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Synchronization conditions and desynchronizing patterns in coupled limit-cycle
and chaotic systems

Louis M. Pecora
Code 6343, Naval Research Laboratory, Washington, D.C. 20375

~Received 29 April 1997!

Many coupling schemes for both limit-cycle and chaotic systems involve adding linear combinations of
dynamical variables from various oscillators in an array of identical oscillators to each oscillator node of the
array. Examples of such couplings are~nearest neighbor! diffusive coupling, all-to-all coupling, star coupling,
and random linear couplings. We show that for a given oscillator type and a given choice of oscillator variables
to use in the coupling arrangement, the stability of each linear coupling scheme can be calculated from the
stability of any other for symmetric coupling schemes. In particular, when there are desynchronization bifur-
cations our approach reveals interesting patterns and relations between desynchronous modes, including the
situation in which for some systems there is a limit on the number of oscillators that can be coupled and still
retain synchronous chaotic behavior.@S1063-651X~98!01405-6#

PACS number~s!: 05.45.1b, 47.20.Ky, 84.30.2r
ti
re

to

er

ri
io
so

-
ia
io

at
i

ic
rr
m

si
e
d

tio
e

ta
e
-

rib

at
or

s in
h

be-
re-

in

sys-
ein
r in

er

ping

bil-

a-
la-
ces
ake
for

nd
to

r a
ny
an
ms
n a

a
en-
s-
I. INTRODUCTION

The phenomenon of synchronization of identical chao
systems coupled in an array has recently received a g
deal of attention@1–18# although the behavior was shown
exist some years ago@19–22#. Similarly, the synchronization
of coupled limit cycle systems continues to be of great int
est~see Refs.@23–29# for a sampling of this large field!. For
chaotic systems one’s intuition about synchronization crite
and conditions can fail. There is no sharp synchronizat
threshold. Instead there are multiple thresholds, each as
ated with an unstable period orbit~UPO! @6,30–32#. There
may be riddled basins@8,33–35# so that predicting the syn
chronized state is nearly impossible by just knowing init
conditions. Above the Lyapunov exponent synchronizat
threshold there can be intermittent bursting~often calledat-
tractor bubbling! of the systems out of the synchronous st
when there is a small amount of noise or parameter m
match present@6,30–32#.

There are even desynchronization bifurcations in wh
increasing the coupling between systems in the coupled a
may destabilizethe synchronous state. This latter pheno
enon was also called ashort-wavelength bifurcation@36#.
These unexpected behaviors are documented in real phy
systems in Refs.@8,10,12,36#. A few other researchers hav
also seen such bifurcations@37,38# in phase-locked loops an
Josephson junctions.

We note that when we use the term desynchroniza
bifurcation here we mean that the system has qualitativ
changed because the synchronous state is no longer s
We are not in a position to discuss, in general, what n
state, if any, will result, only that it will not be the synchro
nous one. However, we will see below that we can desc
the initial pattern of desynchronization.

The phenomenon of short-wavelength bifurcation~SWB!
is very intriguing. It is a desynchronizing bifurcation th
sometimes occurs in diffusively coupled arrays of oscillat
PRE 581063-651X/98/58~1!/347~14!/$15.00
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and is caused by increasing the coupling. When it occur
these arrays it means that the shortest spatial wavelengt~in
the sense of a discrete space! in the system is excited to
cause the systems to desynchronize. Such a bifurcation
ginning at extremely small spatial lengths has also been
ferred to as aspatiotemporal shredding bifurcation@39# for
obvious reasons. Direct evidence for this phenomenon
limit cycle systems was shown in Watanabeet al. @37# where
they show basic instabilities seen in Josephson junction
tems result from short-wavelength bifurcations. Goldst
and Strogatz also showed that such bifurcations can occu
phase-locked loops.

Short-wavelength bifurcations in chaotic arrays furth
imply that there is an upper limit~a size limit! to the number
of chaotic nodes that can be added to the array while kee
the synchronized state stable. Heagyet al. @36# show that this
maximum number can be calculated if one knows the sta
ity diagram.

We show here that a similar desynchronization bifurc
tion can take place in a coupled array of limit cycle oscil
tors. Again, increasing the coupling in these circumstan
can cause the counter-intuitive desynchronization to t
place. We show that similar stability analyses can be used
both chaotic and limit cycle oscillator arrays to understa
the pattern that first emerges in this bifurcation. This leads
analysis of a canonical variational equation which holds fo
large number of coupled array systems. In fact, for ma
coupled arrays with various symmetric couplings we c
show that some type of SWB is possible for many syste
and for chaotic coupled systems this will necessarily mea
size limit on a synchronized array.

