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Wave-function entropy and dynamical symmetry breaking in the interacting boson model

Pavel Cejnar1 and Jan Jolie2
1Department of Nuclear Physics, Charles University, V Holesˇovičkách 2, CZ-180 00 Prague, Czech Republic

2Department of Physics, University, Pe´rolles, CH-1700 Fribourg, Switzerland
~Received 8 January 1998!

The degree of chaos in the simplest interacting boson model~IBM-1! is compared with what we call the
‘‘dynamical symmetry content’’ of the system. The latter is represented by the information entropy of the
eigenfunctions with respect to bases associated with dynamical symmetries of the IBM-1, and expresses thus
the localization of actual eigenfunctions in these symmetry bases. The wave-function entropy is shown to be a
sensitive tool for monitoring the processes of a single dynamical symmetry breaking or transitions between two
and more symmetries. For the IBM-1 Hamiltonians studied here, the known features related to chaos, namely,
the dependence of chaotic measures on the Hamiltonian parameters~position in the Casten triangle! and on the
angular momentum, turn out to be correlated with the behavior of the wave-function entropy.
@S1063-651X~98!03107-9#

PACS number~s!: 05.45.1b, 21.60.Fw
o
t
o
s
ao
e
r

tu
rre
ti

b
ic

n-
up
rg
er
-

nc
a
o

tin
d
-

ra
n
m
ra

m

ho
th

in
the

at

ave
and

the
till

of
een
aos
ng.
hat
to

the
ba-
i-

but
of

the

e
mi-
ous
icu-

e

I. INTRODUCTION

Although fundamental quantum-mechanical equations
motion are about 70 years old, the task of understanding
whole variety of phenomena ‘‘encoded’’ in them has n
been completed yet. One of the most interesting problem
this sort is to find quantum signatures of the order-to-ch
transition: If the dynamics of a classical system is chang
by varying some parameters, from the regular to chaotic
gime, what happens on the level of the system’s quan
counterpart? Much insight into the classical-quantum co
spondence has been gained in connection with this ques
in recent years@1#, but many problems still remain open.

It is well known that the order or chaos signatures can
found in both the factors that determine quantum dynam
of any bound system, i.e., in both discrete sets of~i! energy
eigenvalues and~ii ! corresponding eigenfunctions. The tra
sition to chaos in the classical limit was found to set
specific short- and long-range correlations in the ene
spectrum and a regime of Gaussian overlaps of the en
eigenfunctions with any probe state@2#. Besides these prop
erties, inherently described by random-matrix theory@3#,
also certain spatial and temporal properties of wave fu
tions~such as nodal-line patterns, scars, wave-packet dyn
ics, etc.! were shown to be affected by the order-to-cha
transition@1#.

Regularity and chaos are sometimes thought as limi
manifestations of various degrees of symmetry containe
the system@4#. Indeed, regularity is obviously related to in
tegrability~integrable systems are always totally regular! and
the latter, since it ensures a number of compatible integ
of motion, is nothing else than ‘‘a kind of symmetry.’’ Whe
dealing with symmetries, we do not have in mind exact sy
metries that the system can exhibit, but rather the gene
ized, so-called dynamical symmetries@5–9#. Although dy-
namical symmetries are defined only for algebraic syste
~i.e., systems associated with a dynamical groupG whose
representations define the system’s Hilbert space and w
generator algebra induces all the relevant operators on
space!, their role in physics is probably quite general.
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A system with a dynamical groupG has a dynamical
symmetry if its Hamiltonian can be written exclusively
terms of Casimir operators of the subgroups involved in
chain

G.G1.•••.Gi.•••.Gk , ~1!

which specifies the given dynamical symmetry. Note th
only the smallest embedded group,Gk , is an ordinary sym-
metry group. The systems with dynamical symmetries h
two rather exclusive properties: First, their eigenspectra
corresponding eigenfunctions can be found analytically@6#
and, second, they are integrable@8–11#. However, also
known is that, in turn, integrabilitydoes nothave to always
couple with dynamical symmetries, which means that
link of the present concept of symmetry to chaos is s
imperfect.

In spite of the above-mentioned numerous signatures
quantum chaos found in recent years, very little has b
said about the connection of the quantum order-to-ch
transition with the process of dynamical symmetry breaki
In particular, the question should be addressed of ‘‘to w
extent’’ a concrete dynamical symmetry must be broken
induce the transition to chaos@11#. An obvious problem is
that whereas dynamical symmetry~and integrability! follows
a simple Boolean logic—the system either has it or not—
order-to-chaos transition is a rather smooth affair: Pertur
tions of an integrable Hamiltonian usually do not immed
ately bring the system to a completely chaotic regime,
make it pass some transitional region. The explanation
this behavior in the classical case was the main goal of
famous Kolmogorov-Arnold-Moser~KAM ! theorem @1#.
However, whatin the dynamical symmetry languagecontrols
the degree of quantum chaos?

In this paper we would like to show that not only th
degree of chaos inherent in the system, but also its ‘‘dyna
cal symmetry content’’ can be measured by a continu
quantity. Our approach is based on the fact that any part
lar dynamical symmetry is associated with a certain basis~or
a subclass of bases in general!. This basis, obtained by th
387 © 1998 The American Physical Society
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TABLE I. Definitions of the IBM-1 operators in the convention used in this work.

N̂5s†s1d†
•d̃ n̂d5d†

•d̃

L̂5A10@d†3d̃# (1) Q̂x5@d†3s1s†3d̃# (2)1x@d†3d̃# (2)

P̂f
† 5s†s†2eifd†

•d†

Ĉ1@U(5)#5n̂d Ĉ2@U(5)#5n̂d(n̂d14)

Ĉ2@SO(6)#5N̂(N̂14)2 P̂p
† P̂p Ĉ2@SU(3)#52Q̂2A7/2•Q̂2A7/21

3
4 L̂•L̂

Ĉ2@SO(5)#5n̂d(n̂d13)2(d†
•d†)(d̃•d̃) Ĉ2@SO(3)#5L̂•L̂
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simultaneous diagonalization of Casimir operators of
groups in the dynamical symmetry chain, becomes a re
ence frame in the system’s Hilbert space. The degree o
calization of actual eigenstates in the reference basis, i.e.
degree of overlap of the two bases then represents the de
continuous measure which tells us ‘‘how close’’ to the giv
integrable case the actual system is. In this logic, chao
smoothly established as the degree of eigenstate localiza
in the bases corresponding to all possible dynamical sym
tries of the system decreases.

To illustrate these general ideas, we invoke the simp
version~IBM-1! of the interacting boson model@12#, which
is known to efficiently describe basic aspects of collect
motion in atomic nuclei. Apart from the advantage that t
IBM group structure is explicitly known, the model also se
a field for practical applications of our investigations in r
alistic systems. To quantify the eigenstate localization o
particular transitional IBM-1 Hamiltonian in a given dynam
cal symmetry basis, we use the so-called information entr
of wave functions. It will be shown that the entropy analy
of eigenfunctions enables one to find a counterpart of
order-chaos properties of the IBM-1 in terms of the kno
dynamical symmetries associated with this model.

