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Many coupling schemes for both limit-cycle and chaotic systems involve adding linear combinations of
dynamical variables from various oscillators in an array of identical oscillators to each oscillator node of the
array. Examples of such couplings drearest neighbodiffusive coupling, all-to-all coupling, star coupling,
and random linear couplings. We show that for a given oscillator type and a given choice of oscillator variables
to use in the coupling arrangement, the stability of each linear coupling scheme can be calculated from the
stability of any other for symmetric coupling schemes. In particular, when there are desynchronization bifur-
cations our approach reveals interesting patterns and relations between desynchronous modes, including the
situation in which for some systems there is a limit on the number of oscillators that can be coupled and still
retain synchronous chaotic behavip81063-651X98)01405-6

PACS numbdrs): 05.45+b, 47.20.Ky, 84.30-r

[. INTRODUCTION and is caused by increasing the coupling. When it occurs in
these arrays it means that the shortest spatial waveléimgth
The phenomenon of synchronization of identical chaoticthe sense of a discrete spade the system is excited to
systems coupled in an array has recently received a greatuse the systems to desynchronize. Such a bifurcation be-
deal of attentioi1—18] although the behavior was shown to ginning at extremely small spatial lengths has also been re-
exist some years add9-22. Similarly, the synchronization ferred to as spatiotemporal shredding bifurcatidi39] for
of coupled limit cycle systems continues to be of great inter-obvious reasons. Direct evidence for this phenomenon in
est(see Refs[23—-29 for a sampling of this large fieJdFor  limit cycle systems was shown in Watanadieal.[37] where
chaotic systems one’s intuition about synchronization criteridhey show basic instabilities seen in Josephson junction sys-
and conditions can fail. There is no sharp synchronizatioiems result from short-wavelength bifurcations. Goldstein
threshold. Instead there are multiple thresholds, each asso@nd Strogatz also showed that such bifurcations can occur in
ated with an unstable period orbiyPO) [6,30—33. There phase-locked loops.
may be riddled basing3,33—39 so that predicting the syn- Short-wavelength bifurcations in chaotic arrays further
chronized state is nearly impossible by just knowing initialimply that there is an upper lim{a size limi) to the number
conditions. Above the Lyapunov exponent synchronizatiorof chaotic nodes that can be added to the array while keeping
threshold there can be intermittent burstifwdten calledat-  the synchronized state stable. Hea&gl.[36] show that this
tractor bubbling of the systems out of the synchronous statemaximum number can be calculated if one knows the stabil-
when there is a small amount of noise or parameter misity diagram.
match present6,30—32. We show here that a similar desynchronization bifurca-
There are even desynchronization bifurcations in whichtion can take place in a coupled array of limit cycle oscilla-
increasing the coupling between systems in the coupled arragrs. Again, increasing the coupling in these circumstances
may destabilizethe synchronous state. This latter phenom-can cause the counter-intuitive desynchronization to take
enon was also called short-wavelength bifurcation36]. place. We show that similar stability analyses can be used for
These unexpected behaviors are documented in real physidadth chaotic and limit cycle oscillator arrays to understand
systems in Refd.8,10,12,36. A few other researchers have the pattern that first emerges in this bifurcation. This leads to
also seen such bifurcatiofi37,3g in phase-locked loops and analysis of a canonical variational equation which holds for a
Josephson junctions. large number of coupled array systems. In fact, for many
We note that when we use the term desynchronizatiowoupled arrays with various symmetric couplings we can
bifurcation here we mean that the system has qualitativelghow that some type of SWB is possible for many systems
changed because the synchronous state is no longer stabded for chaotic coupled systems this will necessarily mean a
We are not in a position to discuss, in general, what newsize limit on a synchronized array.
state, if any, will result, only that it will not be the synchro-  Recently Wu and Chup40] conjectured that there was a
nous one. However, we will see below that we can describg¢elationship between the coupling constants and the eigen-
the initial pattern of desynchronization. values of coupling matrices in linearly coupled arrays of os-
The phenomenon of short-wavelength bifurcat{&vwB) cillators. The conjecture is, if an array with; number of
is very intriguing. It is a desynchronizing bifurcation that oscillators synchronizes at a coupling constaat , then an-
sometimes occurs in diffusively coupled arrays of oscillatorsother similarly coupled array of siza, will synchronize at a
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FIG. 2. Schematic geometry of the synchronization manifold
which lies along the 45° lines between all coordinates. Orthogonal
X (transversgto the synchronization manifold are coordinates that
represent nonsynchronous behavior.
Y

FIG. 1. Rasler limit-cycle attractor. dx
H:_(Yi+Zi)+asxx(xi+1+xi—1_2Xi)a
coupling constant a, such that the following relation is

preserved: dy;
gt xitayit agyy(Yir1tYi-1—2Yi),

A= Mo, oY)
wheren; and u, are the eigenvalues of the coupling matri- ﬁ:bJrz-(x-—c) 3)
ces for them; andm, array, respectively. dt o '

We show that in light of the SWB and size limits in cha-
otic arrays this conjecture must be false in general. We deyhere we have the option to couple through either xhe
velop_exac_t relations betwe_en the C(_)upling constants and th&mponent(using = 1 ande,,=0) or they component
coupling eigenvalues for different sized arrays with various(ysing ¢,,=0 ande,,=1). Obviously, other combinations
linear Coupllngs that can be used to pl‘edICt the Stablllty Ofand We|ght|ngs are possib'e, but we want to keep th|ngs

desynchronizing spatiahodes We show that the Wu and simple enough to analyze. Generalizations will be obvious
Chua relation[Eq. (1)] really reflects the stability of indi- |ater.

vidual modes, but not necessarily the stability of the entire

system. We explain this in more detail below. B. Stability of the synchronous state

