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Low-dimensional approximation and control of periodic solutions in spatially extended systems

S. Y. Shvartsman and I. G. Kevrekidis
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544

~Received 21 January 1998!

Nonlinear model reduction is combined with numerical continuation and linear state-space control tech-
niques to design regulators for periodic solutions in a spatially extended system. We address issues of con-
struction and systematic evaluation of low-dimensional dynamic models using Galerkin projections on empiri-
cal orthogonal eigenfunctions~also known as proper orthogonal decomposition modes or Karhunen-Loe`ve
modes!. The reduced order dynamical systems are used first to compute the open-loop bifurcation diagrams
and then to design feedback controllers stabilizing unstable limit cycles. We outline the steps for discrete-time
controller design and computational linear stability analysis of the resulting hybrid~continuous-discrete!
closed-loop systems.@S1063-651X~98!14006-0#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Periodic trajectories constitute the simplest nontrivial o
eration mode for continuous, nonstationary processes.
amples from the chemical industry include radio-frequen
discharge plasmas@1#, reverse flow reactors for pollutant re
moval @2,3#, and temperature swing adsorption units@4#. As-
sociated control problems, such as stabilization and dis
bance rejection, are becoming increasingly tractable du
advances in scientific computing and control theory. At t
point a lot is known about stabilization of linear time
periodic systems~see, e.g., Ref.@5# and references therein!.
Problems of regulation of periodic trajectories in nonline
systems are also being studied using tools of nonlinear c
trol ~see, e.g., Refs.@6–8# for recent applications of geome
ric and H` methods to the control of limit cycles!. In the
physics community there is a lot of activity in the area
chaos control, where unstable periodic orbits embedde
chaotic attractors are identified and stabilized. Since the 1
paper by Ott, Grebogi, and Yorke@9#, periodic orbits embed-
ded in chaotic attractors have been stabilized in many mo
and experimental systems~see Ref. @10# for a review!.
Among the discussed potential applications are novel mo
of secure communication, stabilization of nonstationary
gimes in lasers, and control of cardiac arrhythmias. T
whole journal issues@11,12# dedicated to this subject ar
representative of the importance of~and activity in! this area.

In this paper we are concerned with the problem
model-based control of limit cycles in dissipative distribut
parameter systems, such as chemical reactors. In partic
we address the issue of controller design based on~reduced
order! models of the process derived from first principl
such as mass, energy, and momentum conservation~as op-
posed to identified from data–see, e.g., Refs.@13, 14#!. Fun-
damental models usually take the form of evolutionary p
tial differential equations~PDE’s!. When discretized, they
result in dynamical systems of high order that cannot
easily incorporated into the existing control methodologi
High order and stiffness make even the computing and
bility analysis of open-loop periodic solutions in these s
tems nontrivial. Recent advances in scientific computi
such as approximate inertial manifolds@15#, Krylov sub-
PRE 581063-651X/98/58~1!/361~8!/$15.00
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space techniques, and the recursive projection met
@16,17#, as well as the method of empirical eigenfunctio
@18#, have been mobilized for this purpose. All of the
methods exploit~albeit in diverse ways! the intrinsic time-
scale separation of the PDE-derived dynamical system
approximate their long-term behavior by that of dynamic
systems of a ~much! smaller dimension. These low
dimensional approximations can usually be associated w
dynamics of ~slow, ‘‘master’’! low-wave-number modes
that are not entirely dominated by dissipative processes, s
as diffusion, viscosity, or heat conduction.

Such model order reduction based on time-scale sep
tion has also been successfully employed for control p
poses. The basic idea behind this approach is as follows
controller is based on and designed to address mostly
control-relevant, slow part of the dynamics. The time-sc
separation present in the open-loop dynamics~fast decay of
‘‘slave,’’ high-wave-number modes!, guarantees in many
cases the stability of the closed-loop system resulting fr
such a design@19–22#.

In this work, the design of controllers stabilizing ope
loop unstable limit cycles is based on low-order dynami
systems generated using the method of empirical eigenfu
tions @a.k.a., Karhunen-Loe`ve ~KL ! or proper orthogonal de
composition ~POD!# combined with the Galerkin method
The Karhunen-Loe`ve expansion was previously used to r
duce the dimension of the spatially dependentoutputof dis-
tributed systems@23#, and recently to base control schem
for periodic and quasiperiodic motions on the tim
dependent coefficients of the dominant KL modes@24,25#. In
our work, this data reduction technique is combined with
PDE to yield accurate dynamical systems used for contro
design.