Here is the plan of the paper: Properties of the particu
form of the IBM-1 used are discussed in Sec. II, while ge
eral features of the wave-function entropy are described
Sec. III. In Sec. IV we present results of the entropy cal
lations for various transitional IBM-1 Hamiltonians in de
pendence on the angular momentum and boson number
show their relation to the chaotic properties of the mod
Section V provides a few concluding remarks.

II. MODEL

A. Dynamical group

As already indicated above, in this work we will study th
wave-function entropy within the interacting boson model
The IBM-1 was introduced in 1974 by Arima and Iache
with the aim to describe collective nuclear excitations in
algebraic framework~see references in Refs.@6,12#! and has
soon since evolved into more sophisticated and powerful
son models@6#. Because we do not make a specific link
nuclear physics here~although some of the results may tu
out applicable there!, we use the original and simplest ve
sion of the IBM.

The IBM-1 is formulated as a model describing one- a
two-body interactions of two kinds of bosons, nameds andd
bosons according to their spinsl 50 and 2, respectively. Be
cause the interactions conserve the total number of bosonN,
the dynamical group of the model is the U~6! generated by
ll
r-
o-
he
red

is
ion
e-

st

e
e

a

y

ll

r
-
in
-

nd
l.

.

n

o-

d

the 36 bilinear products of the boson creation and annih
tion operators: s†s, dm

† dm8, dm
† s, and s†dm (m,m85

22, . . . ,12). The Hamiltonian, built only from these prod
ucts, is further made invariant under time reversal and ro
tions by allowing for only the Hermitian terms with zer
total angular momentum. Carrier spaces of irreducible rep
sentations of the dynamical group, each of them correspo
ing to a fixed boson numberN, naturally coincide with pos-
sible quantum Hilbert spaces ascribed to the model. If
boson operators in the IBM-1 Hamiltonian are rewritten in
convenient coordinate representation, the model turns ou
describe rotations and quadrupole vibrations of a spec
quantum ‘‘drop.’’

B. Dynamical symmetries and integrability

Possible dynamical symmetries of the IBM-1 are fou
by constructing various subgroup chains of the dynam
group U~6!, all ending at the angular-momentum grou
SO~3! generated by the products@d†3d̃#m

(1)
„standard defi-

nitions @bl
†3b̃l 8#m

(l)5(mm8( lml8m8ulm)blm
† b̃l 8m8 and b̃lm

5(21)l 1mbl 2m are used…, which must remain the symmetr
group of the Hamiltonian. So, one finds the following thr
chains@6,12#:

U~6!.U~5!.SO~5!.SO~3! ~ I!,

U~6!.SU~3!.SO~3! ~ II !, ~2!

U~6!.SO~6!.SO~5!.SO~3! ~ III !.

Note that the concrete realization of some groups in Eq.~2!
is not unique because of phase ambiguities of the boson
erators. We will come to that point later.

A possible set of Casimir operatorsĈi@G# of the first
and/or second order (i 51 and/or 2, respectively! of the
groups G involved in the chains~2! is listed in Table I
@dots denote the scalar product defined byA(l)

•B(l)

5(m(21)mAm
(l)B2m

(l) #. The U~6! invariants were skipped be
cause, as already mentioned above, within the IBM-1 o
always takes into account only one finite-dimensional s
space of the total Hilbert space corresponding to a fix
~sharp! boson numberN, where the U~6! Casimir operators
yield just ordinary numbers. The most general IBM-1 Ham
tonian can be written as a linear superposition~weighted
sum! of the invariants from Table I and, as such, it has
free parameters—the weights. If all the weights are zero
cept for those standing at invariants of only one group ch
in Eq. ~2!, the Hamiltonian has the dynamical symmetry d
scribed by the given chain. Hereafter, we will distingui
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these dynamical symmetries by the name of the corresp
ing largest subgroup, i.e., by labels U~5!, SU~3!, or SO~6!,
respectively. These limits correspond to vibrational, ro
tional, andg-unstable nuclei@6,12#.

The above-specified symmetries do not, however, exh
all possible dynamical symmetries of the model. Name
phase ambiguities in the definition of boson operators lea
two additional symmetries connected with the followin
chains@6,12–15#:

U~6!.SU~3!*.SO~3! ~ II* !, ~3!

U~6!.SO~6!*.SO~5!.SO~3! ~ III* !.

The group SU~3!* is made from the ‘‘standard’’ SU~3! by
the transition (dm

† ,d̃m)→(2dm
† ,2d̃m) „which is equivalent

to taking x51A7/2 instead of2A7/2 in Ĉ2@SU(3)#, see
Table I… and SO~6!* is made from SO~6! by (dm

† ,d̃m)→
(2 idm

† ,i d̃m) „equivalent to f50 instead of p in

Ĉ2@SO(6)#…. The SU~3!* and SO~6!* Casimir operators can
be written as linear superpositions of the Casimir opera
in Table I @15#. Therefore the Hamiltonian has dynamic
symmetry SU~3!* ~II* ! or SO~6!* ~III* ! if some of the
weights in its expansion have certain ratios. In particu
@15#, the SU~3!* dynamical symmetry sets in if ratios of th
coefficients at Casimir operators~see Table I! Ĉ1@U(5)#,
Ĉ2@U(5)#, Ĉ2@SO(6)#, Ĉ2@SO(5)#, and Ĉ2@SU(3)# are
2:2:4:26:21, whereas the SO~6!* dynamical symmetry
requires the ratios 4(N12):24:21:arbitrary:0.

Since all phase conventions must fulfill restrictions fo
lowing from rotational and time-reversal invariance of t
resulting Hamiltonian, the above five chains most proba
represent a complete set of the IBM-1 exact dynamical s
metries. This is not so, however, as far as the integrability
the model is concerned. The IBM-1 is, in fact, a straightf
ward example showing that although a dynamical symme
really implies integrability, the opposite implication~pro-
posed in Ref.@9# but soon abandoned@11#! does not, in
general, hold. To see that, consider the IBM-1 Hamilton
which is transitional between the U~5! and SO~6! dynamical
symmetries, but has no admixture of the SU~3! invariant.
Neither the U~5! nor the SO~6! invariant is an integral of
motion on the U~5!-SO~6! transition, but the Hamiltonian
itself, which is always a trivial commuting integral of mo
tion, becomes independent from the other integrals, wh
ensures that the integrability is preserved if the SO~5!-
generated dynamical symmetry is taken into account@16,17#.
This is a special case of the self-evident rule that noninte
bility does not appear if the dynamical symmetry break
destroys just one integral of motion@11#. For instance, if
apart from the chain~1! also G.G1.•••.Gi8.•••.Gk

~differing only by thei th subgroup! is a valid group reduc-
tion, the transition between these two dynamical symmet
is always totally integrable, although having no dynami
symmetry in the above sense.