II. MOTIVATING EXAMPLE: LIMIT CYCLE RO  SSLER We want to examine the stability of the synchronous state
ARRAY in which all oscillators are behaving as in Fig. 1 as a function

. ) of the coupling parameter. The tools to do this for diffu-

A. System configuration sive coupling were developed in an earlier paj8irand we

We start off with a motivating limit cycle example. The outline the scheme here.
example contains many of the features that will emerge in a The geometry of the synchronous attractor is such that it
general analysis that we undertake later in this paper. lies on a hyperplane determined by the 1 vector equali-
The Resler systemi41] [Eq. (2)] is well known for its  ties
chaotic behavior. It also has simple limit cycle behavior. For
the parame;erg=0.2_, b=0.2, c_=2.5 .thg system h_as one (X1,Y1,21) = (X2,¥2,Z2) =" "= (Xn ,YnZn)- (4)
attractor which is a simple, period-1 limit cycieee Fig. L
The hyperplane is called th&nchronization manifoléind
dx has dimensios 3. This is shown schematically in Fig. 2; all
TS AR the node linegx, =x,, etc) are in the synchronization mani-
fold. As long as the entire system’s phase space point re-
dy mains on the synchronization manifold the systems remain in
—~ =x+ay, sync. Thus, for stability we need to haa#i motion trans-
dt verse to the manifold damped out. The Lyapunov exponents
(or Floquet multipliers for the limit cycle casefor trans-
z verse motion will indicate when this will happen. This means
i - prax—o). (2 e need to study the variational equation which will lead us
to examine the Jacobian for the array.
We link n of these attractors in a circle with nearest-neighbor The Jacobian for the whole system has the following
or diffusive coupling(DC): structure:
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J—2aE aE 0 0 - aE
aE J—-2aE «aE 0 ... 0
0 aE J—-2aE «aE - 0], (5)
aE 0 0 c. aE J-2aE

where J is the Jacobian of a singlésynchronized, un- theith block. Thus, if we can find coordinates orthogonal to

coupled Rossler f and if they diagonalize Eq45) we can analyze the stability.
Equation(5) has a cyclic block structurg2], also known
o -1 -1 in the solid state field as nearest-neighbor coupling with pe-
=1 a 0 6) riodic boundary condition§43—45 and in the dynamics
field as shift-invariant systenjg6,47. It is well known that
z 0 x-c one can use discrete Fourier transformations to block diago-

nalize such systems. In Rdf3] we showed that indeed this

andE is the coupling matrix could be done for chaotic synchronized systems. It can just

e 0 0 as.easily be done _for .Iimit .cycle systems or any systems
xx which are all behaving identically.
E=| 0 &y 0. (7) To transform to the Fourier basis we define new block
0O 0 O bases vectors:
n
In order to deal with the Jacobian in E¢p) we treat each f :1 2 e
block as though it were a single entry in a matrix. This is a " n =
direct product structure which we will show explicitly in
later sections and the Appendix. 1 2miin
What we would like to do is diagonalize E¢5) in a fk:ﬁ > ee , ®)

coordinate system that isolates the stability of the synchroni-
zation manifold from the transverse directions. The synchrowherek runs from 0 ton—1 (we show thek=0 case sepa-
nization manifold can be thought of as lying along the “ma- rately for clarity. We see thaf, is just our synchronization
jor diagonal” in the block structure space of E@5): manifold and from the orthogonality of Fourier series we
(1,11, ... 1), wherel=(1,1,1). This direction is defined by have that thd, (k#0) are orthogonal to the synchronization
the vectorf=e,+e,+---+€,, whereg is the unit vector in  manifold. This change of coordinates gives a Jacobian

J 0 0 0 0
0 J+aEy, 0 0 0
0 0 J+aEy, 0 0 o
0 0 0 J+aEy, 0 ' ©
0 0 0 0 oo JtaEy,q
|
where dé,
ot -9 aEyy) €, (11)
Y= —4 sirt(ak/n). (10

where &, represents a perturbation of thkth mode.

We note that because of the shift-invariant symmejty  This form of variational equation shows up in many prob-
= 1y,—x. The highest spatial-frequency mode corresponds teems of stability of driven and/or coupled systems
k=[[n/2]] (([...]] means integer part pand this is asso- [3,11,12,14,19,36,40,47-bks well as in control theory
ciated with the shortest wavelength of the discrete spacemethods[9,52-5§. It is often not solvable since, although
Because of the symmetry we need only examine the stabilityEy, is constant,J is not. However, we can use various
of the modes fok=0 to[[n/2]]. scaling relations along with numerical solutions to under-

We have reduced the problem to one of finding the stastand the overall stability of the synchronized system as
bility given by the individual block variational equations:  given by Eq.(9).
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FIG. 3. Stability diagram for modes 1,2,3 of a six limit-cyclésRer array withx coupling. Solid line is mode 1, dotted line is mode 2,
and dashed line is mode 3. The horizontal dashed line at large coupling values is the asymptoticclimmit fr )\'r‘nax.