The paper is organized as follows: In Sec. II, we introdu
our illustrative example, a nonlinear reaction-diffusion sy
tem, exhibiting~stable and unstable! spatiotemporal oscilla-
tions. In Sec. III, we briefly review the stabilization proble
for a limit cycle, addressing the regulator design based on
original system as well as low order approximations of
There we introduce formulas for aparticular controller
design—stabilization of a Poincare´ map associated with the
open-loop periodic orbit. We also derive formulas for eva
361 © 1998 The American Physical Society
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362 PRE 58S. Y. SHVARTSMAN AND I. G. KEVREKIDIS
ating the stability of the closed loopunder such feedback
We then analyze the interconnection of the full system op
ating in a closed loop with a controller based on a redu
order model. Section V is dedicated to a quick review a
evaluation of the model reduction technique~POD-Galerkin
method! that we use to obtain our low-dimensional vect
fields. In Sec. VI, a computer-assisted study of the clos
loop dynamics and stability of the resulting feedback syst
is presented, and we conclude in Sec. VII with a discuss
and comments motivated by our observations.

II. OPEN-LOOP SYSTEM

The reaction-diffusion system constituting our illustrati
example is described by a pair of coupled parabolic par
differential equations with no-flux boundary conditions:

v t5Dv1 f ~v,w!5Dv1v2v32w, ~1!

wt5dDw1g~v,w!5dDw1e~v2p1w2p0!, ~2!

vzu0,L5wzu0,L50. ~3!

In these equations, known as the FitzHugh-Nagumo mo
@26#, v is usually termed the ‘‘activator’’ andw the ‘‘inhibi-
tor;’’ d52.0 is the ratio of diffusivities of the two reactin
species, whilee represents a ratio of time scales for the
netic terms;L520.0 is the length of the system box w
chose for our study; andp152.0 andp0520.03 are param-
eters determining the local dynamics. The PDE has th
spatially uniform solutions for these parameter values. T
interaction of the nonlinear reaction term with diffusion r
sults in a large number of additional nonuniform stea
states. These, for parameter values as in the plot in Fig. 1~a!,
may take the form of spatial patterns with relatively sha
concentration fronts separating the ignited~up! and extin-
guished ~down! regions of the one-dimensional system

FIG. 1. The open-loop system:~a! Bifurcation diagram for pat-
terned solutions of the type shown in the inset: Solid~broken! lines
represent stable~unstable! steady states, while full~empty! circles
denote stable~unstable! periodic solutions continued as a functio
of e for p0520.03,p152.0,L520.0, andd52.0. Hf: Hopf bifur-
cation point. SN: saddle node of limit cycles. Inset: Nonunifo
steady state profile computed fore50.039; v(z)@w(z)#: full @bro-
ken# lines,~b! and~c! Representative space-time plots of spatiote
poral limit cycles in~a!. Dark ~light! corresponds to the high~low!
local levels of v. The total time interval is 120 time units.~b!
Stable, node-type limit cycle computed fore50.034 9722 5.~c!
Saddle-type limit cycle at the same parameter value.
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Structured steady states may~and do! lose stability to spa-
tiotemporal dynamics as the system parameters vary.
work of Hagberg and Meron@27# presents the most recen
detailed study of stability of frontlike and pulselike solution
in the FitzHugh-Nagumo system.

We illustrate some of the possible transitions by comp
ing the bifurcation diagram associated with a particular p
terned ~pulselike! solution @the inset in Fig. 1~a!#. In this
work we have used a~dealiased! pseudospectral discretiza
tion @28# to approximate the reaction-diffusion PDE by
finite size dynamical system. Discretization of each fie
@v(z) andw(z)# with 31 cosine basis functions resulted in
62-dimensional system of coupled nonlinear ODE’s for t
modal amplitudes. This provided a sufficiently converg
approximation~the ‘‘full’’ model ! of the FHN equations for
the chosen range of parameters and system size. The br
of stationary solutions in Fig. 1, computed with Newton
method, has the form of an ignited region positioned in
middle of an extinguished domain. Decrease ofe below
'0.039 leads to Hopf bifurcation—a pair of eigenvalues
the linearization around this nonuniform steady state cros
the imaginary axis giving rise to oscillations that can be d
scribed as periodic changes of the width of the ignited
main ~‘‘breathing pulse’’ oscillations!. This primary bifurca-
tion of the stationary pattern in the system with no-fl
boundary conditions was analyzed using singular pertur
tion methods~with e/d as a small parameter! in work by
Haim et al. @29# on breathing spots in a reaction-diffusio
system. In this work we are concerned with the analysis
stabilization of unstable oscillatory fronts; these motio
arise from a secondary instability~turning point! of breathing
fronts upon further decrease ofe.

