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Selective quasienergies from short time cross-correlation probability amplitudes
by the filter-diagonalization method
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The filter-diagonalization method is applied to time periodic Hamiltonians, and used to find selectively the
regular and chaotic quasienergies of a driven two-dimensional rotor. The tkerofs-correlation probability
amplitudes enables a selective calculation of the quasienergies from short time propagation to H&time
Compared to the propagation tiffi€" which is required for resolving the quasienergy spectrum with the same
accuracy from autocorrelation calculations, the cross-correlation TiMeis shorter by the factoN, that is
TO=NTM. [S1063-651X%98)01307-5

PACS numbd(ps): 05.45+b, 03.65—w

[. INTRODUCTION whereasN times more propagation step$e. up tot
=mNT) are required in order to obtain an accurate spectrum
Filter diagonalization was recently introduced by Neu-from N autocorrelation amplitudes.

hausef 1] and Neuhauser and co-work¢fs-4] as a general This allows us to replace one long time calculation by a

method to extract frequencigpoles from a given signal. few short time calculations, which is a useful tool in systems

The approach has been extensively used, in quantum dynarf®r which the numerical effort of long time calculations in-

ics and general contexts, by several grofips7]. In the creases with time, or for which only the short time regime

calculation of photoabsorption probabilities, filter diagonal-Yields significant information, e.g., in the calculation of fast

ization together with thet(t’) method, has been used as andecaying resonanc¢s].

effective tool to extract quasienergies from the autocorrela-

tion functionlwithout full-matrix diagonalizatiofB]. II. FILTER DIAGONALIZATION FOR TIME
Recently it was proposed to extract the energy spectrum PERIODIC HAMILTONIANS
of the studied system from the cross-correlation functions
rather than from the autocorrelation amplitudés9]. This The filter-diagonalization method enables one to calculate

approach enables U$] to extract the resonance positions Selectively the energy spectrum of time independent systems
and widths(associated with the complex eigenvalues of thefrom the autocorrelation amplitudes,
complex scaled Hamiltoniarfrom very short time propaga-
tions which are too short to obtain the spectrum from auto- _ "
correlation calculations. Crl)=(bal U (V)] b, @)
Mandelshtam and Taylor’s simple box filig] was found ) )
to be very efficient, and we will also use it in the presentor from the cross-correlation amplitudes,
application of the filter diagonalization method with cross-
qorrelatlon fqnctlons to time p¢r|od|c Hamiltonians. In par- Com(t)={(n| O (1) ). )
ticular, we will show the following.
(a) The filter-diagonalization method is applicable to time R
periodic HamiltoniansH(t)=H(t+T), provided the auto- where U(t) is the time evolution operator,n,m
correlation and cross-correlation amplitudes are calculated o {1,2, . . . N} [9], andt<7. The key point is that the timg&
measured at=T,2T,3T, ... andnot at any other time in- is too short to obtain the spectrum by fast Fourier transform
terval. or by other known methodkl-5]. The energy eigenvalues
(b) The quasienergyQE) spectrum can be extracted ei- of the systemf, are obtained by solving a generalized ei-
ther from the autocorrelation or cross-correlation amplitudesgenvalue problem
(c) The QE’s which are predominantly populated by the
initial stat€s) are most accurately obtained. When the initial UV = \SP 3
states are localized in the chaotic regime of the classical '
phase space, all chaotic QE states are obtained, whereas
regular QE states are obtained when the initial states anehereU=U(At) is the time propagator for a time stey,
localized in the regular part of the stroboscopic Poinsare  andS is the overlap matrix of the filter basis functions. Both
face of section. matrices consist oNXN submatrices with the dimension
(d) Accurate QE spectra can be obtained frbhcross- N X N;, whereN is the number of initial states for the cross-
correlation functions propagated from=0 to t=mT, correlation amplitudes ard; the number of filter basis func-
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tions (for further details, see Reff9]). We should emphasize filter basis functiongEq. (5)] has to be replaced by a sum-
that theonly input data needed to calculaté and S are  mation. So, for time periodic Hamiltonians, the filter basis
Cp(t) or C,n(t) at the discrete timest=k At, k  functions are given by
=0,1,2 ... ,N;, whereN; At=7. There is no need to know
even for which Hamiltonian syste@,(t) [or C, (t)] were . o~
calculated or measured. The eigenvalues and the energy [We)= Nt+1r120 "= (nT)[¢(0)).
spectrum are related bg=i#x(At) "1 In(\) [9] (note that
the quasienergies are defined up to multiplesiaf). The  Using this definition, we see that in the linh— o the filter
derivation of Eq.(3) for time independent systems is basedbasis function¥ ¢ is an eigenfunction of the Floquet operator
on two facts. if E is a quasienergy, and conditigh) is fulfilled.

