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Self-induced transparency solitary waves in a doped nonlinear photonic band gap material
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We derive the properties of self-induced transparef®@ff) solitary waves in a one-dimensional periodic
structure doped uniformly with resonance two-level atoms. In our model, the electromagnetic field is treated
classically and the dopant atoms are described quantum mechanically. The resulting solitary waves take the
form of ultrashortpicoseconglaser pulses which propagate near the band edge of the nonlinear photonic band
gap (PBG material doped with rare-earth atoms such as erbium. Solitary wave formation involves the com-
bined effects of group velocity dispersi¢8VD), nonresonant Kerr nonlinearity, and resonant interaction with
dopant atoms. We derive the general Maxwell-Bloch equations for a nonlinear PBG system and then demon-
strate the existence of elementary solitary wave solutions for frequencies far outside the gap where GVD
effects are negligible and for frequencies near the photonic band edge where GVD effects are crucial. We find
two distinct new types of propagating SIT solitary wave pulses. Far from Bragg resonance, we recapture the
usual McCall-Hahn soliton with hyperbolic secant profile when the nonlinear Kerr coeffigignt 0. How-
ever, when the host nonresonant Kerr coefficient is nonzero, we obtain the first new type of soliton. In this
case, the optical soliton envelope function deviates from the hyperbolic secant profile and pulse propagation
requires nontrivial phase modulatiéchirping. We derive the dependence of the solitary wave structure on the
Kerr coefficienty®, the resonance impurity atom density, and the detuning of the average laser frequency
from the atomic transition. When the laser frequency and the atomic transition frequencies are near the
photonic band edge we obtain the second type of soliton. To illustrate the second type of soliton we consider
two special cases. In the first case, GVD facilitates the propagation of an unchirped SIT-gap soliton moving at
a velocity fixed by the material’'s parameters. The soliton structure changes dramatically as the laser frequency
is tuned through the atomic resonance. In the second illustrative case we set the Kerr cogffibiedt In this
case, the solution is a chirped pulse which arises from the balance between GVD and the resonance interaction
with the dopant atoms. Finally, we show that under certain circumstances, these solitary wave solutions may
persist even in the presence(stibpicosecondlipolar dephasing of the dopant atoms and absorption losses of
the host PBG material, provided that the system is incoherently pumped. These results may be relevant to the
application of PBG materials as optical devices in fiber-optic netw¢&s063-651%98)08409-9

PACS numbegps): 42.70.Qs, 42.65.Tg, 42.50.Md

[. INTRODUCTION dex and can be many orders of magnitude larger than found
in conventional silica fibers.
Amplification and reshaping of an optical signal in a fiber

tention for more than a decade in the context of optical dat s facilitated by passing the pulse through an active region

o . . ._doped with resonant atoms such as erbium. Unlike the opti-
transmission over long distances. The physical mechanism . . : :
: ) : . cal solitons of a nonresonant Kerr medium, solitons in an
for the formation of a fiber soliton is the balance of group

. . . active medium containing resonant two-level atoms involve
veIouty dl_sper5|on(GV|_D) due to the frequency-de_pendent the coherent absorption and reemission of light from the at-
refractive index of the fiber and self-phase modulation due t

: . ®ms in which the guantum mechanical Bloch vector of the
the nonlinear Kerr effecf2]. More recently, it has been ,ioms undergoes am2rotation. These solutions are referred
shown that optical gap solitons of a similar nature may existy a5 self-induced transparent§IT) solitons and were de-
in a nonlinear Bragg gratingB—7] and a nonlinear photonic g¢riped by McCall and Hahn in 1968]. They showed that
band gap(PBG) material[8] in which GVD is provided by ynder certain conditions a soliton pulse can propagate
the periodic dielectric modulation of the underlying material.through a gas of resonant atoms, without distortion or attenu-
This is of particular importance for the application of PBG ation. In the SIT soliton the role of material dispersion is
materials as optical interconnects in fiber-optic networks. Inreplaced by the coherent absorption and subsequent stimu-
a PBG material, a frequency gap is opened in which there arated emission of light into the direction of the incident laser
no linear propagating electromagnetic modes for frequenciegulse. The formation of the SIT soliton requires ultrashort
within the gap. Near a photonic band edge GVD is manifeshigh intensity pulses, which propagate on time scales short
even in the absence of a frequency-dependent refractive irompared to the damping times of the Bloch vector deter-

mined by spontaneous emission and dipolar dephasing ef-
fects. Since their discovery, SIT solitons for two-level atoms
*Present address: Weapons Sciences Directorate, AMSAM-RDin ordinary vacuum have received considerable attention
WS-ST, U.S. Army Aviation and Missile Command, Redstone Ar-[10-12.
senal, Alabama 35898. Recently Nakazawat al.[13] have observed self-induced

Optical fiber solitong 1] have received considerable at-
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transparency solitons in an erbium doped silica fiber wavesoliton occurs when the laser frequency and the atomic tran-
guide. In their experiment, the fiber was cooled to a temperasition frequency are near a photonic band edge. We illustrate
ture of 4.2 K at which the dipole-dephasing time is of thethis first type of soliton by focusing on two special cases,
order of nanoseconds. The SIT fiber solitons consisted dpoth of which lead to simple analytic results. The first special
500 picosecond laser pulses which are short enough to be fise is an unchirped soliton which travels at a velocity pre-
the coherent photon-atom interaction regime. Fibers dope8Cribed by the material parameters. This involves the full
with rare-earth atoms such as erbium, ytterbium, neody€ffect of GVD, nonresonant Kerr effect, and the resonant

mium, and thulium have been studied for the purpose ofnteraction with impurity atoms. This in turn leads to a new

pulse amplification. In particular, the erbium atom has gClass of solitons moving with general velocities. However,

resonant transition near 1.58m, the wavelength of choice S family of solitons involves self-phase modulati@hirp-

for optical telecommunications. It has been theoreticall))ng) as the velocity deviates from the prescribed velocity.

demonstrated that solitons may exist in an erbium dopec]—he second illustrative case is that of a chirped soliton aris-
fiber through the combined effects of the GVD, Kerr effectsmg.l(romt band-becige GVE andK resona||’_1t mtgtractlfotr;]w%h 'T'
of the host medium, and the resonant interaction with atom8Y" ydadqnl]s’t u vatr1|§ llng err noniineanty ot the back-

[14]. These solitons satisfy both the nonlinear Sclimger ground dielectric material.

- - - A second type of optical soliton arises when the laser field
equation(NLSE) as well as the atomic Bloch equations. Ac- . ; .
cordingly they are called SIT-NLS solitons. However, the‘lzecwenl.cty IS 1;ar ou'FfS|de thedeBG.SI-|er§, we |d$r|vehthebSIT—
existence of the SIT-NLS soliton requires a strict relation err soliton of-:a uniform medium. such a solution has been

among the material parametdtt] which is difficult to sat- considered by Matulic and Eberf{7] in the limit of a small

isfy in general. For example, given the Kerr coefficient of Kerr coefficient. Here we obtain an exact so_lutlon, which
silica and dipole moment for the relevant erbium transition cannot be extrapolated from the resuit of Matulic and Eberly.

the required GVD is many orders of magnitude larger thanThe exact solution exhibits self-phase modulation and is not

possible in most silica fibers a simple hyperbolic secant type envelope function. The soli-
In this paper we consider a one-dimensional nonlineaf®" amplitude and pulse width depend on the Kerr coefficient

photonic band gap materiéBragg grating doped uniformly an;jt the %opa:ht dznsny. Itff.re.dui:(-.:‘s tott?e McCall-Hahn SIT
with resonant two-level atoms. Systems of this nature arg0'lton when the Kerr coetncient Is Set 1o zero.

easily fabricated. It also provides a valuable paradigm for a These classical solitary wave solutions involve high inten-

doped, three-dimensional nonlinear PBG material exhibitinq;;ty I[alsfgr ﬂﬁ.ldhs apd e}re distinct frtom the qhuanturlnt gapg SOl't'
a complete three-dimensional gap. Previously, some specia—ns which anse from a quantum mechanical treatmen

ized models of a doped Bragg grating have been considere%f the eIectromagnetic field._The latter are highly nonclassi-
which vyield exact analytical solutions. Mantsyzov and cal states of light anq may mvolye only a small number of
Kuzmin [15] have studied pulse propagation indiscrete photons. The SIT solitary waves in thg present paper involve
one-dimensional medium made of two-level atoms. This? large number of photons in a classi¢abherenk state.

model was extended by Kozhekin and Kurigkb] to a con-
tinuous medium in which thin layers of resonant atoms are Il. MAXWELL-BLOCH EQUATIONS FOR A
placed at regular intervals inside the periodic dielectric me- PERIODIC DIELECTRIC MEDIUM

dium. However, from a practical point of view, these sys- \yq consider a one-dimensional periodic medium doped
temds lare d|ff|cu|;] to Ireal||ze. In_our unn‘?rmly dopeq PB_G with two-level atoms. For intense optical pulses containing
model we use the slowly varying envelope approxmanonmany photons, a semiclassical treatment of the radiation field

(SVEA) to derive the MaxweII-B.Ioc.h equatiqns for the for- is adequate. The coupled atom-field system is then described
ward and Bragg scattered electric field amplitudes. When th the Maxwell-Bloch equationEl9]. We consider a host

laser frequency is tuned close to the photonic band edge, Wea iym in which the dielectric constant takes the form
show that pulse propagation is described by an effective non-

linear Schrdinger equation coupled to the atomic Bloch _~
equations. The combined effects of GVD and nonresonant e(x)=e+ A€ cosZkox). @D
Ke_rr ef_fect_of the host PBG materlal_ lead to a solitary WaVe eree is the average dielectric constant of the medida,
which is simultaneously a gap soliton and a SIT soliton,, T ) o ~
which we refer to as a SIT-gap soliton. Although the under-'S the strength of the_ periodic dielectric variatioA <€),
lying equations for the band-edge approximation are similaf"d ko= /@, for lattice constani,. In the case that the
to those of the doped fiber, the physical meaning of thesélectric field is always perpendicular to the direction in
equations is very different. In the SIT-gap soliton, the timeWwhich it varies, ngwell’s equations lead to the following
variable in the fiber soliton equation is replaced by a spatiapc@lar wave equation:
coordinate. This is due to the fact that the GVD in fibers is 5 5 2 hos
provided by the frequency-dependent dielectric constant, FE(X1)  e(x) IE(xt) 4w IPy {x.1)
whereas in a PBG the GVD arises from the periodic spatial ax® c? at? c? at?
variation of the dielectric constant. In contrast to the fiber 2~ atom
SIT soliton, the SIT-gap soliton may be simpler to realize _ 4m IPRTIXY) -0 2.2
experimentally since it does not require a strict condition c? at? ’ '
among the material parameters.