The stable limit cycle that is born at the primary Ho
bifurcation was used to initialize the continuation procedu
for the branch of periodic solutions. A shooting method f
the computation of limit cycles combined with pseudo-a
length parametrization of the solution branch was used
follow the spatiotemporal oscillations@30#. The evaluation of
the overall Jacobian for the Newton’s iterations incorpora
in the shooting algorithm required a time integration ofN
1N21N ~with N562! ODE’s for the original dynamical
system and the associated variational and parameter sen
ity equations. This time integration was performed using
adaptive step size stiff ODE/sensitivity solverODESSA @31#.
As the amplitude of the breathing front oscillations increas
one Floquet multiplier approaches the unit circle, and
branch of periodic motions turns around ate'0.030 in a
saddle-node bifurcation. The saddle-type limit cycles ha
larger amplitudes and smaller periods than those of co
sponding stable ones~and they persist for values ofe above
the Hopf bifurcation!. Our single-shooting code successful
computes saddle-type limit cycles with Floquet multiplie
up to 40 (e'0.041).

We will stabilize these unstable~saddle-type! limit cycles
through feedback that enters additively into the nonlin
PDE; the feedback is implemented through manipulation
the amplitudesuj of ( l ) actuators with spatially nontrivia
influence functionsqj (z):

v t5Dv1v2v32w1(
j 51

l

ujqj~z!, ~4!

-



n-
b

tr
ys

-
he
b

at

y
os
-

co
a

t
l
,

o
e

de
te

nd

re
hi
e

r

f

en

m-
for

old

s

of
The
n-
t
of

PRE 58 363LOW-DIMENSIONAL APPROXIMATION AND CONTROL . . .
wt5dDw1e~v2p1w2p0!. ~5!

By solving the stabilization problem, we would like to mai
tain the reaction-diffusion system at its open-loop unsta
attractor~spatiotemporal limit cycle! by affecting the eigen-
structure of its linearization~Floquet multipliers!. The state
is described by a dynamical system arising from the spec
discretization of this system of PDEs. The input to the s
tem @amplitude~s! of actuator influence function~s! u appear-
ing as parameter~s! in the vector field of this dynamical sys
tem# will be manipulated in the closed loop according to t
feedback law given by the solution of the stabilization pro
lem.

III. BRIEF REVIEW OF THE STABILIZATION PROBLEM

Full and reduced order systems

We start with nonlinear state-space models

ẋ5F~x,u!, ~6!

ỹ5P~x2 x̄!, ~7!

wherexPRn, ỹPRm, and uPRl , and x̄PRn is a constant
vector ~it provides a convenient reference point in the st
space, see below!. The matrix P orthogonally projects the
difference (x2 x̄) onto a subspaceR1 of dimensionm<n.
This subspace of the full state space will be spanned b
~small! number of basis vectors; it is the subspace ‘‘m
frequently visited’’ by the full system, and it is in this sub
space that our low-order model will be constructed. The
ordinates of the projection of the state on this subspace
the output assumed available for~and used in! feedback.

Based on our choice of this subspace, we assume tha
Galerkin projection of Eq.~6! ontoR1 generates a dynamica
system of lower dimensionm @reduced order model
~ROM!#,

ẏ5 f ~y,u!, ~8!

which provides an accurate~in some sense, e.g.,long term!
approximation of the full system dynamics. An example
performing and validating such a procedure is shown in S
IV.

