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The degree of chaos in the simplest interacting boson m@B#&-1) is compared with what we call the
“dynamical symmetry content” of the system. The latter is represented by the information entropy of the
eigenfunctions with respect to bases associated with dynamical symmetries of the IBM-1, and expresses thus
the localization of actual eigenfunctions in these symmetry bases. The wave-function entropy is shown to be a
sensitive tool for monitoring the processes of a single dynamical symmetry breaking or transitions between two
and more symmetries. For the IBM-1 Hamiltonians studied here, the known features related to chaos, namely,
the dependence of chaotic measures on the Hamiltonian parargpisition in the Casten triangland on the
angular momentum, turn out to be correlated with the behavior of the wave-function entropy.
[S1063-651%98)03107-9

PACS numbdps): 05.45+hb, 21.60.Fw

I. INTRODUCTION A system with a dynamical grous has a dynamical
symmetry if its Hamiltonian can be written exclusively in
Although fundamental quantum-mechanical equations oferms of Casimir operators of the subgroups involved in the
motion are about 70 years old, the task of understanding thehain
whole variety of phenomena “encoded” in them has not
been completed yet. One of the most interesting problems of GDG1D:--DGD--- DGy, )
this sort is to find quantum signatures of the order-to-chaos
transition: If the dynamics of a classical system is changedwhich specifies the given dynamical symmetry. Note that
by varying some parameters, from the regular to chaotic reenly the smallest embedded group,, is an ordinary sym-
gime, what happens on the level of the system’s quanturmetry group. The systems with dynamical symmetries have
counterpart? Much insight into the classical-quantum corretwo rather exclusive properties: First, their eigenspectra and
spondence has been gained in connection with this questiaorresponding eigenfunctions can be found analyticg8ly
in recent year$1], but many problems still remain open.  and, second, they are integrabl8—11. However, also
It is well known that the order or chaos signatures can bé&nown is that, in turn, integrabilitgloes nothave to always
found in both the factors that determine quantum dynamicgouple with dynamical symmetries, which means that the
of any bound system, i.e., in both discrete setéipEnergy link of the present concept of symmetry to chaos is still
eigenvalues andi) corresponding eigenfunctions. The tran- imperfect.
sition to chaos in the classical limit was found to set up In spite of the above-mentioned numerous signatures of
specific short- and long-range correlations in the energyuantum chaos found in recent years, very little has been
spectrum and a regime of Gaussian overlaps of the energgaid about the connection of the quantum order-to-chaos
eigenfunctions with any probe stdt2]. Besides these prop- transition with the process of dynamical symmetry breaking.
erties, inherently described by random-matrix the@8y, In particular, the question should be addressed of “to what
also certain spatial and temporal properties of wave funcextent” a concrete dynamical symmetry must be broken to
tions(such as nodal-line patterns, scars, wave-packet dynanmnduce the transition to chaq41]. An obvious problem is
ics, etc) were shown to be affected by the order-to-chaosthat whereas dynamical symmetand integrability follows
transition[1]. a simple Boolean logic—the system either has it or not—the
Regularity and chaos are sometimes thought as limitingorder-to-chaos transition is a rather smooth affair: Perturba-
manifestations of various degrees of symmetry contained itions of an integrable Hamiltonian usually do not immedi-
the systen{4]. Indeed, regularity is obviously related to in- ately bring the system to a completely chaotic regime, but
tegrability (integrable systems are always totally reguiard  make it pass some transitional region. The explanation of
the latter, since it ensures a number of compatible integralthis behavior in the classical case was the main goal of the
of motion, is nothing else than “a kind of symmetry.” When famous Kolmogorov-Arnold-Mose{KAM) theorem [1].
dealing with symmetries, we do not have in mind exact sym-However, whatn the dynamical symmetry languagentrols
metries that the system can exhibit, but rather the generathe degree of quantum chaos?
ized, so-called dynamical symmetrigs—9|. Although dy- In this paper we would like to show that not only the
namical symmetries are defined only for algebraic systemdegree of chaos inherent in the system, but also its “dynami-
(i.e., systems associated with a dynamical gr@pmvhose cal symmetry content” can be measured by a continuous
representations define the system’s Hilbert space and whosgiantity. Our approach is based on the fact that any particu-
generator algebra induces all the relevant operators on thlar dynamical symmetry is associated with a certain basis
space, their role in physics is probably quite general. a subclass of bases in generdlhis basis, obtained by the
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TABLE I. Definitions of the IBM-1 operators in the convention used in this work.

N=s's+d"-d ng=d".d
L=\10d"xd]® Q,=[d"xs+s"xd]@+ x[d"xd]?
Pl=ss'—e'?d".d"

Ci[U(5)]=ng C[U(5)]=ng(ng+4)
C[SO(6)=N(N+4)-PIP, CISU@RN=2Q 712 Q- 7t 5L-L
Co[SO(5)]=ng(ng+3)—(d'-dh)(d-d) Co[SO(3)=L-L

simultaneous diagonalization of Casimir operators of allthe 36 bilinear products of the boson creation and annihila-

groups in the dynamical symmetry chain, becomes a refetion operators: s's, d'd,, d's, and s'd, (mm’=

ence frame in the system’s Hilbert space. The degree of lo~2,... +2). The Hamiltonian, built only from these prod-

calization of actual eigenstates in the reference basis, i.e., thets, is further made invariant under time reversal and rota-

degree of overlap of the two bases then represents the desirgdns by allowing for only the Hermitian terms with zero

continuous measure which tells us “how close” to the giventotal angular momentum. Carrier spaces of irreducible repre-

integrable case the actual system is. In this logic, chaos isentations of the dynamical group, each of them correspond-

smoothly established as the degree of eigenstate localizatiang to a fixed boson numbe, naturally coincide with pos-

in the bases corresponding to all possible dynamical symmesible quantum Hilbert spaces ascribed to the model. If the

tries of the system decreases. boson operators in the IBM-1 Hamiltonian are rewritten in a
To illustrate these general ideas, we invoke the simplestonvenient coordinate representation, the model turns out to

version(IBM-1) of the interacting boson modgl12], which  describe rotations and quadrupole vibrations of a specific

is known to efficiently describe basic aspects of collectivequantum “drop.”

motion in atomic nuclei. Apart from the advantage that the

IBM group structure is explicitly known, the model also sets B. Dynamical symmetries and integrability

a field for practical applications of our investigations in re- ) _ i

alistic systems. To quantify the eigenstate localization of a P0Ssible dynamical symmetries of the [BM-1 are found

particular transitional IBM-1 Hamiltonian in a given dynami- PY constructing various subgroup chains of the dynamical

cal symmetry basis, we use the so-called information entrop@"™ouP U6), all ending at the angular-momentum group

of wave functions. It will be shown that the entropy analysisSO(3) generated by the productsi™<d]{" (standard defi-

of eigenfunctions enables one to find a counterpart of alhitions [b/xB; 10 = (Iml'm’' [\ )b B/ and By,

order-chaos properties of the IBM-1 in terms of the known:(_l)Hmem are useyl which must remain the symmetry

dynamical symmetries associated with this model. group of the Hamiltonian. So, one finds the following three
Here is the plan of the paper: Properties of the particulaghains[6,12:

form of the IBM-1 used are discussed in Sec. I, while gen-

eral features of the wave-function entropy are described in U(6)DU(5>S0Q5>SA3) (1),

Sec. lll. In Sec. IV we present results of the entropy calcu-

lations for various transitional IBM-1 Hamiltonians in de- U(6)DSU(3)DSA3) (), 2
pendence on the angular momentum and boson number, and

show their relation to the chaotic properties of the model. U(6)>80(6)>SA5)DS0Q(3) (lIN).

