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Low-dimensional approximation and control of periodic solutions in spatially extended systems
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Nonlinear model reduction is combined with numerical continuation and linear state-space control tech-
nigues to design regulators for periodic solutions in a spatially extended system. We address issues of con-
struction and systematic evaluation of low-dimensional dynamic models using Galerkin projections on empiri-
cal orthogonal eigenfunction&@lso known as proper orthogonal decomposition modes or KarhunerelLoe
modes. The reduced order dynamical systems are used first to compute the open-loop bifurcation diagrams
and then to design feedback controllers stabilizing unstable limit cycles. We outline the steps for discrete-time
controller design and computational linear stability analysis of the resulting hybadtinuous-discreje
closed-loop system$S1063-651X98)14006-0

PACS numbd(s): 05.45+b

[. INTRODUCTION space techniques, and the recursive projection method
[16,17, as well as the method of empirical eigenfunctions

Periodic trajectories constitute the simplest nontrivial op{18], have been mobilized for this purpose. All of these
eration mode for continuous, nonstationary processes. Exwnethods exploitalbeit in diverse waysthe intrinsic time-
amples from the chemical industry include radio-frequencyscale separation of the PDE-derived dynamical systems to
discharge plasmd4], reverse flow reactors for pollutant re- approximate their long-term behavior by that of dynamical
moval[2,3], and temperature swing adsorption ufitk As-  systems of a(much smaller dimension. These low-
sociated control problems, such as stabilization and disturdimensional approximations can usually be associated with
bance rejection, are becoming increasingly tractable due tdynamics of (slow, “master”) low-wave-number modes,
advances in scientific computing and control theory. At thisthat are not entirely dominated by dissipative processes, such
point a lot is known about stabilization of linear time- as diffusion, viscosity, or heat conduction.
periodic systemgsee, e.g., Ref.5] and references thergin Such model order reduction based on time-scale separa-
Problems of regulation of periodic trajectories in nonlineartion has also been successfully employed for control pur-
systems are also being studied using tools of nonlinear corposes. The basic idea behind this approach is as follows: the
trol (see, e.g., Ref$6—8| for recent applications of geomet- controller is based on and designed to address mostly the
ric and H,, methods to the control of limit cyclesin the  control-relevant, slow part of the dynamics. The time-scale
physics community there is a lot of activity in the area of separation present in the open-loop dynantfast decay of
chaos control, where unstable periodic orbits embedded ifislave,” high-wave-number modgs guarantees in many
chaotic attractors are identified and stabilized. Since the 199@ases the stability of the closed-loop system resulting from
paper by Ott, Grebogi, and York8], periodic orbits embed- such a design19-23.
ded in chaotic attractors have been stabilized in many model In this work, the design of controllers stabilizing open-
and experimental system&ee Ref.[10] for a review. loop unstable limit cycles is based on low-order dynamical
Among the discussed potential applications are novel modesystems generated using the method of empirical eigenfunc-
of secure communication, stabilization of nonstationary retions[a.k.a., Karhunen-Loe (KL) or proper orthogonal de-
gimes in lasers, and control of cardiac arrhythmias. Thecomposition (POD)] combined with the Galerkin method.
whole journal issue$11,17 dedicated to this subject are The Karhunen-Loee expansion was previously used to re-
representative of the importance(ahd activity in this area.  duce the dimension of the spatially dependeutputof dis-

In this paper we are concerned with the problem oftributed system$23], and recently to base control schemes
model-based control of limit cycles in dissipative distributedfor periodic and quasiperiodic motions on the time-
parameter systems, such as chemical reactors. In particulatependent coefficients of the dominant KL mo{24,25. In
we address the issue of controller design base@retuced our work, this data reduction technique is combined with the
orden models of the process derived from first principles PDE to yield accurate dynamical systems used for controller
such as mass, energy, and momentum conservéiemp- design.
posed to identified from data—see, e.g., REIS, 14)). Fun- The paper is organized as follows: In Sec. I, we introduce
damental models usually take the form of evolutionary par-our illustrative example, a nonlinear reaction-diffusion sys-
tial differential equationgPDE’s). When discretized, they tem, exhibiting(stable and unstablespatiotemporal oscilla-
result in dynamical systems of high order that cannot bdions. In Sec. Ill, we briefly review the stabilization problem
easily incorporated into the existing control methodologiesfor a limit cycle, addressing the regulator design based on the
High order and stiffness make even the computing and stasriginal system as well as low order approximations of it.
bility analysis of open-loop periodic solutions in these sys-There we introduce formulas for particular controller
tems nontrivial. Recent advances in scientific computingdesign—stabilization of a Poincareap associated with the
such as approximate inertial manifold&5], Krylov sub-  open-loop periodic orbit. We also derive formulas for evalu-
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. Z Structured steady states méand do lose stability to spa-

