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Photonic band gap formation in certain self-organizing systems
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Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 7 April 1998!

We present a detailed study of photonic band structure in certain self-organizing systems that self-assemble
into large-scale photonic crystals with photonic band gaps~PBGs! or pseudogaps in the near-visible frequency
regime. These include colloidal suspensions, inverted opals, and macroporous silicon. We show that complete
three-dimensional PBGs spanning roughly 10% and 15% of the gap center frequency are attainable by incom-
plete infiltration of an opal with silicon and germanium, respectively. The photonic band structure of both face
center cubic and hexagonal close packed photonic crystals are evaluated. We delineate how the PBG is
modified by sintering the opal prior to infiltration and by applying strain along various crystallographic
directions. We evaluate the total photon density of states as well as the local density of states~LDOS! projected
onto various points within the photonic crystal. It is shown that the LDOS may exhibit considerable pseudogap
structure even for systems that do not exhibit a complete PBG. These results are directly relevant to quantum
optical experiments in which atoms, dye molecules, or other active materials are inserted into specific locations
within the photonic crystal. When the resonant optical transition of these dopants is tuned close to a pseudogap
or other abrupt structure in the LDOS, novel effects in radiative dynamics associated with a ‘‘colored vacuum’’
may be realized.@S1063-651X~98!11509-X#

PACS number~s!: 42.70.Qs, 41.20.Jb, 78.66.Sq
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I. INTRODUCTION

Since their proposal in 1987@1,2#, periodic dielectric
structures exhibiting a complete photonic band gap~PBG!
have generated considerable attention@3–6#. PBG materials
facilitate the coherent localization of light@7–9#, leading to
novel phenomena in quantum optics as well as impor
technological applications. Although the band structure
classical scalar waves readily yields complete thr
dimensional gaps for simple structures such as a face
tered cubic lattice of spherical scatterers@10#, the vector na-
ture of the electromagnetic wave equation leads to m
more restrictive conditions on the dielectric microstructu
for the formation of a PBG. Initial difficulties in designin
structures that exhibit a complete PBG were allayed by
discovery that the diamond lattice of dielectric spheres
hibits such a frequency range for which~linear! wave propa-
gation is forbidden@11#. In the microwave regime, other dia
mondlike structures obtained by drilling cylindrical holes
a bulk dielectric material~with a refractive index of 3.5!
have been demonstrated to exhibit band gap to center
quency ratiosDv/v0 as large as 20%@12#. Since then, nu-
merous structures amenable to layer by layer fabrication
drilling that possess complete PBG have been sugge
@13–16#. A number of structures have already been fab
cated with PBGs in the range of millimeter waves@17–19#.

These structures not only confirm the soundness of
concept of a PBG but also have interesting applications
the microwave to millimeter wave range. For instance,
antenna mounted on a conventional dielectric constant
strate radiates the majority of its radiation into the substr
itself. If the substrate is engineered into the form of a PB
material with a gap at the radiation frequency, the losses
be minimized, leading to highly directional transmitte
@20,21#. Other applications include angular filters@22# and
PRE 581063-651X/98/58~3!/3896~13!/$15.00
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cladding material for preventing losses in waveguide str
tures that contain bends or junctions@23–25#.

Nevertheless, it is for visible and near-infrared freque
cies where PBG materials are likely to have their most i
portant impact. For example, applications in telecomm
nictaions may require the fabrication of large-scale thr
dimensional PBG materials with a gap centered around
mm. These applications may include the design of ze
threshold microlasers, light emitting diodes that exhibit c
herence properties at the single photon level, subpicosec
optical switches, and all-optical transistors. In addition, PB
materials represent a frontier in photon-atom interaction p
nomena and nonlinear optics. The single greatest obstac
realizing the potential of PBG materials has been the lack
an inexpensive and reliable means of microfabricating lar
scale three-dimensional materials with sizable gaps at n
visible frequencies. In this paper we discuss in detail
possibility of overcoming this obstacle using self-assembl
three-dimensional structures based on ‘‘inverted opal
Starting from a close-packed face centered cubic lattice
SiO2 spheres~opal! with diameter on the scale of a microme
ter, PBG materials with gaps in the range 5–15 % of
center frequency may be realized by infiltration of the op
with high refractive index materials such as Si or Ge a
subsequently removing the SiO2 by chemical etching. These
structures may exhibit a number of novel effects in quant
and nonlinear optics.

While linear wave propagation is absent in the gap o
PBG material, nonlinear propagation effects in the form
ultrashort solitary wave pulses can still occur. Recent stud
indicate that as a result of their large group velocity disp
sion near a photonic band edge and complex symmet
PBG materials exhibit a much richer variety of nonline
wave propagation phenomena than conventional wavegu
or optical fibers@26–28#. In addition, PBG materials exhibi
3896 © 1998 The American Physical Society
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different quantum optical features, related to the drastic
teration of the photon density of states~DOS!. A vanishing
DOS leads to bound photon-atom states@29,30#, suppressed
spontaneous emission@1,31,32#, and strong localization o
photons@2,29,30,33#. Unlike conventional microcavities an
other confined optical systems, PBG materials supp
propagation effects on the scale of the localization length
photons leading to different types of cooperative behav
involving photons and atoms. In a PBG material, pho
localization effects render the master equation approac
standard quantum optics problematic since localization
plies highly non-Markovian memory effects in radiative d
namics. In addition, it requires a nonstandard treatment
goes beyond the Born approximation@34#. Among the phe-
nomena predicted in this frontier of quantum optics are~i!
collective switching of two-level atoms from the ground
the excited state with low intensity applied laser fields le
ing to all-optical transistor action@35#, ~ii ! anomalous super
radiant emission rates and low-threshold band-edge la
@33#, ~iii ! low-threshold nonlinear optical response@36#, and
~iv! highly nonclassical states of light within the PBG in th
form of multiphoton localization and propagating quantu
gap solitons@37#.