Our objective is to stabilize an open-loop (u50)
T-periodic trajectoryxp(t)5xp(t1T). We approach this by
stabilizing the ‘‘corresponding’’ periodic trajectory@we as-
sume that it exists and is ‘‘close’’ toỹ5P„xp(t)2 x̄…# in the
reduced order model. The controller for the reduced or
model is designed after first deriving a nonlinear discre
time system by introducing a Poincare´ surface~a plane! @32#
in R1 . This discrete-time system views the periodic a
nearby trajectories at the discrete moments of their~trans-
verse, oriented! intersections with the introduced Poinca´
plane. A state-feedback controller for the linearization of t
nonlinear system is then designed using conventional lin
techniques@33#.
le

al
-

-

e

a
t

-
re

the

f
c.

r
-

s
ar

Analysis of the Poincarémap

Without loss of generality we define ou
(m21)-dimensional Poincare´ plane inR1 by fixing the first
component of the statey of the reduced order model@see
Fig. 2~b!#

S:y1~ t !2c50. ~9!

For convenience, we partition the~reduced! state and vector-
field vectors~T denotes the vector transpose!

y15y1 , y25~y2 ,...,ym!T,

f 15 f 1 , f 25„f 2~y!,...,f m~y!…T.

When the ROM governing the evolution ofy(t) has a peri-
odic orbit of period T0@yp(t)5yp(t1T0)# intersecting
~transversely! the planeS, it is possible to define~locally! an
(m21)-dimensional mappingN„y2(k),u… giving the coor-
dinates of the vectory2(k11) on this plane as a function o
its coordinates at the previous intersection withS:

y2~k11!5N„y2~k!,u…5y2~k!1E
0

T~y2~k!,u!

f 2„y~t!,u…dt.

~10!

The presence ofy2(k) andu in the upper limit of the inte-
gral denotes the dependence of the ‘‘time of flight’’ betwe
successive intersections withS on the values ofy2(k) andu
at the current intersection. This time of flight has to be co
puted numerically, and we have used Newton’s method
this purpose.

FIG. 2. The stabilization problem:~a! Periodic solution that can
be accurately approximated by a low-dimensional model. B
line—‘‘full’’ limit cycle @xp(t)5xp(t1T)#; thin line—its approxi-
mationyp(t)5yp(t1T0) in the low-dimensional subspaceR1 . S8
is the Poincare´ plane.~b! Successive iterates of the Poincare´ map
defined on the planeS showing the evolution of perturbation
around the approximate limit cycleyp(t) in the low-dimensional
subspaceR1 . ~c! Closed-loop structure showing the combination
the continuous-time system and the discrete-time controller.
blocks represent the full model, an IF-block for checking the co
dition of crossing of the Poincare´ surface, a comparison with the se
point, and a computation of the low-dimensional approximation
the error and the controller.
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The existence of an~open-loop! periodic orbit for the
ROM above implies the existence of a fixed pointy2s for
the mapN(y2,u50),

y2s5N~y2s,u50!. ~11!

According to Floquet theory, the eigenvaluesm of this map
linearized around its fixed point~at u50! determine the sta
bility of the ~open loop! periodic orbit. When all of these
eigenvaluesumu,1, the fixed point of the map~and the pe-
riodic trajectory from which it results! is asymptotically
stable. We design a controller that changes the actuator
plitudeu when~and only when! the system’s trajectoryy(t)
hits S @note the corresponding IF-block in the scheme of
feedback loop shown in Fig. 2~c!#:

u~k!52K„y2~k!2y2s…. ~12!

As the control objective we choose to specify the eigenv
ues of the mapN„y2,u(y2)… linearized aroundy2s and u
50 ~our set point!.

Linear controller design

The procedure for selection of the matrix of gainsK
PRl 3m21 starts by computing the open-loop linearizatio
The linearization procedure yields the discrete-time lin
system governing the evolution of the errore(k)[„y2(k)
2y2s… @note the corresponding block in Fig. 2~c!#:

e~k11!5Ae~k!1Bu~k!. ~13!

The matricesA andB are related to the variational equatio
determining the sensitivity of the solution at some timet
@evaluated on the open-loop limit cycleyp(t) and u50# to
changes in initial conditionsy(t50) and parameteru(t
50)5u values:

V~ t ![
dy~ t !

dy~ t50!
, V̇~ t !5 f y~y!V, V~ t50!5I m3m ,

~14!

S~ t ![
dy~ t !

du
, Ṡ~ t !5 f y~y!S1 f u~y!, S~ t50!50m3 l .

~15!