C. Casten triangle

The six free parameters of the most general IBM
Hamiltonian is a too large number if features of the mo
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are to be systematically scanned over the whole param
space. Nevertheless, it is often enough to select a ce
subset of Hamiltonians out of the complete set generated
the dynamical group. Usually a two-dimensional manifold
spread in the six-dimensional parameter space so that
U~5!, SU~3!, and SO~6! limits are reached for some particu
lar points. The manifold is then mapped onto the so-cal
Casten triangle, whose vertices correspond to these limi

Chaotic properties of a specific two-parameter set
IBM-1 Hamiltonians were thoroughly studied by Alhassi
Whelan, and Novoselsky@16–20#. As we follow the cited
works in order to relate the order or chaos signatures to
dynamical symmetry content, we use the same paramet
tion of the IBM-1 Hamiltonian. It is given by the following
formula ~see Table I!:

Ĥ ~N,h,x!5hn̂d2
12h

N
Q̂x•Q̂x . ~4!

Here, two control parametersh and x change within the
bounds 0<h<1 and 2A7/2<x<0. If h51, the Hamil-
tonian ~4! has the U~5! symmetry, while withh50 the
Hamiltonian has the SU~3! symmetry forx52A7/2 or the
SO~6! symmetry forx50. For other parameter values, th
Hamiltonian has no dynamical symmetry, i.e., it is tran
tional between two or more limits.

The statements concluding the last paragraph can be
ticularly easily read in the following expansion of Eq.~4!
into Casimir operators from Table I:

Ĥ ~N,h,x!5Fh2
12h

N S x

A7
1

2x2

7 D G Ĉ1@U~5!#

2
12h

N S x

A7
1

2x2

7 D Ĉ2@U~5!#

2
12h

N S 11
2x

A7
D Ĉ2@SO~6!#

1
12h

N S 11
3x

A7
1

2x2

7 D Ĉ2@SO~5!#

1
12h

N

x

A7
Ĉ2@SU~3!#

2
12h

N S x

A7
1

x2

14D Ĉ2@SO~3!#. ~5!

What we further see from this expansion is that while t
Hamiltonians with x50 or x52A7/2 (h varying! are
purely U~5!-SO~6! or U~5!-SU~3! transitional, respectively
@they contain no admixture of the SU~3! or SO~6! Casimir
operators, respectively#, theh50 (x varying! case represent
the SU~3!-SO~6! transition with some amount of the U~5!
‘‘impurity’’ ~see a schematic illustration in Fig. 1!.

The Hamiltonian~4!5~5! reaches neither the SU~3!* nor
the SO~6!* symmetry for any values (h,x) @15#. However,
one could easily write another two-dimensional parametri
tion that would pass the SU~3!* and/or SO~6!* dynamical
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symmetries somewhere in the middle of the Casten trian
†more precisely, the SU~3!* can indeed lie in the middle, bu
the SO~6!* can only be on the U~5!-SO~6! edge@14,15# ‡.
One therefore has to be very careful in generalizing res
obtained within a single parametrization. If, as an examp
the SU~3!* and/or SO~6!* dynamical symmetries are, in th
special parametrization, reached for some intermediate
ues of the control parameters, the Hamiltonian would un
pectedly receive quite regular properties in a seemingly tr
sitional region. This behavior, however, would never
encountered in an ordinary parametrization.

We conclude this section with a few remarks on the cl
sical analog of the quantal Hamiltonian~4!. As argued in
Refs. @19,17#, the on the first view incomprehensible fact
1/N in Eq. ~4! is a consequence of the quantum-classi
correspondence. The dynamics of the IBM-1 classical co
terpart is reached forN→` ~for instance, coherent state
stop overlapping in this limit! after appropriate rescaling o
the dynamical variables and Hamiltonian parameters. I
clear that matrix elements of the quadratic Casimir invaria
@having theO(N2) behavior# completely dominate the one
of linear invariants@;O(N)# in the N→` limit, which
means that quantum IBM-1 Hamiltonians differing only
linear terms have all the same classical analog. This com
ambiguity of the quantum-to-classical transition would
very unpleasant here, because for chaos the classical be
ior is constituent. Fortunately, the difficulty can be bypass
by the 1/N damping of the quadratic terms. In fact, such
modified Hamiltonian is not a ‘‘textbook’’ IBM-1 Hamil-
tonian~it would contain the uneasy operator 1/N̂ if acting in
the general Fock space!, but it does not matter in our cas
sinceN has always a sharp value. In this modified model,
sets of eigenvalues and corresponding eigenvectors for
ous N determine quantum aspects of classically the sa
system, similarly as the three-dimensional oscillator sta
with finite quantum numbersN (5nx1ny1nz) all issue
from the unique classical origin~which the quantum system
imitates in theN→` limit !.

Following the procedure described in Ref.@19#, one de-
rives the classical HamiltonianH(pi ,qi) ~with i 51, . . . ,5)
corresponding to Eq.~4!. The coordinatesqi can be identi-
fied with the quadrupole-shape variablesb,g and Euler
angles, known from the nuclear liquid-drop model, andpi
are associated momenta. The classical potential, i.e.,

FIG. 1. Mapping of the (h,x)-parameter space of Eq.~4! onto a
triangle ~left! and its relation to an ideal Casten triangle~right!.
Hamiltonians with nonstandard dynamical symmetries~3! are ab-
sent from the present parametrization.
le
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function H(pi50,qi), looks as follows~cf. Ref. @21#!:

V~h,x!~b,g!5F5

2
h22Gb21F ~12h!S 12

x2

14D Gb4

1F 2

A7
~12h!xGb3A12

b2

2
cos~3g!.

~6!

This function is shown, for some particular (h,x) values, in
Fig. 2. In agreement with a general rule, one sees that
U~5!, SU~3!, and SO~6! limits, correspond to, respectively
spherical (b50, g arbitrary!, deformed axially symmetric
(bÞ0, g50), and deformed ‘‘g-soft’’ ( bÞ0, g arbitrary!
shapes at the minimum potential energy. A ‘‘phase tran
tion’’ @12# from deformed to spherical shape can be obser
for h54/5, where the potential develops a minimum atb
50. Although all features of the IBM-1 classical limit ce
tainly cannot be derived from the potential alone~kinetic
terms of the Hamilton function also have a rather spec
form!, the h54/5 value can be, within some plausible sim
plification, seen as a border between various classical mo
of the model~a more sophisticated approach was recen
described in Ref.@22#!.

III. WAVE-FUNCTION ENTROPY

A. Definition

The Shannon information entropy of wave functions@23–
29,15# is a natural measure of the localization of wave fun
tions in a given basis. The wave-function entropy~as we will
briefly call it! of a stateuc& with respect to the basisB
[$u iB&% i 51

n (n is the dimension of the Hilbert space! is de-
fined by the following formula:

Wc
B52(

i 51

n

uac i
B u2lnuac i

B u2, ac i
B 5^ iBuc&. ~7!