These very exciting prospects for PBG materials w
band gaps in the visible region, have triggered numer
efforts to manufacture such structures, with periodicity
the optical scale. Two-dimensional PBG materials@38–41#
have reached band gaps~complete in two dimensions an
incomplete in three dimensions! around wavelengths of 5
mm and the~electrochemical etching! technique is clearly
capable of further downscaling of the structures@42#. In three
dimensions a number of self-assembling photonic crys
already exist. These include colloidal systems@43–45# and
artificial opals @46–48#. Unfortunately, these readily avai
able photonic crystals do not satisfy the necessary criteri
high index contrast and correct network topology to produ
a complete PBG. Theoretical studies, however, indicate
possibility of complete PBG in closely related structures.
nary colloidal mixtures@49# consisting of two sizes of TiO2
spheres as well as fcc lattices consisting of low dielec
inclusions in a connected high dielectric network~henceforth
called inverted structures! exhibit sizable PBGs. The latte
possibility has spurred highly interesting work on emulsi
templating@50# and on the infiltration of opals with silicon o
germanium@51#. We expect that these techniques will so
lead to a large-scale PBG material with a complete thr
dimensional gap at near-visible frequencies.

In this paper we investigate in detail the above-mention
structures from the viewpoint of optimizing the gap si
through the manufacturing process. We present results on
total as well as the projected~local! DOS of various struc-
tures and discuss their implications on the feasibility
quantum optical experiments in PBG materials. The pape
organized as follows. In Sec. II we will introduce the the
retical and computational framework in which our ba
structure calculations are performed. Section III contains
results on structures that do not posses a complete PBG,
as colloidal crystals and two-dimensional PBG materia
Section IV is devoted to the study of inverted fcc and h
structures that exhibit a complete three-dimensional PB
Finally, in Sec. V we summarize and discuss our finding
l-

rt
r
r

n
of
-

at

-

rs

s
n

ls

of
e
e

-

c

-

d

he

f
is

r
ch
.

.

II. THEORETICAL FRAMEWORK

While there are a number of techniques for band struct
calculations of electronic crystals, band structures of P
materials have almost exclusively been obtained from
plane wave expansion method~PWEM!. Contrary to the situ-
ation for electronic crystals, the ‘‘periodic potentials’’ i
PBG materials are known from the outset and do not hav
be computed in a self-consistent fashion. In this paper we
the PWEM for computing the band structure of two- a
three-dimensional PBG materials, the total DOS, as wel
the projected~local! DOS.

A. Band structure computation

The PWEM is based on the Bloch-Floquet theore
which states that eigensolutions of differential equations w
periodic coefficients may be expressed as a product of p
waves and lattice-periodic functions. Consequently, all p
odic functions are expanded into appropriate Fourier ser
Inserting these expansions into the differential equation
sults in an infinite matrix-eigenvalue problem, which, su
ably truncated, provides the eigenfrequencies and expan
coefficients for the eigenfunctions.

We begin by computing the dispersion relations for tw
dimensional PBG materials. They consist of periodic
rangements of infinitely extended and parallel oriented c
inders with radiusR0 embedded in dielectric matrix. Her
and throughout the paper we consider the embedding ma
material to possess a real, frequency-independent diele
constantea . Similarly, we assume the scattering cylinde
spheres, etc., to consist of material with a real, frequen
independent dielectric constanteb . To make the problem
two dimensional we assume that light propagates perp
dicular to the cylinder axis. The latter defines thez axis. For
future reference we note here that the periodic dielectric c
stantep(rW) may then be written as

1

ep~rW !
5

1

ea
1S 1

eb
2

1

ea
D(

RW
S~rW2RW ! ~1!

5(
GW

hGW eiGW •rW, ~2!

where RW denotes real space lattice vectors andGW are the
corresponding reciprocal lattice vectors. The functionS(rW)
takes on the value one ifurWu<R0 , whereR0 is the cylinder
radius, and is zero otherwise. We note here that for tw
dimensional problems all vectors are understood to have
components, whereas for three-dimensional problems
vectors will have three components. The Fourier coefficie
hGW are given by

hGW 5
1

VE
WSC

d2r
1

ep~rW !
e2 iGW •rW. ~3!

Here we designate the volume of the Wigner-Seitz c
~WSC! by V. For light incident perpendicular to the cylinde
axis, the two transverse polarizations decouple, leaving
with two scalar problems. If the electric field is polarize
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3898 PRE 58KURT BUSCH AND SAJEEV JOHN
parallel to the cylinder axis~E polarization!, the propagation
is governed by the scalar wave equation

1

ep~rW !
S ]2

]x2
1

]2

]y2D E~rW !1
v2

c2
E~rW !50, ~4!

whereE(rW) is thez component of the electric field. Follow
ing the Bloch-Floquet theorem, we expandE(rW) as

EkW~rW !5(
GW

AGW
kW

ei ~kW1GW !•rW, ~5!

where kW is a wave vector lying in the first Brillouin zon
~BZ! that labels the eigensolutions of Eq.~4! @52#. Inserting

this expansion into Eq.~4! and defining the coefficientsBGW
kW

[ukW1GW uAGW
kW yields a symmetric eigenvalue problem

(
GW 8

ukW1GW uukW1GW 8uhGW 2GW 8BGW 8
kW

5
vkW

2

c2
BGW

kW . ~6!