(I) The energy eigenstatdd¢) of the HamiltonianH This shows that in the case of time periodic Hamiltonians

are also eigenstates of the time evolution operdigt) We have to take\t=T and modify the definition of the filter
basis functions. Only then can the QE spectrum be obtained

Ny

(10

=exp(-iHA), by the filter-diagonalization method. This conclusion has
0(t)|@g)=exp — IEt/A)|Dg). 4) been confirmed by our numerical calculations.
(I The filter basis functions, which are taken as a basis!ll. SELECTIVE QUASIENERGIES FROM SHORT TIME
set to diagonalize the time evolution operathrare defined CROSS CORRELATIONS
as

Let us take as an illustrative numerical example a two-
dimensional(2D) driven rotor Hamiltonian

17 .
|<I>E>=—Tf0dt eEMU(D)]4(0)). (5

"2
H(t)= &+cos(¢)cos{wt) (11)
In the limit 7— o0 they are eigenstates if is an eigenvalue. 2

For time dependent systems the first condition s, Ofmodelin e.g, a dipole in an oscillating fielthe rotational
course, not fulfilled, since the time evolution operatondt 9. €9, P 9

exd —iH(t)t/A]. We can overcome this difficulty by express- ggg}?tunguﬁnﬁ:ﬂj%ﬁ; r?ﬁ?;?éif;féd ijnfv;:\]eago;he
ing the time evolution operator by the,{’) method[10]. d . y ’ ) .

L o i = double resonance model, is one of the models investigated
This implies that the Hamiltoniail in the first conditions

) ! ! extensively in context with quantum chatsee, e.g., Refs.
and in the expressions used to derive E).(see Ref[9]) [12-17).

should be replaced by the Floquet or quasienergy operator The classical dynamics of systefbl) is chaotic, i.e., it
H=py+H(t") which is time(i.e., t) independent. Her&  shows a mixture of regular and chaotic dynamics. Strobo-
acts as an additional coordinate and not as a parameter. TBeopic Poincaresections of the classical phase space at

momentum operatqp,, is defined as usual. Using,{'), we  t=nT, (n=0,1,2...) areshown in Fig. 1 for the frequen-

can obtain an analytical form of the time evolution operator ciesw=0.6 andw=1.2. Foro=0.6 we have a clear division
of phase space into a single inner chaotic and two outer

Ny R T regular regions. Fow=1.2 two inner(classically discon-
U(t)_f dt’ S(t=t')ex —IH(t") ta]. ©) nected regular islands appear, centered at the two stable

) o o resonant corotating and counter-rotating periodic modes of
This fact enables the derivation of time independent scattefhe rotor.

ing theory for time dependent Hamiltoniaf0,11]. Let us In quantum studies, it has been found that in the semiclas-
now check if the above mentioned conditions are fulfilled forsica| regime the quasienergy states can be divided into two
time periodic systems. classes of eigenstat¢$5,17. One class of solutions com-

~ () For time periodic Hamiltonians, the quasienergy solu-prises extended quasienergy states which almost uniformly
tions [¥g) (which are defined as eigenstates of the Floguepopulate the free rotor states below a specific valuenbfin

operatoy are given by 2D problems and below the rotational quantum numnjbier
N the 3D caseg(see Figs. 7, 17, and 18 in Rdfl5] and Fig
H(O[We(t) =E[Ve(t)) (7)  10(a) in Ref.[16]). The strong random population of all con-

tributing free rotor basis functions is reflected in the Husimi

with the time periodic functions distribution, which shows almost an equal probability in the

[We(t))=|We(t+T)). (8) classically chaotic regiofsee Fig. 1(b) in Ref.[16]). The
states which which belong to this class of solutions are re-
On the other hand, using E), ferred to aschaoticquasienergy states.
The second class of solutions, which are referred to as
O(0)|We(0)) =e EVA [P (1)), (9)  regularstates, is localized both in the free rotor basis set and

in the stroboscopic Poincare surface of sections. See Fig. 6 in
so that condition(l) [see Eq.(4)] is fulfilled if |¥g(0)) Ref.[16] for states the Husimi distribution of which is local-
=|Wg(t)), which is only the case far=nT [see Eq(8)]. ized in the inner regular islands of the chaotic “sea,” and
(I As condition(l) is fulfilled only at the discrete times Fig. 9 in Ref.[16] for states which are localized along outer
t=nT,n=0,1,2 ..., theintegration in the definition of the regular orbits.
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the chaotic quasienergies obtained fréomg time propa-
gated autocorrelation function€,,(t), where t=0, T,

2T, ...,100r. The reason for sampling the autocorrelation
functions every time period has been explained above. The
results obtained fronshort time propagated autocorrelation
functions witht=0,T,2T, ... ,20" are presented in thiird
(lasp lines of the boxes in thénird column of Table I.