We partition the matrices of sensitivities integrated for o
period of the open-loop limit cycle~in the ROM! T0 in the
following way:

V~T0!5S V11

V21

V12

V22
D , S~T0!5S S1

S2
D , ~16!

where V11[@dy1(T0)#/@dy1(t50)#, S1[@dy1(T0)#/du
and the other matrix blocks are defined accordingly. Th
linearizing N(y2(k),u), using the Leibniz rule~due to the
time-of-flight variation! and the implicit function theorem
we obtain

A5V222 f 23~V12!
T/ f 1, ~17!

B5S22 f 23~S1!T/ f 1, ~18!
m-

e

l-

.
r

e

,

where3 denotes the outer vector product. When the discr
time system (A,B) is stabilizable, it is possible to shift th
unstable eigenvalues ofA inside the unit circle, and stabilize
the periodic trajectory applying linear feedback at the m
ments of its intersection withS @33#.

Full system in closed loop

We now analyze the stability of the designed control
operating on the full-order vector field@Eq. ~6!#. The actuator
amplitude will be changed at the intersections of the f
system’s trajectoryx(t) with the planeS8 @see Fig. 2~a!#:

S8:p1~x2 x̄!5 ỹ15c ~19!

~herep1 is the first row of the matrixP!, and kept constan
until the next intersection. Note that the planeS introduced
in the reduced order model is contained inS8. The dynami-
cal system governing the evolution of the statex(t) in-
between intersections, withS8 is given by

ẋ5F~x,u~k![2GP„x~k!2xset…!, ~20!

whereG5(0l 31 ,K)PRl 3m andx(k),xsetare the state vecto
and the set point at the intersection withS8. We see that the
closed-loop system trajectory is not smooth at its intersec
with S8, as a result of discontinuous changes in actua
amplitude~s! u(t).

The stability of the closed loop is determined by the ev
lution of the error vector„x(k)2xset… on S8; for this purpose
we choose a set ofn21 orthogonal coordinate vectors in th
subspace orthogonal top1

T . The vectors forming a basis fo
this (n21)-dimensional subspace are provided byQR de-
composition of vectorq15p1

T/ zup1
Tuz and stored in the col-

umns of matrixQ2PRn3n21.
The sensitivity ofx(t) to perturbations in initial condi-

tions ~on the planeS8! will be governed by the modified
variational equations

U~ t ![
dx~ t !

dx~ t50!
, U̇~ t !5Fx~xp!U2Fu~xp!GP,

U~ t50!5I n3n . ~21!

Integrating these equations for a time interval equal to
period (T) of the limit cycle in the full model, we can con
struct the linearizationL of the nonlinear map evolving~in
the closed loop!, the error between the state vector and t
set point onS8 till the next intersection:

L[Q2
TU~T!Q22Q2

TF~xset!3„q1
TU~T!Q2…

T/^q1 ,F~xset!&,
~22!

where^•,•& denotes the inner vector product. The closed-lo
system is stable when alln21 eigenvalues ofL lie inside the
unit circle.

IV. MODEL REDUCTION: POD-GALERKIN METHOD

Accurate discretizations of PDE’s are traditionally o
tained using finite difference, finite element~FEM!, or spec-
tral methods. The basis functions for Galerkin projectio
can either have local support~e.g., FEM! or be global in
space ~e.g., Fourier modes!. The ~semiempirical! POD-
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Galerkin method uses an alternative set of global basis fu
tions obtained by the principal component analysis of
extensive spatiotemporal data set generated from the
integration of an accurate discretization@34,23#. The basic
procedural steps leading to a low-dimensional approxim
model include~i! forming a database ensemble of spatiote
poral data,~ii ! extracting an empirical eigenfunction bas
from the data, and~iii ! generating a dynamical system d
scribing the temporal evolution of the modal coefficients
the solution expanded in these basis functions.

The first of these steps is by far the most crucial for
success of the venture: The ensemble is the starting poin
forming the finite dimensional subspace~the hyperplaneR1
in Sec. III!. All motions orthogonal to this hyperplane will b
neglected, and the resulting error is assumed to be sma
some sense@34#. The necessity for a large simulational da
set, the difficulty in obtaining it, and the lack of rigorou
theoretical results concerning convergence properties of
corresponding spectral discretization underscore the em
cal nature of the method; on the other hand, it has been
useful in dealing with dynamics and stability analysis of s
tems beyond the reach of conventional discretizations~see,
for example,@18, 35–38#!.