Using the model described above, we derive the existencdere P5°™is the nonlinear polarization due to the two-level

of two distinct types of optical solitons. The first new type of atoms and3E|OSt is the nonresonant nonlinear contribution of
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the host medium which is assumed to be of the form of aextbooks[19]. The Heisenberg equation of motion for the
simple Kerr responseP"= y(3)|E|2E where x® is the  2Xx2 atomic density operatgr is given by

Kerr constant. Here we assume that all scattering of the ul- P

trashort laser pulse by the atoms is in the forward direction. 0P

Since the periodic dielectric function can scatter light back K at =[H.p]{H.I'}. 28
and forth, the total electric field inside the periodic medium o

can be written in terms of forward and Bragg reflected fieldHere the Hamiltoniard =Hy+V(t) whereH, denotes the

components: atomic Hamiltoniany/(t) denotes the interaction of the atom
with the electromagnetic field, arld describes the damping
E(x,t)=E(x,t)e @t tkoX 4 E (x t)e 1@t~ koX4 ¢ ¢, processes due to radiative and nonradiative spontaneous

(2.3  emission, and other dephasing effects. We denote the lower
atomic level bya and the upper level bf. In the electric-
where w is the average frequency of the laser pulse. Like-dipole approximationy/(t) = — wE(t) whereu is the dipole
wise the polarization due to the two-level atoms is given bymoment andE(t) is the applied electric field. From E(R.9)

atom ot ik otk the time evolution of the density matrix elements can be
PRCTUX D) =Py(x,t)e ot TR Py(x,t)e 00X+ e, \written as[19]

(2.9 d

1
In Egs. (2.3 and (2.4, E,, E,, Py, and P, are slowly apba:_(iwba"'-l—_
varying envelope functions. In the slowly varying envelope 2
approximation[19] it is assumed thatyE; ,/dt|<wo|E1d,  and
|9E1 o/ 9x|<ko|E1 4 and that higher derivative terms with
respect tox andt may be neglected. The dopant atoms are d Ppop™ pgop 2i
distributed uniformly but randomly in space with average dtPror™ — T, ﬁ(vbapab_PbaVab)-
densityNy . In this case, the atomic polarization of the atoms (2.10
is represented as a continuous functionxofin particular,
P1,=Ng(p12), Wherep; , are single-atom polarization op- Here ppo=prp— paa describes the population difference of
erators which will be defined in terms of the atomic densitythe atoms, which has an equilibrium valp,, andpy, is the
matrix. Inserting Eqs(2.3) and(2.4) into Eq.(2.2) with Eq.  atomic polarization. The effects of the matidixhave been
(2.1) we obtain included phenomenologically through the relaxation times

T, andT, which describe the lifetime of the upper level and

i
Ppa™t %Vbappop (2.9

_JE; JE4 ) 5 _ the dephasing time of the dipole moment, respectively. For a
| = i+ BB NL(|E|*+2[E,[) B+ 7(p1) =0, monochromatic applied field
9 Vpa= _,U«ba(Eeiiwt"' E*e'“"), (211
JE JE ; ; ; —iw
i —2_j —2+,6’E1+nL(|E2|2+2|E1|2)E2+ 7(Pa)=0. a solution can be obtained in the fopp,= oz L, In the
at IX rotating wave approximation, we neglect terms oscillating as
(2.6) g2t |n this case Eq(2.10 becomes
Here,x andt are dimensionless variables measured in units ¢ Poop— p?mp 2i
of kot andw, !, respectively. The other parameters are de- P Tl SO 7 (HbaETab= tabE” 0pa).
fined as wy=cw/\eay,, B=Aelde, n =6mxde, 7 (2.12

=2mNy/e and() denotes averaging due to inhomogeneou

broadening of the resonant atomic transition frequengy: Defining A0=0=Opa, 0=0pa, W=Pbp~Paa, 4= Hba:

andp= uo the optical Bloch equations becorf9]

(pl,z(x,t,Aw»—f_mpl,z(x,t,Aw)g(Aw—Aw )d(Aw). %p:(im_%) —%quw, 213
2.7 ?
: S d w—we  2j
Here,g(Aw' —Aw) is the probability distribution ofnho- —w=— + —(Ep*—E*p). (2.14
mogeneouslproadened energy levels of the resonant atoms, dt Ty h

Aw=w—wy, is the detuning of the atomic transition fre-
guencywy, from the incoming radiation frequenay, and
Aw' is the detuning of the laser field frequency from the line
center frequencywy,,. For purelyhomogeneoubroadening
0(Aw'—Aw) becomes simply as function and (p; o)

In an extended Bragg scattering medium E@13 and
(2.14) must be further simplified by separating the slow and
fast varying spatial components pf E, andw. A general
Fourier expansion will lead to an infinite number of coupled
equations. In the spirit of the SVEA we obtain a closed set of

= pl,Z' . . .
We now consider the underlying atomic Bloch equationsequ"’monS by keeping only the leading terms, namely,
for a periodic dielectric structure uniformly doped with reso- p=p,e'oX+ p,e~kox (2.15

nant atoms. This involves a generalization of the derivation
in ordinary vacuum found in most standard nonlinear opticsand
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(2.19

Inserting these expansions into the Bloch equati¢h&3d
and(2.14) we obtain the following coupled equations:

W=Wq+ W, e 20X+ wF g 12kox,

%= iA —i —iM—Z(EW+EW) (2.1
ot w T, P1 7, (E1Wo™ EaWy), .

2

apz2 |, 1 M
7=(|Aw—_r—2)p2—l?(E2W0+E1W’1C)* (218
AW, (Wo—Wegg) 2i
o T ==+ ——(EqpY +Eop3 —Ef p1—E3 D)),
(2.19
an_ Wl 2' E * E* 22
7——T—1+g( 12 —E5p1), (2.20

whereA w=1— wy, is the detuning of the atomic transitio
frequency from the midgap frequency. Hereafter, all the fre- 1 (

guencies are measured in units«f. The timesT; and T,
are measured in units @fgl. Equationg2.5) and(2.6) and

Egs.(2.17—(2.20 can be written in a compact form by in-

troducing the X 2 Pauli matrices ¢y, oy, o) and defining
the two-component “spinor” fieldsW'=(E} ,E3), p'
=(p¥.p3), andW'= (w} ,w;):

A A
i W-HO'ZW+B(TX‘I’+I’]|_[3(‘I’T\I’)—(‘I’TO'Z‘P)O'Z]‘I’
+n(p)=0, (2.21)
ap . 1) w? pE
E—(IAw—T—z)p—I?WO\I’—I%[(W\I’)gol
—(W'o,¥)gs], (2.22
Wy (Wo—Weg) 2 + +
7——T—l+g(p Y-¥'p), (223
oW Wi

St T, TR ) (Vo) ler—[(plioy )

—(¥Tioyp)les}. (2.24

Here, p1=(1,1) ande,=(1,—1). Equations(2.21)—(2.24
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FIG. 1. The dispersion relation of the linear periodic structure.
Plotted is the relation betweel andq for a uniform medium g
=0) (dotted ling and for a periodic grating in which the latter has
a frequency gap of size®

facilitating linear wave propagation within the medium. The
eigenvectors of the upper and lower dispersion branches are

n given by

vQ . (g)*q ) (2.26

V2Q.(q) \ FVQ(@)+a)

Near the band edgeg€0) we have® , =(1,—1)/v2 and
& _=(1,1)V2 describing standing wave solutions, whereas
when q—« then &, =(1,0) and® _=(0,1), describing
plane waves propagating to the right and left. It should be
noted that here we have neglected the linear contribution to
the dispersion relation arising from the two-level atoms. This
is justified by the fact that we will treat the resonant atomic
response exactly using the Bloch equations for a given den-
sity of dopant atoms. This treatment, however, considers the
density of atomsNg, to be uniform. For a Poissonian dis-
tribution of atoms, there are fluctuations in the atomic den-
sity ANg= /Ng4. This in turn leads to random fluctuations in
the linear dielectric susceptibility which may cause further
scattering of the electromagnetic wave field. For the present
treatment to be valid, we require that the root mean square
fluctuations of the random linear susceptibility caused by
density fluctuations of the resonant atoms should be small
compared to the dielectric variatiake of the periodic, non-
resonant PBG backbone. This places an upper limit on the
allowed concentration of dopant atoms.