@ l () tiotemporal dynamics as the system parameters vary. The
t work of Hagberg and Meroh27] presents the most recent

detailed study of stability of frontlike and pulselike solutions

SN, in the FitzHugh-Nagumo system.

03 T We illustrate some of the possible transitions by comput-
<v(z)> . © ing the bifurcation diagram associated with a particular pat-
. | terned (pulselike solution [the inset in Fig. a)]. In this
. work we have used é&ealiasedl pseudospectral discretiza-
___________ Hf tion [28] to approximate the reaction-diffusion PDE by a
-0.1 : ! finite size dynamical system. Discretization of each field

0.028 e 0038 [v(z) andw(z)] with 31 cosine basis functions resulted in a
62-dimensional system of coupled nonlinear ODE'’s for the
modal amplitudes. This provided a sufficiently converged

represent stabl@unstable steady states, while fullempty) circles approximation(the “full” model) of the FHN quatlons for
denote stabléunstablé periodic solutions continued as a function the ch(_)sen range 9f pa.ram(.aters and system S_'Ze- The br,anch
of e for po=—0.03,p;=2.0,L=20.0, ands=2.0. Hf: Hopf bifur- of stationary solutions in F|g. 1 comp_uted wﬁh NeMons
cation point. SN: saddle node of limit cycles. Inset: Nonuniform M€thod, has the form of an ignited region positioned in the
steady state profile computed fer=0.039; v(2)[w(2)]: full [oro- ~ Middle of an extinguished domain. Decrease eobelow
ke lines, (b) and(c) Representative space-time plots of spatiotem-~0.039 leads to Hopf bifurcation—a pair of eigenvalues of
poral limit cycles in(a). Dark (light) corresponds to the higow)  the linearization around this nonuniform steady state crosses
local levels ofv. The total time interval is 120 time unitgb)  the imaginary axis giving rise to oscillations that can be de-
Stable, node-type limit cycle computed fer=0.034 9722 5.(c) scribed as periodic changes of the width of the ignited do-
Saddle-type limit cycle at the same parameter value. main (“breathing pulse” oscillations This primary bifurca-

tion of the stationary pattern in the system with no-flux
ating the stability of the closed loopnder such feedback. boundary conditions was analyzed using singular perturba-
We then analyze the interconnection of the full system opertion methods(with e/ as a small paramefein work by
ating in a closed loop with a controller based on a reducedHaim et al. [29] on breathing spots in a reaction-diffusion
order model. Section V is dedicated to a quick review andsystem. In this work we are concerned with the analysis and
evaluation of the model reduction techniq@ROD-Galerkin  stabilization of unstable oscillatory fronts; these motions
method that we use to obtain our low-dimensional vector arise from a secondary instabilitgurning poin of breathing
fields. In Sec. VI, a computer-assisted study of the closedfronts upon further decrease ef
loop dynamics and stability of the resulting feedback system The stable limit cycle that is born at the primary Hopf
is presented, and we conclude in Sec. VII with a discussiomifurcation was used to initialize the continuation procedure

o

o
50000000000 © °

FIG. 1. The open-loop systena) Bifurcation diagram for pat-
terned solutions of the type shown in the inset: Séticbken) lines

and comments motivated by our observations. for the branch of periodic solutions. A shooting method for
the computation of limit cycles combined with pseudo-arc-
Il. OPEN-LOOP SYSTEM length parametrization of the solution branch was used to