Recently Wu and Chua@40# conjectured that there was
relationship between the coupling constants and the eig
values of coupling matrices in linearly coupled arrays of o
cillators. The conjecture is, if an array withm1 number of
oscillators synchronizes at a coupling constant5a1 , then an-
other similarly coupled array of sizem2 will synchronize at a
347 © 1998 The American Physical Society
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348 PRE 58LOUIS M. PECORA
coupling constant5a2 such that the following relation is
preserved:

a1m15a2m2 , ~1!

wherem1 andm2 are the eigenvalues of the coupling mat
ces for them1 andm2 array, respectively.

We show that in light of the SWB and size limits in ch
otic arrays this conjecture must be false in general. We
velop exact relations between the coupling constants and
coupling eigenvalues for different sized arrays with vario
linear couplings that can be used to predict the stability
desynchronizing spatialmodes. We show that the Wu and
Chua relation@Eq. ~1!# really reflects the stability of indi-
vidual modes, but not necessarily the stability of the en
system. We explain this in more detail below.

II. MOTIVATING EXAMPLE: LIMIT CYCLE RO ¨ SSLER
ARRAY

A. System configuration

We start off with a motivating limit cycle example. Th
example contains many of the features that will emerge
general analysis that we undertake later in this paper.

The Rössler system@41# @Eq. ~2!# is well known for its
chaotic behavior. It also has simple limit cycle behavior. F
the parametersa50.2, b50.2, c52.5 the system has on
attractor which is a simple, period-1 limit cycle~see Fig. 1!:

dx

dt
52~y1z!,

dy

dt
5x1ay,

dz

dt
5b1z~x2c!. ~2!

We link n of these attractors in a circle with nearest-neighb
or diffusive coupling~DC!:

FIG. 1. Rössler limit-cycle attractor.
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dxi

dt
52~yi1zi !1a«xx~xi 111xi 2122xi !,

dyi

dt
5xi1ayi1a«yy~yi 111yi 2122yi !,

dzi

dt
5b1zi~xi2c!, ~3!

where we have the option to couple through either thex
component~using «xx51 and«yy50! or the y component
~using «xx50 and «yy51!. Obviously, other combinations
and weightings are possible, but we want to keep thin
simple enough to analyze. Generalizations will be obvio
later.

B. Stability of the synchronous state

We want to examine the stability of the synchronous st
in which all oscillators are behaving as in Fig. 1 as a funct
of the coupling parametera. The tools to do this for diffu-
sive coupling were developed in an earlier paper@3# and we
outline the scheme here.

The geometry of the synchronous attractor is such tha
lies on a hyperplane determined by then21 vector equali-
ties

~x1 ,y1 ,z1!5~x2 ,y2 ,z2!5¯5~xn ,yn ,zn!. ~4!

The hyperplane is called thesynchronization manifoldand
has dimension53. This is shown schematically in Fig. 2; a
the node lines~x15x2 , etc.! are in the synchronization man
fold. As long as the entire system’s phase space point
mains on the synchronization manifold the systems remai
sync. Thus, for stability we need to haveall motion trans-
verse to the manifold damped out. The Lyapunov expone
~or Floquet multipliers for the limit cycle cases! for trans-
verse motion will indicate when this will happen. This mea
we need to study the variational equation which will lead
to examine the Jacobian for the array.

The Jacobian for the whole system has the followi
structure:

FIG. 2. Schematic geometry of the synchronization manif
which lies along the 45° lines between all coordinates. Orthogo
~transverse! to the synchronization manifold are coordinates th
represent nonsynchronous behavior.
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aE J22aE aE 0 . . . 0

0 aE J22aE aE . . . 0

] ] ] ] ... ]

aE 0 0 . . . aE J22aE
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where J is the Jacobian of a single~synchronized, un-
coupled! Rössler

J5S 0 21 21

1 a 0

z 0 x2c
D ~6!

andE is the coupling matrix

E5S «xx 0 0

0 «yy 0

0 0 0
D . ~7!

In order to deal with the Jacobian in Eq.~5! we treat each
block as though it were a single entry in a matrix. This is
direct product structure which we will show explicitly i
later sections and the Appendix.