Section V provides a few concluding remarks. o ]
Note that the concrete realization of some groups in(2qg.

is not unique because of phase ambiguities of the boson op-
erators. We will come to that point later.

A. Dynamical group A possible set of Casimir operatots[G] of the first

As already indicated above, in this work we will study the and/or second orderi1 and/or 2, respectivelyof the
wave-function entropy within the interacting boson model-1.9roups G involved in the chaing2) is listed in Table |
The IBM-1 was introduced in 1974 by Arima and lachello [dots denote the scalar product defined B B™
with the aim to describe collective nuclear excitations in an=EM(—1)MA§j)B(}L]. The U6) invariants were skipped be-
algebraic frameworksee references in Ref$,12)) and has cause, as already mentioned above, within the IBM-1 one
soon since evolved into more sophisticated and powerful boalways takes into account only one finite-dimensional sub-
son modeld6]. Because we do not make a specific link to space of the total Hilbert space corresponding to a fixed
nuclear physics her@lthough some of the results may turn (sharp boson numbeN, where the W6) Casimir operators
out applicable thepe we use the original and simplest ver- yield just ordinary numbers. The most general IBM-1 Hamil-
sion of the IBM. tonian can be written as a linear superpositigveighted

The IBM-1 is formulated as a model describing one- andsum of the invariants from Table | and, as such, it has six
two-body interactions of two kinds of bosons, nanseahdd free parameters—the weights. If all the weights are zero ex-
bosons according to their spihs 0 and 2, respectively. Be- cept for those standing at invariants of only one group chain
cause the interactions conserve the total number of bdspns in Eq. (2), the Hamiltonian has the dynamical symmetry de-
the dynamical group of the model is the@8) generated by scribed by the given chain. Hereafter, we will distinguish

1. MODEL
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these dynamical symmetries by the name of the correspon@re to be systematically scanned over the whole parameter
ing largest subgroup, i.e., by labelg3), SU@3), or SA6), space. Nevertheless, it is often enough to select a certain
respectively. These limits correspond to vibrational, rota-subset of Hamiltonians out of the complete set generated by
tional, andy-unstable nuclej6,12]. the dynamical group. Usually a two-dimensional manifold is
The above-specified symmetries do not, however, exhauspread in the six-dimensional parameter space so that the
all possible dynamical symmetries of the model. Namely,U(5), SU3), and S@6) limits are reached for some particu-
phase ambiguities in the definition of boson operators lead ttar points. The manifold is then mapped onto the so-called
two additional symmetries connected with the following Casten triangle, whose vertices correspond to these limits.

chains[6,12-19: Chaotic properties of a specific two-parameter set of
IBM-1 Hamiltonians were thoroughly studied by Alhassid,
U(6)DSU(3)*DSA(3) (II*), (3  Whelan, and Novoselsky16—20. As we follow the cited
works in order to relate the order or chaos signatures to the
U(6)DSQ(6)*DSO5)DSA3) (Il*). dynamical symmetry content, we use the same parametriza-

tion of the IBM-1 Hamiltonian. It is given by the following
The group SB)* is made from the “standard” S(B) by  formula(see Table)t
the transition ¢ ,d.)—(—d/ ,—dy) (which is equivalent 1-y
to taking y=+7/2 instead of—/7/2 in @2[5U(3Z|, see AN m0= M= 1 Qu Qy- (4)
Table ) and S@6)* is made from S@6) by (d;,dm)ﬂ
(—id;rn,iam) (equivalent to ¢=0 instead of 7 in Here, two control parameterg and y change within the
C[SO(B)]). The SU3)* and SA6)* Casimir operators can bounds G<7<1 and — V712<x=<0. If 7=1, the Hamil-
be written as linear superpositions of the Casimir operatoréonian (4) has the W5) symmetry, while with =0 the
in Table I1[15]. Therefore the Hamiltonian has dynamical Hamiltonian has the S(3) symmetry fory=— J7/2 or the
symmetry SW3)* (1I*) or SQ6)* (llI*) if some of the SO6) symmetry fory=0. For other parameter values, the
weights in its expansion have certain ratios. In particulatHamiltonian has no dynamical symmetry, i.e., it is transi-
[15], the SU3)* dynamical symmetry sets in if ratios of the tional between two or more limits.
coefficients at Casimir operatosee Table )l C;[U(5)],  The statements concluding the last paragraph can be par-
CAUS, CIS0(0], TISOE) and Csu) we e sel st e loung expansion of 4
2:2:4:—6:—1, whereas the S®)* dynamical symmetry '
requires the ratios N+2):—4:— 1:arbitrary:0.

Since all phase conventions must fulfill restrictions fol- b _|._ 1__77 LJF 2_)(2 C [U(5)]
lowing from rotational and time-reversal invariance of the N ™| 77N J7. 7 1
resulting Hamiltonian, the above five chains most probably
represent a complete set of the IBM-1 exact dynamical sym- 1-5( x  2x%\.
metries. This is not so, however, as far as the integrability of N EJF N2 CLUG)]
the model is concerned. The IBM-1 is, in fact, a straightfor-
ward e_xam_ple _showing_ Fhat although a dy_nam_ical_ symmetry 1— 7 2x\ .
really implies integrability, the opposite implicatiofpro- —— 1+ —=|C,[SA(6)]
posed in Ref[9] but soon abandonefll]) does not, in N V7
general, hold. To see that, consider the IBM-1 Hamiltonian 2
which is transitional between the(®) and SA6) dynamical ﬂ 3_X XA

! . lynan | L e+ 5| GIsa5)]
symmetries, but has no admixture of the (SUinvariant. N J7.0 7
Neither the W5) nor the S@6) invariant is an integral of
motion on the W5)-SQ(6) transition, but the Hamiltonian 1-7 x -
itself, which is always a trivial commuting integral of mo- + Tﬁ C[SU3)]
tion, becomes independent from the other integrals, which
ensures that the integrability is preserved if the (5O -9 x  x%\.
generated dynamical symmetry is taken into accou@f17). N ﬁ + 1 C[SQ3)]. 5)

