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Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum

Brice Quesnel and Patrick Mora
Centre de Physique The´orique (UMR 7644 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex, France

~Received 15 January 1998!

In order to investigate ponderomotive force in the relativistic regime, the interaction of ultraintense laser
pulses with free electrons in vacuum is studied both theoretically and numerically. Various expressions for the
electromagnetic field of the laser in the case of a Gaussian transverse profile are given, which take into account
corrections to the monochromatic paraxial approximation, and the effects of finite pulse duration. A detailed
demonstration of relativistic ponderomotive force~RPF! is established which makes apparent the domain of
validity of this concept. Computer simulations are carried out using a three-dimensional test-particle code.
They show the importance of the correct description of the fields, and confirm the domain of validity of the
RPF which is 12vz /c@1/kw0, where vz is the component of the electron velocity parallel to the laser
propagation direction,c is the velocity of light,k is the laser wave vector, andw0 the beam waist at focus.
Outside of this domain, the electron motion is more complicated, with a high sensitivity on the initial distance
from the laser propagation axis and a relatively low energy gain.@S1063-651X~98!02409-X#

PACS number~s!: 52.65.Cc, 42.50.Vk, 41.20.2q, 52.60.1h
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I. INTRODUCTION

With the development of ultraintense lasers@1#, it is now
usual to create electromagnetic fields where the quiver
locity of an electron approachesc at focus. In these condi
tions, the question has arisen of the validity of the concep
ponderomotive force. At low laser intensities, it is we
known @2,3# that the averaged motion of an electron in t
focus of a laser can be described as a slow drift toward
regions of low field intensity. The corresponding averag
equation of motion for the electron is written

dp̄

dt
52

e2

2mv2
“uEu2, ~1!

wherep is the electron momentum,e the elementary charge
m the electron mass,v the laser frequency, andE the elec-
tric field of the laser wave, and where the overbar denote
average over the laser period. This nonrelativistic regi
corresponds to the casea!1, wherea5eE/mcv is the nor-
malized amplitude of the electromagnetic field of the lase

In the relativistic regime (a>1), various studies have
been reported. On the one hand, a new definition of the p
deromotive potential has been given@4–8# through a fully
relativistic calculation. It concludes that the main features
the nonrelativistic case still apply: the averaged electron m
tion is independent of the laser polarization, and the e
trons are expelled from the high-intensity regions. This re
tivistic ponderomotive force~RPF! is a valid description
provided that the wave amplitude varies slowly with resp
to the wave phase, so that a multiple scale analysis of
particle motion can be performed. On the other hand, tw
dimensional~2D! computer simulations have been made
the relativistic regime for a linearly polarized wave, whic
conclude that at very high intensity the laser-electron in
action is terminated within a wavelength, and the electro
scattered away from focus with a very high escape ene
PRE 581063-651X/98/58~3!/3719~14!/$15.00
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@9#. This so called high-intensity ponderomotive scattering
expected to occur when the electron quiver amplitu
reaches the beam waist at focus. References@10–12# recently
reported an experiment designed on the basis of this sec
description, which also concluded that the electron is
pelled from the focus in the plane of polarization of th
wave.

It must be noted, however, that as this effect is most
portant in regions of high field gradient, i.e., at focus, so
care has to be taken in the description of the electromagn
field. It is well known indeed that the usual scalar descript
of the field as a Gaussian mode@13# used in Refs.@9# and
@10# is only a lowest order approximation for the fields. Lo
gitudinal components of the field appear at the next or
@14–17# which play an important role in the correct descri
tion of the classical ponderomotive force@18#.

This paper is aimed at clarifying the discrepancy betwe
these two relativistic generalizations of the ponderomot
motion. As the paraxial approximation is known to be insu
ficient, we first derive the exact expressions of all the co
ponents of the electromagnetic field around the focus for
usual case of a Gaussian transverse profile. These com
nents are correct to all orders with respect to the para
approximation. For very short pulses, other corrections
to the fact that the light is no longer strictly monochroma
have to be taken into account. We also derive the first or
correction arising from this effect. We then derive the R
@6,7# in the special case of propagation in vacuum, insist
on the theoretical conditions of validity of this calculatio
We compare our result with similar ones found in the lite
ture @4,5,8#. We present a 3D test-particle simulation pr
gram designed to check the validity of this concept nume
cally. We use this code to study the same case as Hartem
et al. @9#, and show that their 2D model is clearly insuffi
cient. Similarly, we demonstrate the incompleteness of
simulations supporting the experiment of Ref.@10# and the
validity of the RPF in this regime of parameters@11#. We
conclude with the necessity of additional experiments.
3719 © 1998 The American Physical Society
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II. ELECTROMAGNETIC FIELD NEAR FOCUS

Here we are interested in a correct description of the
calized electromagnetic field of a laser. We will recall va
ous works that have already been done on the subject, s
how they can be unified to give a coherent and comp
description of the electromagnetic field around focus
vacuum for a Gaussian laser profile, and derive a conven
way to take into account the effects due to the short dura
of the pulse. In the rest of this paper, the laser field pro
gates in thez direction.

A. Angular spectrum representation of plane waves

The angular spectrum representation of plane waves
powerful method to obtain an exact expression for the fie
of a focalized laser wave@16,18–22#. In this formalism, two
transverse components of the field have to be given in
focal plane, and then all components can be deduced at
point in space. We will first consider a monochromatic~and
thus infinitely long! pulse, with frequencyv0. For conve-
nience, in the expression of the fields we suppress thee2 iv0t

time dependence. We take as a starting component the t
verse electric field, which we suppose to be polarized in
x direction and with a Gaussian profile with beam waist
focus w0, Ex(x,y,z50)5E0exp@2(x21y2)/w0

2#. We can
write its transverse Fourier transform as
tri
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Ẽx~p,q!5
1

l0
2E E Ex~x,y,0!e2 ik0~px1qy!dx dy

5
E0

4pe2
exp@2~p21q2!/4e2#, ~2!

wherel052pc/v0 is the laser wavelength in vacuum,k0
5v0 /c is the corresponding wave vector, ande51/k0w0 is
a small quantity. It is then easy to show thatEx can be
computed at any point in space using

Ex~x,y,z!5E E Ẽx~p,q!exp@ ik0~px1qy1mz!#dp dq,

~3!

where

m5H ~12p22q2!1/2 if p21q2<1

i ~p21q221!1/2 if p21q2.1.
~4!

Ey is usually taken as a second known component@14,18#,
with Ey50 at focus, so thatEy50 exactly and everywhere
in space. The other components of the fields can then
calculated using the Maxwell equations. For instanceEz is
given by“•E50, so that
Ez~x,y,z!5
i

k0

]

]xE E Ẽx~p,q!
exp@ ik0~px1qy1mz!#

m
dp dq. ~5!
from
tain
However @17#, the fields lack symmetry in thatEy50 but
BxÞ0. To obtain a physically more reasonable symme
expression of the fields, we only need to repeat the sa
analysis, starting fromBy instead ofEx . We take forBy(z
50) the same Gaussian profile as forEx(z50), and we
suppose thatBx50. We then deduce all fields everywhere
space. The final expression of the fields is simply half
sum of the two results. All six components are then differ
from zero. In order to simplify some demonstrations in th
section, we will work in some cases with the~simplest! non-
symmetrized expression of the fields that we will distingu
from the symmetrized ones with a hat:Êx is the nonsymme-
trized value of theEx field.