In general, the coupled Maxwell-Bloch equatiq@s21)—
(2.24 have to be solved numerically. Before proceeding to
derive soliton solutions it is instructive to consider two spe-

describe the Maxwell-Bloch equations for a uniformly dopedcial cases of these equations. As a first special case we set

periodic dielectric medium in the SVEA.

w;,=0. In this case, it is possible to obtain a set of coupled

For reference purposes, we first consider the case of @quations forE; and E, alone by eliminating the atomic

harmonic medium in whictn = 7=0. In this case, plane-
wave solutions of the form¥P = de ™2+ gatisfy the dis-

persion relation
0%(q)=0q*+ B> (2.29
This gives two frequency branchéks. (q) = + g+ 82 (see

Fig. 1. The band edges occur whep=0 at frequencies

Q. == . For frequencies- 3<Q <, q is purely imagi-

nary and the field is exponentially attenuated within the me-

variables. We may seek a solution of the fofq ,(x,t)
=B A0)e "R and p, Ax,t)=pyAL)e” " where
{=x—Vt. Then Egs(2.21)—(2.23 can be written agsetting
w;=0)

i(1-V)E;+(5—Kk)E;+ BE,

dium. As a consequence, incident radiation of low intensity

is completely reflected back. Outside the band ggis, real,

+nL(|Eq|2+2|Ep|H)E + 9py=0, (2.27)
—i(1+V)E,+ (8+Kk)+ BE;
+ny(|Ex|?+2|Ey|?)Ey+ 7p,=0, (2.28
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A P Here, the operator®, and O, are defined as
Plz'vpl_'_ﬁElwoa (2.29 . ) ) )
v 01=i(1-V)E;+(6—K)E1+ BE,+n (|E4|*+2|E,|*)Ey,
N S s (2.36
P2=ly Pl g EaWos (239 Op=—i(1+V)E,+(5+K)Ep+ BE,
+nL(|Eo|*+2|E4|?)E,. (2.37)

. 2i
WOZ_W(Elpf"—EZp;_ 1P1—E3py). (231 . , ,
The existence of an exact analytical solution to H@s34)

Here the dot represents the derivative with respect to thgﬂg(é%% Ifegﬂtirteg”ﬁtr:qne?iigleﬁemgdss llﬁlgvr\]/et\.ieEr,qiétz.Ss@pos-
independent variablé A= W™ Wpa, ando=1+45. We as-  gjpie 0 obtain a simple effective Maxwell-Bloch equation by
sume that the pulse duration, is much shorter than the qnsidering the case of an external laser field frequency
atomic relaxation times; and T,, so that no relaxation \yhich is tuned close to the photonic band edge. In this case
occurs for the duration of the pulse, in which case we sefye obtain analytical solutions describing some new types of
T1,To—. The validity of the slowly varying envelope solitary waves.

function approximation nevertheless requires us to consider

pulses for which7,> wal_ For wy=10% s, we require Steady-state solution to the Bloch equations

pulse widths of ten femtoseconds or more. Usmgandp, As a second special case of the general Maxwell-Bloch
from Egs.(2.27) and(2.28, the population inversiomo in  equations(2.21)—(2.24 we consider pulses that are longer
Eq. (2.3) becomes than the relaxation timeg,; andT,. In this case, the atomic

) 9 system reaches its steady-state response more quickly than
Wo= v a—g[(l—V)|El|2—(1+V)|Ez|2]- (2.32  the time scale over which the laser field changes and conse-
quently the Bloch equations can be adiabatically eliminated.
This can be easily integrated to yield We consider a steady laser field of the forf 5,p;.
~e "% whereédis the frequency detuning from the photonic
midgap. The steady-state response follows from setting the
time derivative equal to zero in the Bloch equatidBsl?)—
(2.33 (2.20. The quasistatic atomic polarization satisfies the equa-
tions

2
wo=—1+ m[(l_V)|E1|2_(1+V)|E2|2]’

where we have assumed thaty(—o)=—1] all atoms are X

initially in their ground state. Having expressed the popula- .M
tion inversion in terms of the electric field alone, we now P1=I E(E1WO+E2W1) (2.38
substitute Eqs(2.27) and (2.28 into Egs.(2.29 and (2.30
and using Eq(2.33 we obtain a set of coupled equations for and
E, andE, alone: w?
R po=i-—(EWo+ EWY), (2.39
A N S i P, 23 he
"o TV T v s 234 wherea=iA—1/T,, andA=1+ §— wy, is the detuning of
N ) the laser frequency from the atomic transition frequency. In-
.90, A 'y serting Eqs(2.38 and(2.39 into Egs.(2.19 and(2.20 we

- -—E ;
al V% Vi get two coupled equations favy andw; :

1 ,LLZ’)/ Weq 2/“27
Wo T_1+7(|E1|2+|E2|2) =T—1—7[E1E3WI+EIE2W1]: (2.40
2u? E3E
W= — 4 - Wo, (2.4

A [T+ y(|Eg|*+[Eal®) —iAT,(|E4|*—|E2?)]

where y= 2T2/(1+A2T§). Equations(2.40 and(2.41) can  powers of| E1,2|2. In the case that all atoms are in the ground
be solved forw, andw;. Inserting these results into Egs. state W= —1) andAT,>1 the expansion for the polariza-
(2.38 and (2.39 yields a cumbersome expression for thetion becomes
nonlinear optical susceptibility, defined through the rela- 2 2
. . Ngu 4Ty
tion P, ,= xE; ». In the absence of the Bragg scattering P,=- A 1_h2A2T (|Eq|2+ 2|Ez|2)}E1-
=0, and we recover the textbook formula fpf19]. 2
When the field intensity is sufficiently small compared to (242
the saturation intensity, the denominator can be expanded iR, is obtained from the above by interchanging the indices
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1,2. This static limit describes a simple Kerr nonlinearity. P ~
However, this limit does not apply in the case of the high i —= \/q2+ ,Bzaz\lf. (3.6
intensity, subpicosecond pulses which interact in a near reso- at
nant manner with the impurity atoms. ; _

In contrast to the standard steady-state nonlinear susceB‘-ear the photonic band edgg£0), S=(ox+ay)/v2 and
tibility which we describe above, some entirely new effects _ 1 (E,+E,
are possible if the impurity atom transition lies deep inside of V=— ( E_E ) (3.7
a complete three-dimensional PBG. In this case, the sponta- v2 (P12

neous emission rate T is completely suppressed and the
impurity atoms may exhibit coherent resonance dipole
dipole interaction(RDDI). This leads to very low threshold
saturation of the individual atomic transition and a ‘“glass _ (E,
phase” of the atomic dipoleg20]. The resulting nonlinear \If:(E
susceptibility differs dramatically from the above descrip- 1

tion. In particular, the imaginary part of the susceptibility cangescribing plane waves propagating to the left or right. These

be strongly suppressed whereas the real part remains Vegye the two limits for which we derive approximate solutions
large. However, in this paper we consider only the case of g the full nonlinear problem.

low density of atoms tuned near the photonic band edge for
which RDDI effects can be neglected.

describing standing wave solutions. Far from Bragg reso-
nance Q—»), S=o, and

(3.8

Frequency detuned far from Bragg resonance

When the laser frequency is detuned far from the Bragg
resonanceq/ 8> 1, then\/q?+ 8?—q, and the electromag-
netic field is not strongly affected by the periodic structure.

Since it is difficult to obtain exact analytical solutions to Accordingly, the results derived below are also valid for a
the full Maxwell-Bloch equations described earlier, we con-uniform medium exhibiting a nonresonant Kerr response,
sider soliton solutions in two special frequency regimes. Indoped with active atoms. Using the transformat®mgiven
the first case, the resonant laser frequency and the atomiy Eg.(3.9), Eq. (3.3) becomes
transition are both chosen to be far outside the PBG. In the
second case, both are chosen to lie very near one of the
photonic band edges.

Introducing the Fourier transformations,

IIl. APPROXIMATE SOLUTIONS TO THE
MAXWELL-BLOCH EQUATIONS

o ~ ~ ~
i F+qUZ‘P+Fn|{\P}+ 7]<p>:0 (39)

Transforming back to coordinate space:

1 )
van-- [de vy, @ A A
I 9t |UZW+7[3(‘P V)
1 . _ ~ _ -
p(a.) =5 f dxe '¥p(x,t), (3.2 — (P10, ¥) 0,1V + 7(p)=0.

(3.10

we may rewrite Eq(2.21) in momentum space as The corresponding Bloch equations are

[i&t—qaz+ﬂax]\lf(q,t)+Fn|{‘1’}+n(p(q,t)}=0. (95 ~ ,u,z ~ ,LL2 ~ ~ ~
B3 - =iAep—i 7 Ywe—i [(W¥)e,;—(W'e,¥)e,],
at f 2%
Here, the nonlinear function®,{V} is given by (3.1
n Mo _ 2 (P —T) (3.12
L = - ; .
Fu=x | da, [ daf3¥' (0, 0% (0.0 awP P
~[W(qy, oW (A2, |0y ¥ (q+ 6y =)} and
(3.9 oW i
— =7 (o)~ (T'op)]es
The linear part of Eq(3.3) can be diagonalized using the
g-dependent unitary operator ~[(plio,¥)— (TTioyp)]e,}. (3.13
[ sin(012)  cog6/2) Here, p=S'p and W=S'W. For illustrative purposes we

(3.5 consider an optical pulse moving to the riglpper branch

of the dispersion W' =(0,E¥). In general, theW terms
where tang)=g/q. Introducing the new spinor field(q,t) arise from Bragg scattering of the incident pulse. Far away
=S(q)¥(q,t), Eq. (3.3 in the absence of nonlinear inter- from the band gap, the backscattered field is negligible and
action (h,=0) becomes accordingly we seek a solution for whidi= 0. Introducing

S= coq 012) —sin(6/2)]’
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the notatioow=w,, p=p;, andE=E,, we obtain the one- Multiplying Eg. (3.24 by ¢ and then integrating once yields
component Maxwell-Bloch equations:

. 3n c 1
JE  OE =2ty Ml T
| = +i——+nEE+7(p)=0, (3.19 p=— 4 et _at5k=d+78), (329
ap . u? where c; is a constant of integrationi¢/dt describes the
—=iAwp—i——Ew, (3.15 ; ;
ot A instantaneous frequency shift from the average frequency.
This frequency shiffchirp) arises purely from the nonlinear
ow  2i interactions. Whem =0 andc;=0 we require that this
—t = 7 (P"E-E"p). (3.1  phase modulation vanishes. This determines the wave vector

shift k=6—76,. In the case whem =0, the single-pulse
When the nonlinear effediKerr responseof the host me-  soliton discovered by McCall and Hahn follows immediately
dium is negligible 6, =0), it is straightforward to recapture from the above equations by settiog=0. Forc,#0, Egs.
the usual McCall and Hah(SIT) soliton. In the more gen- (3.29 and (3.23 describe pulse train solution®1-23,
eral case 1§ #0) it is necessary to include phase Which have been observed experimentag]. To illustrate
modulation ¢() and consider a trial solution of the the nature of these solutions we consider the on resonance
form E(x,t)=g({)e "TRFIHD  and p(x,t)=[u(¢) cased,=0 and neglect the host nonlinear Kerr coefficient
+iv(§)]e—iﬁt+ik><+i¢(£)' where{=t—x/V, V is the velocity n_=0. Inserting Eq.(3.25 into Eqg. (3.23 we obtain an
of the solitary wave measured in units of the average speegduation fore only,

of light in the uniform mediunc/ ﬁ éis the detuning from

the midgap, and is a yet to be determined wave vector e— 18 3= ye+ y38%=0, (3.29
shift. Separating the real and imaginary components we ob-
tain wherey,=c3/ 72, y,= pu?ltr, andy;=2u?/h?. Equation
— e+ 7(v)=0, (3.17) (3.26 can be integrated once to yield
e+ (5—K)e+n g3+ p(u)=0, (3.18 (£)%+Cot y18 2= ype2+ ?s“:o, (3.27
U= ¢v=—"5, (3.19 wherec, is another constant of integration. DefiniSg- &2
2 Eq. (3.27) can be reexpressed as
v+ PU=S,u— — W, (3.20
' (7
. St yteS- St DS=0. (328
w= 7 €U, (3.21)

where 7= 1N—1 and 8,=w— wy, is the detuning of the Eduation(3.28 is of the form ©)*+U(S)=0, and is ame-
atomic transition frequency,,, from the field frequencyw nat_)le to solut|o_n by means (.)f a meghanlcal _ana_logy. It de-
=1+ 4. The angular brackets) denote an average over the gcnbes the motion Of a classical particle moving in a poten-
inhomogeneously broadened atomic spectrum as defined i I_U(E)' Cons_lder first the case when t_here Is no chirping:
Eq. (2.7). In this paper we derive an analytic solution in the €1 =C2=0. In Fig. 4a) we plot the potential (S). The ze-
sharp-line limit(u)=u and(v)=wv. Soliton solutions in the r_os of the potential can easily be found &-0 and S
presence of inhomogeneous line broadening require numeri- 22/ vs- The soliton solution corresponds to the case
cal methods. Using: from Eq. (3.17) in Eq. (3.21, the when the particle is released$# 2y, /y3 and comes to rest

population inversion can be expressed as at S=0, resulting in a single-pulse solution. On the other
hand, wherc, ,#0 we obtain a class of extended solutions,
27 determined by the zeros of the potential. One such solution is
w=-—1+ int (3.22  depicted in Fig. 2) where the particle is released & S;

and oscillates betwee®y, andS,. The negative root is elimi-
Using Egs.(3.17) and (3.18 we may express the atomic nated on physical grounds sine= £2>0. Equation(3.28
polarization variables in terms of the field variableand¢.  can be further integrated to yield
In this case Eq(3.19 becomes

) o 5 THC fs ds _fs ds 2
Te+(0— ) The+(6—K)e+n e°]+ TSWZO, S V725 7.2— 20,5~ 7, 5 m .
(3.23 (3.29
and Eq.(3.20 becomes The integral of Eq(3.29 can have a class of solution related

- U _ to the elliptic functions, and the solution depends on the
rep+27rep—e(k— 6+ 78,)+3n.e%c=0. (3.249  roots of P5(S) [25]. To obtain a physical solution we must
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(a) uE)

Sy

b u@)

Se
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FIG. 2. Plotted is the potenti&) (S) in which the classical par-
ticle moves fom_ =0. (a) The potential in the case whef ,=0. In
this case the soliton solution corresponds to a particle being
leased fromS=S; and coming to rest aB=0 which results in
single-pulse hyperbolic secant solutiofh) The potential when
¢, ,#0. Here the particle is released &= S; goes toS=S, but
returns back t&; . Consequently the particle oscillates betw&n
andS, resulting in a periodic pulse train.

have at least two positive real rodBs andS,. Similar so-
lutions can also be found in the case whgnr£0 [17].
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U(e)

\/\/50 ¢

FIG. 3. Shown is the potentidl(¢) for the case wher;=0
andn_#0. The soliton solution corresponds to the particle being
released front =¢y and coming to rest at the hill where=0.

(0= seclial)
ol =20 JVi+b2tanf(ag)

The relation between the pulse width, velocity, and the den-
sity remains the same as given in the McCall-Hahn solution:

(3.33

2

H(a%+ 62)= % (3.34
On the other hand,
2
_ ano
re = a (3.35

Finally, the phase anglé is obtained from Eq(3.25:
¢({)= ¢o— 3 arctanb tanh(al)]. (3.3

Before we discuss the case whar#0 we briefly review
the McCall-Hahn solution. Whem; =0 and c;=0, Eq.
(3.30 reduces to the nonlinear Schlinger equation. This

solitons for whichc;=0. Using Eq.(3.25 in Eq. (3.23 we
obtain

(3.30

e=(a1e— ape’— age®),
where a;=— 5§+ pullT, ay=8,n,I7+2u%h?%, and aj
=3nf/167-2. Now Eq.(3.30 can be rewritten in the form

U

9’

(3.3)

with U= — a,£%/2+ a,e*/4+ a35/6. Equation(3.31) de-
scribes a classical particle moving in a potentialln Fig. 3
we plot the potential (¢). The solitary wave solution cor-
responds to the particle starting at point £, and stopping
at the hill wheres =0. Accordingly, the amplitude, corre-

sponds to the zeros &f(¢). The physically admissible so-

lution is

2 T a2/4+ \/(a2/4) + ala3/3

o (13/3

(3.32

ah

£({)=— seclial).
o

(3.39

The relation between the pulse width and the velocity is
given by Eq.(3.34. The polarization components andv
have the well known form§28]

a2

v=-— wz—:;g— sechial)tanha?) (3.39
and
=— (;122% sectial). (3.39
The atomic population inversion is given as
2a2
w=— seclial). (3.40

14+ ——
(a2+ 62)

The solution obtained for a homogeneously broadened me-
dium can easily be extended to an inhomogeneously broad-
ened medium. This is obtained from the factorization ansatz

Equation (3.30 is known as the nonlinear cubic-quintic v(8,,{)=f(38,)v(0,{) which yields a self-consistent solu-
Schralinger equation and has an exact analytical solutiortion of the Maxwell-Bloch equations. In this case, E8.34

given by[26,27]

is replaced by
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+o0 L R BN LS A L 20
aZT:J dgag(éé_ 62)1(6,), (3.4)) : : ]
o 08 |- ! ]
wheref(8,) =a%/(a?+ 62) andg(6,— 8,) is the inhomoge- B - : 15
neous distribution function as defined previously. N i ' ] E
In the absence of Kerr nonlinearity of the host material < o6 |- 1 5
(n_=0), the atomic Bloch equations can be written in a 2 [ ] J10 §
compact form by defining the Bloch vectorR g o4 L : 1 g
=(2u/w,2v/ w,w) and Q= (2uel#,0,8,): g | 1 8
) c I | 1s °
drR . & 02 I -
—=0OXR. (3.42 L o ]
dt - | i
[ | N 1,
For instance, whed,=0, thenu=0 and the Bloch vector S — S
lies in the {,w) plane. As the optical pulse goes through the 00 000 0 0.005 001
medium the atoms are excited and then return to their ground *
state. This corresponds to ar2otation of the Bloch vector FIG. 4. Plotted is the peak intensitgolid line) and the phase
as well as a Z pulse area. However, whan #0, ¢ enters  parameteb (dotted ling of the soliton for a fixed valua=10"° as
in the Bloch equations and E¢3.42 is replaced by a function of the detuning frequene}= w— wy,,. The other ma-
A terial parameters are chosenas 10" *° (esu),n, =109 (esu),
dR . . d¢ . and =10 cm3,
HZQXR'F E’yR, (343)
width and velocity is not affected by the Kerr nonlinearity
where the 3 3 matrix y is given as and is the same as in the case of the reg(#f) solution.
However, as we can see from E§.32 the amplitude now
0 1 0 also depends on the Kerr coefficient, the atomic detuaing
y=| -1 0 0 (3.44) and the dopant densitydy. This is very different than the
' ' regular McCall and Hahn(SIT) soliton where A?
0 00 =#2a%/u?. In the limit whenn_ —0, we recover the usual

The passage of the optical soliton pulse leads to polarizatioﬁ.rr soliton solution. In general, the Kerr coefficient has a
componentss andv of the form significant effect on the soliton solution. The envelope func-
tion is not a simple hyperbolic secant type of function and
reoa(1+b?) sectfa?)tanHal) the pulse width is not purely determined by the paramater
- 2tani? -z, (3.45  whenb becomes larger than unity.
g [1+b%anit(ad)] We now consider a numerical example to explore the pa-

rameter space of the analytical solution. We consider the

v=

u=— 7_5""80 szecmag) - parameters u=10"1%(esu), n =10 (esu), and 7@
7 °[1+b*tantf(al)] =10 cm™3. We assume thaa=10"2 (which in our nota-
tion correspond to a pulse width of 1 )psand wg
_ E‘S sechi(af) (3.4 =10"s ' (\=1.55um). In Fig. 4 the peak pulse intensity
7 °[1+b’tant(al)]¥? .
I=C\/§|E|2/21-r and the phase parametbrare plotted in
and the population inversion takes the form terms of the atomic detuning frequendy=w — wp,. As can
be seen, there is a significant difference when the field fre-
3 27 sechfal) quencyw is detuned above versus below the atomic transi-
W=t S Trp%ani(al)” (3.47  tion frequencywy,.