Each block in Eq.(9) corresponds to a spatial Fourier  The desynchronizing bifurcation takes place in an inter-
mode. Thek=0 mode describes the motion restricted to theesting way. Typically in DC systems the longest wavelength
synchronization manifold and its Lyapunov exponents aranode(mode 1} is the last to become stable as the coupling
those of the isolated dynamical unit. All othée£0) modes increases and the shortest wavelength n{oautede 3, herkis
describe the system’s response to small deviations from théne most stable. However, when there is a desynchronizing
synchronization manifold. We want to find outafl of these  bifurcation with increasing coupling the situation is reversed.
fluctuations damp out. Only then will the synchronous statdt is the shortest wavelength that becomes unstable first as
be stable. As we noted previoudl$,10,36, finding the sta- coupling increases. Thus, it is the shortest wavelength that
bility of all the modes is actually not as arduous a task as ifirst destabilizes the synchronous state. In a synchronized DC
might seem. The following scaling relation holds chaotic system we have a similar phenomenon which we

called ashort-wavelength bifurcatiofSWB) [36]. When

there is an obvious wavelength we will often refer to these
Y1 (12) desynchronizing bifurcations as SWB, although, as we will

see below, some coupling schemes do not allow a straight-
meaning that the variational equation for tkin mode has forward wavelength interpretation.
the same form as for the first mode with a modified coupling We can understand why the system eventually has to de-
constanta(y,/v,). Hence, once we find the Lyapunov ex- stabilize by studying the coupling in an asymptotic regime,
ponents for mode 1 as a function of coupling, we can rescalaamely at infinite coupling 4= ). In this regime the cou-
the relation and we automatically have the exponents for alpling terms in Eqs(3) dominate the other terms and cause
other modes. Since we really only need look at whether théhe x components to become slaved to each other and to the
maximum exponent is negative or not, we examine only thasynchronous state. Thus, the remaining dynamical variables

Yk
aE =aE(—
Yk V1

one\X ., for each modek. in each oscillator which are not coupled to other oscillators
act as a driven system witt(t) as the drive and the problem
C. A short-wavelength bifurcation of stability is reduced to studying the stability of the sub-

Continuing the analysis of our example, we calculate the
dependence of the maximum exponent for mode 1 as a func:
tion of both coupling constants iandy variables. Then we 14
see what the scaling relations tell us about the stability of all
the modes. Figure 3 shows the stability diagram for an array
of 6 Ressler systems using coupling (,,=0). We started
with the stability of mode 1 and used E{.2) to calculate
the stability of modes 2 and 3. Thg, factors are monotoni- 3
cally increasing withk. This causes each stability diagram i
for increasingly higher modes to be compressed more toward(index) s
the origin(see Fig. 3.

We see that just above=0 all modes are stable, hence 4
this arrangement can support stable, synchronized limit cycle
behavior. The values of¥ _, start at 0 fora=0 since for 2

uncoupled limit cycles the largest exponent is the neutral
direction along the flow. Asy increases all modes at first :
become more stable, but at larger valuesaoSomething 0 100 200 300 400 500 600 700

more interesting happens. The stability trend reverses and the t

modes become less stable. Eventually, all modes become

unstable and the synchronous state likewise becomes un- FIG. 4. Spatiotemporal pattern showing the onset of a short-
stable. We refer to such changes in stability with changes iwavelength bifurcation in an array of 36coupled Rssler oscilla-
coupling asdesynchronizing bifurcations tors.
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FIG. 5. Stability diagram for modes 1,2,3 of a six limit-cyclesRter array withy coupling. Solid line is mode 1, dotted line is mode 2,

and dashed line is mode 3. The horizontal dashed line at large coupling values is the asymptoticclirmit fr )\ﬁm.

system {,z). This is exactly the case we originally studied As a result the desynchronization bifurcation takes place at
in synchronization of chaotically driven systefii®—62. In larger coupling values.
fact it is easy to see from the Jacobian of thezf sub- As an interesting comparison we examine the synchroni-
system that this subsystem must be unstable. Hence at largation of DC chaotic Rssler oscillators¢=7.0). The above
coupling values the stability of the modes must approach thetability analysis carries through regardless of the type of
stability of the subsystem, which is unstable in this case. Wescillator dynamics and we end up with the same variational
see this happening in Fig. 3. equation[Eq. (11)] and scaling relatiofiEq. (12)]. Figure 6
The interesting observation here is that it isiacreasein  shows the stability diagram forcoupling. We see a diagram
coupling that causes the modes to become unstable. Akimilar to Fig. 3, except thatX ., starts at a positive value
though this is counterintuitive, it has been known in a differ-yyhen a=0, since the uncoupled systems are chaotic. The
ent form before from the work of Turinf63] where it was \,5jue of \K . decreases from there asincreases and then
used to describe the occurrence of patterns with intermediatf .reases to cause a SWB as in the limit cycle regime. Figure
wavelengths. In our present case the SWB is an extreme .\ the stability diagram for coupling. In this case
form of a Turing bifurcation. Turing kept some coupling .1« is no SWB. Even for infinite coupling: . is negative

222?";?; illl ;Zisdy;tzrr?écal vt?]rtlaak_alzez V\sl?eer;e?osr:(/viohuavlﬁg €aChd so the synchronized chaotic state is always stable for any
. y 9., they-z Sy P . coupling above the threshold of mo#le-1 stability.
whose variables armot directly coupled to any other oscil-

lator. Thus, in our case it is the absolute shortest wavelength
in the system which becomes unstable first not the interme-
diate wavelengths. A plot of the entire system in Fig. 4
shows the effects of this desynchronizing bifurcation on the In the chaotic case there is an effect that results from the
spatiotemporal pattern of behavior. The desynchronizatiolSWB which is not present in the limit cycle case. Figure 8
occurs with the dynamical variables of adjacent oscillatorshows a close up of part of the stability diagram for 20 cha-
diverging in opposite directions in phase space, a manifestatic x coupled Rssler oscillators. What we see is that the
tion of the short-wavelength instability. We also refer to thishighest spatial frequency modk= 10) goes unstableefore
type of instability asspatiotemporal shreddingor obvious  the lowest modeK=1) becomes stable. This is a result of
reasons. the scaling relation compressing the highest mode’s stability
In Fig. 5 we show a stability diagram foy coupling  diagram. This will happen eventually in any chaotic system
(e4x=0, e4x=1). We see that this coupling of Rsler limit  that experiences a SWB if we couple in enough oscillators.
cycle oscillators also gives rise to a SWB. The asymptotic We immediately deduce from this that any chaotic system
value of)\"max is not as large foy coupling as foix coupling.  with a SWB has a limit on the number of oscillators that can