To continue the derivation, we notice that the value ofm
in Eq. ~4! when p21q2.1 gives evanescent waves whic
can be neglected to a very good approximation as a co
quence of Eq.~2! and of the small values ofe considered
throughout this paper~typically, e,3.231022). Thus, the
integral in Eq.~3! is restricted top21q2,1. The remaining
part of the integrals is calculated in cylindrical coordinat
which gives for the case ofÊx :

Êx~x,y,z!5
E0

2e2E0

1

e2b2/4e2
eik0zA12b2

J0~k0rb !b db,

~6!
c
e

e
t

e-

,

whereb5Ap21q2 and r 5Ax21y2. If we eventually rein-
troduce the temporal dependence and the terms coming
By , and if we take the real part of the expressions, we ob
the following equations for the fields:

Ex5
E0

4e2S I 11
x22y2

k0r 3
I 21

y2

r 2
I 3D , ~7a!

Ey52
E0

4e2

xy

k0r 3
~k0rI 322I 2!, ~7b!

Ez5
E0

4e2

x

r
I 4 , ~7c!

Bx5
Ey

c
, ~7d!

By5
E0

4ce2S I 11
y22x2

k0r 3
I 21

x2

r 2
I 3D , ~7e!

Bz5
E0

4ce2

y

r
I 4 , ~7f!
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where

I 15E
0

1

e2b2/4e2
~11A12b2!sin~fb!J0~k0rb !b db,

~8a!

I 25E
0

1

e2b2/4e2 sin~fb!

A12b2
J1~k0rb !b2db, ~8b!

I 35E
0

1

e2b2/4e2 sin~fb!

A12b2
J0~k0rb !b3db, ~8c!

I 45E
0

1

e2b2/4e2S 11
1

A12b2D cos~fb!J1~k0rb !b2db,

~8d!

and wherefb5v0t2k0zA12b21f0, with f0 an arbitrary
constant.

These are exact expressions for the fields in the case
monochromatic pulse, which means that they satisfy
Maxwell equations exactly. As a consequence of this fa
each component in Eqs.~7! is an exact solution to the scala
wave equation in vacuum:

S D2
1

c2

]2

]t2D C50. ~9!

These components can be taken as a starting point for
expansion of the fields in powers ofe, as shown in Refs.@16#
er
fo
on

on
f a
e
t,

he

and@18#. One then obtains all the coefficients of this expa
sion. For simplicity, here we will show the derivation forÊx
~i.e., without considering the terms coming fromBy , which
can be calculated exactly in the same way!. The method

consists in developing the termeik0zA12b2
in Eq. ~6! as

eik0zA12b2
5 (

n50

`
1

n! S b2

2 D n

~k0z!n11hn21
~1! ~k0z!, ~10!

where

hn
~1!~v !5

eiv

v
i 2~n11! (

m50

n

~21!m
~n1m!!

~n2m!! S 1

2iv D m

for n>0, h21
~1! ~v !5 ih0

~1!~v ! ~11!

is the nth-order spherical Bessel function of the third kin
The remaining integrals inb are then calculated by

E
0

1

e22e2b2/4e2
b2n11J0~k0rb !db

.E
0

`

e22e2b2/4e2
b2n11J0~k0rb !db

522n11n! e2ne2r 2/w0
2
Ln~r 2/w0

2!, ~12!

where Ln(u) is the nth-order Laguerre polynomial. Afte
inversion of the two sums, the final expression ofÊx reads:
Êx5E0eik0ze2r 2/w0
2F11 (

m50

`

e2m(
n50

`
~2m1n!!

n! S 2 iz

zR
D ~n11!

Lm1n11S r 2

w0
2D G , ~13!
up

t

where zR5k0w0
2/2 is the Rayleigh length. The zero ord

term in this last equation is simply the paraxial solution
the fields, that is the solution to the paraxial wave equati

S D'12ik
]

]zDE50. ~14!

All fields have similar expressions, with even powers ofe for
the transverse ones, and odd powers for the longitudinal

Ex5Ex
~0!1e2Ex

~2!1•••, ~15a!

Ey5e2Ey
~2!1•••, ~15b!

Ez5eEz
~1!1e3Ez

~3!1•••, ~15c!

Bx5e2Bx
~2!1•••, ~15d!

By5By
~0!1e2By

~2!1•••, ~15e!

Bz5eBz
~1!1e3Bz

~3!1•••. ~15f!
r
:

e:

Here we give the expression for the real parts of the fields
to first order, as will be needed in the following:

Ex5E0

w0

w
expS 2

r 2

w2D sin~fG!, ~16a!

Ez52E0e
xw0

w2
expS 2

r 2

w2D cos~fG
~1!!, ~16b!

By5
Ex

c
, ~16c!

Bz52E0e
yw0

w2
expS 2

r 2

w2D cos~fG
~1!!, ~16d!

Ey5Bx50, ~16e!

where fG5v0t2k0z1tan21(z/zR)2zr2/zRw22f0, fG
(1)

5fG1tan21(z/zR), w5w0A11z2/zR
2 is the beam waist a

longitudinal positionz, andf0 is an arbitrary constant. Note
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that the symmetrization has no effect on these terms. It m
fies terms of order greater than or equal to 2.

As a first approximation, the fields of a laser pulse can
obtained by multiplying expressions~7! or ~16! by an enve-
lope factor f (z2ct). However, ultraintense pulses are al
short, and therefore not exactly monochromatic. We w
now focus on the corrections arising from this effect.

B. Finite pulse duration effects

Let us first compute an estimate of the pulse duration
which these finite pulse duration corrections may be need
We will go back to the wave equation~9! for fields in
vacuum. This can be solved order by order ine @14#, which
for the fields gives an expansion similar to Eq.~15!. We
express the electric field as

E5E~r !eik0~z2ct! f ~z2ct!, ~17!

wheref is again the pulse envelope of widthcDt, andk0 the
average wave vector of the pulse. Inserting this expressio
Eq. ~9! results in

f DE12ik f
]E

]z
12

] f

]z

]E

]z
50. ~18!

We now change of variables from (x,y,z) to (j5x/w0 ,h
5y/w0 ,z5z/ l ), where l 5k0w0

2, and focus on the perpen
dicular component~the component perpendicular to the ma
direction of propagationz)

F S ]2

]j2
1

]2

]h2D 12i
]

]z
1e2

]2

]z2
12e2

1

f

] f

]z

]

]zGE'50,

~19!

where as abovee51/k0w0. The last term in this equation
describes the effects of the finite pulse duration. Therefor
i-

e

l

r
d.

in

a

correction toE' to first order ine will occur as soon as
u2e2](ln f)/]zu*e. In terms of the pulse durationDt, this
condition can be written

cDt&4ezR52w0 . ~20!