For the on resonance casé,E0), the peak intensity

The generalization of the SIT-Kerr solution to include inho- =0.4 GW/cnf andb=1.0. Whens,=0.005 the peak inten-
mogeneous line broadening effects requires numerical metisity becomes 1.7 MW/cfawith b=0.1, whereas wheid,
ods since the factorization ansatz of McCall and Hahn is no= —0.005 we havé=0.17 GW/cnf andb=10. The param-
longer applicable. eterb has an important effect on the overall pulse width.

The inclusion of the nonresonant Kerr nonlinearity in aWhenb<1, the soliton profile is given by a simple hyper-
medium uniformly doped with two-level atoms has also beerbolic secant function with a pulse width ofal/On the other
considered by Matulic and EberjL7]. They found an ap- hand, whenb>1 there are significant deviations from the
proximate result by treating the Kerr coefficient perturba-simple hyperbolic-secant function and the pulse width be-
tively. Their result(valid whenb<1) can be recaptured by comes narrower. This effect is shown in Fig. 5, where the
setting the denominator term in Eqg&3.33, (3.45, and pulse intensity on resonandeolid line) is contrasted with
(3.46 to unity. In this case, the phase modulation simplythat for §,=—0.005. In the latter case, the pulse width nar-
becomesp~d tanh@/). Here, we obtain an exact analytical rows significantly. If we neglect the Kerr nonlinearity, then
solution valid for the entire range of parameter values. Fronfor the same parameters the peak intensity is about
Eq. (3.34 we can see that the relation between the pulse=140 GW/cnf.
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FIG. 5. Plotted is the intensity profile of the soliton solution for
5,=0 (solid line) (left scal¢ and for 8,= —0.005 (dotted ling FIG. 6. The peak intensitgsolid line) and pulse velocitydotted
(right scalg. The material parameters are chosen as line) (measured in units of the average speed of lighfe in the
=10 (esu),n =10 19 (esu), andy=10" cm 3. medium) for 5,=0 are plotted as a function af =10%a, wherea

is the inverse pulse duratidsee Eq.(3.33] measured in units of
To further elucidate the nature of this solution, we plot in wy. The other material parameters are chosepasl0™ ' (esu),
Fig. 6 the peak intensity as a function of the pulse widthn =10 (esu), andy= 10" cm™>.
parametera for 6,=0, with all the other parameters being
fixed. In this case the amplitude takes the form

n

Q@) ={ Qot 50+, 4.0
, 8728 an’s®
€0~ 2paa T 2aE (3489 where Q,=0(0)=8 and Q"=(62Q/39?)|q—o=1/B.
- serting the expansio(.1) into Eq. (3.3) we obtain
The intensity increases starting from long pulses down to G 9

about 5 ps but starts to decrease sharply as the pulse width | ‘9_+ Qo+ q_Qn I+ ﬂ{3(qﬂ‘{p)

becomes shorter than 5 ps. In the McCall-H&8HT) soliton, at 2

the intensity continues to increase very rapidly as the pulse s = ~ ~

width becomes on the order of picoseconds. In order to cre- — (Vo W)o W+ n(p)=0, 4.2

ate a soliton in the coherent interaction regime, one must use

picosecond or subpicosecond pulses which in turn reqwrwhere‘lf(q t)=S(0)¥(q,t) andp=S(0)p. Within this ap-
large powers. Using the combined effect of the nonlineaproximation we replace®(q) by S(0), whereS(0) is de-
Kerr response and two-level atoms, solitons can be realizetined in the preceding section. This approximation is valid
experimentally using lower intensity fields. The results pre-provided that the soliton spectrum is centered sharply around
sented above have assumed that the Kerr coefficient is pogi=0. This means that in coordinate space the soliton enve-
tive. The solution for a negative Kerr coefficient can be sim-lope function extends over many lattice constants. Trans-
ply obtained by mirror reflecting the plot in Fig. 4 with forming Eq. (4.2) back to coordinate space we obtain the

respect tod,=0. following effective nonlinear wave equation:
We note finally that the solution described above is simi-
lar to that obtained by Bowdeet al. [29], including the ef- a\If Q" P20 .
fect of the near dipole-dipol&NDD) interaction between at- I T3 0 +Bo, ¥+ —{3(‘1’ v)
oms at high densities into the Bloch equations, but with
=0. The resulting envelope functiansatisfies a nonlinear — (¥, W) 0, W + 79(p)=0. 4.3

cubic-quintic Schrdinger equation given by Ed3.30 and
is accompanied by a similar phase modulation function  Applying the same transformation to the atomic Bloch equa-
tions yields

IV. SELF-INDUCED TRANSPARENCY

NEAR A PHOTONIC BAND EDGE P 2 2

d
&—p—|Awp—| —\Ifwo—|'u—[ V),

As a second limiting case, we consider the resonant inter- V2h
action of an optical pulse with two-level atoms when Bragg s
scattering of the electromagnetic wave is dominant. The pho- ~(Wlo W) ¢al, (4.4
tonic band edges occur g&=0. Consequently the band-edge
behavior may be described by expanding the dispersion re- ‘9W0

2i
1 15
lation Q2(q) for smallq (g/8<1): a h 7 (P —¥7p), (4.5
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W 2i St (T S W _ 6i - it
W—E{[(D o V)= (V'o,p)lé.+[(plioy, V) -7 (P pE*). (4.12
_(@Tigyﬁ)](ﬁz}_ (469 As before, we seek a general solution of the form
E(xt)=g(e (P Mriocidld —and  p(xt)=(u
Here 1= (1,0), ¢}=(0,1), andil=S(0)W. +iv)e (B AtHikx+idlD) where{=t—x/V andV is the ve-

locity of the solitary wave. Inserting this ansatz into the

. . PR
We may consider two specific solutiods'=(E;,0) and Maxwell-Bloch equations yields

¥'=(0,E,) which correspond to the lower band edge and

upper band edge, respectively. Near the upper band edge, the S 0 LAY 0 LA ) 5
ansatz¥ = (0,E,) andp’=(0,p,) reduces Eq(4.3) to Tedt 2 e zed T ast3n e+ pu=0,
B VTR E+ilE+3n.|E|’E+ =0 o
| —+ 5 @ ~BEHI N |E[“E+ 7{p)=0. R O LA 0 L
4.7 —Ts-l—wsqﬁ-i- W8¢+Fs+ =0, (4.19
Here, E,=(E;—E,)/V2=V2E;, p,=v2p;, and we have o u
renamedE,=E, p,;=p. Also W'=(v2w;,0). In order to U= dv=—3J0— T, (4.15
make our model more realistic, we have also added linear
losses ['>0) or gain "<0). In order to extract analytical o u? —
results we neglect the effects of inhomogeneous line broad- U QU= FU— ZeW— o, (4.19
ening in what follows and s€ip)=p. Later we will discuss 2
a special case for which inhomogeneous broadening can be . 12
treated analytically. Inserting the same ansatz into the Bloch W= —ev. 4.1
. . ev (4.17
equations(4.4)—(4.6) yields h
ap 1 u? Here, 7=Q"kIV—1, a=(8+k?Q"/2), and é is defined as
E=(iAw— T—) p—i 7E(w0—wl), (4.8 the detuning from the upper band edge. Since our formula-
2

tion is restricted to near band-edge behavior it is assumed
that|5]<1 (6>0 inside the gap§<0 outside the gap The

% _ ﬂ(p* E—pE*) (4.9 total field frequency is given a&=1+8—-65 and §,= w
otk ’ ' — wp, IS the detuning of the average laser frequency from the
atomic transition frequency.
OW, First we consider the case of no lossEs; 0, T,—©, in

2i

— =~ 7 (PE*—P*E). (410 the sharp-line limit. Using from Eq. (4.14) the population
inversion can be integrated once to give

Here we have included the effects of the dipole-dephasing 602 qQ
time T,, which may arise from atom-atom collisions or the w=—1+ & (T_ b
interaction of atoms with lattice vibrations of the host mate- hn V?
rial. The time scale foll, in rare-earth doped glass fibers is
in the range of nanoseconds to femtoseconds. However, iwhere we have chosem(—)=—1. That is to say, all at-
most cases cooling down the solid increa$gs The upper Oms are initially in their ground state. Our band-edge ap-
level lifetime T, is neglected, since for atoms doped in aProximation entails the assumptions that the envelope func-
solid, T, is on the order of ms teus. For instance, for an tion is extended over many lattice constar#s<(l), and that
erbium doped glass the lifetime of the transitidh,s, the soliton velocityV<1. Furthermore, we make the as-
_)4| 152 Corresponding to 15Lm is about 10 ms and the sumption that the phasﬁ< 1. In the Spirit of the SVEA, we
dipole-dephasing time is on the order of one picoseconaieglect the ¢)? term in Eq.(4.13 and likewise the higher
[30,31. Since we are dealing with nanosecond to subpicoderivative terms in Eq(4.14. We then insert the trial solu-
second pulses we may safely take the lifhjt->~. We will tion for the envelope functioa=A sech&{) and the phase
show in what follows that under certain conditions dipole ¢=d tanh@?) into Egs.(4.13 and (4.14 and solve foru
dephasing and linear gain may offset each other, leading toandv. This yields
soliton solution. As expected, near the band edge we have a

, (4.18

contribution from theW term, since both the forward and TAa

backward fields contribute almost equally to the effective v=T T, sectiad)tank{ag), (4.19
field. Equationg4.8)—(4.10 can be reduced to the standard

form of the Maxwell-Bloch equations by defining=w, AlQ"a?