The reciprocal lattice sum is then truncated in order to ob
a numerical solution. In our numerical calculations conv
gence was established by increasing the number of recipr
lattice vectors used to truncate Eq.~6! until the final result
was independent of the truncation. We found that using
reciprocal lattice vectors closest to the origin yields a c
verged band structure for the dielectric contrasts we h
considered.

When the electric field is polarized perpendicular to t
cylinder axis ~H polarization!, the corresponding magneti
field has az componentH(rW) only and we may work with
the corresponding wave equation

]

]xS 1

ep~rW !

]H~rW !

]x D 1
]

]yS 1

ep~rW !

]H~rW !

]y D 1
v2

c2
H~rW !50.

~7!

Expanding the magnetic field in the form

HkW~rW !5(
GW

CGW
kW

ei ~kW1GW !•rW, ~8!

we arrive at corresponding the symmetric matrix-eigenva
equation

(
GW 8

~kW1GW !•~kW1GW 8!hGW 2GW 8CGW 8
kW

5
vkW

2

c2
CGW

kW . ~9!

Truncation of the reciprocal lattice sum follows the sam
recipe as for Eq.~6!.

Fully three-dimensional PBG computations proceed in
essentially analogous fashion. The periodic dielectric c
stant ep(rW) defines a three-dimensional lattice and cor
sponding three-dimensional reciprocal lattice vectors. T
Fourier expansion of 1/ep(rW) is given by Eq.~1!, where the
Fourier coefficients@cf. Eq. ~3!# are now determined by in
tegrating over the three-dimensional WSC. However,
three dimensions, there is no decoupling of the two tra
in
-
cal
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e

e
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verse polarizations. As a consequence, the full vector pr
lem has to be solved. We do this following the approach
Ho, Chan, and Soukoulis@11#, which is based on the wav
equation for the magnetic field

2¹W 3S 1

ep~rW !
¹W 3HW ~rW !D 1

v2

c2
HW ~rW !50, ~10!

¹W •HW ~rW !50. ~11!

The divergence-free magnetic field permits an expansion
the form

HW kW5(
GW

(
l

hGW
l

êGW
l

ei ~kW1GW !•rW, ~12!

whereêGW
l with l51,2 denote two unit vectors such that th

set $êGW
l51 ,êGW

l52 ,kW1GW % forms an orthogonal triad. The
matrix-eigenvalue equation corresponding to Eq.~10! then
becomes

(
GW 8

ukW1GW uukW1GW 8uhGW 2GW 8S êGW
2
•êGW 8

2
2êGW

2
•êGW 8

1

2êGW
1
•êGW 8

2
êGW

1
•êGW 8

1 D S hGW 8
1

hGW 8
2 D

5
vkW

2

c2 S hGW
1

hGW
2 D . ~13!

Again, following Ref.@11#, instead of computing the Fourie
coefficientshGW 2GW 8 directly from Eq. ~3!, we compute the
matrix eGW ,GW 8[eGW 2GW 8 of Fourier coefficients ofep(rW) for the
set of reciprocal lattice vectors that define the truncation
Eq. ~13!. We then takehGW 2GW 8 to be the (GW ,GW 8) element of
the inverse of the matrixeGW ,GW 8 . This procedure is known to
drastically improve the convergence of eigenvalue compu
tions from Eq. ~13! @53,54#. Using this technique, we re
quired less than 1000 reciprocal lattice vectors to obtain c
verged band structures. In fact, for most cases 720 recipr
lattice vector produced results that deviated from the c
verged results by less than 0.5%. Once Eq.~13! has been
solved for both eigenvalues and eigenvectors, the elec
field corresponding to a given eigenfrequencyvn(kW ) can be
computed from Eq.~12! using Maxwell’s equation

EW n,kW~rW !52 i
c

vn~kW !ep~rW !
¹W 3HW n,kW

5(
GW

ukW1GW u~hGW
1

ê GW
2

2hGW
2

ê GW
1

! ei ~kW1GW !•rW. ~14!

Here the subscriptn labels the bands. Finally, it follows from
the orthonormality of eigenvectors of Eq.~13! that the Bloch
functionsHW n,kW andEW n,kW obey the orthonormality relations

E d3r HW n,kW~rW !•HW n8,kW8
* ~rW !5d~kW2kW8!dnn8 , ~15!

E d3r ep~rW !EW n,kW~rW !•EW n8,kW8
* ~rW !5d~kW2kW8!dnn8 . ~16!
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B. Photon density of states

Transmission experiments on PBG materials usually
not probe all the details of the dispersion relationvn(kW )
directly, but rather measure the number of states available
a given direction of propagation. Integrating this number
states over all directions describes the average behavio
the structure under consideration yielding the total DO
Mathematically, the total DOSN(v) is defined as

N~v!5(
n
E

1.BZ
d3k d„v2vn~kW !…, ~17!

where BZ stands for the first Brillouin zone. Since the d
persion relationvn(kW ) is generally known only numerically
@by solving Eq.~13!#, thek-space integral in Eq.~17! has to
be suitably discretized. For our computation we use the
ear tetrahedron method@55# in its correctly symmetry
weighted form@56#. Details for the evaluation of the two
dimensional DOS can be found in the Appendix and
three dimensions we refer to Ref.@56#.