. L o . . follow the spatiotemporal oscillatioi80]. The evaluation of

The reaction-diffusion system constituting our illustrative ihe oyerall Jacobian for the Newton'’s iterations incorporated
example is described by a pair of coupled parabolic partiaj, the shooting algorithm required a time integrationNof
differential equations with no-flux boundary conditions: +N2+N (with N=62) ODE's for the original dynamical

system and the associated variational and parameter sensitiv-
1 , o i ;
ity equations. This time integration was performed using the
2 adaptive step size stiff ODE/sensitivity solvepeEssA[31].
As the amplitude of the breathing front oscillations increases,
VoL =W,|o =0 3) one Floquet multiplier approaches the unit circle, and the
2oL TzloL branch of periodic motions turns around &t0.030 in a

In these equations, known as the FitzHugh-Nagumo modetaddle-node bifurcation. The saddle-type limit cycles have
[26], v is usually termed the “activator” and the “inhibi-  arger amplitudes and smaller periods than those of corre-
tor;” §=2.0 is the ratio of diffusivities of the two reacting SPOnding stable one@nd they persist for values afabove
species, whilee represents a ratio of time scales for the ki- the Hopf bifurcation. Our single-shooting code successfully
netic terms;L=20.0 is the length of the system box we COMputes saddle-type limit cycles with Floquet multipliers
chose for our study; and,=2.0 andp,= —0.03 are param- UP 10 40 (€~0.041). o

eters determining the local dynamics. The PDE has three We Will stabilize these unstablsaddle-typglimit cycles
spatially uniform solutions for these parameter values. Thdhrough feedback that enters additively into the nonlinear
interaction of the nonlinear reaction term with diffusion re- PDE; the feedback is implemented through manipulation of
sults in a large number of additional nonuniform steadytn® amplitudesu; of (1) actuators with spatially nontrivial
states. These, for parameter values as in the plot in Fay, 1 influence functionsy;(z):

may take the form of spatial patterns with relatively sharp |

concentration fronts separating the ignitag) and extin- _ _.3_ .

guished (down) regions of the one-dimensional system. vi=hvto-u W+j21 Uiy (2). @

vi=Av+f(v,Ww)=Av+v—v3-w,

W= SAW+g(v,W)= AW+ e(v — p;W—Pyg),
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W= SAW+ (v — p;W— o). G @

By solving the stabilization problem, we would like to main-
tain the reaction-diffusion system at its open-loop unstable ¢
attractor(spatiotemporal limit cycleby affecting the eigen-
structure of its linearizatiofFloquet multiplier$. The state

is described by a dynamical system arising from the spectral ',
discretization of this system of PDEs. The input to the sys-
tem[amplitudds) of actuator influence functidg) u appear-

ing as parametés) in the vector field of this dynamical sys-

tem] will be manipulated in the closed loop according to the
feedback law given by the solution of the stabilization prob-
lem.

FIG. 2. The stabilization problenta) Periodic solution that can
be accurately approximated by a low-dimensional model. Bold

lll. BRIEF REVIEW OF THE STABILIZATION PROBLEM line—"full” limit cycle [x,(t)=x,(t-+T)]; thin line—its approxi-

Full and reduced order systems mationy(t) =yp(t+To) in the low-dimensional subspaéy . X’
] ] is the Poincargplane.(b) Successive iterates of the Poincanep
We start with nonlinear state-space models defined on the plan& showing the evolution of perturbations
—F 6 around the approximate limit cychg,(t) in the low-dimensional
x=F(x,u), 6 subspacd; . (c¢) Closed-loop structure showing the combination of
the continuous-time system and the discrete-time controller. The
~ — blocks represent the full model, an IF-block for checking the con-
y=P(x=X), (7)

dition of crossing of the Poincasarface, a comparison with the set
point, and a computation of the low-dimensional approximation of

wherexeR", e R™, andueR', andxeR" is a constant the error and the controller.

vector (it provides a convenient reference point in the state
space, see belgwThe matrix P orthogonally projects the
difference &—x) onto a subspac®,; of dimensionm=n. Without loss of generality we define our
This subspace of the full state space will be spanned by ém—1)-dimensional Poincarglane inR; by fixing the first
(smal) number of basis vectors; it is the subspace “mostcomponent of the statg of the reduced order modgsee
frequently visited” by the full system, and it is in this sub- Fig. 2(b)]
space that our low-order model will be constructed. The co-
ordinates of the projection of the state on this subspace are 21y;(t)—c=0. 9
the output assumed available f@nd used infeedback.