This is a special case of the self-evident rule that nonintegra-
bility does not appear if the dynamical symmetry breaking
destroys just one integral of motiddi1]. For instance, if
apart from the chaifl) alsoGDG;D---DG/D--- DGy

What we further see from this expansion is that while the
Hamiltonians with y=0 or X=—\/7/2 (» varying are

e : ; : ly U5)-SQ(6) or U(5)-SU(3) transitional, respectively
(differing only by theith subgroupis a valid group reduc- PUYr€Y _ . HVE
tion, the transition between these two dynamical symmetriel€Y contain no admixture of the &) or SA6) Casimir
is always totally integrable, although having no dynamicalOPerators, respectivelythe »=0 (x varying case represents

symmetry in the above sense. the SL_{3)-SO(6) transition v_vit_h some amount of the(b)
“impurity” (see a schematic illustration in Fig).1

The Hamiltonian(4)=(5) reaches neither the $8)* nor
the SA6)* symmetry for any values#,x) [15]. However,
The six free parameters of the most general IBM-1one could easily write another two-dimensional parametriza-
Hamiltonian is a too large number if features of the modeltion that would pass the SB)* and/or SQ6)* dynamical

C. Casten triangle
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FIG. 1. Mapping of the §,x)-parameter space of EG}) onto a
triangle (left) and its relation to an ideal Casten trianghight).
Hamiltonians with nonstandard dynamical symmetii@sare ab-
sent from the present parametrization.
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functionH(p;=0,q;), looks as follows(cf. Ref.[21]):

B+ g

XZ
(1—77)(1—51)

2
B3\/1- '87 cog3y).

(6)

This function is shown, for some particulan,(y) values, in

Fig. 2. In agreement with a general rule, one sees that the
U(5), SU@S), and S@6) limits, correspond to, respectively,
spherical 3=0, y arbitrary, deformed axially symmetric
(B#0, y=0), and deformed %-soft” (B+0, v arbitrary
shapes at the minimum potential energy. A “phase transi-
tion” [12] from deformed to spherical shape can be observed

5
V(n,x)(ﬁl’)/):{z 77_2

+

2 -
\/7( )X

symmetries somewhere in the middle of the Casten triangléor 7=4/5, where the potential develops a minimum/at

[more precisely, the S3)* can indeed lie in the middle, but
the S@6)* can only be on the (5)-SO6) edge[14,15 ].

=0. Although all features of the IBM-1 classical limit cer-
tainly cannot be derived from the potential alotienetic

One therefore has to be very careful in generalizing resultéerms of the Hamilton function also have a rather specific

obtained within a single parametrization. If, as an exampleform), the »=4/5 value can be, within some plausible sim-
the SU3)* and/or S@6)* dynamical symmetries are, in the plification, seen as a border between various classical modes
special parametrization, reached for some intermediate vapf the model(a more sophisticated approach was recently
ues of the control parameters, the Hamiltonian would unexdescribed in Refl22]).

pectedly receive quite regular properties in a seemingly tran-
sitional region. This behavior, however, would never be
encountered in an ordinary parametrization.

We conclude this section with a few remarks on the clas-
sical analog of the quantal Hamiltonigd). As argued in The Shannon information entropy of wave functi¢88—
Refs.[19,17, the on the first view incomprehensible factor 29,15 is a natural measure of the localization of wave func-
1N in Eq. (4) is a consequence of the quantum-classications in a given basis. The wave-function entrgpg we will
correspondence. The dynamics of the IBM-1 classical counbriefly call it) of a state|) with respect to the basi$
terpart is reached foN—co (for instance, coherent states ={|i®}"_, (n is the dimension of the Hilbert spacis de-
stop overlapping in this limjtafter appropriate rescaling of fined by the following formula:
the dynamical variables and Hamiltonian parameters. It is
clear that matrix elements of the quadratic Casimir invariants
[having theO(N?) behaviol completely dominate the ones
of linear invariants| ~O(N)] in the N—o limit, which
means that quantum IBM-1 Hamiltpnians differing only in It is minimum (WZ=0) if |#) coincides with one of the
linear terms have all the same classical analog. This CommMa. . o ctors whidlje the maximunW6,= Inn) is reached if
ambiguity of the quantum-to-classical transition would be : ' . . . .
very unpleasant here, because for chaos the classical beh \‘ﬁ 2|s spread gnlformly_ among all basis fsta.tes, Le., if
ior is constituent. Fortunately, the difficulty can be bypasse a¢i| =1h. Th? intermediate en_tropy valu_es indicate a par-
by the 1N damping of the quadratic terms. In fact, such atlal fragmentation of the statis) in the basis5.
modified Hamiltonian is not a “textbook” IBM-1 Hamil-

tonian (it would contain the uneasy operatof\Lif acting in
the general Fock spagebut it does not matter in our case  An apparent question accompanying the use of the wave-
sinceN has always a sharp value. In this modified model, thefunction entropy concerns an appropriate selection of the ref-
sets of eigenvalues and corresponding eigenvectors for vargérence basis. Of course, this selection must issue from the
ous N determine quantum aspects of classically the samehysical aims followed. If effects of some perturbation on

system, similarly as the three-dimensional oscillator statethe system are to be measured, the reference basis will natu-

I1l. WAVE-FUNCTION ENTROPY
A. Definition

n

wy=—3, [ajnlajil,  aj=(i%v).

(7)

B. Reference bases

with finite quantum number& (=n,+ny+n,) all issue
from the unique classical origifwhich the quantum system
imitates in theN—oo limit).