—w;: UZ_Z(W_Q sectial)

" a2

A
a—p=<iAw——)p—i%Ew, (4.1 —;(3n,_A2+rda— —Vz—>secﬁ(a§). (4.20
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Using these expressions in E¢4.15 and(4.16 and keep-
ing only terms up toa® and ad, we obtain the following
relations:

QuaZ
WZQ"F 704, (4.21)
, Qa2 4
n_A :W— §Tda, (422)
uen

T(a2+ 551): T, (423)
3u? 2
#—Azza% S duda (4.24

In what follows we consider two separate physical situations
In the first case the Kerr effect is significamt, #0) and in
the second case =0.

A. Solitary waves in a nonlinear Bragg grating
doped with resonance two-level atoms
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stant. A more important difference is that in fibers, in the
absence of phase modulation, the existence of the SIT-NLS
solution requires that the material constants satisfy the rela-
tion Q" =n %%/ u? [14]. In the SIT-gap solution this highly
restrictive condition on the material parameters is not re-
quired. In this sense, our SIT-gap soliton is much more ro-
bust than previously studigd 4] SIT fiber solitons.

In the case of erbium doped fibers, the typical value of
n %2/ u? turns out to be many orders higher than the value of
Q" in the fibers. This makes the realization of such a soliton
in erbium doped fibers very difficult. Our studies suggest that
a fiber engineered with a periodic grating would greatly fa-
cilitate the observation of a SIT-NLS soliton soliton with
erbium atoms.

Before discussing the SIT-gap soliton solution in more
detail we briefly review the important properties of the gap
solitary wave when there are no dopant atoms in the me-
dium. When the dopant density parameigt 0, the soliton
inverse size parameter is given by

The relative importance of the nonresonant Kerr effect is

determined by the magnitude of the Kerr constant and the
incident light intensity. Here, we consider the case when

both the Kerr effect and the GVD are significant. Requiring
that Eqgs.(4.22 and (4.24 are consistent with each other
determines the phase parameder

MZQ” 2

Y L A 42
2 \a22n, n.% a- (429

Similarly, in order for Eqs(4.21) and(4.23 to be consistent
with each other the wave vector shiftmust obey the equa-
tion

. 23, T A R

&+ € V—V +§&|26—46,+ V —2V6+2Vé,
5 pu?
vV ovag 0 (4.29

whereé=k/B, 6= 6/, andd,= 5,/ 8. Equation(4.26) de-
termines the wave vector shiftfor a given detunings and
velocity V. The soliton velocity and detuning are free param-

22V 2V S+K2Q12 4.2
e ) 429
and the soliton amplitude becomes
. aZQn o
- 3nLV2 . ( . &

Here, 7= (Q"k/V—1)=0. This determines the wave vector
shift for a given soliton velocity/. The gap solitary wave is
described by two free parameters, the soliton velo¢itgnd

the detunings. From Eq.(4.27) it can be seen tha van-
ishes asé— —k2Q)"/2. In other words, the soliton size di-
verges and the amplitude vanishes just outside the PBG.
WhenV=0, the soliton is stationary and the soliton ampli-
tude vanishes precisely when the detunihgpproaches the
upper band edge. The near band-edge solution agrees with
the more general time-dependent solution obtained by
Aceves and Wabniti6] for an undoped material, in the limit
whenV, 6<1.

In order to illustrate the SIT-gap solution further, we con-
sider the following material parameterg=10"'° (esu), 8
=Aelde=0.1, andn =67x®/e=10"° (esu). A particu-
larly simple solution is obtained when the pulse velocity is
chosen to satisfy the relation= w+/(Q"/n.)/%. For this ve-
locity it is readily seen from Eq4.25 that the phase modu-
lation ¢=0. Below we will describe in detail this particular

eters with the restriction that they are small compared tGase {=0.0079) and then make some generalizationg to
unity in the near band-edge approximation. We make the:0. Consider first the case in which the atomic transition

observation from Eq(4.26) that whenV——V, &——¢.
Sincer=Q"k/V—1>0, k andV must have the same sign.

frequency is at the upper band edgg,= 1+ 3 and a dopant
densityn=10'® cm3. In this case, the atomic detuning sim-

Equation(4.26 always has one real root and in certain case§)|y becomes?sa:Q” 5= —%. The soliton disappears just

three real roots. Our numerical study reveals that when there
are three real roots only one of them leads to a physicall;?

admissible soliton solution.

The solution described here is quite different from the
fiber SIT-NLS solution obtained for pulse propagation in a
doped optical fibef14]. In fibers, GVD arises from the ma-

utside the PBG aé=—0.000 129 withk=0.011 65. How-
ever, the soliton solution exists further outside the band gap
region than the pure undoped gap soliton, with the same
velocity. Whend=—0.000 129, there are three real ro&ts
given by 0.0038,—0.014, and 0.0187. The first two make

terial dispersion, whereas in the Bragg grating a much largea®<0, so that only the third is physically admissible. Fbr

GVD arises from the variation in the linear dielectric con-

=0, there is only one real root 0.0134 makiag>0. In Fig.
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60 ] 200 7(a) the peak intensity and width of the SIT-gap soliton so-
t () - lution is plotted as a function of the detunidy As can be
= - p seen the peak intensity increases and the width becomes
" - -{ 150 shorter as the soliton frequency is detuned into the band gap
o 5 J ~
% 40 -} i g r(_agi_on just below the upper band e(_jg%>(0): .Qualitatively _
=1 L . a similar results hold when the atomic transition frequency is
2 L J100 & placed just below the upper band edge,{=1+0.999)
g | 1 g with the same density of atoms. Here the soliton vanishes at
i oL 1 = around 8= —3.0x10"° with k=0.007 965, similar to the
N | ] = pure gap soliton case. The results are depicted in Faj. 8
R 1950 Dramatic changes are observed in the solution when the
i atomic transition frequency is placed slightly above the up-
- ] per band edged,,=1+1.00018). In this case, the soliton
O 0 vanishes ab~=—0.000 194 withk=0.014 89. As shown in
.6/6 ‘ Fig. 9@ the soliton width first narrows, then widens, and
finally continues to narrow again. This behavior has no ana-
60 ——————T———————— 200 log in the pure gap soliton solution. As the atomic transition
®) ] frequency is tuned further above the upper band edgg (
i =1+1.18), the minimum point in the intensity of Fig.(&
.;E 1 150 eventually goes to zero, splitting the solution into two fre-
9 0 ; - o quency bands;-0.100 012<'5< —0.099 988 1 and-0.311
E 5 ] % X 10~4<’5. In other words, the parameter space in which a
. 1 1 soliton solution exists is divided into two regions. This fact is
i 77190 & easily seen by setting equal to zero in Eqs(4.21) and
g . ; (4.23. From Eq.(4.21) we find that
20 T ] 2
3 D : ; 150 o -
e /S NS T j ~ Sy(kIV—=1)+k/2
""" ] o=— — . (4.29
i (2—k/V)
0 I 1 1 1 I 1 1 1 I 1 I} 1 l 1 0
-0.0002 0 0.0002 0.0004 Here, we have assumed that the transition frequenay,is
o/8 =1+ 8- 84. Insertingd into Eq.(4.23 leads to the follow-
150 — 100 ing nonlinear equation fok:
o s o MHS o
ﬁg 80 (kIV=1)(64+k*/[2)— h_/BZ(Z_k/V) =0. (4.30
é 100 g
2 60 @ Depending on the choice of material parameters and soliton
oy 3 velocity, Eq.(4.30 may have one or more real roots, leading
2 53 to a region where a soliton solution exists. Clearly, when
ﬁ 5o 40 ) there are no dopant atomsg€0), then the only possible
4 e root isk=V.
& 20 Next we consider how changes in the density of the dop-
ant atoms lead to changes in the soliton structure. We begin
with the case when the atomic transition frequency is pre-

cisely at the band edge. As the dopant density is increased to
7=5x10'° cm~3 the small flat region in the peak intensity
o/8 in Fig. 7(a) of the solution becomes more pronounced and
evolves into the dip seen in Fig(hj. As the dopant density
FIG. 7. Shown is the peak intensitgolid line) and pulse width is further increased thg peak mtenslty Vamshes over a Smf”‘“
(dotted ling as a function of the detuning from the upper band edgefreque_ncy_ range, causing the SOIL{UO” to %pllt._\éVe show this
for (@ 7=10%cm3, (b)) »=5x10%cm™3 and (¢ 7% effect in Fig. 7c) for a dopant densityy=10'® cm™3. As can
=108 cm 3. The detuning parameté¥ 3>0 corresponds to a de- be seen, there is a soliton solution between 0.006384
tuning inside the band gap wheredig<0 corresponds to a detun- <<0.000 817, and the solution vanishes at either end point of
ing outside the photonic band gap. Here the atomic transition frethis frequency interval. In addition the soliton disappears for
quencyw,,=1+ B is assumed to be at the upper band edge and th§< —0.000 946 3. For the case when the atomic transition
other material parameters are chosen As0.1, €=3, u  frequency is placed just below the upper band edgefor
=10* (esu),V=0.0079, anch, =10"° (esu). =10 cm~3 we see from Fig. &) there are no dips in the
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FIG. 8. Plotted is the peak intensitgolid line) and pulse width FIG. 9. Plotted is the peak intensitgolid line) and pulse width
(dotted ling as a function of the detuning 8 from the upper band (dotted ling of soliton solution when the atomic transition fre-
edge, when the atomic transition frequency is chosen to be slightlguency is slightly outside the band gag,= 1+ 1.00013. (a) For a
below the upper band edge and inside the ggp=1+0.999. (a)  density =10 cm™3 and (b) for =10 cm™3. All other param-
For a densityy=10' cm™3 and (b) for =10 cm™3. All other  eters are the same as in Fig. 7.
parameters are the same as in Fig. 7.