The deviations of spatiotemporal data in the ensem
~discretized statexPRn! from a convenient reference poin
such as the average~x̄PRn in Sec. III! are stored in the
‘‘snapshot matrix’’MSPRn3k @34,23#. The number of col-
umns (k) corresponds to the number of snapshots~instants at
which the state of the system has been captured!, while the
number of rows (n) is equal to the number of ‘‘pixels’’
~discretization points, coefficients of Fourier basis functio
used in the simulation, etc!. The singular value decompos
tion of the snapshot matrix represents it as a sum of ran
matrices

MS5(
i 51

k

s i t i
Tc i ,

~23!

s1.s2.¯.sk ,

wheres i , t i , andc i represent the singular values and ve
tors of the snapshot matrixMS.

A high degree of spatiotemporal coherence in the d
ensemble will manifest itself in the almost zero magnitude
many of the singular valuess i , and, consequently, in th
fact that a relatively low order (m!n) truncation of the
above summation will provide a good approximation ofMS.
The set of singular vectors$c i% i 51

m forms the basis for a
low-dimensional subspaceR1 onto which the higher-
dimensional dynamical system~arising from original dis-
cretization of a PDE! is projected by the Galerkin procedur

Some practical comments about the method are in or
There are noa priori comprehensive rules for generation
the ensemble from which the empirical basis functions w
be extracted. The data should be ‘‘fully representative’’
~i.e., should span! the region of phase space in which it
desired to study temporal evolution or control of the distr
uted parameter system. For example, if in the closed loo
is desirable to eliminate or restrain motions along particu
directions in the phase space, motions along these direc
should be included in the ensemble. Since we are intere
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in a good representation of the dynamics of the closed-l
system, the response to possible actions of the available
tuators should be somehow incorporated in the ensem
Reported ‘‘common sense’’ ways of forming a potentia
representative ensemble include a combination of spatiot
poral motions at several values of operating parame
@18,35,37#, mixing transients from initial conditions distrib
uted randomly around the relevant regions of phase sp
@39#, and storing responses to perturbation of actuators fr
their nominal settings@38,36,40,41#.

In our implementation this procedure was perform
separately for thev(z) and w(z) fields in the FitzHugh-
Nagumo PDE. Simulations of the reaction-diffusion syste
yielded two ensembles@for the v(z) and w(z) fields# that
were later SV decomposed to form separate basis sets
spectral discretization. An alternative implementation co
have the ‘‘stacked’’ profiles@v(z);w(z)# in the ensemble,
taking into account in this way the correlation between
two variables. We formed our ensembles in the neighb
hood of a periodic motion close to the turning point of t
branch of limit cycles in Fig. 1. We combined the transien
~including those that lead to distant attractors! at several pa-
rameter~e! values with random forcing of the amplitudeu(t)
of the actuator influence functionq(z).

The resulting low-dimensional vector field was requir
to have attractors~steady states and, especially in this ca
limit cycles! close to those of the full system, and to ha
similar stability and parametric dependence. We evalua
the quality of the approximation by comparing the~open-
loop! bifurcation diagrams of attractors of the reduced a
full order systems.

For our example, the properties and capabilities of
POD-Galerkin method are illustrated in Fig. 3. The sadd

FIG. 3. POD-Galerkin methods:~a! Comparison of the stable
and unstable limit cycles computed with 62-dimensional cos
pseudospectral and a 16-dimensional POD-Galerkin discretiza
at e50.034 972 25.U(S) denotes unstable~stable! periodic solu-
tions. ~b! Leading part of the spectrum~Floquet multipliers! of the
unstable periodic solutions in~a! computed with alternative spectra
discretizations.~c! Bifurcation diagram of periodic solutions com
puted with full and reduced order models.~d! Illustration of the
short-term tracking capabilities of the 16-dimensional PO
Galerkin vector field: evolution following a perturbation of th
saddle-type limit cycle~eventually leading to a distant steady stat!.
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and node-type periodic solutions~coexisting at one param
eter value! computed with the full~62-dimensional! and
reduced-order~16-dimensional! vector field are shown in
Fig. 2~a!. The projections of the full and reduced order lim
cycles on the plane of zeroth Fourier modes are almost
distinguishable. The periods of reduced order limit cycles
accurate to within 3%. Figure 3~b! demonstrates the ability
of the reduced order models to capture the leading part of
spectrum~Floquet multipliers! of the periodic solutions. The
accuracy of the approximation is maintained over a w
range of parameter values. This is illustrated by compar
entire branches of periodic solutions in Fig. 3~c!. The same
low-dimensional vector fields are successful in short-te
tracking of off-attractor dynamics. We illustrate this by com
paring the transient~from the ‘‘same’’ initial conditions! to a
distant attractor computed with full and reduced order m
els in Fig. 3~d!.