Following the procedure described in Rgf19], one de-
rives the classical Hamiltoniakl (p;,q;) (with i=1,...,5)
corresponding to Eq4). The coordinatesg); can be identi-
fied with the quadrupole-shape variablgsy and Euler
angles, known from the nuclear liquid-drop model, and

rally be the eigenbasis of the unperturbed Hamiltonian. Re-
cent studies of Zelevinsky and co-workg¢29—32 provide

an interesting example. In these works, geshell model
with residual two-body interactions was considered, and
“dissolving” of the actual eigenstates in the shell-model ba-
sis was measured for a system of 12 fermions. It was shown
that for realistic strengths of residual interactions the relative
wave-function entropy of individual states along the spec-

are associated momenta. The classical potential, i.e., theum follows almost exactly the state-density logarithm,
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which allows one to relate the wave-function and thermody-only the eigenbasis is conserved. Also any given dynamical
namic entropies. For bases unrelated to the unperturbesymmetry can be associated with an arbitrary spectrum since
Hamiltonian, however, the entropy was equally large for allthe symmetry itself does not impose any constraints upon the
stateqjust like in the case of too strong residual interactjons way in which the Hamiltonian depends on the associated
indicating the irrelevance of the basis selected. Casimir invariants. A 6)-generated boson Hamiltonian, for

In our case, selection of the reference bases naturally foinstance, with a given dynamical symmetry does not have to
lows from the demand to measure a “similarity” of a given follow the special form assumed in the IBM-1, but could be
general Hamiltonian to the dynamical symmetry limits. As-an arbitrary function of general-order Casimir operators of
sociated with each integrableynamically symmetricsys-  the given group chain. The nongeneric spectral properties of
tem is a set of mutually commuting integrals of motion, various integrable systems, such as the non-Poissonian level
which (in a favorable casedefines a single physically im- spacing distribution recently noticé83] and explained34]
portant basis ofin general a subclass of bases. The basis isin the IBM-1 for a particular S(8) Hamiltonian, e.g., seem
not always unique because the system can allow for buildingp illustrate these matters.
more independent sets of integrals of motion. The IBM-1isa In this work we use the wave-function entropy to quantify
good example: In this case, the dynamical symmetries corthe departure of transitional IBM-1 Hamiltonians in Ed)
tain some missing labels$,12], which means that Casimir from the particular dynamical symmetries of the model. The
operators of any given chain must be supplied by some othdyasess of interest will thus be associated with the lim{&
operators to form a complete set of commuting integrals oand (3) and we will deal with B=U(5), SU@3), SQ®6),
motion[9,11]. For various choices of the additional commut- SU(3)*, and Sd6)* entropies. As pointed out above, the
ing operators one obtains generally different bases. All theslBM-1 dynamical symmetry bases are not unique due to the
are eigenbases of the corresponding dynamical symmetiyegeneracy caused by missing labels, which is a problem
Hamiltonian, and the ambiguity of the basis selection can béhat must be solved first. To do it precisely, one should
seen as resulting from unavoidable spectral degeneracies @valuate each of the above five entropies in all bases allowed
the IBM-1 limits due to the missing labels. Nevertheless, weby the respective symmetry and discuss results with regard to
will see later that in the cases studied these ambiguities aie obtained uncertainty intervals. Nevertheless, it can be
not large enough to paralyze predictions based on a particuhirectly shown that the uncertainties should not be very large
lar choice of the dynamical symmetry basis. in the cases studied because of a relatively low average mul-

It must be emphasized that the constraints on the basis itiplicity of degeneracies. In fact, one has to consider what
the Hilbert space are the only signatures of a particular dyamount of the wave-function amplitudes in a given dynami-
namical symmetryor a particular case of integrabilityin-  cal symmetry basis remains uncertain due to the basis ambi-
deed, as can be easily evidenced, the spectrum correspondiggity. If 100% is assigned to a completely degenerated
to an integrable system can be made arbitrary without chandgdamiltonian and O to a quite nondegenerated one, the fol-
ing integrals of motion(i.e., preserving the integrabilityif lowing quantity can be used to measure this amount:
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TABLE II. Degeneracy factor$qe, from Eg. (8) characterizing  entropy uncertain. However, in the cases studied this uncer-
the uncertainty of the IBM-1 eigenbases in the dynamical symmetrytainty must undoubtedly be very small, and we will neglect it
limits for various boson numbets and angular momenta. Note  in the following.
that for L=0 all the f4q values are equal to 0. There is just one  More serious is another problem: To enable one to com-
L =30 state foN=15. pare average entropies of eigenvector sets with various di-
mensionsn(L,N), it is necessary to develop a proper nor-
malization. As we already pointed out, the maximum entropy
N=15 U(5),SQ6),S0(6)* 1.3% 3.3% _ of a single state in am-dimensional Hilbert space is im

SU(3),SU3)* 4.3% 7.5% _ For n=2, this entropy is shared by both eigenvectors of a
nondiagonal Hamiltonian in the case of the maximum mix-
N=20 U(5),50(6),S06)* 0.7% 2.0% 3.3% ing (equal diagonal elements of the Hamiltoniakor n>2,

SUR),SUR3)* 2.5% 3.6% 7.5% however, the entropy of a set of Hamiltonian eigenstates is
N=25 U5) S06).S06)*  0.4% 11% 2 0% influenced by the orthogonality constraints. To calculate the

maximum average wave-function entropy for 2 orthonor-

L=10 L=20 L=30

SUE),Su3) L.7% 2.3% 3.6% mal states becomes tricky, but there is no doubt that the
result is smaller than In and depends on.
We solve the above problem by adopting the approach of
s néie)g(n&igg_ 1) random-matrix theory3]. The idea is to take a set offixed
o orthonormal vectors in the-dimensional space and to ex-
Fdeg= n(n—1) ' ®) pand them in various orthonormal bases, created by random

rotations of the initial frame. The resulting distribution of the

Here,n{), is the dimension of théth degenerated subspace @Verage entropyv depends om and its average, for in- -
andn is the total dimension. The values b, for various stance, may provide tr_]e des[red normahzauon qu_ant|ty. This
angular-momentumL() subspaces and various boson num-Procedure can be easily realized with the Gaussian or_thogo-
bers (N) are shown in Table II. Note that we have in mind N@l ensembles (GOB [3]. By randomly generating
here only the inherent degeneracy due to missing labels, nfydimensional matrices with the GOE constraints, the above
accidental degeneracies resulting from a special form of théistribution is obtained from values #¥ assigned to the set
Hamiltonian, such as the degeneracy caused by the absen@kn orthonormal eigenvectors.

of the SA5) and S@3) terms in the W5) limit of Eq. (4). It For large dimensions, the GOE averag¢W) o, of the

is evident from Table Il that even in the $8) and SU3)*  entropyW can be expressed explicitly:

limits, which are most degenerated, the uncertainty is still )

relatively small. We therefore do not proceed in the above- (W) ~_ lzifllen(xz)exp( _ K)dx

proposed accurate way, but select a single basis for each GO m Jo 2

limit. Namely, for evaluating the () entropy we used the

standard basig|[N]ngwn,L)} [6,12], while bases for the ~In(0.48M) (10)
other limits were determined by a numerical diagonalization ) o

of the respective Hamiltonian matrices in the standa¢8) U (see also Ref.32]). For smalln, however, serious deviations

representatiofwhich means that the basBs- U(5) were not fror_n this value can be expected due to non-Gaussian distri-
the standard ongs butions of the eigenvector components. We performed a

Monte Carlo simulation whose results are shown in Fig. 3.
The ensemble averag®/)¢og, and the band which contains
90% of theW distribution are both shown in Fig.(& for