For aw0510mm pulse, this is equivalent toDt&60 fs. This
is easily obtained in typical ultrashort lasers, which mo
vates us in considering this finite pulse size effect.

We will proceed by another order by order derivation, b
with the small parameters5l0 /cDt!1. We go back to the
angular spectrum method, that we generalize as in Ref.@22#;
that is, we write

Ex~x,y,z50,t !5E0~x,y! f ~ t !exp~2 iv0t !, ~21!

where f (t) is as above the temporal envelope of the pul
andE0(x,y)5E0exp@2(x21y2)/w0

2#. The time Fourier trans-
form of this expression yields

Ex~x,y,z50,v!5E0~x,y! f̃ ~v2v0!, ~22!

where f̃ (v) is the Fourier transform off (t). We can use the
angular spectrum method for each frequencyv ~and wave
vectork5v/c) in the pulse, and write

Ẽx~p,q,v!5 f̃ ~v2v0!
1

l2E E E0~x,y!e2 ik~px1qy!dx dy,

~23!

wherel52pc/v. Then
te
Ex~x,y,z,t !5E dv e2 ivtE E dp dq Ẽx~p,q,v!eik~px1qy1mz!. ~24!

One then remarks thatẼx(p,q,v) is simply the expression of Eq.~2! multiplied by the envelope in frequencyf̃ (v2v0),
which can be removed from the integral in (p,q). This last integral can be expressed as in Eq.~13! in the formeikzE(x,y,z,v),
so that

Ex~x,y,z,t !5E dv e2 ivteikzE~x,y,z,v! f̃ ~v2v0!. ~25!

The important property ofE here is that it is a slowly varying function ofv with respect to thee2 ivt term. As the pulses we
consider are short but still contain many cycles,f̃ (v2v0) is sharply peaked aroundv0. These two facts allow us to evalua
Eq. ~25! using the standard expansion technique

Ex~x,y,z,t !5E~x,y,z,v0!E dv e2 iv~ t2z/c! f̃ ~v2v0!1
]E
]v

~x,y,z,v0!E dv e2 iv~ t2z/c!~v2v0! f̃ ~v2v0!1•••

5E~x,y,z,v0!eik0~z2ct! f ~ t2z/c!1
]E
]v

~x,y,z,v0!eik0~z2ct!i f 8~ t2z/c!1•••. ~26!
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The successive derivatives off are proportional to the suc
cessive powers ofs, so that we have obtained the infini
expansion we wanted. Note that the first term correspo
exactly to our expression~7!, which justifiesa posteriorithat
this is a zero order expression ins. In the same way, if one
developsE to first order ine in this first term, one recover
expression~16!. Eventually, we can obtain the fields to fir
order in both parameterse ands ~neglecting the terms ines
as second order! by developingE to first order ine in the first
term and to zero order in the second. This leaves the exp
sions ofEz andBz unchanged, but adds a new term toEx and
By which writes, for an envelopef (z2ct)5cos2@p(t
2z/c)/2Dt#:

Ex~1!5
E0

2
s

z

zR
S w0

w D 3

expS 2
r 2

w2D
3A~12u!21~z/zR!2cos@p~ t2z/c!/2Dt#

3sin@p~ t2z/c!/2Dt#cos~fG~1!!, ~27!

By~1!5Ex~1! /c, ~28!

where u5r 2/w0
2, fG(1)5fG12 tan21(z/zR)2c, and c is

the phase of 12u1 iz/zR .
We will finally remark that this method can be applied

well to calculate the vector potential in the Coulomb gau
Indeed,A is then given by the wave equation~9! and the
gauge condition“•A50, which is formally equivalent to
the Maxwell-Poisson equation“•E50. Therefore, Eqs.
~16a!, ~16b!, and ~27! also give an expression forA in the
Coulomb gauge up to first order ine ands.

III. DERIVATION OF THE RELATIVISTIC
PONDEROMOTIVE FORCE

We now give the expression for the ponderomotive fo
in the relativistic regime and in vacuum. This demonstrat
closely follows former works by Mora and Antonsen@6,7#,
who established its expression and validity in the case o
laser propagating in a tenuous plasma.

We use the vector potential in the Coulomb gau
(“•A50) to describe the laser pulse. As we are in vacuu
the scalar potential is identically equal to zero. As shown
the end of Sec. II, we can write

A5~Ã'~0!
~0! 1Ã'~1!

~0! !ex1Ãz~0!
~1! ez , ~29!

where the tilde denotes a quantity that is rapidly varying~i.e.,
at the laser frequency!, and where the superscripts are for t
expansion according toe51/k0w0, while the subscripts refe
to the expansion according tos5l0 /cDt. To simplify the
notations, we writeÃ'(0)

(0) 5Ã' in the rest of this paper. The
equation of motion and the equation of energy conserva
for relativistic particles are written

d

dt
~p1qA!5~“qA!•v, ~30a!

d

dt
gmc252qv•

]A

]t
, ~30b!
ds

s-

.

e
n

a

e
,
t

n

whereq is the charge andm the mass of the particle.
In the laser frame coordinates, with the new variab

(z,t5t2z/c), these equations can be written as:

F S 12
vz

c D ]

]t
1v•“ G~p1qA!5~“qA!•v2

q

cS v•
]A

]t Dez ,

~31a!

F S 12
vz

c D ]

]t
1v•“ Ggmc252qv•

]A

]t
. ~31b!

A last manipulation will give us our starting equations. W
reduce the first equation to its two components perpendic
to the direction of propagation of the pulse, and as a sec
equation we take the axial component of Eq.~31a! minus Eq.
~31b!, divided by the speed of light:

F S 12
vz

c D ]

]t
1v•“ G~p'1qA'!5~“'qA!•v, ~32a!

F S 12
vz

c D ]

]t
1v•“ G~pz1qAz2gmc!5qv•

]A

]z
.

~32b!

We then perform an order by order expansion based
the small parameterse ands. In the vicinity of the focus, the
expression of the vector potential shows us that the vari
derivatives scale as“';1/w0;e/l0, ]/]z;1/zR;e2/l0,
and]/c]t5]/c]t01]/c]t1, where]/c]t0 is related to the
fast oscillations at the laser frequency and scales as 1l0,
while ]/c]t1 is related to the temporal envelope of the pu
and scales as 1/cDt;s/l0. As both parameterse ands are
required to evaluate the derivatives, an order by order d
vation of the ponderomotive force will bea priori possible
provided that s;e, which for a l051 mm and w0
510mm pulse impliesDt;200 fs. In the same way, we
write all quantitiesf as f 5 f̃ 1 f̄ , wheref̃ is the rapidly vary-
ing part of f and f̄ the slowly varying part with respect to th
laser frequency.