Based on our choice of this subspace, we assume that th®r convenience, we partition tlieeduced state and vector-
Galerkin projection of Eq(6) ontoR; generates a dynamical field vectors(" denotes the vector transpose
system of lower dimensionrm [reduced order model,

(ROM)], yl=vyi, yY2=(Y2..--.¥m"

Analysis of the Poincaremap

y="f(y,u), (8) fi=f,, f2=(fo(y),...Fm(y)".

, ) ) When the ROM governing the evolution gft) has a peri-
which provides an accuratgn some sense, e.dgng term odic orbit of period To[y,(t)=y,(t+To)] intersecting

approximation of the full system dynamics. An example of yansyerselythe planes, it is possible to definéocally) an
performing and validating such a procedure is shown in Sec('m—l)-dimensional mappind(y2(k),u) giving the coor-
V.

dinates of the vectoy2(k+1) on this plane as a function of
Our objective is to stabilize an open-loopu=0) o2( ) P

T-periodic trajectoryy(t) = x,(t+ T). We approach this by its coordinates at the previous intersection with
stabilizing the “corresponding” periodic trajectofye as- T2

; ; P - . y2(k),u)
sume that it exists and is “close” =P (xy(t)—x)] inthe  y2(k+1)= N(yz(k),u):yz(k)Jrf f2(y(7),u)dr.
reduced order model. The controller for the reduced order 0
model is designed after first deriving a nonlinear discrete- (10
time system by introducing a Poincaserface(a plane [32]
in R;. This discrete-time system views the periodic andThe presence o§2(k) andu in the upper limit of the inte-
nearby trajectories at the discrete moments of tkigans-  gral denotes the dependence of the “time of flight” between
verse, orientedintersections with the introduced Poincare successive intersections withon the values o§2 (k) andu
plane. A state-feedback controller for the linearization of thisat the current intersection. This time of flight has to be com-
nonlinear system is then designed using conventional linegwuted numerically, and we have used Newton’s method for
techniqueg33]. this purpose.
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The existence of arfopen-loop periodic orbit for the
ROM above implies the existence of a fixed pojts for
the mapN(y2,u=0),

y2s=N(y2s,u=0). (11
According to Floquet theory, the eigenvalyesof this map
linearized around its fixed poiriat u=0) determine the sta-
bility of the (open loop periodic orbit. When all of these
eigenvaluegu| <1, the fixed point of the magand the pe-
riodic trajectory from which it resuljsis asymptotically

stable. We design a controller that changes the actuator a

plitude u when(and only whenthe system'’s trajectory(t)
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where X denotes the outer vector product. When the discrete
time system Q,B) is stabilizable, it is possible to shift the
unstable eigenvalues #éf inside the unit circle, and stabilize
the periodic trajectory applying linear feedback at the mo-
ments of its intersection with [33].

Full system in closed loop

We now analyze the stability of the designed controller
operating on the full-order vector fie[&q. (6)]. The actuator
amplitude will be changed at the intersections of the full
mystem’s trajector(t) with the planes’ [see Fig. 2a)]:

Spi(x=x)=y;=c (19

hits 3 [note the corresponding IF-block in the scheme of the

feedback loop shown in Fig.(@]:

u(k)=—K(y2(k)—y2s). (12

(herepy is the first row of the matriP), and kept constant
until the next intersection. Note that the plaBeantroduced
in the reduced order model is containedh. The dynami-
cal system governing the evolution of the stat@) in-

As the control objective we choose to specify the eigenvalyetween intersections, with'’ is given by

ues of the mapgN(y2,u(y2)) linearized around/2s andu
=0 (our set poink

Linear controller design

The procedure for selection of the matrix of gaiks

x=F(x,u(k)=—GP(X(K) —Xged), (20)

whereG= (0,5 ,K) e R"™*™andx(k),xsare the state vector
and the set point at the intersection wEh. We see that the
closed-loop system trajectory is not smooth at its intersection

e R'™*™1 starts by computing the open-loop linearization.with 3, as a result of discontinuous changes in actuator
The linearization procedure yields the discrete-time lineamamplitudés) u(t).