To measure the dynamical symmetry content of a giverdimensionsn=2-30. As can be seefiW)gog, iS consider-
transitional IBM-1 HamiltonianH y ,, ), We will average ably lower than Im. The width of the entropy distribution
the wave-function entropy defined in E{) over all eigen- decreases with, which is demonstrated also by the relative

states{la,L>(N,,,,X)}2(:L'1N) (with fixed angular momenturi) rms deviationd of the entropyW from the GOE average in
" Fig. 3(b). In Fig. b), in addition, the coefficienk,, from a

C. Average entropy

of H : o o
(N.7.x) parametrizatioq W) o= In(ayn) is displayed. The conver-
n(L.N) gence ofa, to its asymptotic value from Eq10) is evident.
WE(L,N, 7, x)=W5= LN E WE(L,N, 7x). (9 For any set ofh orthonormal vectors, the average entropy
1 a=1

W5 in a randomly choserbasis B will most probably be
5 _ _ _ close to{W)¢om, (cf. [29-32). It is therefore reasonable to
Here, W,(L,N,7,x) is the single-state wave-function en- normalize the entropy values to the GOE average. We em-
tropy of [a,L),,, - The average entroppV" expresses phasize, however, that the fracti® (W) gog, can be even
how much the whole eigenbasiéor the fixedL) of the  |arger than 1. To be absolutely exact, one should take into
Hamiltonian under study overlaps with the given dynamicalaccount also the fact that the range of probable deviations of
symmetry reference basis. the GOE-normalized entropy from unity dependsrosince
Note that now the problem with degeneracies reappearshe shapes of the entropy distribution for various dimensions
This time it does not concern the reference Hamiltonians, bugiffer. The deviations can be characterized by the probability
the tested HamiltoniaH  ,, ,) Which is at some values of  localized below(or above W5 [see, for instance, the lower
and y also degenerated, leaving the corresponding averagend upper 5% limits displayed in Fig.(&8 as the “GOE
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as to whether the partial influence of several individual sym-
metries on the system’s behavior is really “cumulative” in
such a caséas implicitly assumed in the construction Ry
e or whether one should not take into account only the nearest
= symmetry (i.e., to use the minimum of the five ratio¥
GOE 90 % in_stead ofR). Based_on a good correl_atio_n of the prodRct

with standard chaotic measures, as it will be presented be-
(a) low, we incline to believe that its definition is justified.

a,=exp(<W>s)/n () IV. RESULTS

In their remarkable series of work&8,16,19,20,1] Al-
a=0.482 hassid, Whelan, and Novoselsky mapped the classical and
guantum signatures of chaos associated with the Hamiltonian
(4) in the whole (7, x)-parameter range for various angular
d=(<W> goen— <W>20 )2/ <W o, momenta. As shown in a recent wofk5], the observed
behavior of standard chaotic measures has a counterpart in
2 4 6 B8 10 12 14 16 18 20 22 24 26 28 30 the behavior of the entropy-ratio produRtfrom Eq. (12).

n We review these results in more detdlecs. IV C and IV D
FIG. 3. Quantities characterizing the GOE distribution of the below) and discusgSec. IV B also the role of the boson

average wave-function entropy for dimensions 30 (see texk number'N. Before(Secs. IV A and IV B we Cpnggntrate on
properties of the wave-function entropy of individual states

90%" band). Therefore the GOE distributions of the wave- I SOMe less complex cases.
function entropy can, in principle, induce a kind of metric for
measuring the proximity of a given basis to another one.

A. U(5) symmetry breaking

D. Entropy-ratio product If the value of % goes down from 1, the Hamiltonia(nzt)
) ) ) loses the B) dynamical symmetry. As shown in Sec. Il C,
In the following, we will most often display the entropy the g—0 minimum of the potential6), characteristic for the
ratio [15] U(5) limit (p=1), keeps existing to the limiting value
expWE— 1 =4/5, where a “phase transition” to a deformed shape takes
- (1D place in the classical system. It is therefore interesting to
expW)com—1 look at what happens around this critical value with the
B guantum system. In the quantum case, th®)$ymmetry
Note that the quantitngy, = expW; can be understood as an breaking can be monitored by the wave-function entropy,
effective number of wave-function components of the stateyhich is clearly zero at the (3) vertex, but increases as the
|¢) in the basisB (it changes between 1 amj. An analo-  symmetry is being departed. The averagé)entropy—or,
gous quantity,ngy=expW?, derived from the average en- more precisely, the ratio’® from Eq. (11)—of all states
tropy is some “average’(not the rigorous statistical aver- with angular momenturh =0 is shown for the (B) side of
age effective number of wave-function componentsthe Casten triangle, namely, for &5;=<1, in the left col-
assigned to a given eigenvector set. The fractiorumn of Fig. 4. The two histograms correspond to boson
expW5/ expWygom=Nai @y has a better “contrast” than numbersN= 10 andN=20 (in both cases, the numbarof
the GOE-normalized entropWV>/(W)gom,, but its lower L =0 states is indicated
bound depends on. The quantity in Eq.(11) has both a The average spread of the actual eigenstates in {6¢ U
good contrast and a constart0) lower bound. basis, as shown in the left column of Fig. 4, changes quite
To express simultaneously the average overlap of a givesmoothly—no abrupt transition appears eitherat4/5 or at
eigenbasis with all the reference bases, we introduce theny other value. However, it is not quite so if the ground

B

product of the five entropy ratios from E@L1): state alone is concerned. The ground state is, of course, most
sensitive to changes of the potential minimum. Indeed, the
R=C 5 (12  9round state’s () entropy ratior Y, shown in the middle
B=U(5)... SQB)x two histograms in Fig. 4, changes rapidly around the critical

n value. The squared amplitude modulus corresponding to
whereC is an arbitrary normalization constant. Triviallg,  the admixture of the unperturbed(%) ground state in the
is zero if any of the ratios? vanishes, while if allr®s are  actual ground state is displayed in the right-hand column of
large (=1), R is large, as well. This qualifies the entropy- Fig. 4. It is evident that changes of the ground state become,
ratio productR to decide whether the system is cldse not) in agreement with general expectatigisl2], sharper as the
to any of the five possible dynamical symmetries regardlesboson numbeN increases. These results might turn out in-
of what symmetry it actually is. However, the reasoning isteresting in connection with a recent attempt to attribute a
not as clear ifR is small due to a simultaneous partial sup- critical phase-transitional behavidrotor-vibrato) to low-
pression of more ratios® in Eq. (12). Then a question arises lying collective states in atomic nuclgs5].



394 PAVEL CEJNAR AND JAN JOLIE PRE 58
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FIG. 4. The U5) symmetry breaking in the region G5y=<1 for two boson number&op vs botton. Left: the average (5) entropy
ratio from Eq.(11) for all L=0 states. Middle: the ground state’$83) entropy ratio. Right: the admixture of the(®) ground state in the
real ground state. Points outside the Casten triangle are filled with zeros.