Let us first remark that the term 12vz /c appears in both
equations. We will suppose it to be a zero order quantity
the rest of the calculation, that is 12vz /c@e;s. This is an
essential requirement for this derivation to be valid. The z
order part of Eq.~32b! reads

]

]t0
~pz2gmc!50, ~33!

where we note the zero order quantities with no indices.
can then conclude that the quantitypz2gmc varies slowly
with respect to the wave frequency, so th
pz2gmc5 p̄z2ḡmc. In the same way, the lowest order pa
of Eq. ~32a! reads

]

]t0
~p'1qA'!50. ~34!

This allows us to write

p'5p̃'1p̄' , ~35!
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3724 PRE 58BRICE QUESNEL AND PATRICK MORA
where

p̃'52qÃ' ~36!

is the zero-order oscillation momentum of the electron in
laser field. We then consider the first order part of Eq.~32a!
in both parameterse ands. After multiplication bygmc, it
reads

~ ḡmc2 p̄z!
]

]t0
~p'

~1!1p'~1!1A'~1!!

1~ ḡmc2 p̄z!
]

]t1
~ p̄'!1c~p'•“'!p̄'

5c~“'qA!•p. ~37!

We next average over the fast time scale, and this equa
simplifies to

~ ḡmc2 p̄z!
]

]t1
~ p̄'!1c~ p̄'•“'!p̄'5c~“'qA!•p.

~38!

We then make use of Eqs.~29! and ~36! to express the las
term at lowest order in the form

~“'qA!•p52 1
2“'uqÃ'u2. ~39!

We now establish an expression for the fast scale avera
relativistic factor. Again using Eq.~36!, we can write

g2511
1

m2c2
@ up̄'2qÃ'u21pz

2#. ~40!

Using the equalitypz5 p̄z1mc(g2ḡ) and averaging ove
the fast time scale, we obtain

ḡ2511
1

m2c2
@ up̄'u21 p̄z

21uqÃ'u2#. ~41!

With this expression, we can define an averaged velocit
the form v̄5p̄/ḡm. Putting together this definition and Eq
~39!, we can write Eq.~38! as

F S 12
v̄z

c
D ]

]t1
1 v̄'•“'G p̄'52

1

2mḡ
“'uqÃ'u2. ~42!

This constitutes the first order averaged equation of mo
in the transverse direction, the last term being precisely
ponderomotive potential.

We now give a sketch of the demonstration of the equi
lent equation for the longitudinal direction. At first order, a
after multiplication bygmc and averaging over the fast tim
scale, Eq.~32b! is written

F ~ ḡmc2 p̄z!
]

]t1
1c~ p̄'•“'!G p̄z

5F ~ ḡmc2 p̄z!
]

]t1
1c~ p̄'•“'!G ḡmc. ~43!
e

on

ed

in

n
e

-

The derivation of Eq.~41! with respect tot1 yields

1

2

]

]t1
uqÃ'u25ḡmc

]

]t1
ḡmc2 p̄z

]

]t1
p̄z2

1

2

]

]t1
up̄'u2.

~44!

Multiplying Eq. ~42! by p̄' , and Eq.~41! by p̄'•“' , com-
bining the two results and using Eq.~43!, we obtain

2
1

2

]

]t1
up̄'u25c~ p̄'•“'!ḡmc1 p̄z

]

]t1
~ p̄z2ḡmc!.

~45!

These two last equations allow us to rewrite the second t
in Eq. ~43!, so that finally:

F S 12
v̄z

c
D ]

]t1
1 v̄'•“'G p̄z52

1

2mḡ
S 2

1

c

]

]t1
uqÃ'u2D ,

~46!

which is precisely the longitudinal equivalent of Eq.~42! that
we were looking for.

We terminate this calculation by reintroducing in Eq
~42! and~46! two second order terms, namely,v̄z]/]z in the

left term of both equations and (21/2mḡ)]/]zuqÃ'u2 in the
right term of Eq.~46!, so that the averaged equation of m
tion of the electron in the laboratory frame finally writes:

dp̄

dt
52

1

2mḡ
“uqÃ'u 2̄. ~47!

This, together with Eq.~41!, constitutes the relativistic
generalization of the ponderomotive force. It has been
rived for a linearly polarized laser@see Eq.~29!#, but this
derivation can be easily generalized for the case of an a
trary polarization. We recover the main feature of the no
relativistic case: the charged particle is expelled from
regions of high field intensity in the direction of the gradien
In the case of a linearly polarized wave, the direction
polarization plays no particular role, which contradicts t
results of Ref.@10#.

At this point, we can affirm that this expression is val
provided that~i! the considered particle has a relatively slo
speed in thez direction, so that 12vz /c@e and@s; ~ii ! e
ands are of the same order; and~iii ! it is possible to rein-
troduce the two second order terms that we added to w
Eq. ~47!. Condition~i! seemsa priori the most stringent one
We will check the importance of these conditions with n
merical simulations in Sec. IV.

We conclude this section by comparing our express
with similar ones derived by other authors. Bauer, Muls
and Steeb@5# used a Hamiltonian formalism to derive a
expression of the ponderomotive potential in the relativis
regime. Their analysis supposed that it is possible to de
an oscillation center for the motion of the particle. They d
not specify the physical conditions under which such an
sumption is valid. If we writeÃ'5Â'eik0(z2ct)1c.c., then

uqÃ'u252uqÂ'u2. We define the effective massmeff

5m(112q2uÂ'u2/m2c2)1/2 @2#, and Eq.~47! can be written
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dp̄

dt
52

c2

g0
“meff , ~48!

whereg05(12 v̄2/c2)21/2 so thatg0meff5mḡ in our nota-
tions. This equation is similar to Eqs.~11! and ~12! of Ref.
@5#. Startsev and McKinstrie@8# used a covariant formalism
and assumed that the amplitude of the wave varies slo
with respect to the phase. They supposed that these rel
variation rates can be described by a single parametere that
they did not relate to any physical quantity. They recove
the expression for the relativistic ponderomotive force@their
Eq. ~3.7!# in terms of the proper time, which had alread
been obtained in a different way by Schmidt and Wilcox@4#.

IV. TEST-PARTICLE SIMULATIONS

A. Description and test of the program

In order to test the validity of the RPF@Eq. ~47!#, we
designed a 3D test-particle simulation program. It compu
the trajectory of individual electrons in the field of a las
near focus, using either the Lorentz equation or the R
More precisely, the electron is moved by numerically solvi
the differential equations dr /dt5p/mg and dp/dt
5f(r ,p,t), using an adaptative Runge-Kutta method@23#.
We used four different methods of calculation: the first o
is based on the relativistic ponderomotive description, wh
the three others solve the equations of motion in the rap
varying fields, within three different approximations. Mo
precisely, we proceed as follows.

~1! All quantities are time averaged quantities, in partic
lar g5ḡ @Eq. ~41!#, and f is the RPF@Eq. ~47!#. Then, as a
zero order vector potential used to define the ponderomo
force, we take the expression of Eq.~16a!, which describesA
as well, as shown at the end of Sec. II.