For application to quantum optical experiments in PB
materials it is, however, necessary to proceed one step
ther. Consider an excited atom at some specific loca
within a PBG material. In order for the atom to decay via
single-photon process it needs to emit a photon into a Bl
mode of the PBG material. Consequently, it is the local c
pling ~overlap matrix element! of the atomic dipole momen
to photons in this mode that determines the decay rate o
excited atom@57,58#. Assuming that an allowed electric d
pole transition is the dominant decay channel, we may co
bine ~overall! mode availability and coupling to the mode
the so-called projected or local DOS~LDOS! N(v,rW) de-
fined as

N~v,rW !5(
n
E

1.BZ
d3kuEn,kW~rW !u2d„v2vn~kW !…, ~18!

whereEn,kW(rW) are the Bloch functions of Eq.~14!. The total
DOS can be recaptured from the LDOS using Eq.~16!:

N~v!5E
WSC

d3r ep~rW !N~v,rW !. ~19!

This provides a convenient way of checking the accuracy
our k-space integration.

In what follows we will describe the total DOS as well a
the LDOS of self-organizing PBG materials. The LDOS w
play a crucial role in spontaneous emission dynamics fr
atoms and molecules placed within a PBG material, n
Markovian behavior in the photon-atom interaction, and c
lective behavior such as lasing and nonlinear switching
fects. In particular, we find that the LDOS may b
profoundly different from the total DOS, so that a judicio
choice of where in the PBG material dopant atoms are pla
may be crucial for the success of quantum optical exp
ments. In addition, we investigate band structures, the t
DOS, and the LDOS of materials that are yet to be fab
cated. We hope that this will provide some insight for su
cessfully manufacturing PBG materials with complete PB
o
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in the visible region, as well as serve as a guide for realiz
many of the quantum optical experiments, suggested
theory @29–37,57,58#.

III. SYSTEMS WITHOUT A COMPLETE PHOTONIC
BAND GAP

As mentioned above, PBG materials that do not poss
complete PBGs are readily available and their DOS m
nevertheless exhibit rapid variations with frequency, such
pseudo-gaps or Van Hove singularities. Sufficiently lar
fluctuations in the DOS of these materials may therefore p
vide a ‘‘colored vacuum’’ for several interesting quantu
optical experiments. For instance, the relevant input par
eters for the fast optical switching and all-optical transis
action of Ref.@35# are ~i! the number of atoms,~ii ! the ap-
plied laser field, and~iii ! the ratiog1 /g2 of the decay rates
between the two closely spaced frequenciesv65v216D
representing the Mollow fluorescence sidebands of a t
level atom. Herev21 is the transition frequency between th
excited and the ground state of the bare atom andD is the
separation of the Mollow side bands of the atom after it
‘‘dressed’’ by an external laser field. In general, a larger ra
g1 /g2}N(v1 ,rW)/N(v2 ,rW) will enhance the collective
switching effect. However, a ratio as low asg1 /g2'2 will
already produce a sizable effect.

A. Colloidal suspension of TiO2 spheres in water

We first consider a colloidal suspension of TiO2 spheres
with dielectric constanteb'7.35 in waterea'1.77. We as-
sume a filling ratio off 50.25 of TiO2 spheres. Figure 1
shows the total DOS for this particular photonic crystal. He
and in all following graphs we use a dimensionless f
quencyṽ5va/2pc, wherea is the lattice constant andc
denotes the vacuum speed of light. We observe two sha
rising flanks around ṽ'0.62 @N(0.600)50.137 and
N(0.632)50.307] and ṽ'0.90 @N(0.864)50.230 and
N(0.936)50.633]. Consequently, within 5% and 8.5% inte
vals around the center frequency the total DOS changes

FIG. 1. Total DOS for a fcc lattice of TiO2 spheres~e'7.35! in
water ~e'1.77!. The filling ratio for TiO2 is 25%.
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factors of 2.24 and 2.75, respectively. Further insight is p
vided through Fig. 2~a!. There we show the LDOS for thi
photonic crystal projected onto the center of a TiO2 sphere.
Clearly, the flank atṽ50.62 is reduced, whereas the flan
around ṽ50.9 is drastically increased to about 4:1. Sim
larly, Fig. 2~b! shows the LDOS projected onto a point mi
way between two TiO2 spheres. We observe that for th
location, the flank atṽ50.62 is enhanced to about 5:
whereas the flank aroundṽ50.9 is strongly reduced.

B. Two-dimensional structures

Another class of photonic crystals with incomplete thre
dimensional PBGs are periodic arrays of infinitely extend
cylinders, the so-called two-dimensional PBG materials.
particular, for propagation directions perpendicular to
cylinder axis, triangular lattices of air voids in macroporo
silicon were shown to possess overlapping two-dimensio
PBGs for the two possible transverse polarizations@40,41#.

FIG. 2. Local DOS at the center of TiO2 spheres~a! and midway
between two adjacent TiO2 spheres~b! for a fcc lattice of TiO2

spheres~e'7.35! in water ~e'1.77!. The filling ratio for TiO2 is
25%.
-

-
d
n
e

al

This is illustrated in Figs. 3~a! and 3~b! and Figs. 4~a! and
4~b!, where we display the two-dimensional band structu
and DOS forE and H polarization, respectively. The struc
ture consists of a triangular array of air cylinders
macroporous silicon (eb'11.9) with a filling ratio of 33%
silicon @41#. The sharp peaks in the DOS are a manifestat
of Van Hove singularities characteristic of two-dimension
lattices. Such two-dimensional band gaps may provide
testing ground for a variety of nonlinear optical soliton ph
nomena predicted in Refs@26–28#.