B. U(5)-SU(3) transition fected by a small perturbation are mixtures of unperturbed

The IBM-1 enables one to study not only processes of a
single symmetry breaking, but also transitions between two N=20 L=10 n=121
or more symmetries. The entropy measures connected witl
both the dynamical symmetry bases in play then quantify
breaking of one symmetry and the simultaneous onset of ¢
new symmetry. Here we consider the transition between
U(5) and SU3) limits of the Hamiltonian in Eq(4), namely,
the way fromyn=1 to =0 along they= — \/7/2 edge of the
Casten triangle(see Fig. L The U5) and SU3) wave-
function entropies for individuaL =10 states withN=20
are shown in Fig. Snotice that the orientation of axes is
opposite in both histogramsin accord with the preceding %’
subsection, an average of the single-state entropies gradual's’ SU(3)
increases as the respective dynamical symmetry is left. How 1>
ever, the histograms in Fig. 5 show in more detail the way in
which the symmetry breakdown proceeds: The variable
=1,...,121(=n) enumerates the eigenstatbzs,L)(N,,,'X)
consecutively with the increasing energy. When departing
from a given symmetry, the mixing of states concerns at first
more the medium-energy states than the states on the spectt
tails. This is still valid somewhere midway between the two
symmetries. Nevertheless, the respective entropies kee
growing until a saturation value, roughly equal to the GOE
average, is reached for almost all states except for a few on F|G. 5. The U5) (top) and SU3) (bottom wave-function en-
the tails. tropy of individual L=10 states along the (B)-SU(3) transition

This behavior can be related to general trends followind »=1—0, y=—(7/4)Y4. The state indexx is assigned increas-
from perturbation theory. Eigenstates of a Hamiltonian afingly with the state energy.

)/ exp(Weogn)
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eigenstates. The amplitude of tjth unperturbed stat@vith N=20 [=10 n=121
energy E;) in the ith perturbed statéwhose unperturbed oty T -

energy wask;) is proportional to 1E;—E;| times the mix- 120 T _

ing matrix element. The eigenstate density culmindfes [ 5

models with finite state numberi the middle of the spec- 60 3

trum, which means that in the statistical ca§eandom” |

matrix elements of the perturbatipthe mixing should be 0
maximal there, as well. When the perturbation strength be-
comes large enough to mix states from opposite ends of the
spectrum, practically all wave functions reach the GOE en-
tropy value. n o 02 - 372 E
As already discussed in Sec. Il B, such a scenario seempo(E,)
to work also in the shell mod¢29-33. However, it must be 120 >
stressed that it can be invalid in some cases, especially i "%
there exist some ‘“nonstatistical” structural effects along the =0
spectrum, as illustrated in the following example: Consider
two classes of the IBM-1 states, both being mixtures of the
U(5) eigenstates with variousl-boson numbers. Lety
<ngqo for the first class of states anty>nyy+2 for the
second classn, is an arbitrary number smaller thax
—2). The states from both classes cannot be mixed by ¢
two-body interaction, so that if they prevail in some part of _
the spectrum, the wave-function entropy would be systemati- F'C- 6. A smoothed density df=10 states K =20) along the

cally reduced there compared to the level-density expecta2(>)-SU(3 transition as a function of enerdy (top) and the state

tion index a (bottom.

We should have in mind that in our case the above- . .
discussed correspondence between the complexity and deffiangle described in Ref$16,17) by standard quantal and
sity of eigenstates must be imperfect since the changes of tdassical chaotic measures. On the other hand, the semiregu-
IBM-1 Hamiltonian under study are not small perturbations.lar regions have th& product suppressed.

The 7 dependence of a smoothed state density An example is in Eig. 7, where'the average entropy ratios
rZ are shown for all five symmetries together with the prod-

_ , . , uct R for L=10 states witiN=20 (cf. Fig. 1 in Ref.[15]).
p(E)= | pe(E")9(E-E")dE’, (13 Note that because the nonstandard symmetrie€)Sland
SQ6)* are absent from the#, x) manifold in the present

where po(E) is the exact state density chain of 8 func- parametrizati_on, the corresponding (_antropies. are never zero.
tions andg(E—E’) is an appropriate zero-centered Gauss-However, while thg SB)* §ymmgtry is totally irrelevantit
ian (o= 0.07 energy units is shown in the upper part of Fig. Would be present if the triangle is extendedyte + y7/2),
6. Apparently, the level distribution moves as a whole andne S@6)* entropy has a behavior very similar to(®).
changes in shape under thgS—SU(3) transition (cf. the One sees in Fig. 7 that the regular region at tH&)U
corresponding change of the potential in Fig. Zhus the SO6) edge[16,17,3§ exhibits a quite high simultaneous
behavior of wave-function entropies in Fig. 5 can be everocalization in the W5), SO6), and SQ@6)* bases. This is
surprising. Anyway, it is no wonder that, unlike the shell- becauseéhe sameSQ(5) subgroup is common to all the three
model casg29-37, the entropies in Fig. 5 cannot be di- chains I, lll, and IiI*, see Eqs(2) and (3), so that thex
rectly related to the “thermodynamic entropy” given by a =0 Hamiltonians cannot mix states with various (S
logarithm of the state density. This can be seen by comparingSsociated quantum numbers. The block-diagonal form of
the histograms in Fig. 5 with the one in the lower part of Fig.the Hamiltonian then naturally implies the suppression of the
6, where the smoothed state densijE,) is shown as a abPove three entropies and also non-GOE spectral character-
function of the state index: (considering the different ori- iStics[36] on the U5)-SQ(6) transition. As was already dis-
entations of the plots in Figs. 5 and 6, imposed by the shapgussed, however, the system not only exhibits a smaller de-
of the functions displayedClearly, p(E,) does not exactly 9"€€ of_chaos but is fully mtegrab_le in this region, since,
correspond to ex@®. Note, however, that dimensiomsin  Naving five degrees of freedoffor a fixedN; see Sec. 1 §;
the present model are still too low to make a definite conclult @S0 has five independent compatible integrals of motion
sion in this question. (if not countingN): C,[SO(5)], L?, L,, the integral associ-
ated with the missing label in the $8) D SQO(3) embedding
o [an invariant of S@B) built from the S@5) generatork and

C. U(®)-SU(3)-SO(6) transitions the Hamiltonian itself16,17].

The average wave-function entropy in the whole,x) Note that we reveal the integrablg3)-SQ(6) region us-
range of Eq.(4) with N=20 was presented in our previous ing only the bases associated with dynamical symmetries of
work [15] for various angular momenta. It was shown thatthe model, because all the transitional bases are well local-
the regions with largest entropy-ratio prodiRtfrom Eq. ized in the limiting ones. That is also why we do not need to
(12 coincide with the most chaotic regions of the Castenanalyze wave-function entropies of the rest of the Casten
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N=20,L=10 (n=121)