system governing the evolution of the errefk)=(y2(k)
—y2s) [note the corresponding block in Fig(cZ]:

e(k+1)=Ae(k)+Bu(k). (13

The matriceA andB are related to the variational equations

determining the sensitivity of the solution at some tite
[evaluated on the open-loop limit cyclg(t) andu=0] to
changes in initial conditiong/(t=0) and parameteu(t
=0)=u values:

_ dy(® o o
V(t)=m, V)=1,(y)V, V(It=0)=lnxm,
19
S(I)E¥, S()=f,(y)S+fu(y), S(t=0)=0py.
(19

The stability of the closed loop is determined by the evo-
lution of the error vectofx(k) — Xse) ON 2 ’; for this purpose
we choose a set of—1 orthogonal coordinate vectors in the
subspace orthogonal tmI The vectors forming a basis for
this (n—1)-dimensional subspace are provided QiR de-
composition of vectorg,=p;/||p;|| and stored in the col-
umns of matrixQ, e R "1,

The sensitivity ofx(t) to perturbations in initial condi-
tions (on the planeX’) will be governed by the modified
variational equations

dx(t)

U(t)Em, U(t):Fx(Xp)U_Fu(Xp)GP,

U(t=0)=1pxn- (21

Integrating these equations for a time interval equal to the
period (T) of the limit cycle in the full model, we can con-
struct the linearizatio. of the nonlinear map evolvingn

We partition the matrices of sensitivities integrated for onethe closed loop the error between the state vector and the

period of the open-loop limit cyclén the ROM T in the
following way:

xzz)’ S(To)= ( 22) (18

where Vy;=[dy1(To)]/[dyl(t=0)],

V

S =[dyl1(Ty)]/du

set point on%’ till the next intersection:

L=QiU(T)Qz— QIF (Xged X (qIU<T>Q2)T/<q1,F<xse%%,2 )

where(-,-) denotes the inner vector product. The closed-loop
system is stable when ail- 1 eigenvalues df lie inside the
unit circle.

and the other matrix blocks are defined accordingly. Then,

linearizing N(y2(k),u), using the Leibniz rulddue to the
time-of-flight variation) and the implicit function theorem,
we obtain

A=V,,—f2X (V) /1, 17

B=S,—f2Xx(S;)"/f1, (18

IV. MODEL REDUCTION: POD-GALERKIN METHOD

Accurate discretizations of PDE’s are traditionally ob-
tained using finite difference, finite elemeiffEM), or spec-
tral methods. The basis functions for Galerkin projections
can either have local suppofe.g., FEM or be global in
space (e.g., Fourier modgs The (semiempirical POD-
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Galerkin method uses an alternative set of global basis func- o, L5

_ . . N [= =< U-3lcos (a) b 48 POD
tions obtained by the principal component analysis of an TS o 031 cos
extensive spatiotemporal data set generated from the time *s-spoD P ;.)

integration of an accurate discretizatipd4,23. The basic  <w()> P p Im(u) . ®
procedural steps leading to a low-dimensional approximate o

model includ€(i) forming a database ensemble of spatiotem-
poral data,(ii) extracting an empirical eigenfunction basis _, L 15 .

from the data, andiii) generating a dynamical system de- -1 <v(@)> o4 o b9 Rely

scribing the temporal evolution of the modal coefficients of 10

the solution expanded in these basis functions. Aol © @ e
The first of these steps is by far the most crucial for the °U-3POD

success of the venture: The ensemble is the starting point fol <v(zy> :j;ifilmmemw- (2>

forming the finite dimensional subspattee hyperpland?;

in Sec. lll). All motions orthogonal to this hyperplane will be \\.\
neglected, and the resulting error is assumed to be small ir
some sensf34]. The necessity for a large simulational data %% 5 3 oosr X ime 1200
set, the difficulty in obtaining it, and the lack of rigorous

theoretical results concerning convergence properties of the FIG. 3. POD-Galerkin method¢a) Comparison of the stable
corresponding spectral discretization underscore the empirgnd unstable limit cycles computed with 62-dimensional cosine
cal nature of the method: on the other hand, it has been Ver@,seudospectral and a 16-dimensional POD-Galerkin discretization

useful in dealing with dynamics and stability analysis of sys-t €=0.034 972 25U(S) denotes unstabléstable periodic solu-

tems beyond the reach of conventional discretizatiwes, tions. (b) Leading part of the spectruiifrfloquet multiplier$ of the
for example[18, 35-38) unstable periodic solutions i@ computed with alternative spectral