However, for inhibition of spontaneous emission in qua
tum optical phenomena, the full three-dimensional DOS
to be considered. The corresponding three-dimensional
persion relation must be computed by solving the full vec
problem Eq.~10! rather than Eq.~4! or ~7!. Similarly, the
integration in three-dimensionalk space, Eq.~17! or ~18!,
has to be performed with an appropriate cutoff in thekz
direction. In the present case of a triangular lattice thek-
space integration domain is a hexagonal prism and the cu
is determined bykz

max5(v/c)max(Aea,Aeb). Figure 5 dis-

FIG. 3. Two-dimensional band structure~a! ~E polarization! and
corresponding two-dimensional DOS~b! for a triangular lattice of
air cylinders etched into macroporous silicon~e'11.9!. The filling
ratio for air is 67%.
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plays the total three-dimensional DOS for the same struc
as in Figs. 3 and 4. Clearly, there is no complete thr
dimensional PBG for such a structure. The two-dimensio
gaps now manifest themselves in fluctuations of the thr
dimensional DOS. In particular, the gaps of theE polariza-
tion appear to have a more profound effect on the thr
dimensional DOS than do the gaps of theH polarization.
However, the overall fluctuations of the three-dimensio
DOS are weaker than in the case of the fcc lattice of Ti2
spheres in water.

For the structure considered above we find a sharp va
tion in the total DOS aroundṽ'0.43 with magnitude 2:1. At
locations midway between adjacent cylinders this variatio
reduced@Fig. 6~a!#, whereas it is shifted toṽ'0.46 and
enhanced to about 3:1 at the center of the cylinders@Fig.
6~b!#.

IV. INVERTED OPALS

The results of the preceding section demonstrate the
cessity of a three-dimensional photonic crystal with the

FIG. 4. Two-dimensional band structure~a! ~H polarization! and
corresponding two-dimensional DOS~b! for a triangular lattice of
air cylinders etched into macroporous silicon~e'11.9!. The filling
ratio for air is 67%.
re
-

al
e-

e-

l

a-

is

e-
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propriate network topology for creation of a complete PB
in three dimensions. The diamond or diamondlike structu
known to possess complete gaps are very expensive to
crofabricate by either reactive ion etching or layer by lay
growth on the length scales required for PBGs in the visib
Moreover, these techniques lead to relatively small samp
of length less than ten lattice constants. Self-assemb
structures hold the promise of very large size samples w
PBGs in the visible. Binary colloids are discussed at len
in Ref. @49#, but may be very difficult to realize. Here w
concentrate on photonic crystals based on inverted op
These are manufactured by using either emulsion templa
@50# or infiltration of artificial opals with high dielectric ma
terial @51#. As we demonstrate below, the quality of curren
available artificial opals@46–48# makes their controlled in-
filtration a goal worth striving for.

A. Artificial opals

Artificial opals themselves come as close-packed str
tures of monodisperse SiO2 spheres with dielectric constan
ranging fromea52.1 for bulk SiO2 down to ea51.59 for
spheres of diameter 0.2mm. Similar to the case of TiO2
spheres in water, no complete gap is found for any filli
ratio f of the SiO2 spheres. A typical total DOS is shown i
Fig. 7.

However, it has long been known that the inverted f
structure, i.e., close-packed low dielectric spheres in a h
dielectric matrix possess a complete PBG@59#. We present
below a detailed study of inverted structures that are c
rently being manufactured@51#.

B. Infiltration of opals with various dielectrics

The recipe of producing inverted structures from artific
opals is to infiltrate them with a high dielectric material a
to subsequently etch out the SiO2 spheres, leaving behind
connected network of high dielectric material with fillin
ratios aroundf 50.26~‘‘Swiss cheese structures’’!. The etch-

FIG. 5. Three-dimensional total DOS for a triangular lattice
air cylinders etched into silicon~e'11.9!. The filling ratio for air is
67%.
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ing out of the SiO2 enhances the dielectric contrast, which
turn leads to larger gaps. Moreover, the presence of air v
rather than solid SiO2 will greatly ease the injection o
atomic vapors with which quantum optical experiments c
be carried out and also facilitates the infiltration by act
materials such as conducting polymers and dyes for la
applications. In Figs. 8~a! and 8~b! as well as Figs. 9~a! and
9~b! we present the band structure and corresponding t
DOS of an inverted fcc and hcp structure consisting of clo
packed air spheres in a silicon matrix with dielectric const
eb'11.9. We observe that the fcc structure possesse
pseudogap between the fourth and fifth bands aroundṽ
'0.524 and a complete 4.25% band gap between the ei
and ninth bands with a center frequency ofṽ'0.794. Simi-
larly, the hcp structure exhibits a less pronounced pseudo
between the eighth and ninth bands aroundṽ'0.364 and a
complete 2.8% gap between the 16th and 17th bands w

FIG. 6. Three-dimensional LDOS midway between two ad
cent cylinders~a! and at the center of the cylinders~b! for a trian-
gular lattice of air cylinders etched into silicon~e'11.9!. The filling
ratio for air is 67%.
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FIG. 7. DOS for a close-packed fcc lattice of silica sphe
~e'2.1! in air ~opal!.