It is minimum (Wc
B50) if uc& coincides with one of the

basis vectors, while the maximum (Wc
B5 ln n) is reached if

uc& is spread uniformly among all basis states, i.e.,
uac i u251/n. The intermediate entropy values indicate a p
tial fragmentation of the stateuc& in the basisB.

B. Reference bases

An apparent question accompanying the use of the wa
function entropy concerns an appropriate selection of the
erence basis. Of course, this selection must issue from
physical aims followed. If effects of some perturbation
the system are to be measured, the reference basis will n
rally be the eigenbasis of the unperturbed Hamiltonian. R
cent studies of Zelevinsky and co-workers@29–32# provide
an interesting example. In these works, thesd-shell model
with residual two-body interactions was considered, a
‘‘dissolving’’ of the actual eigenstates in the shell-model b
sis was measured for a system of 12 fermions. It was sho
that for realistic strengths of residual interactions the relat
wave-function entropy of individual states along the sp
trum follows almost exactly the state-density logarith
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FIG. 2. Classical potential~6! as a function of
quadrupole variablesb and g for six (h,x) pa-
rameter pairs@~A!–~F!# from various parts of the
Casten triangle.
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which allows one to relate the wave-function and thermo
namic entropies. For bases unrelated to the unpertu
Hamiltonian, however, the entropy was equally large for
states~just like in the case of too strong residual interaction!
indicating the irrelevance of the basis selected.

In our case, selection of the reference bases naturally
lows from the demand to measure a ‘‘similarity’’ of a give
general Hamiltonian to the dynamical symmetry limits. A
sociated with each integrable~dynamically symmetric! sys-
tem is a set of mutually commuting integrals of motio
which ~in a favorable case! defines a single physically im
portant basis or~in general! a subclass of bases. The basis
not always unique because the system can allow for build
more independent sets of integrals of motion. The IBM-1 i
good example: In this case, the dynamical symmetries c
tain some missing labels@6,12#, which means that Casimi
operators of any given chain must be supplied by some o
operators to form a complete set of commuting integrals
motion@9,11#. For various choices of the additional commu
ing operators one obtains generally different bases. All th
are eigenbases of the corresponding dynamical symm
Hamiltonian, and the ambiguity of the basis selection can
seen as resulting from unavoidable spectral degeneracie
the IBM-1 limits due to the missing labels. Nevertheless,
will see later that in the cases studied these ambiguities
not large enough to paralyze predictions based on a par
lar choice of the dynamical symmetry basis.

It must be emphasized that the constraints on the bas
the Hilbert space are the only signatures of a particular
namical symmetry~or a particular case of integrability!. In-
deed, as can be easily evidenced, the spectrum correspo
to an integrable system can be made arbitrary without cha
ing integrals of motion~i.e., preserving the integrability! if
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only the eigenbasis is conserved. Also any given dynam
symmetry can be associated with an arbitrary spectrum s
the symmetry itself does not impose any constraints upon
way in which the Hamiltonian depends on the associa
Casimir invariants. A U~6!-generated boson Hamiltonian, fo
instance, with a given dynamical symmetry does not have
follow the special form assumed in the IBM-1, but could
an arbitrary function of general-order Casimir operators
the given group chain. The nongeneric spectral propertie
various integrable systems, such as the non-Poissonian
spacing distribution recently noticed@33# and explained@34#
in the IBM-1 for a particular SU~3! Hamiltonian, e.g., seem
to illustrate these matters.

In this work we use the wave-function entropy to quant
the departure of transitional IBM-1 Hamiltonians in Eq.~4!
from the particular dynamical symmetries of the model. T
basesB of interest will thus be associated with the limits~2!
and ~3! and we will deal with B[U~5!, SU~3!, SO~6!,
SU~3!*, and SO~6!* entropies. As pointed out above, th
IBM-1 dynamical symmetry bases are not unique due to
degeneracy caused by missing labels, which is a prob
that must be solved first. To do it precisely, one sho
evaluate each of the above five entropies in all bases allo
by the respective symmetry and discuss results with regar
the obtained uncertainty intervals. Nevertheless, it can
directly shown that the uncertainties should not be very la
in the cases studied because of a relatively low average m
tiplicity of degeneracies. In fact, one has to consider w
amount of the wave-function amplitudes in a given dynam
cal symmetry basis remains uncertain due to the basis a
guity. If 100% is assigned to a completely degenera
Hamiltonian and 0 to a quite nondegenerated one, the
lowing quantity can be used to measure this amount:
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f deg5

(
i

ndeg
~ i ! ~ndeg

~ i ! 21!

n~n21!
. ~8!

Here,ndeg
( i ) is the dimension of thei th degenerated subspac

andn is the total dimension. The values off deg for various
angular-momentum (L) subspaces and various boson nu
bers (N) are shown in Table II. Note that we have in min
here only the inherent degeneracy due to missing labels
accidental degeneracies resulting from a special form of
Hamiltonian, such as the degeneracy caused by the abs
of the SO~5! and SO~3! terms in the U~5! limit of Eq. ~4!. It
is evident from Table II that even in the SU~3! and SU~3!*
limits, which are most degenerated, the uncertainty is
relatively small. We therefore do not proceed in the abo
proposed accurate way, but select a single basis for e
limit. Namely, for evaluating the U~5! entropy we used the
standard basis$u@N#ndvnDL&% @6,12#, while bases for the
other limits were determined by a numerical diagonalizat
of the respective Hamiltonian matrices in the standard U~5!
representation@which means that the basesBÞU~5! were not
the standard ones#.

C. Average entropy

To measure the dynamical symmetry content of a giv
transitional IBM-1 HamiltonianĤ (N,h,x) , we will average
the wave-function entropy defined in Eq.~7! over all eigen-
states$ua,L& (N,h,x)%a51

n(L,N) ~with fixed angular momentumL)

of Ĥ (N,h,x) :

WB~L,N,h,x![WB5
1

n~L,N! (
a51

n~L,N!

Wa
B~L,N,h,x!. ~9!

Here, Wa
B(L,N,h,x) is the single-state wave-function en

tropy of ua,L& (N,h,x) . The average entropyWB expresses
how much the whole eigenbasis~for the fixed L) of the
Hamiltonian under study overlaps with the given dynami
symmetry reference basis.

Note that now the problem with degeneracies reappe
This time it does not concern the reference Hamiltonians,
the tested HamiltonianĤ (N,h,x) which is at some values ofh
and x also degenerated, leaving the corresponding ave

TABLE II. Degeneracy factorsf deg from Eq. ~8! characterizing
the uncertainty of the IBM-1 eigenbases in the dynamical symm
limits for various boson numbersN and angular momentaL. Note
that for L50 all the f deg values are equal to 0. There is just on
L530 state forN515.