D. Size limits on synchronizable systems resulting
from short-wavelength bifurcations

T T T T
0 5 10 15 20

o

FIG. 6. Stability diagram for modes 1,2,3 of a six chaotis&er array withx coupling. Solid line is mode 1, dotted line is mode 2, and
dashed line is mode 3. The horizontal dashed line at large coupling values is the asymptotic dimit dior A .
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FIG. 7. Stability diagram for modes 1,2,3 of a six chaotis&er array withy coupling. Solid line is mode 1, dotted line is mode 2, and
dashed line is mode 3. The horizontal dashed line at large coupling values is the asymptotic dimit dor )\kmax.

be DC and retain a stable, synchronous chaotic &g ables to second derivatives. We call this distafice It takes
Above a certain number the highest frequency mode wilthe place of the index in Eq§3) and scales asi/ The new,
become unstable before the lowest frequency mode becomesntinuum coupling become3= Ar2« for x coupling. This
stable as the coupling increases. In fact, we showed thaescaling of the coupling causes the higher mode stability
given the zero crossings af._. for mode 1(say,a; anda,)  diagrams to compress in toward zero coupling. To see this,
an expression exists for the largest number of oscillators thatote that the mode 1 scaling factor EGO) decreases with
can be coupled in stable synchronous behay&#]. The increasingn, but theAr? factor cancels this decrease exactly
highest frequency mode is associated with the wave numbén the limit n—o. However, the scaling now causes the
k=n/2. From the scaling relation we havﬁ“m’i)(az) higher modes to have their stability diagrams compressed
=)\ﬁqa>[(?’n/z/71)az]:)\ﬁqax(al)- Solving for n we get the tQV\_/ard zerq_couplmg. This means that if we have desynchro-
maximum number of oscillators we can couple and still re-hizing stability diagrams, the coupling must also go to zero

tain synchronizatiortalthough the synchronous state may beto keep the higher modes stable. Obviously, in the continuum
neutral, depending on the values ®f and «) limit we are left with a neutrally stable synchronized state.
Thus, even for limit cycle behavior we would not expect to
see uniform, stable, synchronized behavior in the presence of
: (13  asws.

Despite what we have just said, there is an intriguing
possibility as shown in Fig. 9. In this case we posit that we
could have a continuum system in a stable, synchronized
— 4,663 s0 thah,,,=19 in agreement with Fig. 8. limit pycle state[Fig. 9a)]. Then by valr'ying'another param-

For the limit-cycle situation there is no size limit since eter in the system we cause the stability diagrams to become
\K ., starts at 0 and not some positive number. However ipesynchronlzmg[ﬁg. g(b)_], At any coupllng_value t_he first

'’ “mode to go unstable during this crossover is the highest spa-

we go to the continuum limit then there are some CONS€ga frequency. In a continuum system this is theoretically a

' y avelength must be finite. The type of bifurcation we are

tor sites(nodes to convert the differences of dynamical vari- now describing could be a way to probe continuum systems

to determine the actual lower limit on wavelengths—that is,
what really is the smallest spatial scale of the system? At this
point we know of no system that would undergo this bifur-

cation. We simply put this forth as an interesting possible
probe of spatial scales in continuum systems.

Nmax=

a
arcsin\a; /az)]

where by([[---]] we mean integer part of. For example, for
the Rwsler x-coupling case we haver;=0.1232 anda,

Ill. GENERAL THEORY OF SYNCHRONIZATION

04 Lo STABILITY IN LINEARLY COUPLED SYSTEMS

In this section we want to abstract the essential features
o6 from our previous example a_nd see what we can say in gen-
) 3 eral about other systems of linearly coupled oscillators, limit
0 : ; 3 . cycles or chaotic systems.

o Note that in the motivating example we were able to treat
the Jacobian as though the blocks witrand E were just
FIG. 8. Stability diagram for modes 1 and 10 of a 20 chaotichumbers. This was because we were only operating on each
Rassler array withx coupling showing the origin of the size limit 0scillator as a whole when we diagonalized the Jacobian.
on synchronizable chaotic oscillators which have short-wavelengtd he Fourier transformatiofEq. (8)] told us to multiply each
bifurcations. oscillator component at a site by tlsamenumber and add
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(@) n
121 G” =0 (15)
Amax 0 for all i. We also takes to be symmetric here for simplicity,
although generalizations are mentioned in the conclusions.
In our DC x-coupling example we would have
-2 1 0 ... 1
1 -2 1 ... O
G=| . . . : -,
1 0o 1 -2
b 1 00
® E=| 0 0 0], (16)
0 0O
xmax

The Fourier transform would then act on otyand on each
x1) and F) as a whole. In fact, to be consistent, we really
should write each “unit vector” in Eq(8) not ase;, but as
g®1,, whereg is ann-dimensional vector of all zeroes
except fo a 1 in theith position andl,, is the mxXm unit
matrix. Then thele;} are a basis only for the node space that
supportsG. However, because of the separation of the node
and oscillator spaces we need not be so formal so long as we
o are careful to distinguish which space we are operating on.

To study the stability of the synchronized state we need
the variational equation derived from Ed.4):

FIG. 9. A possible bifurcation scenario in a continuum system
from (a) a stable limit-cycle case t(b) a desynchronizing limit-

cycle case. £=[DF(x)+ a(GOE)]|&=[1,®J+ a(GRE)]¢, (17)

this to the same components of other products from othefhere 1, is an nxn identity matrix andJ=DF® is the
sites. Because we are keeping this separation between thgcopian in the oscillator space evaluated on the synchroni-

node indicesi() and the component indices of each node wezation manifold. Because of synchronizatidris the same
can use the mathematical device of direct maftensol o gJl j.

products to express our equations of motion. This allows us
to write the equations compactly and keep track of what

- ; B. Diagonalization of the array Jacobian:
indices we are operating on.