What we would like to do is diagonalize Eq.~5! in a
coordinate system that isolates the stability of the synchr
zation manifold from the transverse directions. The synch
nization manifold can be thought of as lying along the ‘‘m
jor diagonal’’ in the block structure space of Eq.~5!:
~1,1,1, . . . ,1!, where15(1,1,1). This direction is defined b
the vectorf5e11e21¯1en , whereei is the unit vector in
s

c
ili

ta
i-
-

the i th block. Thus, if we can find coordinates orthogonal
f and if they diagonalize Eq.~5! we can analyze the stability

Equation~5! has a cyclic block structure@42#, also known
in the solid state field as nearest-neighbor coupling with
riodic boundary conditions@43–45# and in the dynamics
field as shift-invariant systems@46,47#. It is well known that
one can use discrete Fourier transformations to block dia
nalize such systems. In Ref.@3# we showed that indeed thi
could be done for chaotic synchronized systems. It can
as easily be done for limit cycle systems or any syste
which are all behaving identically.

To transform to the Fourier basis we define new blo
bases vectors:

f05
1

n (
j 51

n

ej ,

fk5
1

n (
j 51

n

eje
2p i jkln , ~8!

wherek runs from 0 ton21 ~we show thek50 case sepa-
rately for clarity!. We see thatf0 is just our synchronization
manifold and from the orthogonality of Fourier series w
have that thefk (kÞ0) are orthogonal to the synchronizatio
manifold. This change of coordinates gives a Jacobian
S J 0 0 0 . . . 0

0 J1aEg1 0 0 . . . 0

0 0 J1aEg2 0 . . . 0

0 0 0 J1aEg3 . . . 0

] ] ] ] ] ]

0 0 0 0 . . . J1aEgn21

D , ~9!
b-
s

h
s
er-
as
where

gk524 sin2~pk/n!. ~10!

We note that because of the shift-invariant symmetrygk
5gn2k . The highest spatial-frequency mode correspond
k5@@n/2## ~@@ . . . ## means integer part of! and this is asso-
ciated with the shortest wavelength of the discrete spa
Because of the symmetry we need only examine the stab
of the modes fork50 to @@n/2##.

We have reduced the problem to one of finding the s
bility given by the individual block variational equations:
to

e.
ty

-

djk

dt
5~J1aEgk!jk , ~11!

where jk represents a perturbation of thekth mode.
This form of variational equation shows up in many pro
lems of stability of driven and/or coupled system
@3,11,12,14,19,36,40,47–51# as well as in control theory
methods@9,52–58#. It is often not solvable since, althoug
aEgk is constant,J is not. However, we can use variou
scaling relations along with numerical solutions to und
stand the overall stability of the synchronized system
given by Eq.~9!.
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FIG. 3. Stability diagram for modes 1,2,3 of a six limit-cycle Ro¨ssler array withx coupling. Solid line is mode 1, dotted line is mode
and dashed line is mode 3. The horizontal dashed line at large coupling values is the asymptotic limit atc5` for lmax
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Each block in Eq.~9! corresponds to a spatial Fourie
mode. Thek50 mode describes the motion restricted to t
synchronization manifold and its Lyapunov exponents
those of the isolated dynamical unit. All other (kÞ0) modes
describe the system’s response to small deviations from
synchronization manifold. We want to find out ifall of these
fluctuations damp out. Only then will the synchronous st
be stable. As we noted previously@3,10,36#, finding the sta-
bility of all the modes is actually not as arduous a task a
might seem. The following scaling relation holds

aEgk5aES gk

g1
Dg1 , ~12!

meaning that the variational equation for thekth mode has
the same form as for the first mode with a modified coupl
constanta(gk /g1). Hence, once we find the Lyapunov e
ponents for mode 1 as a function of coupling, we can resc
the relation and we automatically have the exponents for
other modes. Since we really only need look at whether
maximum exponent is negative or not, we examine only t
onelmax

k for each modek.

C. A short-wavelength bifurcation

Continuing the analysis of our example, we calculate
dependence of the maximum exponent for mode 1 as a f
tion of both coupling constants inx andy variables. Then we
see what the scaling relations tell us about the stability of
the modes. Figure 3 shows the stability diagram for an ar
of 6 Rössler systems usingx coupling («yy50). We started
with the stability of mode 1 and used Eq.~12! to calculate
the stability of modes 2 and 3. Thegk factors are monotoni-
cally increasing withk. This causes each stability diagra
for increasingly higher modes to be compressed more tow
the origin ~see Fig. 3!.