FIG. 8. ~a! Band structure~a! and corresponding DOS~b! for a
close-packed fcc lattice of air spheres in silicon~e'11.9!.
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center frequency ṽ'0.570. The occurrence of th
pseudogap as well as the complete gap between higher b
for the hcp structure stems from the fact that the hcp cry
constitutes a hexagonal lattice with a two atom basis. In
dition, the lattice constants of fcc and hcp structure differ
a factor ofA2, so that the pseudogap and complete gap oc
at roughly the same frequencies for both structures.

Figure 10 shows the dependence of the gap size of
inverted close-packed fcc lattice as a function of the ba
ground index of refraction. Materials such as siliconn
'3.45) and germanium (n'4.0) produce band gaps of
relative sizeDv/v0'4.25% andDv/v0'7.35%, respec-
tively. Figure 11 displays the dependence of the relative
size for the inverted silicon fcc structure on the radius of
air spheres. Obviously, there exists an optimal filling ra
for slightly overlapping spheres that maximizes the g
While the difference from the close-packed structure
small, this raises the interesting question whether a m
clever approach for removing material from the close-pac
structure would lead to a larger band gap.

FIG. 9. Band structure~a! and corresponding DOS~b! for a
close-packed hcp lattice of air spheres in silicon~e'11.9!. Note that
the lattice constant of a close-packed hcp lattice is, by a facto
A2, smaller than the lattice constant of the corresponding clo
packed fcc lattice.
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C. Effect of sintering and incomplete infiltration

The manufacturing process of infiltrated opals itself su
gests two possible approaches to enlarging the PBG.~i! Sin-
tering the artificial opal prior to infiltration, improves th
stability of the structure and makes it easier to handle. W
sintering, the formerly touching spheres are now bonded b
tubelike connection. Infiltrating this sintered structure w
result in an inverted structure with a slightly smaller fillin
ratio of high dielectric material.~ii ! In practice, the infiltra-
tion of a close-packed opal structure may lead only to
incomplete occupation of the void regions between the S2
spheres. This can be modeled by assuming that the high
dex material~Si or Ge! ‘‘wets’’ the surface of the SiO2
spheres up to a certain thickness. After removal of the S2
the resulting structure consists of air spheres coated w

of
e-

FIG. 10. Dependence of the gap size as a function of index
refraction for a close-packed fcc lattice of air spheres in a h
dielectric matrix.

FIG. 11. Dependence of the gap size as a function of radius
a fcc lattice of air spheres in silicon~e'11.9! near close packing.
The sphere radius is measured in units of the cubic lattice cons
a. r 5a/A8'0.3536a corresponds to exact close packing.
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high dielectric material rather than consisting of air sphe
in an entirely filled high dielectric matrix. This structure wit
a small interstitial void between air spheres is depicted
Fig. 12.

Figure 13 shows the dependence of the relative gap
of the inverted fcc structure on sintering the artificial op
prior to infiltration. Here we assume that sintering the art
cial opal leads to the formation of tubes connecting
sphere centers of adjacent touching spheres. Accordingly
plot in Fig. 13 the gap size of silicon-infiltrated artificia
opals on the radiusRs of the sintering tube. Clearly, there
a drastic enhancement of the gap size for a tube ra
aroundRs'0.133a, wherea is the lattice constant of the fc
lattice. This result is consistent with similar results obtain
by Chanet al. @14# for the A7 structure. Both cases suppo
the concept that PBG formation is enhanced by the prese

FIG. 12. Cross-sectional view through an incompletely in
trated opal. After etching out the SiO2 spheres, the incomplete in
filtration of silicon ~gray! results in additional air voids betwee
hollow spheres, which appear as triangular or diamond shaped h
on the surface of the cut.

FIG. 13. Dependence of the gap size as a function of radiu
sintering tubes for a close-packed fcc lattice of air spheres in sili
~e'11.9!. The tube radius is measured in units of the cubic latt
constanta.
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-
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e
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d

ce

of a true network topology since sintering improves the co
nectivity of the air fraction. Once the sintering radius e
ceeds a certain value, infiltrating the sintered opal does
deposit enough high dielectric material to sustain the b
gap and it quickly collapses.

Figure 14 displays the dependence of the gap size of
inverted fcc structure on the degree of incomplete infilt
tion. Again, we choose to plot the results of the silico
infiltrated artificial opal, where silicon is now assumed
form a coating of the closed-packed air spheres. We obs
that a slightly incomplete infiltration actually leads to
strong enhancement of the gap size compared to the c
pletely infiltrated structure. For a coating radius ofRc
'0.445a ~corresponding to about 21% total volume fractio
of silicon! the gap size of the incompletely infiltrated stru
ture is doubled compared to the fully infiltrated one. On
again, as the infiltration becomes more and more incompl
the band gap eventually disappears altogether as there i
enough high dielectric material to sustain a band gap.

We have performed similar studies on the hcp struct
and found analogous dependences of the gap size on
background dielectric constant, sphere radius, radius of
tering tubes, and coating radius for incomplete infiltratio
Overall, the gap size for a given inverted hcp structure
generally a little smaller than the gap size of the correspo
ing inverted fcc structure.

D. Tuning the PBG through the application of strain

Another line of thought concerns the mechanical mani
lation of the artificial opal prior to its infiltration with high
dielectric material. Exerting not too large pressure on
opal will result in slight deviations from the fcc or hcp clos
packed structures. The effect may be twofold. First, the
sition and size of the complete gaps may be changed, the
allowing one to tune the PBG material. Second, apply
strain reduces the symmetry of the photonic crystal rela
to that of the unstrained PBG material. This lifts certain d

les

of
n

e

FIG. 14. Dependence of the gap size as a function of radiu
coating for a close-packed fcc lattice of air spheres coated w
silicon ~e'11.9!. The coating radius is measured in units of t
cubic lattice constanta.
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generacies of the lattice structure and holds out the poss
ity of opening the pseudogaps of these structures into c
plete PBGs.