éiiscretizations(c) Bifurcation diagram of periodic solutions com-
puted with full and reduced order modelgl) Illustration of the
short-term tracking capabilities of the 16-dimensional POD-
Galerkin vector field: evolution following a perturbation of the
saddle-type limit cycléeventually leading to a distant steady state

The deviations of spatiotemporal data in the ensembl
(discretized stat& e R") from a convenient reference point,
such as the averagece R" in Sec. Ill) are stored in the
“snapshot matrix” M Se R"*k [34,23. The number of col-
umns () corresponds to the number of snapshatstants at

which the state of the system has been captunetiile the iy 3 good representation of the dynamics of the closed-loop
number of rows ) is equal to the number of “pixels” gystem, the response to possible actions of the available ac-
(discretization points, coefficients of Fourier basis functionsyators should be somehow incorporated in the ensemble.
qsed in the simulation, e)t_cThe singular_ value decomposi- Reported “common sense” ways of forming a potentially
tion of the snapshot matrix represents it as a sum of rank jepresentative ensemble include a combination of spatiotem-
matrices poral motions at several values of operating parameters
[18,35,37, mixing transients from initial conditions distrib-
uted randomly around the relevant regions of phase space
[39], and storing responses to perturbation of actuators from
(23 their nominal setting§38,36,40,41.
01> 0> >0y In our implementation this procedure was performed
separately for they(z) and w(z) fields in the FitzHugh-
wheregy, t;, andy; represent the singular values and vec-Nagumo PDE. Simulations of the reaction-diffusion system
tors of the snapshot matriM S. yielded two ensembleffor the v(z) andw(z) fields| that
A high degree of spatiotemporal coherence in the datavere later SV decomposed to form separate basis sets for
ensemble will manifest itself in the almost zero magnitude ofspectral discretization. An alternative implementation could
many of the singular values;, and, consequently, in the have the “stacked” profilegv(z);w(z)] in the ensemble,
fact that a relatively low orderng<n) truncation of the taking into account in this way the correlation between the
above summation will provide a good approximatiorvb$. two variables. We formed our ensembles in the neighbor-
The set of singular vectory;}™ , forms the basis for a hood of a periodic motion close to the turning point of the
low-dimensional subspaceér; onto which the higher- branch of limit cycles in Fig. 1. We combined the transients
dimensional dynamical systerfarising from original dis- (including those that lead to distant attracjaas several pa-
cretization of a PDEis projected by the Galerkin procedure. rameter(e) values with random forcing of the amplitudét)
Some practical comments about the method are in ordenf the actuator influence functiog(z).
There are na priori comprehensive rules for generation of  The resulting low-dimensional vector field was required
the ensemble from which the empirical basis functions willto have attractorg¢steady states and, especially in this case,
be extracted. The data should be “fully representative” oflimit cycles) close to those of the full system, and to have
(i.e., should spanthe region of phase space in which it is similar stability and parametric dependence. We evaluated
desired to study temporal evolution or control of the distrib-the quality of the approximation by comparing thepen-
uted parameter system. For example, if in the closed loop ibop) bifurcation diagrams of attractors of the reduced and
is desirable to eliminate or restrain motions along particulafull order systems.
directions in the phase space, motions along these directions For our example, the properties and capabilities of the
should be included in the ensemble. Since we are interestddOD-Galerkin method are illustrated in Fig. 3. The saddle-

K
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illustrate the performance of controllers, based both on the
full (62-dimensional and reduced16-dimensional, POD-
Galerkin basedorder models, in stabilizing the open-loop
unstable limit cycle akt=0.034 97(with a leading Floquet
multiplier of ~3.538.