We see that just abovea50 all modes are stable, henc
this arrangement can support stable, synchronized limit c
behavior. The values oflmax

k start at 0 fora50 since for
uncoupled limit cycles the largest exponent is the neu
direction along the flow. Asa increases all modes at firs
become more stable, but at larger values ofa something
more interesting happens. The stability trend reverses and
modes become less stable. Eventually, all modes bec
unstable and the synchronous state likewise becomes
stable. We refer to such changes in stability with change
coupling asdesynchronizing bifurcations.
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The desynchronizing bifurcation takes place in an int
esting way. Typically in DC systems the longest wavelen
mode~mode 1! is the last to become stable as the coupli
increases and the shortest wavelength mode~mode 3, here! is
the most stable. However, when there is a desynchroniz
bifurcation with increasing coupling the situation is reverse
It is the shortest wavelength that becomes unstable firs
coupling increases. Thus, it is the shortest wavelength
first destabilizes the synchronous state. In a synchronized
chaotic system we have a similar phenomenon which
called a short-wavelength bifurcation~SWB! @36#. When
there is an obvious wavelength we will often refer to the
desynchronizing bifurcations as SWB, although, as we w
see below, some coupling schemes do not allow a strai
forward wavelength interpretation.

We can understand why the system eventually has to
stabilize by studying the coupling in an asymptotic regim
namely at infinite coupling (a5`). In this regime the cou-
pling terms in Eqs.~3! dominate the other terms and cau
the x components to become slaved to each other and to
synchronous state. Thus, the remaining dynamical varia
in each oscillator which are not coupled to other oscillat
act as a driven system withx(t) as the drive and the problem
of stability is reduced to studying the stability of the su

FIG. 4. Spatiotemporal pattern showing the onset of a sh
wavelength bifurcation in an array of 16x-coupled Ro¨ssler oscilla-
tors.
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FIG. 5. Stability diagram for modes 1,2,3 of a six limit-cycle Ro¨ssler array withy coupling. Solid line is mode 1, dotted line is mode
and dashed line is mode 3. The horizontal dashed line at large coupling values is the asymptotic limit atc5` for lmax
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system (ẏ,ż). This is exactly the case we originally studie
in synchronization of chaotically driven systems@59–62#. In
fact it is easy to see from the Jacobian of the (y,z) sub-
system that this subsystem must be unstable. Hence at
coupling values the stability of the modes must approach
stability of the subsystem, which is unstable in this case.
see this happening in Fig. 3.

The interesting observation here is that it is anincreasein
coupling that causes the modes to become unstable.
though this is counterintuitive, it has been known in a diffe
ent form before from the work of Turing@63# where it was
used to describe the occurrence of patterns with intermed
wavelengths. In our present case the SWB is an extre
form of a Turing bifurcation. Turing kept some couplin
between all the dynamical variables whereas we have in e
oscillator a subsystem~e.g., they-z system forx coupling!
whose variables arenot directly coupled to any other oscil
lator. Thus, in our case it is the absolute shortest wavelen
in the system which becomes unstable first not the inter
diate wavelengths. A plot of the entire system in Fig.
shows the effects of this desynchronizing bifurcation on
spatiotemporal pattern of behavior. The desynchroniza
occurs with the dynamical variables of adjacent oscillat
diverging in opposite directions in phase space, a manife
tion of the short-wavelength instability. We also refer to th
type of instability asspatiotemporal shredding, for obvious
reasons.

In Fig. 5 we show a stability diagram fory coupling
(«xx50, «xx51!. We see that this coupling of Ro¨ssler limit
cycle oscillators also gives rise to a SWB. The asympto
value oflmax

k is not as large fory coupling as forx coupling.
rge
e
e

l-
-

te
e

ch

th
e-

e
n
s
a-

c

As a result the desynchronization bifurcation takes place
larger coupling values.

As an interesting comparison we examine the synchro
zation of DC chaotic Ro¨ssler oscillators (c57.0). The above
stability analysis carries through regardless of the type
oscillator dynamics and we end up with the same variatio
equation@Eq. ~11!# and scaling relation@Eq. ~12!#. Figure 6
shows the stability diagram forx coupling. We see a diagram
similar to Fig. 3, except thatlmax

k starts at a positive value
when a50, since the uncoupled systems are chaotic. T
value of lmax

k decreases from there asa increases and then
increases to cause a SWB as in the limit cycle regime. Fig
7 shows the stability diagram fory coupling. In this case
there is no SWB. Even for infinite couplinglmax

k is negative
and so the synchronized chaotic state is always stable for
coupling above the threshold of modek51 stability.

