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Selective quasienergies from short time cross-correlation probability amplitudes
by the filter-diagonalization method
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The filter-diagonalization method is applied to time periodic Hamiltonians, and used to find selectively the
regular and chaotic quasienergies of a driven two-dimensional rotor. The use ofN cross-correlation probability
amplitudes enables a selective calculation of the quasienergies from short time propagation to the timeT(N).
Compared to the propagation timeT(1) which is required for resolving the quasienergy spectrum with the same
accuracy from autocorrelation calculations, the cross-correlation timeT(N) is shorter by the factorN, that is
T(1)5NT(N). @S1063-651X~98!01307-5#

PACS number~s!: 05.45.1b, 03.65.2w
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I. INTRODUCTION

Filter diagonalization was recently introduced by Ne
hauser@1# and Neuhauser and co-workers@2–4# as a genera
method to extract frequencies~poles! from a given signal.
The approach has been extensively used, in quantum dyn
ics and general contexts, by several groups@5–7#. In the
calculation of photoabsorption probabilities, filter diagon
ization together with the (t,t8) method, has been used as
effective tool to extract quasienergies from the autocorre
tion function without full-matrix diagonalization@8#.

Recently it was proposed to extract the energy spect
of the studied system from the cross-correlation functio
rather than from the autocorrelation amplitudes@1,9#. This
approach enables us@9# to extract the resonance position
and widths~associated with the complex eigenvalues of
complex scaled Hamiltonian! from very short time propaga
tions which are too short to obtain the spectrum from au
correlation calculations.

Mandelshtam and Taylor’s simple box filter@5# was found
to be very efficient, and we will also use it in the prese
application of the filter diagonalization method with cros
correlation functions to time periodic Hamiltonians. In pa
ticular, we will show the following.

~a! The filter-diagonalization method is applicable to tim
periodic Hamiltonians,H(t)5H(t1T), provided the auto-
correlation and cross-correlation amplitudes are calculate
measured att5T,2T,3T, . . . andnot at any other time in-
terval.

~b! The quasienergy~QE! spectrum can be extracted e
ther from the autocorrelation or cross-correlation amplitud

~c! The QE’s which are predominantly populated by t
initial state~s! are most accurately obtained. When the init
states are localized in the chaotic regime of the class
phase space, all chaotic QE states are obtained, whe
regular QE states are obtained when the initial states
localized in the regular part of the stroboscopic Poincare´ sur-
face of section.

~d! Accurate QE spectra can be obtained fromN cross-
correlation functions propagated fromt50 to t5mT,
PRE 581063-651X/98/58~1!/376~6!/$15.00
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whereas N times more propagation steps~i.e. up to t
5mNT) are required in order to obtain an accurate spectr
from N autocorrelation amplitudes.

This allows us to replace one long time calculation by
few short time calculations, which is a useful tool in syste
for which the numerical effort of long time calculations in
creases with time, or for which only the short time regim
yields significant information, e.g., in the calculation of fa
decaying resonances@9#.

II. FILTER DIAGONALIZATION FOR TIME
PERIODIC HAMILTONIANS

The filter-diagonalization method enables one to calcu
selectively the energy spectrum of time independent syst
from the autocorrelation amplitudes,

Cn~ t !5^fnuÛ~ t !ufn&, ~1!

or from the cross-correlation amplitudes,

Cn,m~ t !5^fnuÛ~ t !ufm&, ~2!

where Û(t) is the time evolution operator,n,m
P$1,2, . . . ,N% @9#, andt,T. The key point is that the timeT
is too short to obtain the spectrum by fast Fourier transfo
or by other known methods@1–5#. The energy eigenvalue
of the system,E, are obtained by solving a generalized e
genvalue problem

UCW 5lSCW , ~3!

whereU5U(Dt) is the time propagator for a time stepDt,
andS is the overlap matrix of the filter basis functions. Bo
matrices consist ofN3N submatrices with the dimensio
Nf3Nf , whereN is the number of initial states for the cros
correlation amplitudes andNf the number of filter basis func
376 © 1998 The American Physical Society
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PRE 58 377SELECTIVE QUASIENERGIES FROM SHORT TIME . . .
tions ~for further details, see Ref.@9#!. We should emphasize
that the only input data needed to calculateU and S are
Cn(t) or Cn,m(t) at the discrete timest5k Dt, k
50,1,2, . . . ,Nt , whereNt Dt5T. There is no need to know
even for which Hamiltonian systemCn(t) @or Cn,m(t)# were
calculated or measured. The eigenvalues and the en
spectrum are related byE5 i\(Dt)21 ln(l) @9# ~note that
the quasienergies are defined up to multiples of\v). The
derivation of Eq.~3! for time independent systems is bas
on two facts.