L510 L520 L530

N515 U~5!,SO~6!,SO~6!* 1.3% 3.3% —
SU~3!,SU~3!* 4.3% 7.5% —

N520 U~5!,SO~6!,SO~6!* 0.7% 2.0% 3.3%
SU~3!,SU~3!* 2.5% 3.6% 7.5%

N525 U~5!,SO~6!,SO~6!* 0.4% 1.1% 2.0%
SU~3!,SU~3!* 1.7% 2.3% 3.6%
-
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entropy uncertain. However, in the cases studied this un
tainty must undoubtedly be very small, and we will neglec
in the following.

More serious is another problem: To enable one to co
pare average entropies of eigenvector sets with various
mensionsn(L,N), it is necessary to develop a proper no
malization. As we already pointed out, the maximum entro
of a single state in ann-dimensional Hilbert space is lnn.
For n52, this entropy is shared by both eigenvectors o
nondiagonal Hamiltonian in the case of the maximum m
ing ~equal diagonal elements of the Hamiltonian!. For n.2,
however, the entropy of a set of Hamiltonian eigenstate
influenced by the orthogonality constraints. To calculate
maximum average wave-function entropy forn.2 orthonor-
mal states becomes tricky, but there is no doubt that
result is smaller than lnn and depends onn.

We solve the above problem by adopting the approach
random-matrix theory@3#. The idea is to take a set ofn fixed
orthonormal vectors in then-dimensional space and to ex
pand them in various orthonormal bases, created by ran
rotations of the initial frame. The resulting distribution of th
average entropyW depends onn and its average, for in-
stance, may provide the desired normalization quantity. T
procedure can be easily realized with the Gaussian ortho
nal ensembles ~GOE! @3#. By randomly generating
n-dimensional matrices with the GOE constraints, the ab
distribution is obtained from values ofW assigned to the se
of n orthonormal eigenvectors.

For large dimensionsn, the GOE averagêW&GOEn of the
entropyW can be expressed explicitly:

^W&GOEn'2A2n3

p E
0

1

x2ln~x2!expS 2
nx2

2 Ddx

' ln~0.482n! ~10!

~see also Ref.@32#!. For smalln, however, serious deviation
from this value can be expected due to non-Gaussian di
butions of the eigenvector components. We performed
Monte Carlo simulation whose results are shown in Fig.
The ensemble average^W&GOEn and the band which contain
90% of theW distribution are both shown in Fig. 3~a! for
dimensionsn52 –30. As can be seen,^W&GOEn is consider-
ably lower than lnn. The width of the entropy distribution
decreases withn, which is demonstrated also by the relativ
rms deviationd of the entropyW from the GOE average in
Fig. 3~b!. In Fig. 3~b!, in addition, the coefficientan from a
parametrization̂W&GOEn5 ln(ann) is displayed. The conver
gence ofan to its asymptotic value from Eq.~10! is evident.

For any set ofn orthonormal vectors, the average entro
WB in a randomly chosenbasisB will most probably be
close to^W&GOEn ~cf. @29–32#!. It is therefore reasonable t
normalize the entropy values to the GOE average. We
phasize, however, that the fractionWB/^W&GOEn can be even
larger than 1. To be absolutely exact, one should take
account also the fact that the range of probable deviation
the GOE-normalized entropy from unity depends onn since
the shapes of the entropy distribution for various dimensi
differ. The deviations can be characterized by the probab
localized below~or above! WB @see, for instance, the lowe
and upper 5% limits displayed in Fig. 3~a! as the ‘‘GOE

ry
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PRE 58 393WAVE-FUNCTION ENTROPY AND DYNAMICAL . . .
90%’’ band#. Therefore the GOE distributions of the wav
function entropy can, in principle, induce a kind of metric f
measuring the proximity of a given basis to another one.

D. Entropy-ratio product

In the following, we will most often display the entrop
ratio @15#

rB5
exp WB21

exp̂ W&GOEn21
. ~11!

Note that the quantityneffc
B 5expWc

B can be understood as a
effective number of wave-function components of the st
uc& in the basisB ~it changes between 1 andn). An analo-
gous quantity,neff

B 5expWB, derived from the average en
tropy is some ‘‘average’’~not the rigorous statistical aver
age! effective number of wave-function componen
assigned to a given eigenvector set. The fract
expWB/exp̂ W&GOEn5neff

B /ann has a better ‘‘contrast’’ than
the GOE-normalized entropyWB/^W&GOEn , but its lower
bound depends onn. The quantity in Eq.~11! has both a
good contrast and a constant~50! lower bound.

To express simultaneously the average overlap of a g
eigenbasis with all the reference bases, we introduce
product of the five entropy ratios from Eq.~11!:

R5C )
B5U~5! . . . SO~6!*

rB, ~12!

whereC is an arbitrary normalization constant. Trivially,R
is zero if any of the ratiosrB vanishes, while if allrBs are
large ('1), R is large, as well. This qualifies the entrop
ratio productR to decide whether the system is close~or not!
to any of the five possible dynamical symmetries regard
of what symmetry it actually is. However, the reasoning
not as clear ifR is small due to a simultaneous partial su
pression of more ratiosrB in Eq. ~12!. Then a question arise

FIG. 3. Quantities characterizing the GOE distribution of t
average wave-function entropy for dimensionsn<30 ~see text!.
e

n

n
he

s

as to whether the partial influence of several individual sy
metries on the system’s behavior is really ‘‘cumulative’’
such a case~as implicitly assumed in the construction ofR)
or whether one should not take into account only the nea
symmetry ~i.e., to use the minimum of the five ratiosrB

instead ofR). Based on a good correlation of the productR
with standard chaotic measures, as it will be presented
low, we incline to believe that its definition is justified.

IV. RESULTS

In their remarkable series of works@18,16,19,20,17#, Al-
hassid, Whelan, and Novoselsky mapped the classical
quantum signatures of chaos associated with the Hamilto
~4! in the whole (h,x)-parameter range for various angul
momenta. As shown in a recent work@15#, the observed
behavior of standard chaotic measures has a counterpa
the behavior of the entropy-ratio productR from Eq. ~12!.
We review these results in more detail~Secs. IV C and IV D
below! and discuss~Sec. IV E! also the role of the boson
numberN. Before~Secs. IV A and IV B! we concentrate on
properties of the wave-function entropy of individual stat
in some less complex cases.

A. U„5… symmetry breaking

If the value ofh goes down from 1, the Hamiltonian~4!
loses the U~5! dynamical symmetry. As shown in Sec. II C
theb50 minimum of the potential~6!, characteristic for the
U~5! limit ( h51), keeps existing to the limiting valueh
54/5, where a ‘‘phase transition’’ to a deformed shape ta
place in the classical system. It is therefore interesting
look at what happens around this critical value with t
quantum system. In the quantum case, the U~5! symmetry
breaking can be monitored by the wave-function entro
which is clearly zero at the U~5! vertex, but increases as th
symmetry is being departed. The average U~5! entropy—or,
more precisely, the ratior U(5) from Eq. ~11!—of all states
with angular momentumL50 is shown for the U~5! side of
the Casten triangle, namely, for 0.5<h<1, in the left col-
umn of Fig. 4. The two histograms correspond to bos
numbersN510 andN520 ~in both cases, the numbern of
L50 states is indicated!.