D. Size limits on synchronizable systems resulting
from short-wavelength bifurcations

In the chaotic case there is an effect that results from
SWB which is not present in the limit cycle case. Figure
shows a close up of part of the stability diagram for 20 ch
otic x coupled Ro¨ssler oscillators. What we see is that th
highest spatial frequency mode (k510) goes unstablebefore
the lowest mode (k51) becomes stable. This is a result
the scaling relation compressing the highest mode’s stab
diagram. This will happen eventually in any chaotic syste
that experiences a SWB if we couple in enough oscillato

We immediately deduce from this that any chaotic syst
with a SWB has a limit on the number of oscillators that c
nd
FIG. 6. Stability diagram for modes 1,2,3 of a six chaotic Ro¨ssler array withx coupling. Solid line is mode 1, dotted line is mode 2, a
dashed line is mode 3. The horizontal dashed line at large coupling values is the asymptotic limit atc5` for lmax

k .
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FIG. 7. Stability diagram for modes 1,2,3 of a six chaotic Ro¨ssler array withy coupling. Solid line is mode 1, dotted line is mode 2, a
dashed line is mode 3. The horizontal dashed line at large coupling values is the asymptotic limit atc5` for lmax
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be DC and retain a stable, synchronous chaotic state@36#.
Above a certain number the highest frequency mode
become unstable before the lowest frequency mode beco
stable as the coupling increases. In fact, we showed
given the zero crossings oflmax

1 for mode 1~say,a1 anda2!
an expression exists for the largest number of oscillators
can be coupled in stable synchronous behavior@36#. The
highest frequency mode is associated with the wave num
k5n/2. From the scaling relation we havelmax

n/2 (a2)
5lmax

1 @(gn/2 /g1)a2#5lmax
1 (a1). Solving for n we get the

maximum number of oscillators we can couple and still
tain synchronization~although the synchronous state may
neutral, depending on the values ofa1 anda2!

nmax5F F p

arcsin~Aa1 /a2!
G G , ~13!

where by@@¯## we mean integer part of. For example, f
the Rössler x-coupling case we havea150.1232 anda2
54.663 so thatnmax519 in agreement with Fig. 8.

For the limit-cycle situation there is no size limit sinc
lmax

k starts at 0 and not some positive number. However
we go to the continuum limit then there are some con
quences. In the continuum limit the coupling constant, as
used here, must be rescaled by the distance between os
tor sites~nodes! to convert the differences of dynamical var

FIG. 8. Stability diagram for modes 1 and 10 of a 20 chao
Rössler array withx coupling showing the origin of the size limi
on synchronizable chaotic oscillators which have short-wavelen
bifurcations.
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ables to second derivatives. We call this distanceDr . It takes
the place of the index in Eqs.~3! and scales as 1/n. The new,
continuum coupling becomesQ5Dr 2a for x coupling. This
rescaling of the coupling causes the higher mode stab
diagrams to compress in toward zero coupling. To see t
note that the mode 1 scaling factor Eq.~10! decreases with
increasingn, but theDr 2 factor cancels this decrease exac
in the limit n→`. However, the scaling now causes th
higher modes to have their stability diagrams compres
toward zero coupling. This means that if we have desynch
nizing stability diagrams, the coupling must also go to ze
to keep the higher modes stable. Obviously, in the continu
limit we are left with a neutrally stable synchronized sta
Thus, even for limit cycle behavior we would not expect
see uniform, stable, synchronized behavior in the presenc
a SWB.

Despite what we have just said, there is an intrigui
possibility as shown in Fig. 9. In this case we posit that
could have a continuum system in a stable, synchroni
limit cycle state@Fig. 9~a!#. Then by varying another param
eter in the system we cause the stability diagrams to bec
desynchronizing@Fig. 9~b!#. At any coupling value the first
mode to go unstable during this crossover is the highest
tial frequency. In a continuum system this is theoretically
mode with infinitesimal wavelength, but in practice th
wavelength must be finite. The type of bifurcation we a
now describing could be a way to probe continuum syste
to determine the actual lower limit on wavelengths—that
what really is the smallest spatial scale of the system? At
point we know of no system that would undergo this bifu
cation. We simply put this forth as an interesting possi
probe of spatial scales in continuum systems.