~2! g is the usual Lorentz factor andf the Lorentz force,
whereE andB are the zero order fields used in Refs.@9# and
@10#, i.e., Eqs.~16a! and ~16c!.

~3! Like ~2!, but with the fields correct up to first order i
e ands, i.e., Eqs.~16! and ~27!.

~4! Like ~2!, but with the fields correct up to all orders i
e and order zero ins, that is Eq.~7!. These fields will be
referred to as the ‘‘exact’’ fields, though finite duration e
fects are not included. We will see indeed that in all the ca
we study in this paper, the approximation on which they
based is relevant. These fields are evaluated by nume
integration, and are very expensive in terms of comput
time, which explains the relatively small number of simu
tions we have been able to perform.

We will use these numbers to refer to these differ
methods to calculate the electron motion. All our simulatio
consider a linearly polarized laser of wavelengthl051 mm,
with the electric field in thex direction and the magneti
field in the y direction. As in Refs.@9# and @10#, we study
electrons with an initial velocity in the direction of propag
tion of the laser pulse, which has a finite duration and a s
squared shape, namely,f (z2ct)5cos2@p(t2z/c)/2Dt#. We
start the simulation at the moment when the leading edg
the pulse reaches the electron, and we compute the ele
motion up to the point where the laser pulse has overtake
We normalize the laser amplitude in the usual way,a
ly
ive
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5eE0 /mcv0, so thata50.85 corresponds to an intensityI
51018 W cm22 for a l051 mm wavelength. We also nor
malize the electron momentum tomc. Our reference frame is
centered at focus, so that the focal point coordinates
~0,0,0!. The laser pulse is propagating in the1z direction.

We checked our program with simulations in the nonr
ativistic regime, where the validity of the ponderomotiv
force is well established@24–28#. In the limit g→1, Eq.~47!
reduces to the well-known equation~1!. Cicchitelli, Hora,
and Postle@18# showed that the higher order terms ine were
necessary to describe the electron motion in this regime
rectly, and that the zero order fields lead to an errone
anisotropic electron motion. Our numerical conditions area
50.3 (I51.231017 W cm22), Dt5200 fs, w0510mm,
and pz050.1, wherepz0 is the electron initial momentum
With these values,e.s.1.631022.

Figure 1 shows the trajectory of an electron initially
x05y054 mm and z05150mm as calculated by method
~1!, ~2!, and ~3!. Exactly as expected, the motion with th
zero order fields@method ~2!# is restricted to the plane o
polarization of the pulse, and is therefore nonisotropic. C
versely, the inclusion of the first order corrections@method
~3!# leads to a very good agreement with the ponderomo
force calculation@method~1!#.

The average ponderomotive motion of the electron ta
its source in two effects. First, the zero order motion of t
electron is simply the oscillation in thex direction due toEx .
This causes it to explore the gradient ofE, which causes on
the average its drift and acceleration in thex direction. This
is precisely the usual explanation of the ponderomotive m
tion for purely electrostatic fields. The force is proportion
to “'E, and is therefore of ordere. Second, the fieldBz is
almost in phase with the zero order velocityvx of the elec-
tron, as can be deduced from the set of equations~16!. The
force vx3Bz has then a nonvanishing average which cau
the drift in they direction. This force is again of ordere due
to Bz . Note that the fieldEz has almost no effect on th
electron motion in this case, as can be checked by suppr
ing it artificially.

As cDt.2w0 here, we expect the first order correction
s to play no role. We checked this again by suppressing
term in the expression of the first order fields: we found

FIG. 1. Electron trajectory calculated by methods~1!, ~2!, and
~3!. Parameters area50.3,Dt5200 fs,w0510mm, pz050.1, and
z05150mm. With methods~1! ~ponderomotive force! and~3! ~first
order fields!, the electron trajectory~the two curves in the uppe
part of the figure! is along the field intensity gradient, whereas t
zero order fields@method~2!# confine the electron in the plane o
polarization of the pulse.
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differences, which confirms that the finite pulse duration
fects can be neglected here. We will come back to this p
later in this section.

In order to compare more precisely the different calcu
tions, in Fig. 2 we plot the finalpx , and in Fig. 3 the final
pz , as functions of the initial position along thex axis, with
z05150mm. The solid line corresponds to the exact fiel
@method~4!#, the open circles to the first order fields@method
~3!#, and the dots to the RPF@method~1!#. Note also that the
curvepy(y0) would be exactly the same as Fig. 2. All thre
curves coincide very precisely in Fig. 2, but a clear disagr
ment appears in Fig. 3 between the RPF and the first o
fields. As finite pulse size effects are of no concern here,
can affirm that method~4! gives the exact electron motion i
this case. We conclude that the first order fields are insu
cient to describe the longitudinal electron motion with go
accuracy. Higher order terms are needed, and then gi
very good agreement with the RPF. This gives us the ans
to one of the points we raised in discussing the validity
Eq. ~47!: it is possible to reintroduce the two second ord
terms we mentioned, which are precisely related to the l
gitudinal part of the motion. An expression of the fields up
second order would probably have been sufficient in t

FIG. 2. Finalpx as a function of the initial positionx0 of the
electron. Parameters as in Fig. 1. The solid line correspond
results obtained with the exact fields@method~4!#, the open circles
are the result of the first order fields, and the dots correspond to
motion calculated with the ponderomotive force@method~1!#.

FIG. 3. Finalpz as a function of the initial positionx0 of the
electron, with the same parameters as in Fig. 1. The solid
corresponds to results obtained with the exact fields@method~4!#,
the open circles are the result of the first order fields, and the
correspond to the motion calculated with the ponderomotive fo
-
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case, but as we wanted to study the electron motion in
highly relativistic regime of Hartemannet al., where the va-
lidity of the RPF is not obvious, we preferred to compute t
full expression of the fields.

Finally, Fig. 4 shows the final kinetic energy of the ele
tron as a function of its initial longitudinal position, with
x05y050. Method~4! has been used here. One clearly se
the effect of the longitudinal ponderomotive force, whic
accelerates the electrons initially after focus and deceler
the electrons initially before focus. This is due to the fact th
the electron ‘‘sees’’ the ascending~descending! part of the
pulse at a position closer to focus than the descending
~ascending!. The effect of diffraction of the laser wave the
makes the ascending~descending! gradient stronger than th
descending~ascending! one.

Let us now check the second point in the validity of t
RPF, that is the fact thate should be of the order ofs for Eq.
~47! to be correct. Here we show the results of two simu
tions, one withe;s2 and the other withs;e2. Figure 5 is
a plot of the finalpx as a function of the initial positionx0
for a case wherea50.1, pz050.1, z052100mm, w0
59.5mm (e51.731022), andDt56 ps (s55.631024).
The agreement between the values calculated by the
~circles! and method~4! ~exact fields! is excellent. For the
electron atx050, it is not scattered by the ponderomotiv

to

he

e

ts
e.