The average spread of the actual eigenstates in the~5!
basis, as shown in the left column of Fig. 4, changes qu
smoothly—no abrupt transition appears either ath54/5 or at
any other value. However, it is not quite so if the grou
state alone is concerned. The ground state is, of course,
sensitive to changes of the potential minimum. Indeed,
ground state’s U~5! entropy ratior 1

U(5) , shown in the middle
two histograms in Fig. 4, changes rapidly around the criti
h value. The squared amplitude modulus corresponding
the admixture of the unperturbed U~5! ground state in the
actual ground state is displayed in the right-hand column
Fig. 4. It is evident that changes of the ground state beco
in agreement with general expectations@7,12#, sharper as the
boson numberN increases. These results might turn out
teresting in connection with a recent attempt to attribute
critical phase-transitional behavior~rotor-vibrator! to low-
lying collective states in atomic nuclei@35#.
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FIG. 4. The U~5! symmetry breaking in the region 0.5<h<1 for two boson numbers~top vs bottom!. Left: the average U~5! entropy
ratio from Eq.~11! for all L50 states. Middle: the ground state’s U~5! entropy ratio. Right: the admixture of the U~5! ground state in the
real ground state. Points outside the Casten triangle are filled with zeros.
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B. U„5…-SU„3… transition

The IBM-1 enables one to study not only processes o
single symmetry breaking, but also transitions between
or more symmetries. The entropy measures connected
both the dynamical symmetry bases in play then quan
breaking of one symmetry and the simultaneous onset
new symmetry. Here we consider the transition betwe
U~5! and SU~3! limits of the Hamiltonian in Eq.~4!, namely,
the way fromh51 toh50 along thex52A7/2 edge of the
Casten triangle~see Fig. 1!. The U~5! and SU~3! wave-
function entropies for individualL510 states withN520
are shown in Fig. 5~notice that the orientation of axes
opposite in both histograms!. In accord with the preceding
subsection, an average of the single-state entropies grad
increases as the respective dynamical symmetry is left. H
ever, the histograms in Fig. 5 show in more detail the way
which the symmetry breakdown proceeds: The variablea
51, . . .,121(5n) enumerates the eigenstatesua,L& (N,h,x)
consecutively with the increasing energy. When depart
from a given symmetry, the mixing of states concerns at fi
more the medium-energy states than the states on the sp
tails. This is still valid somewhere midway between the tw
symmetries. Nevertheless, the respective entropies k
growing until a saturation value, roughly equal to the GO
average, is reached for almost all states except for a few
the tails.

This behavior can be related to general trends follow
from perturbation theory. Eigenstates of a Hamiltonian
a
o
ith
y
a
n

lly
-

n

g
t
tral

ep

on

g
f

fected by a small perturbation are mixtures of unperturb

FIG. 5. The U~5! ~top! and SU~3! ~bottom! wave-function en-
tropy of individual L510 states along the U~5!-SU~3! transition
@h51→0, x52(7/4)1/2]. The state indexa is assigned increas
ingly with the state energy.
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eigenstates. The amplitude of thej th unperturbed state~with
energy Ej ) in the i th perturbed state~whose unperturbed
energy wasEi) is proportional to 1/uEi2Ej u times the mix-
ing matrix element. The eigenstate density culminates~for
models with finite state numbers! in the middle of the spec
trum, which means that in the statistical case~‘‘random’’
matrix elements of the perturbation! the mixing should be
maximal there, as well. When the perturbation strength
comes large enough to mix states from opposite ends of
spectrum, practically all wave functions reach the GOE
tropy value.

As already discussed in Sec. III B, such a scenario se
to work also in the shell model@29–32#. However, it must be
stressed that it can be invalid in some cases, especial
there exist some ‘‘nonstatistical’’ structural effects along t
spectrum, as illustrated in the following example: Consid
two classes of the IBM-1 states, both being mixtures of
U~5! eigenstates with variousd-boson numbers. Letnd
<nd0 for the first class of states andnd.nd012 for the
second class (nd0 is an arbitrary number smaller thanN
22). The states from both classes cannot be mixed b
two-body interaction, so that if they prevail in some part
the spectrum, the wave-function entropy would be system
cally reduced there compared to the level-density expe
tion.

We should have in mind that in our case the abo
discussed correspondence between the complexity and
sity of eigenstates must be imperfect since the changes o
IBM-1 Hamiltonian under study are not small perturbation
The h dependence of a smoothed state density

r~E!5E re~E8!g~E2E8!dE8, ~13!

wherere(E) is the exact state density~a chain ofd func-
tions! andg(E2E8) is an appropriate zero-centered Gau
ian (s50.07 energy units!, is shown in the upper part of Fig
6. Apparently, the level distribution moves as a whole a
changes in shape under the U~5!→SU~3! transition ~cf. the
corresponding change of the potential in Fig. 2!. Thus the
behavior of wave-function entropies in Fig. 5 can be ev
surprising. Anyway, it is no wonder that, unlike the she
model case@29–32#, the entropies in Fig. 5 cannot be d
rectly related to the ‘‘thermodynamic entropy’’ given by
logarithm of the state density. This can be seen by compa
the histograms in Fig. 5 with the one in the lower part of F
6, where the smoothed state densityr(Ea) is shown as a
function of the state indexa ~considering the different ori-
entations of the plots in Figs. 5 and 6, imposed by the sh
of the functions displayed!. Clearly,r(Ea) does not exactly
correspond to expWa

B . Note, however, that dimensionsn in
the present model are still too low to make a definite conc
sion in this question.

C. U„5…-SU„3…-SO„6… transitions

The average wave-function entropy in the whole (h,x)
range of Eq.~4! with N520 was presented in our previou
work @15# for various angular momenta. It was shown th
the regions with largest entropy-ratio productR from Eq.
~12! coincide with the most chaotic regions of the Cas
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triangle described in Refs.@16,17# by standard quantal an
classical chaotic measures. On the other hand, the semir
lar regions have theR product suppressed.

An example is in Fig. 7, where the average entropy rat
r B are shown for all five symmetries together with the pro
uct R for L510 states withN520 ~cf. Fig. 1 in Ref.@15#!.
Note that because the nonstandard symmetries SU~3!* and
SO~6!* are absent from the (h,x) manifold in the present
parametrization, the corresponding entropies are never z
However, while the SU~3!* symmetry is totally irrelevant~it
would be present if the triangle is extended tox51A7/2),
the SO~6!* entropy has a behavior very similar to U~5!.