Getting exact expressions

If we examine the problem of diagonalizing tlematrix,
we can often accomplish that using purely numerical meth-
Letx=(x1,x®), ... xM)T pe the collection of dynami- ods. This can be done and the results of the scaling relations
cal variables, where eaoti” is the dynamical variable vec- developed later will carry through for those cases, too. How-
tor of m dimensions for sitei [e.g., Eq. (3)]. Let F ever, in this section we would like to examine diagonaliza-
=(FM F?) .. FM)T pe the collection of vector fields of tion methods that lead to explicit expressions for the eigen-
the same functional form. Then, if we assume no couplingyalues of G so we can comment on their dependence on
the equations of motion ane=F(x) with all nodes acting system sizen.
independently. We write the coupling terms using the direct One approach to diagonalizing the right-hand-side of Eq.
product (our notation is fairly standard here and similar to (17) is to look for symmetries. In our DC example it was a

A. General variational equations for linearly coupled systems

Wu and Chud40]): shift symmetry in the node space that led us to the use of the
. Fourier transformation to get a block diagonalization. That
x=F(X)+ a(GRE)X, (14 block diagonalization essentially came from a diagonaliza-

tion of G which along with the already diagona| gave the

whereG is annXn matrix which determines node-to-node equationg11) with y, as an eigenvalue d&.

coupling, E is an mXxXm matrix which operates on each We use the same approach here and it will lead us to an
node’s dynamical vectors to determine which of the oscilla-application of group representation theory. Our intention
tor components are coupled, aaddetermines the relative here is to motivate this approach. The use of group theory in
size of the coupling. We will call the-dimensional space such contexts is not well known in the nonlinear dynamics
that G operates on th@ode spaceand them-dimensional community and here we want to call attention to its useful-
space of each oscillator thmscillator space Without loss of  ness. We then show the results for several different coupling
generality we will assume that the rows®fall sum to zero: schemes. We will not go into the details of all the group
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theoretic issues, although we do show one simple example in
the Appendix. More detailed issues involving groups and -
dynamics can be found i#6,64—68, although we do not FIG. 10. The coupling scheme for open-ended diffusively
know of any publication which shows the interplay betweencoupled nodes.

the coupling scalinggthe G eigenvaluesand the stability o _ _ _
diagram as we show here. revert to the variational equation for the isolated system as in

In the uncoupled array if we permute the nodes in anyPur example. In group theory terms this manifold is always

fashion[interchange variousi) indiceg, then we will not associated with the trivial IR(one-dimensional matrices

affect the dynamics. Such a permutation will lead to a simi-S94@! 10 the number)1Other IR's and eigenvalues will be
associated with motions transverse to the synchronization

larity transformation on the node components of the ﬁrStmanifoId Thus, as in the DC example we want the varia-
term in Eq'.(17). Since the un!t matrid, cpmmutes with all tional equations associated with those motions to be damped
nxn matrices any permutation operation has no effect ony ¢ (j e "to have negative Lyapunov or Floguet exponents
this first term. In group theoretic terms the first term is in-\y/e will follow convention and call the transverse motions
variant under actions of the symmetric groufyX acting on  modes, which can be thought of as a generalization of our
the node space. When we include the couplittge second  Fourier modes from our example. We do né¢as shown in
terms in Eq.(17)] we may not have a variational equation the Appendix that the trivial IR can also appear more than
that is invariant undes,. A good question is, what, if any, once and in those cases the extra appearances will be asso-
invariance does the second term have? Is there a subset cifited with other transverse modes, i.e., the trivial IR is not
permutations(a subgroup ofS,) under which the term is uniquely identified with the synchronization manifold.
invariant. In our DC example the subgroup was the set of
shift permutations. C. General scaling relations

The reason why the search for a group of invariant opera-
tions is so useful in diagonalizing Eq17) comes from
Schur’'s lemmd46,64—68. A finite group has a finite num-
ber of irreducible representatiofimatrix sets with the same eigenvaluey, of G, wherek=0, . .. K—1 with K being the

rules as the group Irreducible representatioiR) means  ymper of eigenvalues found which will be greater than or
there is no linear transformation that will break the represenaqual to the number of different IR’s found. Observe that all
tation into two or more lower-dimensional representations. lfhe equations will have the same form as Exl), indepen-
we can find what IR’s are present in our system and transdent of what form ofG we started with. Only the eigenval-
form to their coordinate systems then we can use the followyes will change. We can now generalize our scaling state-
ing lemma. ments for the DC example to the following relation.
Schur’s lemmaAny matrix which commutes with all ma- Linear coupling scaling relationFor a fixed choice of
trices of an irreducible representation must be a constant matynamics[ F(’(x)] and oscillator component couplingg),
trix (i.e., a multiple ofly, whered is the dimension of the if we can diagonalize the coupling matricsandG’ in two
irreducible representation matriges arrays of identical, synchronized nodes, each with possibly
If our matrix G is invariant under the group, théhquali-  different number of oscillators, then the stability diagram
fies as the commuting matrix of the lemma. This means thaigiven by the Lyapunovyor Floquej exponenmkma%(a) for the
in the coordinate systems of the IRG,will be block diago-  kth mode of a couplings is related to that given by thgth
nalized into blocks each the size of one of the IR’s. Thismode for any other couplings’ by the scaling relation
process can be viewed as a generalized kind of diagonaliza-‘r‘naga)=>\ﬂ1a>{(yk/y(’])a], where v, is the eigenvalue of5
tion imposed by symmetry. If the IR appears more than oncassociated with thkth mode andy(’1 is an eigenvalue of’
say,| times, then the block i associated with that IR has associated with thgth mode.
dimensionld, whered is the IR dimension. If the IR appears  Given our experiences with various desynchronizing bi-
only once then the block is just a multiple &f and the furcations and other array size limits in DC systems, we
multiple (which we cally,) is the eigenvalue of that block. If might conjecture that similar behavior could result in other
the IR appears more than once, we can still diagonalize thaypes of coupled systems. This turns out to be true. In the
particular block by other means. The important point is thaihext section we will investigate the stability of synchronized
we have reduced the dimension of the diagonalization probbehavior in arrays of limit cycle and chaotic nodes using