1. Pressure along the cubic axis on a fcc structure

As a first example, we consider applying pressure alon
cubic axis of the fcc lattice of close-packed spheres. T
leads to a deformation of the crystal structure in which th
is a reduction of the lattice constant for this particular dire
tion. By virtue of the incompressibility of the spheres the
selves, this also leads to an increase in the lattice cons
perpendicular to the axis of applied pressure. Taking the
of applied force to be thez axis, the original fcc structure
changes to a face centered tetragonal lattice, which is
scribed by the primitive lattice vectors

aW 15
a8

2
~1,1,0!, ~20!

aW 25
a8

2
~1,0,c/a8!, ~21!

aW 35
a8

2
~0,1,c/a8!. ~22!

The parametersc anda8 are defined through a strain param
eter d, which measures the deviation of the strained latt
from the unstrained fcc lattice. In particular,c5a(12d) is
the side length of the distorted cube along the direction
compression anda85aA112d2d2 is the increased lattice
constant perpendicular to the compression axis. In Fig. 15
show the dependence of the gap size on the distortion pa
eter d of an inverted structure of touching air spheres
silicon ~e'11.9!, starting from the unstrained inverted clos
packed fcc lattice~d50!. As a consequence of pressure, t
band gap reduces in size and ultimately disappears
d'0.06. The reduction in symmetry from cubic to tetragon

FIG. 15. Dependence of the gap size as a function of the de
tion of thez axis from the cubic axis for a close-packed fcc latti
of air spheres in silicon~e'11.9!. The structure is pressured alon
the z axis. See the text for details on the distortion parameterd.
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however, is not sufficient to convert the pseudogap betw
bands 4 and 5 of the fcc structure into a full band gap.

2. Pressure along the body diagonal of a fcc structure

An alternative way of straining the fcc crystal is to exe
pressure along the cubic body diagonal. This changes the
symmetry to a rhombehedrical one~A7 symmetry! and is
expressed by the set of primitive lattice vectors

aW 15
a8

2
~1,1,d!, ~23!

aW 25
a8

2
~1,d,1!, ~24!

aW 35
a8

2
~d,1,1!, ~25!

wherea85a/A11d2/2 andd parametrizes the resulting de
formation. This deformation may conveniently be describ
by the anglea between any two primitive lattice vectors
which in the case of an unstrained fcc structure is 60°.
terms of the parameterd we have cosa5(122d)/(21d2). In
Fig. 16 we display the dependence of the relative gap size
the distortion parameterd. As in the case of pressure alon
the cubic axis, we observe a closing of the gap as the p
sure is increased. Increasing the pressure beyond a ce
value, however, reopens the gap again, albeit with a sma
size. For even higher pressure the gap closes again. In o
to make sure that this reopening of the band gap is no
artifact of the numerics, we increased the number of rec
rocal lattice vectors to 1200 and did not find any changes
the gap size or the band structure. For larger dielectric c
trast, the maximum size of the reopened gap increases. A
the case of pressure along the cubic axis, we find that p
sure along the cubic body diagonal facilitates tunability

a- FIG. 16. Dependence of the gap size as a function of the de
tion of the body diagonal from ideally cubic for a close-packed
lattice of air spheres in silicon~e'11.9!. The structure is pressure
along the cubic body diagonal. See the text for details on the
tortion parameterd.
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the higher PBG but fails to convert the lower-frequen
pseudogap into a complete gap.

V. DISCUSSION

In summary, we have evaluated the photonic band st
tures of various self-assembling photonic crystals from
standpoint of optimizing and tuning the resulting PBG in t
microfabrication process. A comparison between total D
and LDOS for structures with incomplete band gaps sugg
that certain quantum optical phenomena that rely on ra
variations of the LDOS may occur even in materials that
not exhibit a complete PBG. The LDOS shows considera
variations within a Wigner-Seitz cell. For special locatio
within the Wigner-Seitz cell certain variations of the tot
DOS may be suppressed and others may be more
nounced. These results may provide a useful guide for d
ing the photonic crystal with active molecules and sub
quent quantum optical experiments. Our detailed study
inverted opals suggests that both close-packed fcc and
structures exhibit full band gaps at roughly the same
quency provided the infiltrating material provides a refra
tive index contrast of 2.8 or greater. The hcp gap is som
what smaller than the fcc gap. In addition, we found that
size of the gap can be substantially altered by various pro
dures. In particular, sintering the opals prior to infiltratio
may lead to an 80% enhancement of the gap size. Simila
incomplete infiltration may effectively double the gap siz
Distortions of the inverted fcc structure generally seem
reduce the gap size. However, for increasing pressure a
the cubic body diagonal we found that the gap may op
again.
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APPENDIX:
EVALUATION OF BRILLOUIN ZONE INTEGRALS

In this Appendix we discuss the evaluation of Brillou
zone integrals of the form

E
1.BZ

ddk f~kW !d„v2v~kW !…, ~A1!