FIG. 4. Kinetic energy of the scattered electron as a function
its initial longitudinal position, withx05y050. The parameters are
as in Figs. 1, 2, and 3. The electron motion is calculated w
method~4! ~exact fields!.

FIG. 5. Finalpx as a function of the initial positionx0 of the
electron. Parameters area50.1, Dt56 ps,w059.5mm, pz050.1,
andz052100mm. The solid line corresponds to method~4! ~exact
fields!, while the circles refer to the RPF.
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force as expected, but, as this initial position is unstable,
finite machine precision causes the expulsion of the elec
when its motion is calculated with the exact fields. In t
same way, Fig. 6 shows the finalpx as a function of the
initial position x0 for the values a50.7, pz050.1, z0
5100 mm, w05300 mm (e55.331024), and Dt5200
fs (s51.731022). Here again, we see an excellent agre
ment between the two calculations. This allows us to c
clude that the validity is in fact much wider than expecte

We now come back to the finite pulse duration effec
The previous results agree with our estimate@Eq. ~20!# of
Dt, for which the first order correction ins is needed. To
confirm the validity of this estimate, we performed a sim
lation with w0510mm andDt,60 fs, namely,Dt512 fs.
The other parameters area50.3, z05240mm, and pz0
50.1. The simulation is made twice, once with the corre
tions in s and another time without this correction. We c
see in Fig. 7 that the two simulations are in slight disagr
ment, as expected. We conclude that our estimate was
rect and that the finite pulse size corrections are not nee
whencDt.2w0. All our computations in the following are
performed withcDt@2w0, so that method~4! can be con-
sidered as giving theexact electron motion, as has bee
stated above.

FIG. 6. Finalpx as a function of the initial positionx0 of the
electron. Parameters area50.7, Dt5200 fs, w05300mm, pz0

50.1, andz05100mm. The solid line corresponds to the RP
while the circles refer to method~4! ~exact fields!.

FIG. 7. Finalpx as a function of the initial positionx0 of the
electron. Parameters area50.3, Dt512 fs,w0510mm, pz050.1,
andz05240mm. Both curves correspond to trajectories calcula
with the first order corrections ine, but with the first order correc-
tion in s ~solid line! or without it ~circles!.
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B. RPF with initially slow electrons

Let us now come back to the point we raised in Sec. I, a
which motivated this paper, that is the disagreement betw
the RPF and the recent papers by Malka, Lefebvre,
Miquel @10# and Hartemannet al. @9#. The results in these
two papers share the fact that the laser intensity is relati
tic, a.1, but Hartemannet al. also considered electron
which are initially in the relativistic regime (g@1) whereas
the authors of Ref.@10# studied the acceleration of initially
‘‘slow’’ electrons (g.1). This second regime is closer t
the one we have just studied, so we will start with it.

In Ref. @10# the authors reported on an experiment whe
free electrons have been accelerated in vacuum by a h
intensity (I .1019 W cm22, a53), short (Dt5400 fs) lin-
early polarized laser pulse. The electrons’ initial velocity
around 0.1c. The focal spot waist isw0510mm, so thate
.1.631022!12v0z /c. This regime of parameters differ
from the previous one only in the fact that the laser intens
is higher. Therefore, we expect the RPF still to be valid. T
simulation confirms this fact: Fig. 8 shows the final ener
for an electron initially along thex (y) axis, with an initial
longitudinal positionz052160mm and velocityv0z50.2c.
The solid line corresponds to method~4!, while the circles
correspond to the RPF. All four curves are exactly simil
which means that the RPF is perfectly valid in this regime
parameters, and therefore that the scattering is not limite
the ~E,k! plane, as claimed by the authors of Ref.@10#. For
comparison, the result given by the zero order fields is sho
by the dashed line. It coincides with the two other curves
the left~the electron initially in the plane of polarization!, but
is in complete disagreement for the electrons initially on
y-z plane. The electron trajectories in this fully relativist
case are similar to the one shown in Fig. 1@11#. The final
energy as a function ofz0 for x05y050 is slightly affected
by the choice of the wrong fields: method~4! gives a curve
g(z) very close to Fig. 3 of Ref.@10#.

In order to improve the comparison between our simu
tions and an experiment, we simulated the trajectories
1000 electrons whose initial position is taken at the sa
z052200mm, but whose transverse position is chosen r
domly using a Gaussian distribution

d

FIG. 8. Final energies of the scattered electrons as a functio
their initial transverse position. Parameters area53, Dt5400 fs,
w0510mm, vz050.2c, and z052160mm. The solid line corre-
sponds to the values obtained with the exact fields@method~4!#, and
the circles to the values obtained with the RPF. The broken line
the right is the value as calculated with the model of Ref.@10#
@model ~2!#.
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P~x,y!5
1

2pr 0
2

e2~x21y2!/2r 0
2
,

with r 051 mm. All electrons have the same initial velocit
v0z50.2c. The laser pulse has the same parameters as ab
except for the durationDt5350 fs, which causes no impor
tant differences. Figure 9 shows the finalp' of the electrons
as calculated by method~4!. It is striking evidence of the
isotropy of the scattering: the electrons are emitted exactl
the same way in thex direction ~direction of polarization!
and in they direction. The RPF gives results in very goo
agreement with Fig. 9. We checked this point numerically
computing an estimate of the deviation from the ponderom
tive motion, in the form

s~dp!5A^dp2&2^dp&2,

where the mean valuê & refers to our 1000 trajectories
Here dp is dp5(pEX2pRPF)/ p̄EX , where p is one of the
three components of the final electron momentum (px , py ,
or pz), pEX means the value obtained with the exact fiel
pRPF means the value obtained with the RPF, andp̄EX is
A^pEX

2 & for px and py , and p̄EX,z5A^(pEX,z2p0z)
2&. As a

reference, we also give the values obtained in the nonrela
istic case:a50.3, w0510mm, Dt5350 fs, v0z50.1c, z0
52200mm, andr 051 mm. All the values are reported in
Table I. We can see that the difference between the RPF
the exact electron motion has slightly increased in the c
a53, but the variouss(dp)’s are still at sufficiently low
values to conclude on the validity of the RPF in this regim

FIG. 9. Final transverse momentum of the electrons for the
rameters a53, Dt5350 fs, w0510mm, vz050.2c, and z05
2200mm. The 1000 electrons are initially distributed random
using a Gaussian probability, withr 051 mm ~see text!. The trajec-
tories are computed with the exact fields, but the RPF gives alm
exactly the same points.
ve,
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Another interesting characteristic of the ponderomot
motion is the fact that the final energy of the particle and
escape angleu ~the angle between its trajectory and the las
axis! are linked, or, equivalently, that the longitudinal an
transverse parts of the momentum are connected. It is usu
assumed that the plane wave relation is valid, that is,pz

5p'
2 /2 or

cos~u!5Ag21

g11
~49!

for an electron initially at rest. This relation may be demo
strated in two cases, either using the quasistatic approxi
tion in which the fields are supposed to depend onz and t
only in the combinationt5t2z/c @7#, or with the fields of
order zero ine @9#, where it is a direct consequence of th
facts thatBy5Ex /c and that the other fields are equal
zero. Here, however, none of these two approximations
made, so that the relation we obtain is different from t
above one, as can be seen in Fig. 10 which shows the e
tion angleu as a function of the final electron Lorentz fact
g for the simulation with the exact fields and the RPF mo
~open circles!, and as calculated by the theoretical relatio

u5tan21FA2~g/g021!/~11b0!

g2g0~12b0!
G ~50!

