alue, however, reopens the gap again, albeit with a smaller
compression and’=a\/1+26— 67 is the increased lattice size. For even higher pressure the gap closes again. In order
constant perpendicular to the compression axis. In Fig. 15 w make sure that this reopening of the band gap is not an
show the dependence of the gap size on the distortion pararartifact of the numerics, we increased the number of recip-
eter § of an inverted structure of touching air spheres inrocal lattice vectors to 1200 and did not find any changes in
silicon (e~11.9, starting from the unstrained inverted close- the gap size or the band structure. For larger dielectric con-
packed fcc latticd 5=0). As a consequence of pressure, thetrast, the maximum size of the reopened gap increases. As in
band gap reduces in size and ultimately disappears fahe case of pressure along the cubic axis, we find that pres-
6~0.06. The reduction in symmetry from cubic to tetragonal,sure along the cubic body diagonal facilitates tunability of
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the higher PBG but fails to convert the lower-frequency &
pseudogap into a complete gap.

Kl

V. DISCUSSION

In summary, we have evaluated the photonic band struc-
tures of various self-assembling photonic crystals from the
standpoint of optimizing and tuning the resulting PBG in the
microfabrication process. A comparison between total DOS
and LDOS for structures with incomplete band gaps suggests
that certain quantum optical phenomena that rely on rapid
variations of the LDOS may occur even in materials that do
not exhibit a complete PBG. The LDOS shows considerable
variations within a Wigner-Seitz cell. For special locations
within the Wigner-Seitz cell certain variations of the total FIG. 17. Region of two-dimension&lspace around the first BZ
DOS may be suppressed and others may be more prof a triangular lattice. The triangle enclosed by bold lines shows a
nounced. These results may provide a useful guide for dopeossible naive discretization of the irreducible part of the BZ, illus-
ing the photonic crystal with active molecules and subsetrating a misweighting ok points. For instance, in this discretiza-
quent quantum optical experiments. Our detailed study ofion M, K, andT" all receive the same weight, which is not compat-
inverted Opa|s Suggests that both C|ose_packed fcc and h e with their symmetry-induced mU|t|pl|Clty In contrast, the
structures exhibit full band gaps at roughly the same fre isF:retization of thg rhompus encloseq by bold lines generates
quency provided the infiltrating material provides a refrac-weights for the varlou:k_ p_0|_nts that are in accordance with their
tive index contrast of 2.8 or greater. The hcp gap is someSymmetry-induced multiplicity.
what smaller than the fcc gap. In addition, we found that the
size of the gap can be substantially altered by various proce-
dures. In particular, sintering the opals prior to infiltration  In the linear tetrahedron meth§85], the integral over the
may lead to an 80% enhancement of the gap size. Similariyfirst Brillouin zone, Eq.(Al), is replaced by a sum of inte-
incomplete infiltration may effectively double the gap size.grals over nonoverlapping trianglétetrahedra in three di-
Distortions of the inverted fcc structure generally seem tamensions filling the irreducible part of the first Brillouin
reduce the gap size. However, for increasing pressure alorgpne. The vertices of the triangléetrahedradefine a mesh

the cubic body diagonal we found that the gap may opemf points in k spacef{k;,i=1,...N}. For eachk point k;,

again. f(k;) as well asw(k;) can be evaluated using the methods
outlined in Sec. Il. Inside the triangles, the integration is
ACKNOWLEDGMENTS carried out analytically by using linear interpolation between
the vertices. However, as pointed out by Kleinnj&f], the
original linear tetrahedron method of R€E5] introduces a
relative weight for eacl point that is not consistent with its

. symmetry induced multiplicity. As a consequence, this mis-
sche Forschungsgemeinschdd-G) under Grant Bu 1107/ eighting produces an unexpectedly large error for the num-