whered denotes the dimensionality. Such integrals are
evant to the total DOS@Eq. ~17!#, for which f (kW )[1, and the
projected ~local! DOS @Eq. ~18!#, for which f (kW )
[uEW kW(rW)u2. We evaluate such integrals using the linear t
rahedron method@55# in its symmetry corrected form@56#.
For brevity we restrict ourselves to the case of tw
dimensional Brillouin zones and refer the reader to electro
band structure literature@55,56# for the analogous three
dimensional calculations.
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1. Symmetry-corrected discretization

In the linear tetrahedron method@55#, the integral over the
first Brillouin zone, Eq.~A1!, is replaced by a sum of inte
grals over nonoverlapping triangles~tetrahedra in three di-
mensions! filling the irreducible part of the first Brillouin
zone. The vertices of the triangles~tetrahedra! define a mesh
of points in k space$kW i ,i 51,...,N%. For eachk point kW i ,
f (kW i) as well asv(kW i) can be evaluated using the metho
outlined in Sec. II. Inside the triangles, the integration
carried out analytically by using linear interpolation betwe
the vertices. However, as pointed out by Kleinman@60#, the
original linear tetrahedron method of Ref.@55# introduces a
relative weight for eachk point that is not consistent with its
symmetry induced multiplicity. As a consequence, this m
weighting produces an unexpectedly large error for the nu
ber of k points commonly used in realistic calculations@60#.
In addition, quantities calculated in this manner do not s
isfy crystal symmetry. This situation is illustrated in Fig. 1
where we display a region ofk space around the first BZ o
a triangular lattice. The standard discretization of the lin
tetrahedron method is illustrated in the left part of the figu
In particular, using this method, the high symmetry pointsG,
M, andK are assigned relative weights of 1, 1, and 1, resp
tively, whereas their symmetry-induced multiplicities are
2, and 3, respectively.

A way to overcome this shortcoming of the linear tetr
hedron method was pointed out by Kleinman@60# and was
later refined by Hamaet al. @56#. We illustrate the basic prin-
ciple in the right part of Fig. 17. There we have artificial
enlarged the domain of integration to a rectangle of fo
times the size of the irreducible part of the first BZ. Clear
the values off (kW ) and v(kW ) for the k points of the newly
added triangles can, by symmetry, be obtained from co
sponding values in the irreducible part of the first BZ.

It is easily checked that the linear tetrahedron meth
applied to this enlarged integration domain induces a weig
ing of the k points that is compatible with their symmetry

FIG. 17. Region of two-dimensionalk space around the first BZ
of a triangular lattice. The triangle enclosed by bold lines show
possible naive discretization of the irreducible part of the BZ, illu
trating a misweighting ofk points. For instance, in this discretiza
tion M, K, andG all receive the same weight, which is not compa
ible with their symmetry-induced multiplicity. In contrast, th
discretization of the rhombus enclosed by bold lines gener
weights for the variousk points that are in accordance with the
symmetry-induced multiplicity.
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induced multiplicity. Similar enlargements of the integrati
domain without having to evaluatef (kW ) andv(kW ) at morek
points can be derived for the square and three-dimensi
lattices@56#. In computing the total as well as the local DO
we have made extensive use of this symmetry-corrected
sion of the linear tetrahedron method.

2. Integration over a single triangle

Once the correct weighting for the mesh ofk points has
been restored, it is necessary to derive an expression fo
integration over a single triangle using the linear tetrahed
method. As mentioned above, bothf (kW ) and v(kW ) are lin-
early interpolated within a triangle:

v~kW !5v11aW •~kW2kW1!, ~A2!

where

a15
1

2At
~Dv21Dk31

~2!2Dv31Dk21
~2!!, ~A3!

a25
1

2At
~Dv31Dk21

~1!2Dv21Dk31
~1!!, ~A4!

At5
1

2
~Dk21

~1!Dk31
~2!2Dk31

~1!Dk21
~2!!, ~A5!

with v i5v(kW i), Dv i j 5v i2v j , and DkW i j 5(Dki j
(1) ,Dki j

(2))

5kW i2kW j . The indicesi , j 51,2,3 with iÞ j label the vertices
of the triangle. Analogous expressions may be derived
f (kW )5 f 11bW •(kW2kW1). Thus the integral over a single tr
angle is approximated by
-
.
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E
triangle

d2k f~kW !d„v2v~kW !…

'E
v 5 v~kW !

dS@ f 11bW •~kW2kW1!#
1

uaW u
. ~A6!

The evaluation of the remaining integrals is a straightforw
task. Assuming that the vertices of the triangle are labe
such thatv1<v2<v3 , we obtain for the case ofv1<v
<v2

E
triangle

d2k f~kW !d„v2v~kW !…

'2At~ f 12bW •kW1!
v2v1

Dv21Dv31

12AtbW •S kW11
1

2
~v2v1!(

i 52

3
kW i2kW1

Dv i1
D

3
v2v1

Dv21Dv31
, ~A7!

whereas the case ofv2<v<v3 yields

E
triangle

d2k f~kW !d„v2v~kW !…

'2At~ f 12bW •kW1!
v32v

Dv31Dv32

12AtbW •S kW31
1

2
~v2v3!(

i 51

2
kW i2kW3

Dv i3
D

3
v32v

Dv31Dv32
. ~A8!

The above set of formulas allows a convenient and effici
way to accurately compute integrals of the type of Eq.~A1!.
Their generalization to the three-dimensional case of integ
tion over a single tetrahedron may be found in Ref.@55#.
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@17# E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C.T

Chan, C.M. Soukoulis, and K.M. Ho, Phys. Rev. B50, 1945
~1994!.
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