V. CLOSED-LOOP ANALYSIS

In this section we present the results of the computatio
dynamic and stability analysis of the closed-loop syst
with feedback controllers designed on the Poincare´ plane.
The actuator influence function had the shape shown in
inset of Fig. 4~a!. We have chosen it to be symmetric, sin
the set point and the critical eigenvector~the open-loop un-
stable limit cycle and the eigenvector of its monodromy m
trix corresponding to the largest Floquet multiplier! are
symmetric—in this case, they belong to the invariant~under
the dynamics of the PDE! subspace of even cosines. W

FIG. 4. Closed-loop analysis:~a! Projection~on the plane of the
zeroth Fourier modes! of the evolution of the system stabilized by
controller based on the full-order model. Broken~full ! lines corre-
spond to open~closed-! loop systems.~a! Inset: spatial form of the
actuator influence functionq(z) used for controller design base
both on full and reduced order models.~b! Space-time plots for
transients in~a!: left ~right!—open~closed! loop. ~c! Evolution of
the error norm on the Poincare´ plane in the linear regime for the
closed-loop system. The slope of the curve corresponds to the
ing Floquet multiplier specified by controller design.~d! Stabiliza-
tion using the 16-dimensional POD-Galerkin based model:mcl—the
actual value of the closed-loop Floquet multiplier;mdes—its design
value based on the low-order model~see text!. ~d! Inset: Relative
error @(mcl2mdes)/mdes# for the reduced order controller design.
n-
e

e

e
g

-

al

e

-

illustrate the performance of controllers, based both on
full ~62-dimensional! and reduced~16-dimensional, POD-
Galerkin based! order models, in stabilizing the open-loo
unstable limit cycle ate50.034 97~with a leading Floquet
multiplier of '3.538!.

The successful closed-loop performance is demonstr
qualitatively in Fig. 4~a!, showing transient simulations o
the full closed-loop model. A point on the limit cycle pe
turbed~in each component! by 10% from its nominal value
was the initial condition for these computations. In the a
sence of control the system diverged from the limit cyc
very quickly. At this level of perturbation rapid evolutio
into the nonlinear regime was followed by an asympto
approach to the distant~fully extinguished! steady state@Fig.
4~b!, left#. The regulator based on the full order model a
designed to place the leading pole of the mapping on
Poincare´ plane at 0.8 successfully drove the system to
set-point trajectory@Fig. 4~b!, right#. Thequantitativeassess-
ment of the closed-loop stability was done using the form
las derived in Sec. III@Eq. ~22!#; the slope of the decay of th
error logarithm with successive Poincare´ plane intersections
was used to double check this calculation@Fig. 4~c!#. The
error zue(k)uz was defined as the 2-norm of the distance of
point on the Poincare´ plane from the set point. In the linea
regime, the decay rate corresponded very accurately to
eigenvalue at 0.8.

We have also performed transient stability analysis of
closed-loop system under feedback control with regulat
designed using the reduced, POD-based models; the
system unstable limit cycle provides the set point. For a fin
range of perturbations of initial conditions and small amp
tude disturbances, the controller can keep the system a
open-loop unstable periodic orbit. Using the formulas
stability analysiswith feedback controllers based on reduc
order models, we observed that the closed-loop stabili
~leading eigenvalue of the mapping on the Poincare´ plane
chosen for control! is quite close to that stipulated by th
reduced order controller design. Figure 4~d! shows the de-
pendence of the actual leading eigenvalue (mcl) of the
closed-loop system~with ROM controller! on the ‘‘nomi-
nal’’ leading eigenvalue prescribed by ROM-based regula
design (mdes). The relative stabilization error@(mcl