~I! The energy eigenstatesuFE& of the HamiltonianĤ

are also eigenstates of the time evolution operatorÛ(t)
5exp(2iĤt/\),

Û~ t !uFE&5exp~2 iEt/\!uFE&. ~4!

~II ! The filter basis functions, which are taken as a ba
set to diagonalize the time evolution operatorÛ, are defined
as

uFE&5
1

TE0

T
dt eiEt/\Û~ t !uf~0!&. ~5!

In the limit T→` they are eigenstates ifE is an eigenvalue.
For time dependent systems the first condition is,

course, not fulfilled, since the time evolution operator isnot

exp@2iĤ(t)t/\#. We can overcome this difficulty by expres
ing the time evolution operator by the (t,t8) method@10#.
This implies that the HamiltonianĤ in the first conditions
and in the expressions used to derive Eq.~3! ~see Ref.@9#!
should be replaced by the Floquet or quasienergy oper
Ĥ5 p̂t81Ĥ(t8) which is time~i.e., t) independent. Heret8
acts as an additional coordinate and not as a parameter
momentum operatorp̂t8 is defined as usual. Using (t,t8), we
can obtain an analytical form of the time evolution operat

Û~ t !5E dt8 d̂~ t2t8!exp@2 i Ĥ~ t8! t/\#. ~6!

This fact enables the derivation of time independent sca
ing theory for time dependent Hamiltonians@10,11#. Let us
now check if the above mentioned conditions are fulfilled
time periodic systems.

~I! For time periodic Hamiltonians, the quasienergy so
tions uCE& ~which are defined as eigenstates of the Floq
operator! are given by

Ĥ~ t !uCE~ t !&5EuCE~ t !& ~7!

with the time periodic functions

uCE~ t !&5uCE~ t1T!&. ~8!

On the other hand, using Eq.~6!,

Û~ t !uCE~0!&5e2 iEt/\uCE~ t !&, ~9!

so that condition~I! @see Eq.~4!# is fulfilled if uCE(0)&
5uCE(t)&, which is only the case fort5nT @see Eq.~8!#.

~II ! As condition~I! is fulfilled only at the discrete times
t5nT, n50,1,2, . . . , theintegration in the definition of the
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filter basis functions@Eq. ~5!# has to be replaced by a sum
mation. So, for time periodic Hamiltonians, the filter bas
functions are given by

uCE&5
1

Nt11 (
n50

Nt

einET/\Û~nT!uf~0!&. ~10!

Using this definition, we see that in the limitNt→` the filter
basis functionCE is an eigenfunction of the Floquet operat
if E is a quasienergy, and condition~II ! is fulfilled.

This shows that in the case of time periodic Hamiltonia
we have to takeDt5T and modify the definition of the filter
basis functions. Only then can the QE spectrum be obtai
by the filter-diagonalization method. This conclusion h
been confirmed by our numerical calculations.

III. SELECTIVE QUASIENERGIES FROM SHORT TIME
CROSS CORRELATIONS

Let us take as an illustrative numerical example a tw
dimensional~2D! driven rotor Hamiltonian

Ĥ~ t !5
p̂f

2

2
1cos~f!cos~vt ! ~11!

modeling, e.g, a dipole in an oscillating field~the rotational
momentump̂f is \m, wheremP$0,61,62, . . .% is the ro-
tational quantum number!. This system, also known as th
double resonance model, is one of the models investiga
extensively in context with quantum chaos~see, e.g., Refs
@12–17#!.

The classical dynamics of system~11! is chaotic, i.e., it
shows a mixture of regular and chaotic dynamics. Stro
scopic Poincare´ sections of the classical phase space
t5nT, (n50,1,2, . . . ) areshown in Fig. 1 for the frequen
ciesv50.6 andv51.2. Forv50.6 we have a clear division
of phase space into a single inner chaotic and two ou
regular regions. Forv51.2 two inner ~classically discon-
nected! regular islands appear, centered at the two sta
resonant corotating and counter-rotating periodic modes
the rotor.

In quantum studies, it has been found that in the semic
sical regime the quasienergy states can be divided into
classes of eigenstates@15,17#. One class of solutions com
prises extended quasienergy states which almost unifor
populate the free rotor states below a specific value ofumu in
2D problems and below the rotational quantum numberj in
the 3D case~see Figs. 7, 17, and 18 in Ref.@15# and Fig
10~a! in Ref. @16#!. The strong random population of all con
tributing free rotor basis functions is reflected in the Husi
distribution, which shows almost an equal probability in t
classically chaotic region~see Fig. 10~b! in Ref. @16#!. The
states which which belong to this class of solutions are
ferred to aschaoticquasienergy states.