~solid line!, which is the equivalent of Eq.~49! for electrons
with initial energyg0, andb05pz0 /g0 @9#. The authors of
Ref. @10# supposed that relation~50! was valid, and had
some difficulties in explaining their experimental resul

-

st

FIG. 10. Ejection angle of the electrons vs their final Loren
factor. The initial conditions are as in Fig. 9. The open circ
correspond to the trajectories computed using the exact fi
@method~4!#, while the solid line corresponds to theoretical formu
~50!. The point on the right corresponds to an electron initially
axis.
s and
TABLE I. Numerical estimation of the difference between the motion calculated by the exact field
by the RPF. For the definition ofs, see the text. In all cases,Dt5350 fs.

a w0 (mm) z0 (mm) vz0 /c s(dpx) s(dpy) s(dpz)

0.3 10.0 2200 0.1 1.931023 9.731024 6.431025

3.0 10.0 2200 0.2 2.931023 2.031023 6.631024

10.0 10.0 2200 0.1 6.931023 4.731023 2.031023

5.34 4.95 2153103 0.99a 1.231021 9.331022 5.631021

ag0510.



a
ui
r-

d
en
ly
te
n
ti
au
io
t

e

x

t
tu

t t
ly

io
bl
e

le

n
h

c
rt
s
th

lds
ati-
es-

ter

of
Fig.

am-

as

the
is

is
in
ith
e

gth.
ins
tion

n
om

n
om-
n

Fig.

PRE 58 3729THEORY AND SIMULATION OF THE INTERACTION OF . . .
The correction to this formula that we demonstrate here m
help, but as the experimental laser pulse is probably q
different from the one we simulate, it is unlikely that a pe
fect agreement can be reached in any case.

We can conclude that the experimental results reporte
Ref. @10# are puzzling, as they are in strong disagreem
with one important point of the simulations above, name
the fact that the scattering is isotropic. The results are in
esting in the sense that they represent the first experime
observation of electrons accelerated by the ponderomo
force in vacuum to such high energies. However, the
thors’ claim that no electron was observed in the direct
perpendicular to the direction of polarization really needs
be explained. A more precise experiment would be of gr
interest in this context.

We now go to more relativistic regimes. As we are e
pecting the condition 12vz /c@e to be determinant in the
validity of the RPF, we first increasea without changingvz0.
We have seen that the electrons are pushed forward by
longitudinal part of the RPF, which increases their longi
dinal velocity. As the laser intensity is raised,vz will reach
high values sooner and sooner in the pulse profile, so tha
agreement between the exact motion and the RPF is like
diminish. This is confirmed by a simulation ata510 (I
51.431020 W cm22), with w0510mm, Dt5350 fs, v0z
50.1c, z052200mm, andr 051 mm. The scattering is still
very close to perfect isotropy, but the numerical deviat
from the RPF has increased again, as can be seen in Ta
The values of alls(p) are, however, under 1%, so that w
can conclude that the RPF is a valid description of the e
tron motion for electrons initially slow (12vz /c@e) up to
extremely high values of the laser intensity. The very lo
computation time needed when using the exact fields
prevented us from studying more precisely this limit.

C. Interaction with highly relativistic electrons

We finally consider the case of initially highly relativisti
electrons. This corresponds to the regime studied by Ha
mannet al. @9#. Using a zero order description for the field
and a 2D simulation program, these authors concluded
the electrons are scattered with a very high energy~up to g
.250 for a55.34, Dt5800 fs, w054.95 mm, and g0

FIG. 11. Evolution of theg factor of the electron as a functio
of its phase relative to the pulse envelope, the trajectory being c
puted using the zero order fields. The parameters area53.41, w0

520mm, Dt5100 fs,g0510, andz0527.6 mm.
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510). Here again, the correct description of the fie
changes the theoretical prediction, but even more dram
cally. We first notice a sign mistake in the zero order expr
sion of the fields used in Ref.@9# @Eq. ~52! of Ref. @9##.
Indeed, the phase velocity of the light near focus is grea
than c @see the definition offG in Eq. ~16!#, whereas Ref.
@9#’s expression results in a phase velocity smaller thanc. As
expected, the effect of this correction is a slight lowering
the maximum energy of the electron, as can be seen in
11, which shows the evolution of theg factor of the electron
as a function of its phase in the pulse, for the same par
eters as Fig. 10 of Ref.@9#. The final Lorentz factor with the
zero order fields is nowg;40 instead ofg;150. ~We also
computed the trajectory with the same erroneous fields
Hartemannet al., and recovered their Fig. 10.! The correct
computation~with the fields correct to all orders ine) is even
more different, as can be seen in Fig. 12. The inclusion of
longitudinal fields tends to reduce the final energy, which
now g;13. The corresponding electron trajectory in thex-z
plane is plotted in Fig. 13. We can see that the electron
scattered slightly before focus, in a more violent way than
the ponderomotive case of Fig. 1. This is in agreement w
Ref. @9#’s description, which insists on the fact that th
electron-laser interaction terminates in about a wavelen
Note, however, that the electron quiver amplitude rema
smaller than the laser beam waist. Therefore, the explana

-
FIG. 12. Evolution of theg factor of the electron as a functio

of its phase relative to the pulse envelope, the trajectory being c
puted using the exact fields@method~4!#. The parameters are as i
Fig. 11.

FIG. 13. Two-dimensional electron trajectory in thex-z plane
computed using the exact fields, with the same parameters as in
11.
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of the behavior of the electron lies in the complex struct
of the electromagnetic field around the focus more than
the high value of the electron excursion around its me
position. This dramatic modification of the electron moti
due to the inclusion of the longitudinal fields can be und
stood if we consider the fields in the initial rest frame of t
electron, that is the frame moving at speedv0ez with respect
to the laboratory frame. If we note with a prime the quan
ties in this moving frame, thenuEz8u5uEzu and uEx8u5g0(1
2v0 /c)uExu: the longitudinal fields are unaffected, but th
transverse field is reduced by the factorg0(12v0 /c)
.1/2g0. Consequently,uEz8u5euExu and uEx8u5(1/2g0)uExu.
The numerical values aree.1/120 and 1/2g051/20, so that
the longitudinal and transverse fields are about of the s
order in the initial rest frame of the electron.