—
b =X
FIG. 7. The average entropy ratios from Ef1) and their product from Eq.12) for L =10 states Kl=20) calculated over the whole

range of the Casten triangle. The first five histograms dispfafor the five dynamical symmetry bases, while the lower right histogram
represents the renormalized prod&ctAs in Fig. 4, points outside the triangle are filled with zeros.

triangle in the whole(continuous set of all integrable ther” ratios and the produ® on the indicated section of the
bases—the results would be qualitatively the same as witiTasten trianglénote that this section does not correspond to
the dynamical symmetry bases alone. This argument holdg fixed value ofy; see the coordinate lines in Fig). TThe

true even in more general cases if the integrable region withassage of this section through chaotic and semiregular re-
no dynamical symmetry is located on a transition betweerjions can be easily identified.

two chains(1) differing only by the subgrous;, as dis-
cussed in Sec. Il B. Finally, it should be remarked that the
simple fact of the common S6) subgroup along the (8)-
SQ(6) transition and its dynamical consequences remained
overlooked for a long timg37], which is perhaps also a
reason for the potential utility of entropy analyses.

The other nonchaotitalthough not perfectly regulare-
gion found in Refs[16,17] is the strip connecting the (B)
and SU3) vertices, but inside the triangle. It is also associ-
ated with an increased localization in the symmetry bases.
One sees in Fig. 7 that a partial lowering of ttfevalues in
this region(for  above, say, 0)5is present in the (),

SQ6)*, and SA6) histograms, andfor smaller ) also in 0 m
the SU?3) histogram. The effect is clearly visible in the prod- . x=-0.54/(1-7) oroduct
uct histogram. This behavior cannot be caused by some com-
mon subgroup, as in the previous case, and its explanation is T > SU(3)x
still missing. Perhaps the newly introducg2i7,38,39, so-
called partial dynamical symmetries provide a possibility for / S0(6)
such an explanation. _ _ 5 Uu(s)

In Fig. 8 we compare the curve in the Casten triangle
indicated in Ref[17] as the bottom of the new semiregular T N S0(6)
valley with the corresponding chain of boxes with a mini- \ SU(3)
mum value of the entropy-ratio produ®. The former,
evaluated as the curve of a minimal fractierof the chaotic
phase-space volunid7], is given essentially by the linear 0 N=20, L=10

function y~[(\7—1)7—\71/2 (see Fig. 13 in Ref[17)). 0 N 0.59

The overall agreement of the minimuR-and minimumer FIG. 8. The semiregular region inside the Casten triangle as
strips is good, indicating that standard chaotic measures angqyced from classical chaotic measutés fractions of the cha-
the entropy-ratio product express the same quality. Some d@ic phase-space volumand from the wave-function entropiér
viations of the two strips are probably caused by the finitgq — 19 states witiN = 20). Top: The bent curve indicates the, )
resolution of the grid in th® plot, and by some uncertainty |ocalization of theo valley determined in Ref{17], while boxes
induced by the standard chaotic measures themsétres  represent local miniméf any) of the entropy-ratio produd® from
could equally well use another measure thanyielding  Eq.(12). Bottom: Values of?, see Eq(11), andR along the given
probably a slightly different curyeAlso shown in Fig. 8 are  section(the dashed line aboy®f the Casten triangle.
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N=20
n=1/10, x=—v7/4 n=1/2,x=0 x=—0.54/(1-7)
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FIG. 9. The angular-momentum dependente=0,...,20) of
the wave-function entropy for two points of the Casten triarilgi#
vs right. The five B=U(5),..., S@6)* average entropy ratios®
are shown in the upper graphs and their prodrdn the corre-
sponding lower graphs.

0 77 0.59

D.L dependence FIG. 10. The entropy-ratio produd® along the y=0.54/(1

In Ref.[15], the wave-function entropy was evaluated for — 7) section of the Casten trianglsee the dashed line in Fig.
angular momentd.=0, 10, 20, and 30. If the case &f 8—top for L=10 and various boson numbek$ (cf. Fig. 8—
=30 is excluded, for which the dimensionis already sub- bottom). The no_rmalization of alR plo_ts is the same except for the
stantially reduced due to the proximity of the upper angularN=11 one, which should be multiplied by 2.
momentum limitL ,,,,= 40 for N= 20, the entropy decreases
with L (within the given set ot.’s) in the whole range of the
Casten triangle. This is in agreement with the work of Since the boson numbet is, like L, a conserved quan-
Whelan and AlhassifiL7], who observed an overall decrease tum number, we shall study how the wave-function entropies
of chaotic measures with angular momentum. vary with it. In general, because varioug[U(6)]=N

In Fig. 9, we present a detaildd dependence of the av- eigenspaces carry various irreducible representations of the
erage wave-function entropy ratios for all momenta betweemlynamical group, we ask how properties of the system de-
L=0 and 20 for two particular points of the Casten triangle.pend on the particular choice of the model Hilbert space. An
The first one (p=1/10, y=—7/4) is located in the most example of such a dependence was already mentioned in
chaotic region, while the othery=1/2, y=0) is on the Sec. IV A(see Fig. 4
regular U5)-SQ(6) edge. The previous resuylt5], based on An important question is whether the semiregular region
the limited number oL’s, is confirmed now for alL <20, inside the Casten trianglésee Sec. IV € survives when
but one should be aware that at some value of the angulahangingN. The entropy-ratio produd® of L =10 states on
momentum the entropy ratio has a minimum and turns growthe triangle section from Fig. #he line parallel with the
ing (cf. Fig. 1 in Ref.[15]). Note that within the chosen SQ(6)-U(5) sidg] is plotted in Fig. 10 foN=11, 14, 17, and
interval of angular momenta the dimensianchanges be- 20. All the R plots have minima at about 3/4 of therange,
tween limitsn=33 (for L=3) andn=121 (L=8,10). indicating the passage of the given section through the semi-