The deviation of the quasienergies obtained by the filter-
diagonalization method from the exact values are shown in
the last column in Table I. The results obtained frdiomg
time (100T) propagations are in a remarkable agreement
with the exact values. Note that the Fourier transform of the
same functions provide results, which are less accurate by
several orders of magnitudes.

The results obtained from th&horttime (20T) propaga-
tion are poor. In some cases it was impossible to allocate a
spectral line from the analysis of the autocorrelation func-
tions to the exact QE value. In the best caskort time
results were less accurate by more than four orders of mag-
nitude from the the long time result.

The imaginary part of the QE should be equal to zero as
the QE states are bounded states, so we use the imaginary
part of the calculated QEhefourth column in Table ) as an
independent error estimate of the filter diagonalization. An-
other error estimate can be obtained from the variations of
the spectral linegthe fifth column in Table ) as the time
evolution operator was diagonalized by the filter method at
t=T, 2T, and 3T (for a more detailed explanation, see Refs.
[5] and[9]). Comparing the last three columns, the indepen-

FIG. 1. Stroboscopic Poincasection of classical phase space at dent errors are about equal to the actual error of the results.
t=nT, (n=0,1,2 ...). All points in the chaotic region result from It is interesting to compare the errors of the long time
one single classical trajectorya) driven rotor with the frequency autocorrelation results with the the population of the
=0.6, (b) driven rotor with the frequency=1.2. quasienergy states by the initial staigise first column in
Table ). An error of 3.38<10 ° was obtained for the state

19 lculated using 81 f tor stat b opulated at the probability of 0.000 474, while an error of
w=-.c, Were cajculated using ree rotor states as a basis3q, 1911 as obtained for a state populated at a higher

set. The numerically exact quasienerdieisaotic and regular probability of 0.0819. Another interesting result that will be

following the definitions given aboyewere obtained from ' . -
9 g y discussed later in more detail is that tlaegest errors are

the diagonalization of the Floquet time evolution operator X
O(T). Fortv of th tat Id be classified haoti .obtained foralmost degenerate states
(T). Forty of these states could be classified as chaotic, in The rationale behind the success of the filter-

agreement with the estimate from the area of the chaotic,.

region in phase space. The quasienergies of chaotic states oF gonalization method to extract the QE spectrum from the

w=0.6 in the representative interval 0-0E<0.02 are Iongttlngje propf)ag?rt]ed ar\]ut(:ctgrrelatlon funt(?t|on§, andfltlsl fail-
given in thesecondcolumn of Table . ure to do so for the short time propagation, is as follows.

To demonstrate the selectivity of the filter-diagonalizationE2ch one of the QE states fills up a specific region in the
method, we first computenly the chaotic quasienergy states. classical phase space. The mln_lmal tlme W.hICh is required to
As the chaotic quasienergy states almost uniformly populat€Xtract the QE value fron®,(t) is the time it takes for the
the free rotor states, conversely the free rotor states almo8th initial state to cover entirely this specific region in the
uniformly populate the chaotic QE states. Thus we expect télassical phase spacthis can be seen by carrying out time
populate all chaotic states using the 0, 1, 2, 3, and 4 free dependent Husimi distribution calculationsOur results
rotor states as initial states. We calculated the spectrum fro@learly show that 20 is not enough to do so, but 100s
the autocorrelation functiorS,(t) with n=0, 1, 2, 3, and 4, more than enough.
and also from the cross-correlation amplitud€g n(t), Following this rationale, we expect that in the case of
wheren,m=0, 1, 2, 3, and 4. NXN cross-correlation calculations the initial statesto-

For the first calculation, the Neuhauser methdpwith a  getherwill cover the entire bounded chaotic classical phase
Mandelshtam-Taylor filter was used. The recent generalizaspace within 100 periods. That is, foN=5 it is enough to
tion of the filter method by Nareviciugt al.[9] was used to  calculate(or to measureC,, ,, withn,m=0, 1, 2, 3, and 4 up
extract the quasienergy spectrum from the cross-correlatioto t=20T. The results of this calculation are presented in the
functions. The results fow=0.6 are presented in Table |. secondines of the boxes in ththird column in Table I. The