III. GENERAL THEORY OF SYNCHRONIZATION
STABILITY IN LINEARLY COUPLED SYSTEMS

In this section we want to abstract the essential featu
from our previous example and see what we can say in g
eral about other systems of linearly coupled oscillators, lim
cycles or chaotic systems.

Note that in the motivating example we were able to tr
the Jacobian as though the blocks withJ and E were just
numbers. This was because we were only operating on e
oscillator as a whole when we diagonalized the Jacob
The Fourier transformation@Eq. ~8!# told us to multiply each
oscillator component at a site by thesamenumber and add

th
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this to the same components of other products from o
sites. Because we are keeping this separation between
node indices (i ) and the component indices of each node
can use the mathematical device of direct matrix~tensor!
products to express our equations of motion. This allows
to write the equations compactly and keep track of w
indices we are operating on.

A. General variational equations for linearly coupled systems

Let x5(x(1),x(2), . . . ,x(n))T be the collection of dynami-
cal variables, where eachx( i ) is the dynamical variable vec
tor of m dimensions for sitei @e.g., Eq. ~3!#. Let F
5(F(1),F(2), . . . ,F(n))T be the collection of vector fields o
the same functional form. Then, if we assume no coupli
the equations of motion areẋ5F(x) with all nodes acting
independently. We write the coupling terms using the dir
product ~our notation is fairly standard here and similar
Wu and Chua@40#!:

ẋ5F~x!1a~G^ E!x, ~14!

whereG is an n3n matrix which determines node-to-nod
coupling, E is an m3m matrix which operates on eac
node’s dynamical vectors to determine which of the osci
tor components are coupled, anda determines the relative
size of the coupling. We will call then-dimensional space
that G operates on thenode spaceand them-dimensional
space of each oscillator theoscillator space. Without loss of
generality we will assume that the rows ofG all sum to zero:

FIG. 9. A possible bifurcation scenario in a continuum syst
from ~a! a stable limit-cycle case to~b! a desynchronizing limit-
cycle case.
er
the
e

s
t

,

t

-

(
j 51

n

Gi j 50 ~15!

for all i . We also takeG to be symmetric here for simplicity
although generalizations are mentioned in the conclusion

In our DC x-coupling example we would have

G5S 22 1 0 . . . 1

1 22 1 . . . 0

] ] ] ] ]

1 . . . 0 1 22

D ,

E5S 1 0 0

0 0 0

0 0 0
D , ~16!

The Fourier transform would then act on onlyG and on each
x( i ) and F( i ) as a whole. In fact, to be consistent, we rea
should write each ‘‘unit vector’’ in Eq.~8! not asej , but as
ej ^ 1m , whereej is an n-dimensional vector of all zeroe
except for a 1 in thei th position and1m is the m3m unit
matrix. Then the$ej% are a basis only for the node space th
supportsG. However, because of the separation of the no
and oscillator spaces we need not be so formal so long a
are careful to distinguish which space we are operating o

To study the stability of the synchronized state we ne
the variational equation derived from Eq.~14!:

j̇5@DF~x!1a~G^ E!#j5@1n^ J1a~G^ E!#j, ~17!

where 1n is an n3n identity matrix andJ5DF( i ) is the
Jacobian in the oscillator space evaluated on the synchr
zation manifold. Because of synchronizationJ is the same
for all i .

B. Diagonalization of the array Jacobian:
Getting exact expressions

If we examine the problem of diagonalizing theG matrix,
we can often accomplish that using purely numerical me
ods. This can be done and the results of the scaling relat
developed later will carry through for those cases, too. Ho
ever, in this section we would like to examine diagonaliz
tion methods that lead to explicit expressions for the eig
values ofG so we can comment on their dependence
system sizen.

One approach to diagonalizing the right-hand-side of E
~17! is to look for symmetries. In our DC example it was
shift symmetry in the node space that led us to the use of
Fourier transformation to get a block diagonalization. Th
block diagonalization essentially came from a diagonali
tion of G which along with the already diagonal1n gave the
equations~11! with gk as an eigenvalue ofG.