ﬁ{é.;;?i';WToé(lfhvxifosuPBZr\fg%'nmpfr:: %’rt?nsznvoﬁngfr%éag er ofk points commonly used in realistic calculatidré®].
gy P 9 pan, addition, quantities calculated in this manner do not sat-

and by Photonics Research Ontario. isfy crystal symmetry. This situation is illustrated in Fig. 17,
where we display a region & space around the first BZ of
APPENDIX: a triangular lattice. The standard discretization of the linear
EVALUATION OF BRILLOUIN ZONE INTEGRALS tetrahedron method is illustrated in the left part of the figure.
In particular, using this method, the high symmetry polnts
M, andK are assigned relative weights of 1, 1, and 1, respec-
tively, whereas their symmetry-induced multiplicities are 1,
. R 2, and 3, respectively.
f d% f(k)8(w— w(K)), (A1) A way to overcome this shortcoming of the linear tetra-
1.82 hedron method was pointed out by Kleinm@gd] and was
. . : . later refined by Hamat al.[56]. We illustrate the basic prin-
whered denotes the dimensionality. Such Jntegrals are rel'ciple in the right part of Fig. 17. There we have artificially
evant to the total DO$EQ. (17)], for whichf(k)=1, and the  enlarged the domain of integration to a rectangle of four
projected (loca) DOS [Eq. (18)], for which f(IZ) times the size of the irreducible part of the first BZ. Clearly,

=|Eg(r)|2. We evaluate such integrals using the linear tetthe values off (k) and w(k) for the k points of the newly
rahedron method55] in its symmetry corrected forrfb6]. added triangles can, by symmetry, be obtained from corre-
For brevity we restrict ourselves to the case of two-sponding values in the irreducible part of the first BZ.
dimensional Brillouin zones and refer the reader to electronic It is easily checked that the linear tetrahedron method
band structure literaturgs5,56 for the analogous three- applied to this enlarged integration domain induces a weight-
dimensional calculations. ing of thek points that is compatible with their symmetry-

ks

1. Symmetry-corrected discretization

We are grateful to Dr. Willem Vos, Dr. Ray Baughman,
and Dr. Anvar Zakhidov for some helpful discussions. K. B.
would like to acknowledge the financial support by the Deut-

In this Appendix we discuss the evaluation of Brillouin
zone integrals of the form
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induced multiplicity. Similar enlargements of the integration ) . R

domain without having to evaluafék) and (k) at morek Jtriangled k (k) 8(w = w(k))

points can be derived for the square and three-dimensional

lattices[56]. In computing the total as well as the local DOS,

we have made extensive use of this symmetry-corrected ver- *j o _dgfy+b- (k- kl)]ﬂ (A6)

sion of the linear tetrahedron method.
The evaluation of the remaining integrals is a straightforward
2. Integration over a single triangle task. Assuming that the vertices of the triangle are labeled

Once the correct weighting for the meshlopoints has such thatw; <w,<ws, We obfain for the case ab;<w

been restored, it is necessary to derive an expression for the @2
integration over a single triangle using the linear tetrahedron f

method. As mentioned above, bottk) and w(k) are lin-
early interpolated within a triangle:

d2k f(K)S(w— w(K))

triangle

w—w,
w(k):wl+a'(k_kl)a (AZ) ~2At(f1 b kl)Aw21Aw31
L Kk IZ
where +2Ab-| kq 2,
w—w
1 Aw Aal) ' (A7)
alzﬁ(szlAk(szl)_AwslAk(zzf)v (A3) 2t
t whereas the case of,< w< w; yields
1 f  d%k (k) S(w— w(K))
2= (Moudkii - AwzdK),  (A9) enge
_(,L)
%ZAt(fl b kl)m
_1 (1) A 1,(2) (l) (2) IZ
=5 (AKGy A~ Ak D), (A5) +2AD-| Kyt = (w w3)2 Ao,
|
wWa— W
. _ - _ _ Y (1) (2) Xs—. (A8)
with wi—w(ki), Awij—wi (Uj, and Akl]_(AkI] 'Akij ) AwglA(l)g,z

=ki—kj. The indices,j=1,2,3 withi #| label the vertices o apqye set of formulas allows a convenient and efficient
of the trlangle Analogous expressions may be derived fO(Nay to accurately compute integrals of the type of ).
f(k)—f1+b (k—k,). Thus the integral over a single tri- Their generalization to the three-dimensional case of integra-

angle is approximated by tion over a single tetrahedron may be found in RE&].
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