=10' cm3. Here we define the atomic transition frequency
aswp,=1+B—56+A, whereéis fixed at some value antl

solution. However, when the density is increased 70 . . :
y o represents the atomic detuning ¥ 0 shifts the frequency

=10' cm™3, there is a significant change in the solution _ . >
[see Fig. &)]. Similar effects occur when the transition fre- Cutside the band gap region and<0, inside the band gap
quency is slightly outside the band gdpee Fig. @)]. Thg peak intensity gnd.pulse width as afuncyon of the de-
Clearly the atomic transition frequency as well as the dopantUNing4 are shown in Fig. 1@). Clearly, the soliton param-
density together have a significant effect on the nature of th§!€rS change very dramatically arouke-0 for a small shift
SIT-gap solution. For the pure gap soliton there are only twd" A- This suggests that the soliton characteristics can be
free parameters\(,5) describing the solution. For the SIT- controllled externally by an gpplled static electric field. SoI|_—
gap solution the atomic detuning frequency and dopant derfon 92ting and control in this manner may be very useful in
sity are degrees of freedom leading to a much richer famil)ppt'caI telecommunications and optical computing. _In Fig.
of soliton solutions. 11(a) the results are shown when the average soliton fre-

So far we have fixed the atomic transition frequency, andiuency is placed inside the band gap=0.001). The varia-
then varied the soliton average frequency by changing th&on in soliton peak intensity and pulse width requires a
laser frequency. Another situation with interesting practicallarger change i\ values and the variation is weaker com-
applications arises when the average soliton frequency ipared with the band-edge casé=(0). In addition the
fixed and the atomic detuning frequenéy is varied. This change in the solution now appears more on the negative
can be accomplished by applying a static electric field acrosside of A. As before, the atomic density has an important
the medium and Stark shifting the atomic transition fre-effect on the results.

guency. Consider first the case whef=0 and 7 When'§=0, as the dopant density is increased, the mini-
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FIG. 10. Plotted is the peak intensifgolid line) and pulse width
(dotted ling as a function of the atomic detuningg from the on
resonance case. Here the detunéigg=0. (a) for =10 cm™
(b) for =10 cm3, (c) »=10' cm™3. All other parameters are
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the same as in Fig. 7.
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FIG. 11. Plotted is the peak intensitgolid line) and pulse width
(dotted line@ as a function of A/ for 8/=0.001. (&) =%
=10'% cm 3 and(b) =9.0x10'” cm 3. All other parameters are
the same as in Fig. 7.

other hand, soliton solutions with phase modulation and dif-
ferent velocity do exist in this quasi-stop-band for the same
atomic density. This fixed velocity stop-band effect disap-
pears when the dopant density is loweredste 10 cm ™3
[Fig. 10@]. When $=0.001 and7=9.0x10 cm3 we
show in Fig. 11b) that the increase of the dopant density has
a stronger effect on the soliton parameters than in Fige)11
In particular, the minimum point of the intensity is closer to
zero. Further increase of the dopant density eventually splits
the solution into two regions as shown in Fig.(@0 In all
cases the choice of dopant density and the value of the av-
erage soliton frequency have a significant effect on the soli-
ton parameters, as the atomic transition frequency is varied.
These results underscore the high degree of tunability of soli-
ton properties, in the doped PBG, by means of an external
electric field.

In the illustrations given above, it was assumed that the

mum point in the intensity approaches the axis and at somge|ocity is chosen such that the phase modulaiten0. This

density crosses it. In Fig. 1€ we show the results fop

assumption facilitated a simple analytical treatment of soli-

=10""cm™>. There is no soliton solution in the range ton properties. As phase modulation is introduced the soliton

0.000 127 ¥$<0.002 461, at velocity/=0.0079. On the

velocity deviates from the special value ofv
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=u/Q"hn_ and a new family of soliton solutions equations take the formo=—(u%)ew and W
emerges for each choice ¥t We may considey=0 as a  — (12/)ev.

special case from which more general solutions are obtained These equations can be mapped onto the standard type of
perturbatively with smalb¢/Jt and small deviations in ve- . . _ —
locity. This special case facilitates the analytical treatment OP loch ~ equations by _defining R=2v3 8_/h and v

inhomogeneous line broadening and the pulse area theorem2v3v/u, then we have = —Rw andw=Ru.
as we discuss below. The description of more general soli- '[he Bloch vector tlpplngt angle is defined &(x,t)
tons exhibiting phase modulation, however, requires the use S~ .dt'R(x,t") = (2V3u/f) [ .dt e(x,t") =(pulse area).
of numerical methods. . ~ Then we have the solutian= —sin(®) andw= —cos@). In
The population inversiow and the induced polarization e i, w) plane the atoms are initially in their ground state
componentss anduv for the =0 case are — N .
w(—=)=—1 and are subsequently excited as the pulse
propagates through the medium. Finally they return back to

w=—1+ 5 sech(al), (4.3) their ground state. The Bloch vector tipping angle rotates
1+(6ala) through 2r, so that the area of these pulses is & well.
The McCall-Hahn pulse area theorem describes how an
1 arbitrary optical pulse evolves into a pulse area given by an
v=——————3 seclfal)tani(ag), (4.32  integer multiple of 2. Introducing the rescaling/Q"k— x
+
v3 1+(%a/a) in Eq. (4.7) we obtain
1  ué,la de(x,t) de(x,t)
- _rra- + + 1,82))=0, 4.3
u 73 1+ (8,/a)? sechjal). (4.33 P o (v (X,t,8,)) (4.39

where the() bracket in Eq.(4.39 represents the spectral

Sincev can be written as (¢, 8,) =f(5,)v(£,0) we may use : i e
the factorization method to obtain the solution when inhomo2V€"29ing over the inhomogeneously broadened atomic line.

geneous line broadening is taken into consideration. In parThe Bloch equations can be expressed as

ticular,

M S 4.4
1 E__ al» (4.40
f(ﬁa):m. (434) &U Mz B

— =0,Uu— ——eWw. (4.4)

We define gt & A

" Integrating Eq.(4.39 over the the time of the pulse and
Ilzf 9(8,— 82)1(5,)d(8,) (4.35 multiplying by 2vV3u/#f, we obtain

JA(X) 2V3uny (7T
and x  h f_m<v(x,t,5a))dt, (4.42
.= - 5.0(8 — 8.)f(5.)d(8,), 43 where the pulse area is definedf&(x) = ®(x,T). The upper
2 f_oc a0(0a~ 0a)1(2)d(20) (4.39 limit T is large enough for the envelopéx,t) to be effec-

tively zero. For a time interval >t>T, the second term in
whereg(6,— 8,) is the probability distribution of the inho- EQ.(4.41) is negligible, whereél, marks the end of the pulse.
mogeneously broadened energy levels. Then(EQ1) must ~ Then we obtain a solution(Tg,x,d;) = —v sin(5,t). Also
be replaced by from Eq. (4.40 v=—(1/5,)(dulat). Using these solutions
in Eq. (4.42 we obtain

a2 I,
——=a+—7 (4.37 JA(X) 2V3um (= sin( 5,t)
2V2 Il IX = ﬁ f g(5a)v(xyt,5a) 5 : d(6a)-
o A
and Eq.(4.23 replaced by (4.43
2 Since the incoherent relaxation times are assumed to be in-
a?r= 12 (4.3g finite in this model we can take the limit that—. Then
h sin(,t)/ 8, acts as a delta function and the area theorem be-
comes

Here, 7=Q"k/V—1. In the sharp-line limifwheng= &(5,

— 8,) is a delta functiohwe recover the previous solution. JA(X) 2V3unm _ pqm )
SIT solitons in ordinary vacuum satisfy the well known 55— 7 9(0)0(0X,To)==—==—g(0)sin A(x).

McCall-Hahn pulse area theord®]. A similar area theorem (4.44

holds for the doped Bragg grating. This can be seen by con-

sidering the on resonance case. ThenO and the Bloch The general solution is given by
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C. Solitary wave solution in the presence of damping
and linear loss/gain

In obtaining a solitary wave solution in the preceding sec-

As in the case of ordinary vacuum, this area theorem showsgon, it was assumed that the pulse duratiogT,,T,, so
that optical pulses with arbitrary pulse areas will evolve intothat no damping occurs for the duration of the pulse. In this

pulses with areas that are multiples ofr Zor which
dA(X)/9x=0.