One sees in Fig. 7 that the regular region at the U~5!-
SO~6! edge @16,17,36# exhibits a quite high simultaneou
localization in the U~5!, SO~6!, and SO~6!* bases. This is
becausethe sameSO~5! subgroup is common to all the thre
chains I, III, and III*, see Eqs.~2! and ~3!, so that thex
50 Hamiltonians cannot mix states with various SO~5!-
associated quantum numbers. The block-diagonal form
the Hamiltonian then naturally implies the suppression of
above three entropies and also non-GOE spectral chara
istics @36# on the U~5!-SO~6! transition. As was already dis
cussed, however, the system not only exhibits a smaller
gree of chaos but is fully integrable in this region, sinc
having five degrees of freedom~for a fixedN; see Sec. II C!,
it also has five independent compatible integrals of mot
~if not countingN̂): Ĉ2@SO(5)#, L̂2, L̂z , the integral associ-
ated with the missing label in the SO~5! . SO~3! embedding
@an invariant of SO~3! built from the SO~5! generators#, and
the Hamiltonian itself@16,17#.

Note that we reveal the integrable U~5!-SO~6! region us-
ing only the bases associated with dynamical symmetrie
the model, because all the transitional bases are well lo
ized in the limiting ones. That is also why we do not need
analyze wave-function entropies of the rest of the Cas

FIG. 6. A smoothed density ofL510 states (N520) along the
U~5!-SU~3! transition as a function of energyE ~top! and the state
index a ~bottom!.
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FIG. 7. The average entropy ratios from Eq.~11! and their product from Eq.~12! for L510 states (N520) calculated over the whole
range of the Casten triangle. The first five histograms displayr B for the five dynamical symmetry bases, while the lower right histogr
represents the renormalized productR. As in Fig. 4, points outside the triangle are filled with zeros.
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triangle in the whole~continuous! set of all integrable
bases—the results would be qualitatively the same as
the dynamical symmetry bases alone. This argument h
true even in more general cases if the integrable region w
no dynamical symmetry is located on a transition betwe
two chains~1! differing only by the subgroupGi , as dis-
cussed in Sec. II B. Finally, it should be remarked that
simple fact of the common SO~5! subgroup along the U~5!-
SO~6! transition and its dynamical consequences remai
overlooked for a long time@37#, which is perhaps also a
reason for the potential utility of entropy analyses.

The other nonchaotic~although not perfectly regular! re-
gion found in Refs.@16,17# is the strip connecting the U~5!
and SU~3! vertices, but inside the triangle. It is also asso
ated with an increased localization in the symmetry bas
One sees in Fig. 7 that a partial lowering of therB values in
this region ~for h above, say, 0.5! is present in the U~5!,
SO~6!*, and SO~6! histograms, and~for smallerh) also in
the SU~3! histogram. The effect is clearly visible in the pro
uct histogram. This behavior cannot be caused by some c
mon subgroup, as in the previous case, and its explanatio
still missing. Perhaps the newly introduced@27,38,39#, so-
called partial dynamical symmetries provide a possibility
such an explanation.

In Fig. 8 we compare the curve in the Casten trian
indicated in Ref.@17# as the bottom of the new semiregul
valley with the corresponding chain of boxes with a min
mum value of the entropy-ratio productR. The former,
evaluated as the curve of a minimal fractions of the chaotic
phase-space volume@17#, is given essentially by the linea
function x'@(A721)h2A7#/2 ~see Fig. 13 in Ref.@17#!.
The overall agreement of the minimum-R and minimum-s
strips is good, indicating that standard chaotic measures
the entropy-ratio product express the same quality. Some
viations of the two strips are probably caused by the fin
resolution of the grid in theR plot, and by some uncertaint
induced by the standard chaotic measures themselves~one
could equally well use another measure thans, yielding
probably a slightly different curve!. Also shown in Fig. 8 are
th
ds
th
n

e

d

-
s.

m-
is

r

e

nd
e-
e

therB ratios and the productR on the indicated section of th
Casten triangle~note that this section does not correspond
a fixed value ofx; see the coordinate lines in Fig. 1!. The
passage of this section through chaotic and semiregula
gions can be easily identified.

FIG. 8. The semiregular region inside the Casten triangle
deduced from classical chaotic measures~the fractions of the cha-
otic phase-space volume! and from the wave-function entropies~for
L510 states withN520). Top: The bent curve indicates the (h,x)
localization of thes valley determined in Ref.@17#, while boxes
represent local minima~if any! of the entropy-ratio productR from
Eq. ~12!. Bottom: Values ofrB, see Eq.~11!, andR along the given
section~the dashed line above! of the Casten triangle.
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D. L dependence

In Ref. @15#, the wave-function entropy was evaluated f
angular momentaL50, 10, 20, and 30. If the case ofL
530 is excluded, for which the dimensionn is already sub-
stantially reduced due to the proximity of the upper angu
momentum limitLmax540 for N520, the entropy decrease
with L ~within the given set ofL ’s! in the whole range of the
Casten triangle. This is in agreement with the work
Whelan and Alhassid@17#, who observed an overall decrea
of chaotic measures with angular momentum.

In Fig. 9, we present a detailedL dependence of the av
erage wave-function entropy ratios for all momenta betw
L50 and 20 for two particular points of the Casten triang
The first one (h51/10, x52A7/4) is located in the mos
chaotic region, while the other (h51/2, x50) is on the
regular U~5!-SO~6! edge. The previous result@15#, based on
the limited number ofL ’s, is confirmed now for allL<20,
but one should be aware that at some value of the ang
momentum the entropy ratio has a minimum and turns gr
ing ~cf. Fig. 1 in Ref. @15#!. Note that within the chosen
interval of angular momenta the dimensionn changes be-
tween limitsn533 ~for L53) andn5121 (L58,10).

One sees~in the upper two diagrams in Fig. 9! that the
trend to decrease is common to all the five entropies. H
ever, also apparent from Fig. 9 is the staggering of all
tropy ratios, particularly strong for small angular momen
which gives rise to large oscillations in theL dependence o
the entropy-ratio productR ~lower two diagrams!. This be-
havior of the wave-function entropy, noticed already in R
@28# for a different IBM-1 parametrization, refers to an ea
lier observation made by Paar and Vorkapic´ @40# that within
the IBM-1 the states withL50,3 have larger spectral chaot
measures than those withL52,4. These findings are particu
larly interesting because similar dependence was ident
@41# also in a large experimental-data ensemble of nuc
levels.

FIG. 9. The angular-momentum dependence (L50, . . .,20) of
the wave-function entropy for two points of the Casten triangle~left
vs right!. The fiveB5U(5), . . . , SO~6!* average entropy ratiosrB

are shown in the upper graphs and their productR in the corre-
sponding lower graphs.
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E. N dependence

Since the boson numberN is, like L, a conserved quan
tum number, we shall study how the wave-function entrop
vary with it. In general, because variousC1@U(6)#5N
eigenspaces carry various irreducible representations of
dynamical group, we ask how properties of the system
pend on the particular choice of the model Hilbert space.
example of such a dependence was already mentione
Sec. IV A ~see Fig. 4!.