Once we have diagonalizésl we can break Eq17) into
separate blocks of uncoupled variational equations like Eq.
(12). In each equation we will, in general, have a different

lem to smaller blocks. several other coupling schemes.
The facts of the previous paragraphs can be found in any
good book on applications of group theory and representa- IV. RESULTS FOR OTHER COUPLINGS
tions [46,64—68. The only step often left out is actually o
finding the basis of the IR in the node space. This is impor- A. Open-ended diffusively coupled nodes
tant to achieve actual diagonalization and find the We Figure 10 shows this coupling scheme which gives@he

show one approach to this step in the Appendix using promatrix
jection operators.

We bring the synchronization manifold into this discus- -1 1 0 ... O
sion by noting that because of E4.5) 0 is an eigenvalue of 1 -2 1 0
G and the synchronization manifold as given by the first G=| . . . . - - (18

equation in Eq.(8) is the subspace associated with that ei-
genvalue. Hence, we choosg=0 which causes Eq11) to o ... 0 1 -1
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(@)

modes 1-8

(b)

FIG. 12. Stability diagram for modes 1 through 9 of a ten limit
cycle star-Resler array withx coupling. Modes 1-8 are solid line
and have the same stability. The desynchronizing bifurcation arises
from thek=9 mode(the dotted ling, the “drum-head vibration.”

FIG. 11. (a) The coupling scheme for star-coupled nodgs.
The highest “frequency” mode for the star-coupled array.

-n+1 1 1 - 1
We showed i3] as did Armbruster and Dangelmal47] 1 -1 0 - O
that this matrix can be diagonalized in a manner similar to G= 1 o -1 --- o0 |. (21)
the shift-invariant DC case using a discrete Fourier transform
with n replaced by B. The results give the eigenvalues
1 0 o - -1

yk:_4sir]2(w_k), for k=0,1,...n—1. (199 Using the group theory methods of the Appendix it is
2 straightforward to show that the mode eigenvaluesnfas-

cillators are
This is just like the original DC example, except that there
are no degenerate modes and the highest wavelength is for =1, fork=1,...n=2 andy, ;=-n.
k=n—1. Nonetheless, because of the dependence of the ei- (22
genvalues om and the scaling law we will see the same S
phenomena as before. If mode 1 has a desynchronizing bihe modek=1, ... n—2 represent directions transverse to

furcation, limit cycle arrays will have their region of stable the synchronization manifold in_which the oscil_lators of the
coupling compressed toward zero—leaving a neutrally stabl&tar go out of sync with the hub in waves wrapping commen-
continuum case. Chaotic arrays will have a limit on the num-surately around the star. The highest mokle: (—1) repre-

ber of nodes that can be coupled in stable synchronous b&€nts a mode in which all outer nodes are in sync with each
havior: other, but out of sync with the hulsee Fig. 1{b)].

In Fig. 12 we see the stability diagram for 10 star-

x-coupled limit cycle Resler oscillators. We have the desyn-

T chronization bifurcation as coupling increase, although in
2 arctatiVailay) | | (200 this case the first mode to go unstable is more similar to a

1772 vibratingdrum-head modeather than a SWB. In Fig. 13 the
same diagram for 35 starcoupled chaotic Resler oscilla-

For example, for the Kssler x-coupling case we already tors shows that this coupling scheme also has a size limit on
know a; anda,, so using Eq(20) haveN ,,=9. Thus for stable syrjc.hromzed chaot'lc behavior. Similar to the DC ar-
the same coupling componentg) (the open-ended DC can 'Y case it is the monotonic decrease of the eigenvalue ratio

support fewer chaotic oscillators in the synchronized statd’2/ Yn-1 With n that causes the stability diagrams for differ-
than the ring-coupled DC. ent modes to cross and prevent stable, synchronized chaos.

In this case,

nmax

B. Star configuration of coupled nodes Nmax= [[ @2/ a1]]. (23

Here, as shown in Fig. 148 we have a node at a central
hub position and all other nodes come off from that one. The=or the Raslerx-coupling case we have,,,,=35 which is
coupling matrix is far larger than either open-ended DC or ring-DC schemes.
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0.2+

“mode 34 027

..... 0.0

7\‘max -0.2

modes 1-33 -0-4 4

0.6 -

0.0 05 o 10 1.5 FIG. 14. Stability diagram for modes 1 through 5 of a six cha-

- ) otic randomly coupled Rssler array withx coupling.
FIG. 13. Stability diagram for modes 1 through 34 of a 35

chaotic star-Rssler array withx coupling showing the size limit . . . . ) .
coming as thé= 34 mode goes unstable just as the 1-33 modes g&roSsler oscillators. In this case we have coupling regimes in
stable. which global synchronization is possible. However, unlike
the other cases we have studied so far, the random coupling
C. All-to-all coupled nodes could yield a nonsynchronizable situation at potentially any

This | lina t in which all nod , led t number of oscillators—we have no symmetry to aid us in
S IS a coupling type ch all nodes are couple 0finding a formula for the eigenvalues, .

each other through an average over the particular coupling Figure 15 shows the modes corresponding to the stability
component. It is a coupling assumed in many biological sys:

. - ~Y=functions in Fig. 14. We see that they do not resemble the
tems[23,24,28,29 and in the study of Josephson-junction _: . . )
arrays[7,25,29,.69—7R The coupling matrix is sine and cosine modes we have studied, except for the syn

chronized modé=0.