We use the same approach here and it will lead us to
application of group representation theory. Our intenti
here is to motivate this approach. The use of group theor
such contexts is not well known in the nonlinear dynam
community and here we want to call attention to its usef
ness. We then show the results for several different coup
schemes. We will not go into the details of all the gro
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theoretic issues, although we do show one simple examp
the Appendix. More detailed issues involving groups a
dynamics can be found in@46,64–68#, although we do not
know of any publication which shows the interplay betwe
the coupling scalings~the G eigenvalues! and the stability
diagram as we show here.

In the uncoupled array if we permute the nodes in a
fashion @interchange various (i ) indices#, then we will not
affect the dynamics. Such a permutation will lead to a sim
larity transformation on the node components of the fi
term in Eq.~17!. Since the unit matrix1n commutes with all
n3n matrices any permutation operation has no effect
this first term. In group theoretic terms the first term is
variant under actions of the symmetric group (Sn) acting on
the node space. When we include the coupling@the second
terms in Eq.~17!# we may not have a variational equatio
that is invariant underSn . A good question is, what, if any
invariance does the second term have? Is there a subs
permutations~a subgroup ofSn! under which the term is
invariant. In our DC example the subgroup was the se
shift permutations.

The reason why the search for a group of invariant ope
tions is so useful in diagonalizing Eq.~17! comes from
Schur’s lemma@46,64–68#. A finite group has a finite num
ber of irreducible representations~matrix sets with the same
rules as the group!. Irreducible representation~IR! means
there is no linear transformation that will break the repres
tation into two or more lower-dimensional representations
we can find what IR’s are present in our system and tra
form to their coordinate systems then we can use the foll
ing lemma.

Schur’s lemma.Any matrix which commutes with all ma
trices of an irreducible representation must be a constant
trix ~i.e., a multiple of1d , whered is the dimension of the
irreducible representation matrices!.

If our matrix G is invariant under the group, thenG quali-
fies as the commuting matrix of the lemma. This means t
in the coordinate systems of the IR’s,G will be block diago-
nalized into blocks each the size of one of the IR’s. T
process can be viewed as a generalized kind of diagona
tion imposed by symmetry. If the IR appears more than o
say,l times, then the block inG associated with that IR ha
dimensionld, whered is the IR dimension. If the IR appear
only once then the block is just a multiple of1d and the
multiple ~which we callgk! is the eigenvalue of that block. I
the IR appears more than once, we can still diagonalize
particular block by other means. The important point is t
we have reduced the dimension of the diagonalization pr
lem to smaller blocks.

The facts of the previous paragraphs can be found in
good book on applications of group theory and represe
tions @46,64–68#. The only step often left out is actuall
finding the basis of the IR in the node space. This is imp
tant to achieve actual diagonalization and find thegk . We
show one approach to this step in the Appendix using p
jection operators.

We bring the synchronization manifold into this discu
sion by noting that because of Eq.~15! 0 is an eigenvalue o
G and the synchronization manifold as given by the fi
equation in Eq.~8! is the subspace associated with that
genvalue. Hence, we chooseg050 which causes Eq.~11! to
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revert to the variational equation for the isolated system a
our example. In group theory terms this manifold is alwa
associated with the trivial IR~one-dimensional matrice
equal to the number 1!. Other IR’s and eigenvalues will be
associated with motions transverse to the synchroniza
manifold. Thus, as in the DC example we want the var
tional equations associated with those motions to be dam
out ~i.e., to have negative Lyapunov or Floquet exponen!.
We will follow convention and call the transverse motio
modes, which can be thought of as a generalization of
Fourier modes from our example. We do note~as shown in
the Appendix! that the trivial IR can also appear more tha
once and in those cases the extra appearances will be
ciated with other transverse modes, i.e., the trivial IR is
uniquely identified with the synchronization manifold.

C. General scaling relations

Once we have diagonalizedG we can break Eq.~17! into
separate blocks of uncoupled variational equations like
~11!. In each equation we will, in general, have a differe
eigenvaluegk of G, wherek50, . . . ,K21 with K being the
number of eigenvalues found which will be greater than
equal to the number of different IR’s found. Observe that
the equations will have the same form as Eq.~11!, indepen-
dent of what form ofG we started with. Only the eigenval
ues will change. We can now generalize our scaling sta
ments for the DC example to the following relation.