2mdes)/mdes# increases as the stability requirements beco
more stringent. This increase is a consequence of growt
the norm of the matrix of gainsG, and is to be expected
from general analysis of linear stabilization based on redu
order models@20#. Our set-point periodic orbit and its singl
unstable eigenvector are symmetric, and so is our actu
function; in fact, the entire open- and closed-loop dynam
possess an invariant subspace~that of even cosines!. Sym-
metries like this can be used to augment the data ensem
@42,43#, and the resulting Galerkin projection on POD mod
also has corresponding invariant subspaces~spanned by sym-
metric POD modes!. In our case the nonsymmetric mode
were stable~had eigenvalues well inside the unit circle!; they
were not affected by feedback. A nonsymmetric actua
would break these invariant subspaces; a detailed stud
symmetry and symmetry breaking due to feedback will
presented elsewhere.

d-
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VI. SUMMARY AND DISCUSSION

In this paper we have addressed certain aspects of s
lizing unstable periodic orbits in extended systems~reaction-
diffusion PDE’s!; in particular, we have exploited model re
duction for controller design and quantified the stability
the resulting closed-loop systems. Controllers designed
stabilize fixed points of a Poincare´ map result in a combina
tion of continuous-time~dynamics between changes in co
trol action! and discrete-time~computation of changes in
control action! components. The formulas for closed-loo
stability based on this discrete time controller design w
obtained from the PDE~and its sensitivities!. Such formulas
are necessary in the cases when the unstable orbit isnot
‘‘surrounded’’ by a nearby attractor, such as a period
doubled or quasiperiodic orbit or a chaotic attractor. T
identification step in combined control-identification a
proaches would fail in these cases, since small perturbat
would result in runaway behavior. Low-dimensional mod
approximating the open- and closed-loop dynamics of ac
rate spectral discretizations of the PDE were constructed
their explicit parametric dependence exploited for contro
design; the good performance of these controllers in the
closed-loop system was explored, and the stability quan
tively documented. This clearly demonstrates the ability
reduced models to capture the~low-dimensional! instability
of the open-loop dynamics and the effects of actuation on
The same controller design and closed-loop analysis ca
used for alternative low-dimensional approximations, such
nonlinear Galerkin methods. In our recent work we ha
used these methods to stabilize patterned steady states
FHN equations@44#.

We end with a brief discussion of alternative approac
and directions. First, the availability of accurate, fully no
linear, continuous-time low-dimensional models for the d
namics allows one to design more sophisticated~and possi-
bly better! controllers. Computing intersections of the se
point trajectory with several Poincare´ planes will result~with
obvious modifications of the formulas in Sec. III! in multi-
step discrete-time dynamical systems. Controller design
these systems can utilize available techniques for p
placement@45,46#, deadbeat, and linear optimal@47# control-
lers for linear discrete-time periodic equations. Efficient n
merical algorithms for handling such problems~e.g., solving
the associated discrete-time periodic Riccati equations@47#!
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already exist. Control on several Poincare´ planes will be ben-
eficial for stabilization of highly unstable periodic orbi
~with very large Floquet multipliers!. This is completely
analogous to the need for multiple shooting algorithms
numerical methods for computing such solution
Continuous-time feedback control can be thought of as
limiting case of infinitely many control planes. Continuou
time designs of stabilizing controllers~both pole-placemen
and optimal! can be found in several papers~e.g., Refs.@48–
52#!. These techniques require one to ‘‘fly’’ the differenti
Riccati equation and/or the linear time-dependent sys
~both of which require linearization of the nonlinear mod
around the reference periodic orbit! in the closed loop. De-
riving accurate models ofreduceddimension will clearly
make the use of these techniques more viable for dynam
systems of high order, such as discretizations of PDEs.
same holds true for techniques employing time-delayed
jectories for stabilization of unstable orbits@53,54#.

Since the controller design for distributed parameter s
tems is ~almost inevitably! based on approximate model
issues of plant-model mismatch are of prime importance
the analysis of the closed-loop stability. We are curren
investigating a particular aspect of this mismatch: the eff
of using approximate set points~generated by low-
dimensional nonlinear Galerkin and POD-based models u
for controller design!.

The analysis of dynamics of nonlinear distributed para
eter systems under feedback control complements the
search on open-loop forcing of these systems. Severa
search groups have reported that open-loop forcing
reacting systems in time and/or space can have ‘‘stabilizin
effects on the open-loop unstable patterns@55–57#. A com-
bination of the studies of experimental@58–60# and theoret-
ical @61,62# model systems, with the rapidly developing sp
tially resolving sensing and actuation techniques@63#, to
harness nontrivial nonlinear behavior in the design and c
trol of nonstationary processes is yet to come.
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