The importance of the correct description of the fields
also visible on the study of the final electron energy a
function of its initial longitudinal position on the laser ax
before focus. We take as parametersa55.34, w0
54.95mm, Dt5350 fs, andg0510. These differ from the
parameters of Fig. 15 of Ref.@9# only in the fact thatDt
5350 fs instead of 800 fs. We made this change becau
shortens the simulation time, which otherwise would ha
made this study almost impossible on our computing m
chines. We checked that the results with the first order fie
were not affected in their main features by this change. T
certainly implies that the results obtained with the ex
fields @method~4!# will also be very similar.

Figure 14 shows the final electrong factor as a function
of its initial position on thez axis for 783 points randomly
chosen in the interval. The dots correspond to the trajecto
computed with the exact fields@method~4!#, while the solid
curve is the result of the RPF@method~1!#. As for Fig. 4 in
the nonrelativistic regime, the effect of the longitudinal po
deromotive force is clearly visible, but the effect of the hi
initial velocity of the electron is to add a kind of dispersio
around a ‘‘mean curve’’ which would be very close to th
relativistic ponderomotive curve. Another interesting featu
of this curve is the fact that it has a pseudoperiod ofl̃
.200mm, as can be seen in Fig. 15, which is a zoom
tween z05215 and 214.75 mm, withx051022 mm and
y050. This pseudoperiod inz can be explained as follows

FIG. 14. Final electron Lorentz factor as a function of its init
position along the laser propagation axis. The trajectory is c
puted using the exact fields~dots! and the RPF~solid line!. The
parameters area55.34,w054.95mm, Dt5350 fs, andg0510.
e
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in the initial rest frame of the electron,l̃ transforms tol̃8

5l̃/g0.20mm, while the Doppler effect causes the las
wavelength to be preciselyl085l0 /@g0(12v0 /c)#.20l0

520mm in this frame. Therefore, if the initial position o
the electron is changed byl̃ in the laboratory frame, it will
see the electromagnetic field of the pulse with the sa
phase relative to the envelope, which explains that both
jectories will be very similar.

As in the previous case, we also simulated a ‘‘beam’’
1000 electrons with an initial position randomly chosen u
ing a Gaussian distribution. Herer 051 mm and z05
215 mm, withg0510 as above. We can see in Table I th
the RPF is no longer valid in this regime of parameters,
Figs. 13 and 14 suggested. This does not mean, howe
that the electron motion is purely 2D, as can be seen in
16 which represents the finalp' of the electrons. Clearly, the
electrons with a nonzeroy0 have a final momentum with a
nonzeropy component. The escape angle of the electron
plotted in Fig. 17~circles!, and we can see that it is ver
different from the theoretical value of formula~50! ~solid

- FIG. 15. Final electron Lorentz factor as a function of its initi
position along the laser propagation axis for the same paramete
Fig. 14, exceptx051022 mm, andy050. Method~4! ~exact fields!
is used here.

FIG. 16. Final transverse momentum of the electrons for
parameters of Fig. 14 and withz05215 mm. The 1000 electrons
are initially distributed randomly using a Gaussian probability, w
r 051 mm ~see text!. The trajectories are computed with the exa
fields.
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line!. The ‘‘oscillations’’ that are visible on this figure can b
understood by looking at the two following figures~18 and
19! which show the three final components ofp for electrons
initially on thex andy axes, with the other parameters as
the previous figure. When initially along thex axis ~that is in
the plane of polarization!, the electrons gain no momentu
in the y direction, as expected@see Fig. 18~b!#. On the other
hand, the electrons initially in they-z plane gain a smallpx
when their initial position approaches the laser propaga
axis @see Fig. 19~a!#. Note also thatpx in this case has the
same oscillating shape aspx andpz in Figs. 18~a! and 18~c!.
This increasing sensitivity to the initial position as the ele

FIG. 17. Ejection angle of the electrons vs their final Loren
factor. The initial conditions are as in Fig. 16. The open circ
correspond to the trajectories computed using the exact fi
@method~4!#, while the solid line corresponds to theoretical formu
~50!.

FIG. 18. Components of the final momentum as a function
the initial electron position along thex axis. The parameters are a
in Fig. 16.
n

-

tron approaches the laser axis is the consequence of the
value of the quiver amplitude in this case, which prevents
usual development around the oscillation center motion to
valid. Note on the opposite that the curvepy(y0) @Fig. 19~b!#
is very like in the RPF case. This comes from the fact t
the scattering is due here to theBz field, as seen before, s
that the high oscillating amplitude has only a small effec

V. CONCLUSION

In this paper, we have studied theoretically and nume
cally the motion of electrons in the field of a high intensi
laser near focus. A precise demonstration of the relativi
ponderomotive force has been given which makes appa
its limit of validity. This demonstration is based on a com
plete description of the electromagnetic field of a laser n
focus. We have given exact expressions of the fields for
case of a Gaussian profile. These expressions contain as
iting cases the usual zero~paraxial! and first order expres
sions in the small parametere51/kw0. We have also derived
the first-order corrections which arise when very short pul
are considered, in which case the small parameter iss
5l0 /cDt.

We have performed 3D computer simulations using a te
particle computer code. For the pulses we studied, we h
shown that first order corrections ins were not needed, so
that our code gives theexactelectron motion when we use
with the fields correct to all orders ine. This has allowed us
to give the condition of validity of the RPF, which reads
2vz /c@e: this is valid even at very high laser intensitie

s
ds

f

FIG. 19. Components of the final momentum as a function
the initial electron position along they axis. The parameters are a
in Fig. 16.
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provided that the initial electron velocity in the direction
propagation of the pulse is not too high. The electron is th
scattered in the direction of the intensity gradient, with en
gies of the order of several MeV in the case of very hig
intensity pulses. A precise relation exists between its esc
angle and its energy, which is, however, slightly differe
from the one which is usually assumed@Eq. ~50!#. This cor-
rection to this relation is of great interest in the context
future experiments. A need of such experiments appear
the only previous one@10# is clearly in disagreement with th
above results. We have shown, however, that the 2D th
retical model on which this experiment is based is insu
cient.

In the regime where the RPF is no longer valid
2vz /c&e), the electron motion is much more complicate
First, the net energy gain is considerably lower than pre
ously predicted@9#, due to the importance of the longitudin
fields in the Lorentz transformed frame where the electro
initially at rest. Second, no definite relation exists betwe
the electron escape angle and its energy in this regi
Third, a high dependence of the electron trajectory on
s

n
r-
-
pe
t

f
as

o-
-

.
i-

is
n
e.
s

initial distance from the laser propagation axis appears. T
effect is greatest when the electron is in the plane of po
ization, but also persists out of this plane. Although
reaches high values, the electron quiver amplitude rem
lower than the beam waist, so that the electron motion is
and a 2D code is insufficient.

It is therefore very unlikely that a single laser pulse be
good method to accelerate beams of electrons to very h
energies in vacuum. Other, more sophisticated, schemes
probably have better results in this context@29,30#.

Finally, we note that special laser field configurations c
lead to a~quasi! 2D motion. This can be the case, for in
stance, if cylindrical lenses are used, or if the focal spo
highly elliptical. Computations in this last case are curren
in progress, and will be the object of a future publication
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