—-n+1 1 1 1
1 a1 1 1 V. ON A CONJECTURE ON SYNCHRONIZATION
CRITERIA

G= 1 1 -n+1 - 1 .
. . . . . Recently, Wu and Chupd0] put forth a conjecture on a
: : criterion for synchronization in an array of linearly coupled
1 1 1 v —n+1 oscillators. This conjecture involves a relation between the
(24) coupling eigenvalues and the coupling constant in arrays of
various sizes. With our developments in this paper we are
This matrix has the complete symmetry of the symmetricable to comment conclusively on the conjecture. The conjec-
group S, and can be diagonalized easily. A discrete Fourietture is as follows. If we have two arrays of linearly coupled
transform will do. We get for the eigenvalugs= — n for all
k>0. In this case the stability diagrams for all transverse
modes are the same. Even in systems with desynchronizing
bifurcations there will be no collapse of the stability region
to zero in the limiting case for periodic oscillators, nor will
there be a size limit to a synchronizable chaotic array. We
can have a synchronized system for any coupling value be-
low the desynchronization threshold, which is the same for
all modes. To put it another way, at the desynchronization
threshold all modes go unstable simultaneously.

D. Random, symmetric coupling

We can also generate random, symmetric couplings using
the following formulas for components @: G;j=w for i
>j, Gjj=G;j for i<j, andGjj=—2;.G;j;, wherew is a
uniformly distributed random number from 0 to 1. This for-
mulation guarantees a zero eigenvalf@ the synchroniza-
tion manifold and other eigenvalues all negative. There are
no symmetries so we solve for the eigenvalues numerically. FIG. 15. Spatial dependencies of modes for the six chaotic ran-
In Fig. 14 we see the stability diagram for skxcoupled  domly coupled Rssler array withx coupling.

i (Spatial Node)
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oscillators withn, andn, oscillators in each array, with cou- diagrams to make sure thalt modes are stable at the chosen

pling matricesG,; andG, and coupling strengths; and ., coupling. This is the downfall of the Wu and Chua conjec-

then if (1) and 1(2) are the least negative nonzero eigenval-ture, although the conjecture is true if applied to individual

ues of G; and G,, respectively, and the coupling strengths modes.

are such that An area we have only touched upon is that of dynamical
systems with random, linear coupling. Such systems are of-

a1y(1)=ayy(2) (25 ten used in neural networ{g5], map lattice§ 76,77, and
spin-glass systenm&8]. When the individual units are non-

then array 1 glopally synchronizes if and only if array 2Iinear desynchronization behavior can occur and we must
globally synchronizes.

. . . examine the m ility diagram in thi r. -
Wu and Chua go on to show supporting numerical ew—e amine the mode stability diagrams as in this paper. Ques

) 4 . tions regarding percolation thresholds and probability of de-
dence for this relation using several systems such as those é'g/nchronization among others, can be treated with the
Sec. IV above for many different array sizesThe numeri- ' '

) : resent approach. A distribution of couplings will lead to a
cal experiments are conducted on the double-scroll oscnlatog bp ping

istribution of scalings of the mode stability curves. The
[73,74] and show that for a large range mfvalues the prod- consequences of thisgare still not clear y
ucts ay [as in Eq.(24)] taken at the threshold for .synchro-. We can also work with coupling matric&which are not
nization are roughly constant. As Wu and Chua point out thig,, 1y metric and even those which are calculated numerically
could mean we can predict the synchronization of an array o

e f hoseG iust by K . heth h e.g., from random, linear coupling schemeBhese will, in
any size for a cnosets Just by knowing whether oné suc general, have complex eigenvalues. In this case we must cal-
array synchronizege.g., test for synchronization whem

—o culate the surface over the complex plahelefined by the
N )'. . o . exponents\ (@), where nowe is complex. Now when we
Given our findings above on size limits in chaotic arrays

) o X . X >rescale the coupling by, /vy, we will, in general, have a
which have desynchronization bifurcations we Can_'mmed"complex number which will give, in general, a complex cou-
ately state that the above conjecture must be false, in gener fing whose value o, we get from our surface. Once
But we can still ask why Wu and Chua saw the numerical max '

) i . again, we have reduced the problem to one of calculating
relations they did. The answer is that E5) holds for the Xoasl@) for one schemde.g., two oscillatorsonce and for

stability of the least stable mode. That is, if we increase the,"\\/c are left with the question, is there any physical mean-

coupling from ZEro our scaling relatio_n ShOW_S that the Iasﬁ g to the complex coupling values? At this point we have no
mode to 90 stable is the modg associated W'th.the smalleg eneral answer to this question, although we are continuing
nonzero eigenvalue @. Call this mode Xas we did for our to work on this general cag@9]

DC examples Then we have\X (a;)=0 at the synchroni-
zation threshold for a mode in array 1 and\],(«,)=0 at

the synchronization threshold for a moglén array 2. By the ACKNOWLEDGMENTS
scaling relation we have | would like to acknowledge many conversations about
(1) the synchronization problem in coupled systems with James
a2=m 1= ayy4(2) = ay (1), (26) F. Heagy and Thomas L. Carroll.
q
which is precisely the Wu and Chua relation, except that itAPPENDIX: DIAGONALIZATION OF A STAR-COUPLING
pertains to the stability of individual modes. In using the MATRIX

smallest, nonzero eigenvalues Wu and Chua were choosing )

the least stable mode to test, assuming that when it was What we want to do here is show how one goes about
stable all other modes would remain stable, too. In cases ¢Hock diagonalizing a matrix that is invariant under a group
desynchronization, the latter assumption can fail. In many! transformations. Other methods may also work, but the
coupling schemessuch as DG this is the last mode to be- USe of symmetry is algorithmic and guaranteed to accom-
come stable as the coupling increase from zero and in thoddiSh some level of block diagonalization. It also can often
cases where there is no desynchronization it can serve asl¢fd to explicit formulas for the eigenvalues which are use-
guide to global synchronization. Of course, given the scalindu!, for example, in calculatingyax.