One seegin the upper two diagrams in Fig.) @hat the regular region. It seems therefore that the semiregular strip is
trend to decrease is common to all the five entropies. Hownot just a largeN effect, although foN=11 the minimum is
ever, also apparent from Fig. 9 is the staggering of all enless pronounced relative to the chaotic side regions in Fig.
tropy ratios, particularly strong for small angular momenta,10.
which gives rise to large oscillations in thedependence of An interestingN-dependent effect appears in th¢5)
the entropy-ratio produdR (lower two diagramp This be- SQO(6) transitional region. We discussed already that the
havior of the wave-function entropy, noticed already in Ref.U(5), SO6), and S@6)* entropies are all suppressed in this
[28] for a different IBM-1 parametrization, refers to an ear- region since a complete mixing of states is disabled by the
lier observation made by Paar and Vorkaj6] that within ~ common S@) symmetry. Consequently, any purely3)-
the IBM-1 the states with =0,3 have larger spectral chaotic SO(6) transitional Hamiltonian has a block-diagonal struc-
measures than those with=2,4. These findings are particu- ture in the U5), SO6), and S@6)* bases[36], each block
larly interesting because similar dependence was identifiedorresponding to fixed SG) quantum numbers and ny
[41] also in a large experimental-data ensemble of nuclearl2]. In Fig. 11, we show thé&l dependence of the average
levels. dimensionny,. of these blocks fot =10 [individual block

E. N dependence
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7 nblock/n
i o e/ n ... U(5) vertex
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FIG. 11. The boson-number dependence of
the relative average block dimensiog,q/n of
the block-diagonal[in the US5), SQ#6), and
SQ(6)* baseg Hamiltonians at the (5)-SQ(6)
transition forL=10. The average relative num-
bers of wave-function componentsX®*/n are

o
1

Relative Dimension (%)

e L L A given separately for pure(8) and S@6) Hamil-
8 8 10 11 12 13 14 15 16 17 18 19 20 tonians at five values dfl. Total numbersn of
the L =10 states for eacN are indicated inside
L=10 the frame.
2 -
n:
0 1 ‘21 3%6 6?1 1 0|36 1 5|41 21|46 28|51 36|56 45|6'|
20 30 40 50 60 70 80 90 100

N

dimensions coincide with the degeneracy dimensinﬁ@ tion that any dynamical symmetry is connected with a certain
from Eq. 8] relative to the total dimension of the L=10  Subset of bases, for which the average overlap with eigen-
subspace. The relative block dimensiop.g/n naturally — bases of the tested Hamiltonians can be measured by the
decreases wittN as the number of blockfnumber of al- ~ wave-function entropy. This provided us a tool for studying
lowed (v,n,) valued increases, which yields a 1/N de-  various phenomena accompanying the process of dynamical
pendence for largdl andL<<N. symmetry breakingSec. 1\).

It is clear that the decrease of the relative average block We faced the following basic problem&) Removal of
dimensions on the (3)-SQ(6) edge withN reduces increas- the dimension dependence of the average wave-function en-
ingly also the corresponding GOE-normalized entropies irtropy by normalization. It is essential if the entropy values
the U5), SA6), and S@6)* bases. Consequently, in ti¢  for subsets of eigenstates with different conserved quantum
—oo limit the whole integrable (5)-SQ(6) region would numbers N andL in our casgare to be compared. It turned
yield the above three normalized entropies equal to zerquut that the GOE normalizatiof®ec. 11l O is quite satisfac-
This is also illustrated in Fig. 11. The quantity that can betory. (ji) Uncertainty of the reference dynamical symmetry
directly compared with the average block dimension is theyases for noncanonical group reductions. This problem was
average effective number of wave-function componerdis  shown to be of minor importance for the IBM¢Sec. Il B),
=expW’ (see Sec. Il D. Open squares and triangles in Fig. but can be more serious for other models, for which the
11 indicate values o3¢ ®*/n for L=10 eigenstates at the uncertainty should therefore be rigorously taken into ac-
U(5) and SQ6) vertices. Note thamgﬁo“” at the U5) vertex  count. (iii) Construction of the entropy-ratio product in Eq.
and not® at the S@6) vertex are determined by the given (12). It remains an ansatz, but seems to work reasonably
SQ(6)* values since the relatiokvS°(®* (L N, »=1,y=0) well. (iv) Necessity to consider also the “hidden” dynamical
= WSO L,N, »=1,y=0)=WYOE)(L,N, »=0,y=0) is  symmetries, such as $8)* and SQ6)* [15]. Note that these
valid for average entropies from Eq9). Here, the first Symmetries arise, in generfdl4], from inner automorphisms
equality follows from the fact that the expansion of the Of the dynamical group and are not classified by the group
SO6) and S@6)* eigenstates in the (B) basis differ only ~ theory.(v) The fact that not all integrable Hamiltonians of
by phase§each U5) eigenstate has a sharp numbesaind  the system are connected with dynamical symmetries. It
d bosong and the second equality from the evident rule thatmeans that not all potentially relevant reference bases can be
the B-expansion matrix of3’ is just a Hermitian conjugate constructed by group methods. Nevertheless, in the above-
of the B’-expansion matrix of3. As can be seen from Fig. discussed case of the(®)-SO(6) transition(Secs. I B, IV Q
11, the average (8), SQO6), and S@6)* relative numbers of the regular dynamics was identified by means of only the

wave-function components at the(8+SO(6) edge directly ~dynamical symmetry bases. _ _
follow the decrease of the relative block dimensions. ~ The most important goal of this work was to establish a
link between the dynamical symmetry content and the degree

of regularity or chaos. It turned oySecs. IVC and IV D

that for the simple model under study the wave-function en-
In this work we attempted to find a continuous measure ofropies are indeed strongly correlated with the standard cha-

the dynamical symmetry content for a class of IBM-1 Hamil- otic measures used, for instance, in Réf7]. If the same

tonians, and relate it to the variety of transitional degreesonclusion can be repeated also for other dynamical systems,

between regularity and chaos that the Hamiltonians exhibitthe present approach would provide a new measure of chaos,

The key ingredient of our analysis was the simple observaadditional to the standard ones. It is clear that the dynamical

V. CONCLUDING REMARKS
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symmetry content expressed by the overlap of bases meaetry, such as the partial dynamical symmdg], for in-
sures, in fact, to what extent the integrals of motion attachedtance. Our numerical analysis allows one to see whether the
to the reference dynamical symmetry remain approximatgontent of a particular dynamical symmetry is small or large,
integrals of motion for the tested system. In this connectionput cannot answer why it is so. Nevertheless, even with the
it would be interesting to know whether also sets of someahove limitations in mind we believe that the approach pre-
approximate or exact?) integrals of motion, not arising sented in this work can yield a new probe for investigating

from any of the dynamical symmetries of the system, exisyynamical properties of finite quantum systems.
and are important.For example, the integrable(8)-SQ(6)

systems do not possess any dynamical symmetry but their
integrals of motion—including the Hamiltonian—can be
constructed solely from the integrals corresponding to dy-
namical symmetries—see E¢p).] These questions should The work was supported by the internal Grant No. 38/97
be addressed in future studies. of Charles University, and by the Swiss National Science

Finally, it should be stressed that we do not pretend td-oundation. P.C. acknowledges additional support from the
find an analytical definition of any sort of generalized sym-University of Fribourg.
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