The successful closed-loop performance is demonstrated
qualitatively in Fig. 4(a), showing transient simulations of
the full closed-loop model. A point on the limit cycle per-
turbed(in each componeptby 10% from its nominal value
was the initial condition for these computations. In the ab-
sence of control the system diverged from the limit cycle
very quickly. At this level of perturbation rapid evolution
into the nonlinear regime was followed by an asymptotic
approach to the distaiifully extinguished steady statFig.
4(b), left]. The regulator based on the full order model and

* 1 des designed to place the leading pole of the mapping on the
Poincareplane at 0.8 successfully drove the system to the

zeroth Fourier mode®f the evolution of the system stabilized by a set-point trajectoryFig. 4(b), ”,g_ht]' Thequam'ta,tlveassess'
controller based on the full-order model. Brokéall) lines corre- Ment of the closed-loop stability was done using the formu-
spond to opericlosed) loop systems(a) Inset: spatial form of the ~1as derived in Sec. lllEq. (22)]; the slope of the decay of the
actuator influence function(z) used for controller design based €rror logarithm with successive Poincgrane intersections
both on full and reduced order model®) Space-time plots for was used to double check this calculatidfig. 4(c)]. The
transients in(@): left (right)—open (closed loop. (c) Evolution of  error||e(k)|| was defined as the 2-norm of the distance of the
the error norm on the Poincamane in the linear regime for the point on the Poincérplane from the set point. In the linear
closed-loop system. The slope of the curve corresponds to the Ieagegime, the decay rate corresponded very accurately to the
ipg ququet muItipI_ier spt_ecified by controllgr design) Stabiliza- eigenvalue at 0.8.
tion using the 16-dimensional POD'Galerk'n.baseld modgt-—the We have also performed transient stability analysis of the
actual value of the closed-loop Floguet multlpllmes—l.ts design closed-loop system under feedback control with regulators
value based on the low-order modske text (d) Inset: Relative . ) )
error [ (we— ded! Lged fOr the reduced order controller design. designed using t_he_ reduced, I_DOD-based mpdels' the_ f_uII-
system unstable limit cycle provides the set point. For a finite
and node-type periodic solutiorfsoexisting at one param- range of perturbations of initial conditions and small ampli-
eter valug computed with the full(62-dimensional and tude disturbances, the controller can keep the system at the
reduced-order(16-dimensional vector field are shown in open-loop unstable periodic orbit. Using the formulas for
Fig. 2@). The projections of the full and reduced order limit Stability analysiswvith feedback controllers based on reduced
cycles on the plane of zeroth Fourier modes are almost inerder models we observed that the closed-loop stability
distinguishable. The periods of reduced order limit cycles aréleading eigenvalue of the mapping on the Poingaliane
accurate to within 3%. Figure(3) demonstrates the ability chosen for contrglis quite close to that stipulated by the
of the reduced order models to capture the leading part of theeduced order controller design. Figur&yshows the de-
spectrum(Floquet multipliers of the periodic solutions. The pendence of the actual leading eigenvalye.) of the
accuracy of the approximation is maintained over a wideclosed-loop systenfwith ROM controlle) on the “nomi-
range of parameter values. This is illustrated by comparingal” leading eigenvalue prescribed by ROM-based regulator
entire branches of periodic solutions in Fidc The same  gesign (q.). The relative stabilization error[(uq
Iow-d_lmensmnal vector flelds_ are sugcessful m_short-term_ faed! aed increases as the stability requirements become
tracking of off-attractor dynamics. We illustrate this by com- 4. stringent. This increase is a consequence of growth of

paring the transierfrom the “same” initial condition$ to a the norm of the matrix of gain®, and is to be expected

g:zt?nml:?gtrgg;or computed with full and reduced order mOdi‘rom general analysis of linear stabilization based on reduced

order model$20]. Our set-point periodic orbit and its single
unstable eigenvector are symmetric, and so is our actuator
function; in fact, the entire open- and closed-loop dynamics

In this section we present the results of the computationaP0ssess an invariant subspateat of even cosings Sym-
dynamic and stability analysis of the closed-loop systenimetries like this can be used to augment the data ensemble
with feedback controllers designed on the Poincalane. [42,43, and the resulting Galerkin projection on POD modes
The actuator influence function had the shape shown in thalso has corresponding invariant subspdspanned by sym-
inset of Fig. 4a). We have chosen it to be symmetric, sincemetric POD modes In our case the nonsymmetric modes
the set point and the critical eigenvecttine open-loop un- were stabléhad eigenvalues well inside the unit cirglehey
stable limit cycle and the eigenvector of its monodromy ma-were not affected by feedback. A nonsymmetric actuator
trix corresponding to the largest Floquet multiplieare  would break these invariant subspaces; a detailed study of
symmetric—in this case, they belong to the invariamder symmetry and symmetry breaking due to feedback will be
the dynamics of the PDEsubspace of even cosines. We presented elsewhere.