Thefirst lines in boxes of thé¢hird column of the table are results are in excellent agreement with the exact QE values,

0 /2 b 3n/2 2n

The quasienergies fat=0.1 andw=0.6, and also for
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TABLE I. Numerically exact quasienergies and results obtained by the filter-diagonalization method using long time autocdfirstation
rows 100 periodg short time cross-correlatioisecond rows20 period$ and short time autocorrelation amplitudésird rows, 20 period$
as input dataA(E) denotes the deviations from the numerically exact valuesE)nig the imaginary part, and Err. is the error estimate
obtained in the filter diagonalization procedysee the text Pop. is the summed population probability of the QE state by the initial states
used in the propagation.

Pop E(exac}) E(filter) Im(E) Err. AE
1.51x 107! 0.010 616 379 394 2 0.0106163792312 —3.07x10°%0 6.84x 10710 1.63x10° 10
0.010 616 412 758 8 —2.24x10°8 8.07x10°8 3.34x10°8

none —_ —_ —_
1.87x10°*! 0.011177 3758931 0.011 1773759127 X539 11 1.69x 10710 1.96x10
0.011177 312582 7 1.6710°7 3.56x 1077 6.33x10°8
0.011 416 196 078 1 —-7.72x10°4 2.76x10°4 2.39x10°4
9.49x 1072 0.0135287439410 0.0135287508368 —3.12x10°° 1.18x10°° 6.90x10°°
0.013 528 904 318 8 2.59010°° 3.11x10°7 1.60x 107

none —_ —_ —_
4.74<1074 0.013 623 787 067 0 0.0136237904429 —4.83x10°° 1.11x10°8 3.38x10°°
0.013 623 796 403 4 —-2.60x10°7 5.02x10° 7 9.34x107°

none — — —
4.20x 1072 0.013 660 580 464 0 0.0136605575681 —1.35x10°8 5.42x 1078 2.29x10°8
0.013 660 864 532 0 1.401077 5.74x 1077 2.84x10°7
0.0138393729925 4.671073 5.99x 102 1.79x10°*
2.04x10° ! 0.014 161 221 3828 0.014 161 221 6830 Xp 10 1.08<10°° 3.00x 10710
0.014 161 238074 3 6.9210°° 3.54x10°8 1.67x10°8
0.014 539 644 1221 —5.65x10°° 1.21x10°* 3.78x10°4
8.19x 10?2 0.016 968 394 762 0 0.016 968 394 815 9 X1 3.56x10°1° 5.39x 10 1!
0.016 968 390 345 6 -7.97x10°° 1.65x10°8 4.42x107°
0.017 683921 754 4 6.2010°4 3.05x10°4 7.16x10°4
2.43x1071 0.018 915 768 674 6 0.018 915 769 457 8 G 3.36x10°1° 7.83x 10710
0.018 915 748 596 2 5.3010°8 1.13x10°’ 2.01x10°8
0.018 745 383 620 3 8.9310°° 1.17x10°* 1.70x10°*
1.39x10°* 0.019538017 1655 0.0195380181074 —1.07x10° %0 8.94x 1010 9.42x 10710
0.019 537 888 467 3 9.4310°8 3.19x10°7 1.29x10°
0.019 550 056 755 5 —4.91x10°4 7.23x10°4 1.20x10°°

and far better than the results obtained from the short tim@opulations of the QE by the initial states. That is, as the

(also 20r) propagations of the five separated autocorrelatiorpopulations become larger, the error is smaller.

functions. Following the rationale behind the success of filtering out
This is observed for all chaotic QE solutions in Fig. 2, the QE spectrum from short time propagations of cross-

where the errors in the QE are shown vs the computed QE

values. The results obtained from the short time propagated

cross-correlation data are more accurate over several orders

of magnitude(on the average by 4) than the results com- 1020 oo Cae oy 9
puted from the short time propagated autocorrelation ampli- o ° . 808. ©% oo g9 %
tudes. 10°F, o 5 "0 . °% 1
In order to show that indeedll chaotic QE’s were ob- “ R o

tained by the filter-diagonalization method using five short 10 E
time (20T) propagated cross-correlation functions, in the up- A 4ok ]
per part of Fig. 3 we plot the exact QE values and their . ]
summed population by the five initial states, whereas in the 10°F » o . ot
lower part of Fig. 3 the QE spectrum obtained by the filter fe ':: *e et . o e ]
diagonalization and the corresponding values of the inverse 10°¢ * - °, o
of the error are plotted. In Fig. 4, for comparison, we show 10°F o
the same plot for the results obtained by the filter- S S P P
diagonalization method from the short time propagated auto- 003 -0.02 -0.01 ICE) 0.01 0.02 003