The second class of solutions, which are referred to
regular states, is localized both in the free rotor basis set a
in the stroboscopic Poincare surface of sections. See Fig.
Ref. @16# for states the Husimi distribution of which is loca
ized in the inner regular islands of the chaotic ‘‘sea,’’ a
Fig. 9 in Ref.@16# for states which are localized along out
regular orbits.
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The quasienergies for\50.1 andv50.6, and also for
v51.2, were calculated using 81 free rotor states as a b
set. The numerically exact quasienergies~chaotic and regular
following the definitions given above! were obtained from
the diagonalization of the Floquet time evolution opera
Û(T). Forty of these states could be classified as chaotic
agreement with the estimate from the area of the cha
region in phase space. The quasienergies of chaotic state
v50.6 in the representative interval 0.01,E,0.02 are
given in thesecondcolumn of Table I.

To demonstrate the selectivity of the filter-diagonalizati
method, we first computeonly the chaotic quasienergy state
As the chaotic quasienergy states almost uniformly popu
the free rotor states, conversely the free rotor states alm
uniformly populate the chaotic QE states. Thus we expec
populate all chaotic states using then50, 1, 2, 3, and 4 free
rotor states as initial states. We calculated the spectrum f
the autocorrelation functionsCn(t) with n50, 1, 2, 3, and 4,
and also from the cross-correlation amplitudesCn,m(t),
wheren,m50, 1, 2, 3, and 4.

For the first calculation, the Neuhauser method@2# with a
Mandelshtam-Taylor filter was used. The recent general
tion of the filter method by Narevicius,et al. @9# was used to
extract the quasienergy spectrum from the cross-correla
functions. The results forv50.6 are presented in Table I.

Thefirst lines in boxes of thethird column of the table are

FIG. 1. Stroboscopic Poincare´ section of classical phase space
t5nT, (n50,1,2, . . . ). All points in the chaotic region result from
one single classical trajectory:~a! driven rotor with the frequency
v50.6, ~b! driven rotor with the frequencyv51.2.
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the chaotic quasienergies obtained fromlong time propa-
gated autocorrelation functionsCn(t), where t50, T,
2T, . . . ,100T. The reason for sampling the autocorrelati
functions every time period has been explained above.
results obtained fromshort time propagated autocorrelatio
functions witht50,T,2T, . . . ,20T are presented in thethird
~last! lines of the boxes in thethird column of Table I.

The deviation of the quasienergies obtained by the filt
diagonalization method from the exact values are shown
the last column in Table I. The results obtained fromlong
time (100T) propagations are in a remarkable agreem
with the exact values. Note that the Fourier transform of
same functions provide results, which are less accurate
several orders of magnitudes.

The results obtained from theshort time (20T) propaga-
tion are poor. In some cases it was impossible to alloca
spectral line from the analysis of the autocorrelation fun
tions to the exact QE value. In the best case,short time
results were less accurate by more than four orders of m
nitude from the the long time result.

The imaginary part of the QE should be equal to zero
the QE states are bounded states, so we use the imag
part of the calculated QE~the fourth column in Table I! as an
independent error estimate of the filter diagonalization. A
other error estimate can be obtained from the variations
the spectral lines~the fifth column in Table I! as the time
evolution operator was diagonalized by the filter method
t5T, 2T, and 3T ~for a more detailed explanation, see Re
@5# and@9#!. Comparing the last three columns, the indepe
dent errors are about equal to the actual error of the res

It is interesting to compare the errors of the long tim
autocorrelation results with the the population of t
quasienergy states by the initial states~the first column in
Table I!. An error of 3.3831029 was obtained for the stat
populated at the probability of 0.000 474, while an error
5.39310211 was obtained for a state populated at a high
probability of 0.0819. Another interesting result that will b
discussed later in more detail is that thelargest errors are
obtained foralmost degenerate states.

The rationale behind the success of the filte
diagonalization method to extract the QE spectrum from
long time propagated autocorrelation functions, and its f
ure to do so for the short time propagation, is as follow
Each one of the QE states fills up a specific region in
classical phase space. The minimal time which is require
extract the QE value fromCn(t) is the time it takes for the
nth initial state to cover entirely this specific region in th
classical phase space~this can be seen by carrying out tim
dependent Husimi distribution calculations!. Our results
clearly show that 20T is not enough to do so, but 100T is
more than enough.