FIG. 4. Closed-loop analysi¢a) Projection(on the plane of the

V. CLOSED-LOOP ANALYSIS
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VI. SUMMARY AND DISCUSSION already exist. Control on several Poincatanes will be ben-

. . eficial for stabilization of highly unstable periodic orbits
In this paper we have addressed certain aspects of Sta%\/ith very large Floguet multipliejs This is completely

lizing unstable periodic orbits in extended systemesction- analogous to the need for multiple shooting algorithms in
diffusion PDE'’9; in particular, we have exploited model re- numerical methods for computing such solutions.
duction for controller design and quantified the stability of Continuous-time feedback control can be thought of as the
the resulting closed-loop systems. Controllers designed tbmiting case of infinitely many control planes. Continuous-
stabilize fixed points of a Poincareap result in a combina- time designs of stabilizing controllegoth pole-placement
tion of continuous-timedynamics between changes in con- and optimal can be found in several papdesg., Refs[48—
trol action and discrete-timgcomputation of changes in 52))- These techniques require one to “fly” the differential
control action components. The formulas for closed-loop Riccati equation and/or the linear time-dependent system

stability based on this discrete time controller design werdP0th gf r\:vhicr; require Iin_ez;\jr_izatiobp 0; thel nor:jlirpear model
obtained from the PDEand its sensitivities Such formulas  &round the reference periodic ojbin the closed loop. De-

are necessary in the cases when the unstable orbibtis riving accurate models ofed.uceddimensi_on will clearly .
“surrounded” by a nearby attractor, such as a period- make the use of these techniques more viable for dynamical

doubled or quasiperiodic orbit or a chaotic attractor. Thesystems of high order, such as discretizations of PDEs. The

identification step in combined control-identification ap- _sarpe_holfds trtue;){_or :_echnlfquest egplo;gr:g;gne-delayed tra-
proaches would fail in these cases, since small perturbatiorigC ories for stabilization ot unstab'e or (153,54,
would result in runaway behavior. Low-dimensional models Since the controlier design for distributed parameter sys-

approximating the open- and closed-loop dynamics of accuems s (almost inevitably based on approximate models,

rate spectral discretizations of the PDE were constructed ali Sues Olf plant;rr;rc])dellmsgn?tch arte t?r tprlr\r;\t/a Importance Ilor
their explicit parametric dependence exploited for controller. € analysis of Ine closed-loop stability. We are currently

design; the good performance of these controllers in the fu“nvesti_gating a paF“C”'af aspect pf this mismatch: the effect
' of using approximate set pointggenerated by low-

closed-loop system was explored, and the stability quantita:. . : .
tively documented. This clearly demonstrates the ability Ofglmens:or;lal n;nl!m;ar Galerkin and POD-based models used
reduced models to capture tklew-dimensional instability or controller desig

of the open-loop dynamics and the effects of actuation on it. The atnaIySIS 0; dy?arglt():s cl)(f non:mlear dlstlrlbutec: p?hram-
The same controller design and closed-loop analysis can geer systems under feedback control complements the re-
earch on open-loop forcing of these systems. Several re-

used for alternative low-dimensional approximations, such ad -
search groups have reported that open-loop forcing of

nonlinear Galerkin methods. In our recent work we have . - . A
cting systems in time and/or space can have ‘“stabilizing

h h il in 11
giﬁ\? ;qisalii&?ﬁ]ds to stabilize patterned steady states in lre ects on the open-loop unstable pattef55-57. A com-

We end with a brief discussion of alternative approache?'nlatt'solneOf the dStIUd'ef of eXp%r]'Thean.an dandlthe_zoret-
and directions. First, the availability of accurate, fully non- !c(':ﬁl[ ’ Zlmo el systems, (‘;\" i et_raplty he.vel[ggangt spa-
linear, continuous-time low-dimensional models for the dy- lally resolving sensing and actuation techniqyesj, to
namics allows one to design more sophisticatead possi- harness nontrivial nonlinear behavior in the design and con-

bly bette) controllers. Computing intersections of the set-trOI of nonstationary processes is yet to come.

point trajectory with several Poincaptanes will resul{with ACKNOWLEDGMENTS
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