correlation functiongthe long time autocorrelation functions

provide good results as in Fig,).3Unlike the results pre- FIG. 2. The deviation of the quasienergies obtained by the filter-
sented in Fig. 4, the QE spectrum obtained from the fivejiagonalization method from the exact numerical values. The open
short time propagated cross-correlation functidfig. 3) is  circles (large errof were obtained by filtering out the spectrum
very accurate. In the scale of the plot of Fig. 3, all of thefrom the short timg20 period$ propagation of five different auto-
QE’s are not only indistinguishable from the exact valuescorrelation amplitudes. The full circlésmall erroy were obtained
but the small errors are also proportional to the inverse of thérom five cross-correlation function amplitudes.
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100F 1 107 1

10°F 1 107F ;

10°F 1 10°F 1
Pop.10*F 1 Pop.10*} 1

10°F 1 100K ]

10°F 1 10°F 1

10-7 ] 1 | ‘ 1 ] 10-7 4 1 | I 1 !

AT * R U

10'k 3 10° 3

10°F 1 .

-1y 6K i - 3k F
(Err.) 187 1 ] (Err.y 10
10°F 1 10°F ]
10°F 1
-0.03 -0.02 -001 0 001 002 003 -0.03 -0.02 -001 O 001 002 0.03
E E

FIG. 3. The upper plot shows the numerically exact quasienergy FIG. 4. As in Fig. 3, but five separated short time propagated
spectrum and the summed population probabilities of the initialautocorrelation amplitudes were used as an input data in the filter-
states used in the time propagation calculations. The lower plotliagonalization method. The agreement of the spectra is bad.
shows the QE spectrum obtained by the filter-diagonalization cal- . . . .
culations using the five short time propagated cross-correlation anfation time with the “tunneling time”r= n#i/A(%) (the

plitudes vs the inverse of the calculated error estimate. Both spect@€condcolumn in Table 1), whereA(=) stands for the en-
show excellent agreement. ergy splitting. We find that filter diagonalization with cross-

correlation amplitudes can resolve splittings even if the
propagation time is remarkably shorter than the tunneling

correlation functions one, may expect that this will be the
most efficient procedure for calculating a regular QE sincd'Me-
the QE state is localized in a relatively small region of the
stroboscopic Poincarsurface of section. This is indeed the
situation. However, there are cases, as shown in Rig, 1 Using the filter-diagonalization method when the input
that, due to the symmetrical pair of regular islands, the regueata are time dependent cross-correlation functions sampled
lar part of the spectrunfassociated with the regular QE att=T,2T, ... highly accurate quasienergy spectra of time
stateg is almost degenerate. The results presented in Table feriodic systems can be obtained. The error is smaller for
clearly show that five short time propagation calculationsQE’s that are more highly populated by the initial states, and
with cross-correlation functions cannot resolve the splittinglarger for almost degenerate states. As a rule of thumb we
To obtain better results, one has to increase the time intervaiay conclude that, as more initial states are used to calculate
e.g., fort=100T the agreement is much bettesee the last the cross-correlation amplitudes, one can filter out an accu-
column of Table I}. It is interesting to compare the propa- rate QE spectrum from shorter time propagation calculations.

IV. CONCLUDING REMARKS

TABLE Il. Five pairs of almost degenerate regular quasienergies and results obtained by the filter-diagonalization method when the long
time (100 period$s and short timg20 period$ propagated cross-correlation amplitudes are used as inputAdats. stands for the energy
splitting between any two almost degenerate QE statelenotes the tunneling time= 7A/A(x).

A() AT E(exac) E(20T) E(100T)
3.55x10°° 1.69x 107 0.027 232 623 10 0.027 232 623 10
0.027 232 626 65 0.027 232 626 08
2.49<10°7 2.41x10° —0.022 735 476 56 —0.022 735 595 70 —0.022 735 601 66
~0.022 735725 71 —0.022 744 783 76
1.54x10°5 3.90¢ 10° 0.045 859 222 47 0.045 866 882 80 0.045 859 655 74
0.045 874 534 32 0.045 875 015 85
7.73x10°4 7.75¢ 10 —0.006 575 290 61 —0.006 842 989 47 —0.006 575 283 41
—0.007 351 527 21 —0.007 351 533 32
1.03x10°3 5.83x 10t 0.057 706 791 31 0.057 646 876 57 0.057 706 791 16

0.058 739 703 81 0.058 703 565 60 0.058 739 703 89
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