Following this rationale, we expect that in the case
N3N cross-correlation calculations theN initial statesto-
getherwill cover the entire bounded chaotic classical pha
space within 100/N periods. That is, forN55 it is enough to
calculate~or to measure! Cn,m with n,m50, 1, 2, 3, and 4 up
to t520T. The results of this calculation are presented in
secondlines of the boxes in thethird column in Table I. The
results are in excellent agreement with the exact QE valu

t
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TABLE I. Numerically exact quasienergies and results obtained by the filter-diagonalization method using long time autocorrelat~first
rows, 100 periods!, short time cross-correlation~second rows, 20 periods! and short time autocorrelation amplitudes~third rows, 20 periods!
as input data.D(E) denotes the deviations from the numerically exact values. Im(E) is the imaginary part, and Err. is the error estima
obtained in the filter diagonalization procedure~see the text!. Pop. is the summed population probability of the QE state by the initial st
used in the propagation.

Pop E~exact! E~filter! Im(E) Err. DE

1.5131021 0.010 616 379 394 2 0.010 616 379 231 2 23.07310210 6.84310210 1.63310210

0.010 616 412 758 8 22.2431028 8.0731028 3.3431028

none — — —

1.8731021 0.011 177 375 893 1 0.011 177 375 912 7 2.59310211 1.69310210 1.96310211

0.011 177 312 582 7 1.6731027 3.5631027 6.3331028

0.011 416 196 078 1 27.7231024 2.7631024 2.3931024

9.4931022 0.013 528 743 941 0 0.013 528 750 836 8 23.1231029 1.1831029 6.9031029

0.013 528 904 318 8 2.5931029 3.1131027 1.6031027

none — — —

4.7431024 0.013 623 787 067 0 0.013 623 790 442 9 24.8331029 1.1131028 3.3831029

0.013 623 796 403 4 22.6031027 5.0231027 9.3431029

none — — —

4.2031022 0.013 660 580 464 0 0.013 660 557 568 1 21.3531028 5.4231028 2.2931028

0.013 660 864 532 0 1.4031027 5.7431027 2.8431027

0.013 839 372 992 5 4.6731023 5.9931023 1.7931024

2.0431021 0.014 161 221 382 8 0.014 161 221 683 0 3.75310210 1.0831029 3.00310210

0.014 161 238 074 3 6.9231029 3.5431028 1.6731028

0.014 539 644 122 1 25.6531025 1.2131024 3.7831024

8.1931022 0.016 968 394 762 0 0.016 968 394 815 9 3.16310211 3.56310210 5.39310211

0.016 968 390 345 6 27.9731029 1.6531028 4.4231029

0.017 683 921 754 4 6.2931024 3.0531024 7.1631024

2.4331021 0.018 915 768 674 6 0.018 915 769 457 8 1.56310211 3.36310210 7.83310210

0.018 915 748 596 2 5.1931028 1.1331027 2.0131028

0.018 745 383 620 3 8.9331025 1.1731024 1.7031024

1.3931021 0.019 538 017 165 5 0.019 538 018 107 4 21.07310210 8.94310210 9.42310210

0.019 537 888 467 3 9.4331028 3.1931027 1.2931027

0.019 550 056 755 5 24.9131024 7.2331024 1.2031025
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and far better than the results obtained from the short t
~also 20T) propagations of the five separated autocorrelat
functions.

This is observed for all chaotic QE solutions in Fig.
where the errors in the QE are shown vs the computed
values. The results obtained from the short time propaga
cross-correlation data are more accurate over several o
of magnitude~on the average by 4) than the results co
puted from the short time propagated autocorrelation am
tudes.

In order to show that indeedall chaotic QE’s were ob-
tained by the filter-diagonalization method using five sh
time (20T) propagated cross-correlation functions, in the u
per part of Fig. 3 we plot the exact QE values and th
summed population by the five initial states, whereas in
lower part of Fig. 3 the QE spectrum obtained by the fil
diagonalization and the corresponding values of the inve
of the error are plotted. In Fig. 4, for comparison, we sh
the same plot for the results obtained by the filt
diagonalization method from the short time propagated a
correlation functions~the long time autocorrelation function
provide good results as in Fig. 3!. Unlike the results pre-
sented in Fig. 4, the QE spectrum obtained from the fi
short time propagated cross-correlation functions~Fig. 3! is
very accurate. In the scale of the plot of Fig. 3, all of t
QE’s are not only indistinguishable from the exact valu
but the small errors are also proportional to the inverse of
e
n
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populations of the QE by the initial states. That is, as
populations become larger, the error is smaller.