relation we have presented, any mode can serve as the guide. TO Use the group methods we ms} find the symmetry
group associated with the star-coupling configurati(),

write down the matrices that represent the operations of that
group in the node spacé€3) find out which irreducible rep-

We have shown that given a fixed, chosen componentesentationgIR) are present in those matrices, a@dltrans-
couplingE, the stability diagram for many coupling schemesform to the coordinate systems of those IR’'s. The last step
as represented by the matr® in the node space can be will block diagonalize the node coupling mati& We show
calculated by knowing only one diagram for a particular cou-an example of this fon=>5. In Fig. 1Xa) we see that a star
pling scheme. For example, it suffices to know the stabilityconfiguration will have a rotational symmetry: We can rotate
diagram for two DC oscillators. All other stability diagrams by 2#/(n—1) or equivalently shift the outer ring by one and
for any symmetric coupling of any number of those oscilla-the configuration does not change. The symmetry group gen-
tors can be calculated from that one. erated by these operations is @g point group. This group

When considering the stabilty of the synchronous state fohas four IR's @,B,E;,E5). The character table is shown in
the whole array one must be careful to examine the stabilityrable I.

VI. CONCLUSIONS AND REMARKS
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TABLE |. Characters for the irreducible representations of thecontained in the subspace spanned by the basis of that par-
C, point group. ticular IR. For example, applying thB IR projection to
(0,1,0,0,0 we get (0,1--1,1,—1). Since this IR is one di-

IR E Cy C, ci mensional we can normalize this vector and it is the basis for
A 1 1 1 1 the B IR. For higher-dimensional IR’s we can orthonormal-

B 1 1 1 1 iz_e _the set of_ vectors proje_cted _into the subspace. We do
E, 1 1 1 1 similar operations on other five-dimensional vectors and we
E, 1 1 _1 _1 obtain the basis for all the IR subspaces. Note that the sub-

space for thé\ IR is two dimensional. Hence, we have some
flexibility to choose any two basis vectors in that subspace.
In Table | we have used the sine and cosine version of the We put all the basis vectors together to form a transfor-
E representations ar@, is a shift by 1,C, a shift by 2, and mat_|on matrix that will t_ake us from the standard node-space
C3 a shift by 3 oscillators. This is stef). basis &) to the IR basis:
The transformation matricgstep (2)] that represent the

group shift operations in the node space are 200 0
0 1 1
1
10000 10000 s=;|0 1 -1 1 -1 (A3)
01000 00100 01 -1 -1 1
E=|0 0 1 0 0], c,=|{0 0 0 1 Of, 01 1 -1 -1
0 0 01 O 0O 0 0 01
Then calculating the induced similarity transformation
0 000 1 01000 SGS™ ! we have a block-diagonalized coupling matrix:
1 0 00 1 0 0 0O -4 2 0 0 0
0 0010 0 0001 2 -1 0 0 O
_ 3_
C,=|0 00 0 1f, c}=[0 1 0 0 O D= 0 0 -1 0 0 |. (A4
01 0 0 O 0 01 0O 0 0 0 -1 O
0 01 0O 0 00 1 0 _
(AD) 0 0 0 0 1

The vector of charactefsnatrix traces for these transforma- Thg block in the upper—left—hand comer Is a;sociated W!th the
tions isu=(5,1,1,1). We now use the standard orthogonalityt”.vIal A IR. One eigenvector of this block will be associated
relations for IR's[65—68§ to find out which IR’s are present: with the sy_nchromzatl_on mar_ufoltﬂwnh zero eigenvalug

if v is the vector of characters for théh IR, then the number the pther will be_ assoc_lated with the hlghe_st frequency mode
of times this IR appears in the transformation matrices isOf F'g'. 1.1(b)' This cqn.ﬂrms our statement in the text thqt the
given by (U-v)/N, whereN is the order of the groud association of the trivial IR with the synchronized state is not
herg. Using this formula we see that th% (trivial) repre- unl\?vue. i | he di lizati f .
sentation is present twice, and all other IR’s are present once. € can _eaSIbBI/ cokmpgte tt e diagonalization of &) in

The degeneracy i\ will show up as an undiagonalized 2 € remaining block and ge

X2 block, which we will diagonalize by other means. We

0 O 0 0 0
have completed ste(3).
We are ready for stef): diagonalizeG, Eq. (20). To do 6 -5 0 0 O
this we need to know the basis vectors in our node space of D=0 0 -1 0 0 |. (A5)
the various IR’s A,B,E,,E,). This construction is not usu- 0 0 0 -1 0
ally covered well in standard group theory representation
books. We show here one simple way to go about it. 0 O 0 0o -1

We can use the transformatiofsq. (A1)] along with the _ _
IR characters to form projection operators onto the subspacddsing the same approach we can easily show thatnfor
associated with each IB5—-68. The projection operator for hodes in the star configuration we will get
thekth IR is

0 0 o - 0
e < 0 -n 0 - 0
PKZNE viTi, (A2)
i=1 D=| O 0 -1 --- 0 , (A6)

wherev; is theith component of the trace vecteassociated : : : : :

with the kth IR, T; is the node-space transformation associ- 0O O o --- -1

ated with theith group operatiorje.g., Eq.(A1)], andl, is

the dimension of th&th IR. The application of the projection which confirms the eigenvalues we used in the star-coupled
operator will project out of any vector that part which is example.
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