B. Solitary waves in a linear Bragg grating
doped with resonance two-level atoms

In some cases, it is possible that the doped PBG materigl?
exhibits negligible nonresonant Kerr response. For examplén

in semiconductor materials such as AlGaAs, the Kerr coef
ficient changes sign between 0.8 and 4. By operating
close to the zero value, Kerr interaction may then be ne
glected. Whem, =0 Eqs.(4.21)—(4.24) take the form

VZ

azzw(m 75,), (4.46
30"a
~ v @4
b o MM
T(a +5a)—T, (448)
2 2
A2=3—M2 a2+§5ada . (4.49

Here, the phase parameteris directly determined by Eg.
(4.47) and is nonzero for any velocity and detuning. From
Egs. (4.46 and (4.48 we obtain the same cubic equation
(4.26 as in the SIT-gap solution for a given soliton velocity
V. The above solution is valid when the phase paranteisr

case we sel; ,—». As discussed before, for atoms doped
in a solid material the lifetime of the upper state is on the
order of ms tous. For pulses with nanosecond to picosecond
durations, we may neglect Ty. On the other hand, the
dipole-dephasing tim&, can be on the order of nanoseconds
picoseconds. One possible way to proldigs to cool the
aterial to liquid Hé temperatures. If the pulse duration is
comparable to the dephasing tirfg, the Bloch equation
does not allow a shape preserving pulse. Some other mecha-
nism is needed to compensate this decoherence. In this sec-
tion we demonstrate the existence of solitary wave solutions,
in the presence of linear loss/gain of the host medium and
incoherent pumping of the medium. We consider a model
with nonresonant Kerr nonlinearity in which the field is
tuned close to the band edge. For illustration, we consider
the on resonance casé,&0) and ¢=0. Thenu=0 and
setting the phasé=0, in Egs.(4.13—(4.17) we obtain

”n

Wé—as+3n,_83=0, (4.53
—Té+Fs+nU=O, (4.54
2
. Mo v
v ?SW T—z, (4.53
~— 12
WZ%sv (4.56

much less than unity. This is achieved when the frequencfrquation(4.53 is just the nonlinear Schdinger equation

detuningdis close to the critical detuning where the solution
vanishes.

We illustrate the solution using the following material pa-
rametersu =10 1° (esu),»=10° cm 3, andg=0.1. Con-
sider a soliton velocity o/=0.02. In this case the soliton
vanishes around= —0.000 273 44 fok=0.0221.

The atomic Bloch vector components, v, andu are
given by

— 67A? 2
——1+ Fy S€C (af), (4.50
TAa
v=—7tank(a§)sechja§), (4.5
ars, A "a?
u=—7A sechjag)—; Tad—T sechi(a?).
(4.52

Clearly the atomic Bloch vector has a structure similar to

that of SIT in a uniform Kerr medium. In, the contribution
proportional to sechis entirely due to the GVD effect. In
this sense the role of the Kerr effect is replaced here by th
GVD.

which has the solutios = A sechf{) with pulse width

= _2a Y 4.5
a= Q// ( . 7)
and amplitude
A= \/—Q” 2 4.5
I ETAVA (4.58

Insertingv from Eq. (4.54) in Eq. (4.56 we obtain
{ - ¢ 12 .
J W({')dé”:f %(Tss—rsz)dé”. (4.59

The left hand side can easily be integrated using the initial
conditionw(—«)=w;, and the right hand side can be inte-
grated using the envelope functierfound above:

67A? 2

12I'A?
+ h sech(al)—

nha

12I'A
nha

W({)=wWip—

tanha?).
(4.60

e
Equation(4.54) yields the atomic polarization
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TaA
v=— T sechial)tanhal)—T' A sechial). (4.61)

Inserting Eqgs.(4.60 and (4.61) into Eqg. (4.55 and then
equating terms proportional to sech, sech tanh and®seeh
obtain the following set of conditions:

ra? wiwy, u?12rA> T
& + i +m, (4.62
3u?7A2
ra?==, (4.63
12l u2A2  ra
(4.69

Fa=——*1,

Combining Eqs(4.63 and (4.64 we obtain the relation

(4.695

T

3+ —|=0
T, =0

From Eq.(4.65 there are two possible solutions=0 and
=—3I'T,. These two values for yield two distinct soli-
tary wave solutions.

When =0, Eq.(4.64 yields the amplitude

P (4.66
2V3pu .
and Eq.(4.62 yields the inverse pulse width
2
_pWyE 1
=T T (4.67

We can see from Eq.(4.66 that the pulse area is
(2V3ulh)fe({)d¢{=m. The amplitudes obtained from Eq.
(4.58 and Eq.(4.66) are consistent provided that the veloc-

ity
2/1/ Q//
N

(4.68

f

Sincer=(Q"k/V—1)=0, it follows thatk=V/Q". UsingV

from Eq. (4.68 we obtain
1
V Q//nL'

Equation (4.57) gives the pulse width which can be ex-
pressed, using Eq$4.68 and (4.69, as

V_Z,u

o

(4.69

R

(4.70

a

Sincea was already determined from E@.67) consistency
requires that the initial inversion is given by

_Aar N
_ﬂhnL

hl

—. 4.71)
77,U~2T2

Win
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In other words, the incoherent pumping has to be chosen to
satisfy the condition4.71). Let us consider a numerical ex-
ample.I' is related to the linear absorption coefficient by the
relationT = €;/4e, wheree; is the imaginary part of the di-
electric constant and is the real part of the dielectric
constant. In the literature the linear absorption is defined
through the linear absorption coefficient=(w/c)Im x
in units of cnm . With this definitionT"= 10" %a/4e, where
we assumed thab=10" s, Consider an erbium doped
fiber grating. The material parameters are approximately
given as u=10 2! (esu), n_.=10 1 (esu), T,=0.1 ps,
7=10"%cm™3, and =10 % cm ¥ Then we require that
Win:O'Ol'

In the limit whenT,—o in a medium with linear loss
(I'>0), the condition(4.71) reduces to

4r
~phng’

Win (4-72)
Such an initial population can be prepared by incoherent
pumping of the atoms provided that the material parameters
satisfy the inequality”"<# »n /4. In this case, the popula-
tion inversion can be written as

W({)=—wptaniag). 4.73

An alternative solution is possible whern=—3I'T,. In
this casek=(V/Q")(1—-3I'T,). From Eq.(4.63 the ampli-
tude is given by

2,52
2:ﬁa

2 -

3 (4.74)

For this solution, the pulse area is equal te rather thans.
Demanding the consistency of E¢4.74) and(4.58 yields a
velocity

M QII

) n’

Y (4.79

which is precisely one-half of the velocity of the=0 soli-
ton. The soliton wave vector is given by

2
)72
k= \/m (1-3I'Ty) (4.7
and the inverse pulse width follows from E@.57):
2M2 1“2 )
=77, (—Zﬁan(l—BFTz) . 4.77
On the other hand, E¢4.62) yields
2 \/( 2 )2 1 [ pudw, 1
a=——+ —| + = -—.
3T, 3T, 3T, r T,
(4.78

In this case, the consistency of E¢$.77) and(4.78 leads to
a more complicated relation between the material parameters
and the incoherent pumping:
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3T,I ZMZ w? 2 \2 the effects of inhomogeneous line broadening of the dopant
Win=—7%73 5—(1-3TTy)%+ —— atoms. For dopant atoms embedded in the solid fraction of
nus [hon 285 3T, the material, random Stark shifts of the excited energy levels

212 1 will arise from the local electric fields of the crystal. For real
- _) +—|. 4.79 impurity atoms such as erbium, there are many atomic tran-

3T,/ 3T; sitions close to each other in frequency. It is important to

generalize our two-level model to dopant atoms with several
V. DISCUSSION AND CONCLUSIONS closely spaced excited levels for comparison with experi-
ments. Another useful generalization is to the case of elec-
We have shown the existence of self-induced transparronic excitations in a semiconductor host material. In semi-
ency solitary waves in a one-dimensional PBG doped withonductors, the bound excitations can be modeled as two-
resonant two-level atoms. A rich variety of soliton solutions|eye| systems which move with the optical pulse.
are possible depending where the incident light frequency is |n this paper we have considered only a one-dimensional
tuned relative to the photonic band edges and the nonlinejeriodic structure. In a real three-dimensional PBG material,
response of the host medium. Specifically we demonstrateglansverse propagation effects must be included to describe
that near the band edge, there exist a family of solutions thatnite energy soliton pulses of finite extent in all spatial di-
is simultaneously a gap soliton as well as a self-inducegnensions. From an experimental point of view it is important
transparency soliton. These solutions depend strongly on thg understand the stability of SIT-gap solitons with respect to
atomic transition frequency as well as the dopant concentrasmall perturbations. It is also useful to study pulse propaga-
tion. Analytical solutions are possible for a particular solitontion in a finite resonant medium, how to excite these solitons
VelOCity for which SE|f-phase modulation effects vanish. |nin a finite medium, and whether an arbitrary pu|Se evolves
general, it is necessary to use numerical methods to obtaifito a stable SIT-gap soliton.
solutions valid for general velocities and general phase |tis our hope that our simple model calculations will mo-
modulation effects. The near band-edge approximation protvate more detailed numerical studies of this nature which
vides a valuable Starting point for the description of SO|it0nSexp|ore the full parameter space of soliton solutions in a
deeper inside the photonic band gaps. PBG. This may in turn lead to the application of doped PBG
We have restricted our attention to a number of speciamaterials for all-optical switching devices and fiber intercon-
and illustrative cases where simple analytical solutions ar@ectors for pulse reshaping and amplification in all-optical
possible. We believe that these illustrations provide an introcommunication systems.
duction to the rich variety of soliton solutions which arise in
a doped photonic band gap material. The most striking fea-
ture of the near band-edge solitons is their very high degree ACKNOWLEDGMENTS
of tunability through small changes in the atomic transition
frequencies and atomic densities. In providing these illustra- This work was supported in part by Photonics Research,
tions, we have made a number of idealizations in our modeDntario, the New Energy and Industrial Technology Devel-
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