Following the rationale behind the success of filtering o
the QE spectrum from short time propagations of cro

FIG. 2. The deviation of the quasienergies obtained by the fil
diagonalization method from the exact numerical values. The o
circles ~large error! were obtained by filtering out the spectru
from the short time~20 periods! propagation of five different auto
correlation amplitudes. The full circles~small error! were obtained
from five cross-correlation function amplitudes.
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correlation functions one, may expect that this will be t
most efficient procedure for calculating a regular QE sin
the QE state is localized in a relatively small region of t
stroboscopic Poincare´ surface of section. This is indeed th
situation. However, there are cases, as shown in Fig. 1~b!,
that, due to the symmetrical pair of regular islands, the re
lar part of the spectrum~associated with the regular Q
states! is almost degenerate. The results presented in Tab
clearly show that five short time propagation calculatio
with cross-correlation functions cannot resolve the splitti
To obtain better results, one has to increase the time inte
e.g., for t5100T the agreement is much better~see the last
column of Table II!. It is interesting to compare the propa

FIG. 3. The upper plot shows the numerically exact quasiene
spectrum and the summed population probabilities of the in
states used in the time propagation calculations. The lower
shows the QE spectrum obtained by the filter-diagonalization
culations using the five short time propagated cross-correlation
plitudes vs the inverse of the calculated error estimate. Both spe
show excellent agreement.
e

-

II
s
.
al,

gation time with the ‘‘tunneling time’’t5p\/D(6) ~the
secondcolumn in Table II!, whereD(6) stands for the en-
ergy splitting. We find that filter diagonalization with cros
correlation amplitudes can resolve splittings even if t
propagation time is remarkably shorter than the tunnel
time.

IV. CONCLUDING REMARKS

Using the filter-diagonalization method when the inp
data are time dependent cross-correlation functions sam
at t5T,2T, . . . highly accurate quasienergy spectra of tim
periodic systems can be obtained. The error is smaller
QE’s that are more highly populated by the initial states, a
larger for almost degenerate states. As a rule of thumb
may conclude that, as more initial states are used to calcu
the cross-correlation amplitudes, one can filter out an ac
rate QE spectrum from shorter time propagation calculatio

y
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ot
l-
-

tra

FIG. 4. As in Fig. 3, but five separated short time propaga
autocorrelation amplitudes were used as an input data in the fi
diagonalization method. The agreement of the spectra is bad.
the long
TABLE II. Five pairs of almost degenerate regular quasienergies and results obtained by the filter-diagonalization method when
time ~100 periods! and short time~20 periods! propagated cross-correlation amplitudes are used as input data.D(6) stands for the energy
splitting between any two almost degenerate QE states,t denotes the tunneling timet5p\/D(6).

D(6) t/T E~exact! E(20T) E(100T)

3.5531029 1.693107 0.027 232 623 10 0.027 232 623 10
0.027 232 626 65 0.027 232 626 08

2.4931027 2.413105 20.022 735 476 56 20.022 735 595 70 20.022 735 601 66

20.022 735 725 71 20.022 744 783 76

1.5431025 3.903103 0.045 859 222 47 0.045 866 882 80 0.045 859 655 74

0.045 874 534 32 0.045 875 015 85

7.7331024 7.753101 20.006 575 290 61 20.006 842 989 47 20.006 575 283 41

20.007 351 527 21 20.007 351 533 32

1.0331023 5.833101 0.057 706 791 31 0.057 646 876 57 0.057 706 791 16

0.058 739 703 81 0.058 703 565 60 0.058 739 703 89
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Éksp. Teor. Fiz.81, 506 ~1981! @Sov. Phys. JETP54, 272
~1981!#.

@13# A. R. Kolovsky, Phys. Lett. A157, 474 ~1991!.
@14# A. R. Kolovsky, in Chaos—The Interplay Between Stochas

and Deterministic Behaviour, edited by P. Garbaczewski, M
Wolf, and A. Weron~Springer, Berlin, 1995!.

@15# N. Moiseyev, H. J. Korsch, and B. Mirbach, Z. Phys. D29,
125 ~1994!.

@16# V. Averbukh, N. Moiseyev, B. Mirbach, and H. J. Korsch, Z
Phys. D35, 247 ~1995!.

@17# T. Gorin, H. J. Korsch, and B. Mirbach, Chem. Phys.217, 147
~1997!.