An important question is whether the semiregular reg
inside the Casten triangle~see Sec. IV C! survives when
changingN. The entropy-ratio productR of L510 states on
the triangle section from Fig. 8@the line parallel with the
SO~6!-U~5! side# is plotted in Fig. 10 forN511, 14, 17, and
20. All the R plots have minima at about 3/4 of theh range,
indicating the passage of the given section through the se
regular region. It seems therefore that the semiregular str
not just a large-N effect, although forN511 the minimum is
less pronounced relative to the chaotic side regions in F
10.

An interestingN-dependent effect appears in the U~5!-
SO~6! transitional region. We discussed already that
U~5!, SO~6!, and SO~6!* entropies are all suppressed in th
region since a complete mixing of states is disabled by
common SO~5! symmetry. Consequently, any purely U~5!-
SO~6! transitional Hamiltonian has a block-diagonal stru
ture in the U~5!, SO~6!, and SO~6!* bases@36#, each block
corresponding to fixed SO~5! quantum numbersv and nD

@12#. In Fig. 11, we show theN dependence of the averag
dimensionnblock of these blocks forL510 @individual block

FIG. 10. The entropy-ratio productR along thex50.54/(1
2h) section of the Casten triangle~see the dashed line in Fig
8—top! for L510 and various boson numbersN ~cf. Fig. 8—
bottom!. The normalization of allR plots is the same except for th
N511 one, which should be multiplied by 2.
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FIG. 11. The boson-number dependence
the relative average block dimensionnblock/n of
the block-diagonal@in the U~5!, SO~6!, and
SO~6!* bases# Hamiltonians at the U~5!-SO~6!
transition forL510. The average relative num
bers of wave-function componentsneff

SO(6)* /n are
given separately for pure U~5! and SO~6! Hamil-
tonians at five values ofN. Total numbersn of
the L510 states for eachN are indicated inside
the frame.
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dimensions coincide with the degeneracy dimensionsndeg
( i )

from Eq. 8!# relative to the total dimensionn of the L510
subspace. The relative block dimensionnblock/n naturally
decreases withN as the number of blocks@number of al-
lowed (v,nD) values# increases, which yields an'1/N de-
pendence for largeN andL!N.

It is clear that the decrease of the relative average bl
dimensions on the U~5!-SO~6! edge withN reduces increas
ingly also the corresponding GOE-normalized entropies
the U~5!, SO~6!, and SO~6!* bases. Consequently, in theN
→` limit the whole integrable U~5!-SO~6! region would
yield the above three normalized entropies equal to z
This is also illustrated in Fig. 11. The quantity that can
directly compared with the average block dimension is
average effective number of wave-function componentsneff

B

5expWB ~see Sec. III D!. Open squares and triangles in Fi
11 indicate values ofneff

SO(6)* /n for L510 eigenstates at th
U~5! and SO~6! vertices. Note thatneff

SO(6) at the U~5! vertex
and neff

U(5) at the SO~6! vertex are determined by the give
SO~6!* values since the relationWSO(6)* (L,N,h51,x50)
5WSO(6)(L,N,h51,x50)5WU(5)(L,N,h50,x50) is
valid for average entropies from Eq.~9!. Here, the first
equality follows from the fact that the expansion of t
SO~6! and SO~6!* eigenstates in the U~5! basis differ only
by phases@each U~5! eigenstate has a sharp number ofs and
d bosons# and the second equality from the evident rule th
the B-expansion matrix ofB8 is just a Hermitian conjugate
of theB8-expansion matrix ofB. As can be seen from Fig
11, the average U~5!, SO~6!, and SO~6!* relative numbers of
wave-function components at the U~5!-SO~6! edge directly
follow the decrease of the relative block dimensions.

V. CONCLUDING REMARKS

In this work we attempted to find a continuous measure
the dynamical symmetry content for a class of IBM-1 Ham
tonians, and relate it to the variety of transitional degre
between regularity and chaos that the Hamiltonians exh
The key ingredient of our analysis was the simple obser
k

n

o.

e

t

f

s
it.
-

tion that any dynamical symmetry is connected with a cert
subset of bases, for which the average overlap with eig
bases of the tested Hamiltonians can be measured by
wave-function entropy. This provided us a tool for studyi
various phenomena accompanying the process of dynam
symmetry breaking~Sec. IV!.

We faced the following basic problems.~i! Removal of
the dimension dependence of the average wave-function
tropy by normalization. It is essential if the entropy valu
for subsets of eigenstates with different conserved quan
numbers (N andL in our case! are to be compared. It turne
out that the GOE normalization~Sec. III C! is quite satisfac-
tory. ~ii ! Uncertainty of the reference dynamical symme
bases for noncanonical group reductions. This problem
shown to be of minor importance for the IBM-1~Sec. III B!,
but can be more serious for other models, for which
uncertainty should therefore be rigorously taken into
count. ~iii ! Construction of the entropy-ratio product in E
~12!. It remains an ansatz, but seems to work reasona
well. ~iv! Necessity to consider also the ‘‘hidden’’ dynamic
symmetries, such as SU~3!* and SO~6!* @15#. Note that these
symmetries arise, in general@14#, from inner automorphisms
of the dynamical group and are not classified by the gro
theory. ~v! The fact that not all integrable Hamiltonians o
the system are connected with dynamical symmetries
means that not all potentially relevant reference bases ca
constructed by group methods. Nevertheless, in the ab
discussed case of the U~5!-SO~6! transition~Secs. II B, IV C!
the regular dynamics was identified by means of only
dynamical symmetry bases.

The most important goal of this work was to establish
link between the dynamical symmetry content and the deg
of regularity or chaos. It turned out~Secs. IV C and IV D!
that for the simple model under study the wave-function
tropies are indeed strongly correlated with the standard c
otic measures used, for instance, in Ref.@17#. If the same
conclusion can be repeated also for other dynamical syste
the present approach would provide a new measure of ch
additional to the standard ones. It is clear that the dynam
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symmetry content expressed by the overlap of bases m
sures, in fact, to what extent the integrals of motion attac
to the reference dynamical symmetry remain approxim
integrals of motion for the tested system. In this connecti
it would be interesting to know whether also sets of so
approximate or exact~?! integrals of motion, not arising
from any of the dynamical symmetries of the system, ex
and are important.@For example, the integrable U~5!-SO~6!
systems do not possess any dynamical symmetry but
integrals of motion—including the Hamiltonian—can b
constructed solely from the integrals corresponding to
namical symmetries—see Eq.~5!.# These questions shoul
be addressed in future studies.

Finally, it should be stressed that we do not pretend
find an analytical definition of any sort of generalized sy
cs
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n

ys

tt
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te
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o
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metry, such as the partial dynamical symmetry@38#, for in-
stance. Our numerical analysis allows one to see whethe
content of a particular dynamical symmetry is small or larg
but cannot answer why it is so. Nevertheless, even with
above limitations in mind we believe that the approach p
sented in this work can yield a new probe for investigati
dynamical properties of finite quantum systems.
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