Linear coupling scaling relation.For a fixed choice of
dynamics@F( i )(x)# and oscillator component couplings~E!,
if we can diagonalize the coupling matricesG andG8 in two
arrays of identical, synchronized nodes, each with poss
different number of oscillators, then the stability diagra
given by the Lyapunov~or Floquet! exponentlmax

k (a) for the
kth mode of a couplingG is related to that given by theqth
mode for any other couplingG8 by the scaling relation
lmax

k (a)5lmax
q @(gk /gq8)a#, where gk is the eigenvalue ofG

associated with thekth mode andgq8 is an eigenvalue ofG8
associated with theqth mode.

Given our experiences with various desynchronizing
furcations and other array size limits in DC systems,
might conjecture that similar behavior could result in oth
types of coupled systems. This turns out to be true. In
next section we will investigate the stability of synchroniz
behavior in arrays of limit cycle and chaotic nodes usi
several other coupling schemes.

IV. RESULTS FOR OTHER COUPLINGS

A. Open-ended diffusively coupled nodes

Figure 10 shows this coupling scheme which gives theG
matrix

G5S 21 1 0 . . . 0

1 22 1 . . . 0

] ] ] ] ]

0 . . . 0 1 21

D . ~18!

FIG. 10. The coupling scheme for open-ended diffusive
coupled nodes.
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We showed in@3# as did Armbruster and Dangelmayr@47#
that this matrix can be diagonalized in a manner similar
the shift-invariant DC case using a discrete Fourier transfo
with n replaced by 2n. The results give the eigenvalues

gk524 sin2S pk

2n D , for k50,1, . . . ,n21. ~19!

This is just like the original DC example, except that the
are no degenerate modes and the highest wavelength i
k5n21. Nonetheless, because of the dependence of th
genvalues onn and the scaling law we will see the sam
phenomena as before. If mode 1 has a desynchronizing
furcation, limit cycle arrays will have their region of stab
coupling compressed toward zero—leaving a neutrally sta
continuum case. Chaotic arrays will have a limit on the nu
ber of nodes that can be coupled in stable synchronous
havior:

nmax5F F p

2 arctan~Aa1 /a2!
G G . ~20!

For example, for the Ro¨ssler x-coupling case we alread
know a1 anda2 , so using Eq.~20! haveNmax59. Thus for
the same coupling components (x) the open-ended DC ca
support fewer chaotic oscillators in the synchronized s
than the ring-coupled DC.

B. Star configuration of coupled nodes

Here, as shown in Fig. 11~a! we have a node at a centr
hub position and all other nodes come off from that one. T
coupling matrix is

FIG. 11. ~a! The coupling scheme for star-coupled nodes.~b!
The highest ‘‘frequency’’ mode for the star-coupled array.
o
m

for
ei-

bi-

le
-
e-

te

e

G5S 2n11 1 1 ¯ 1

1 21 0 ¯ 0

1 0 21 ¯ 0

] ] ] ] ]

1 0 0 ¯ 21

D . ~21!

Using the group theory methods of the Appendix it
straightforward to show that the mode eigenvalues forn os-
cillators are

gk521, for k51, . . . ,n22 and gn2152n.
~22!

The modesk51, . . . ,n22 represent directions transverse
the synchronization manifold in which the oscillators of t
star go out of sync with the hub in waves wrapping comm
surately around the star. The highest mode (k5n21) repre-
sents a mode in which all outer nodes are in sync with e
other, but out of sync with the hub@see Fig. 11~b!#.

In Fig. 12 we see the stability diagram for 10 sta
x-coupled limit cycle Ro¨ssler oscillators. We have the desy
chronization bifurcation as coupling increase, although
this case the first mode to go unstable is more similar t
vibratingdrum-head mode, rather than a SWB. In Fig. 13 th
same diagram for 35 star-x-coupled chaotic Ro¨ssler oscilla-
tors shows that this coupling scheme also has a size limi
stable synchronized chaotic behavior. Similar to the DC
ray case it is the monotonic decrease of the eigenvalue r
g1/gn21 with n that causes the stability diagrams for diffe
ent modes to cross and prevent stable, synchronized ch
In this case,

nmax5@@a2 /a1##. ~23!

For the Ro¨sslerx-coupling case we havenmax535 which is
far larger than either open-ended DC or ring-DC scheme

FIG. 12. Stability diagram for modes 1 through 9 of a ten lim
cycle star-Ro¨ssler array withx coupling. Modes 1–8 are solid line
and have the same stability. The desynchronizing bifurcation ar
from thek59 mode~the dotted line!, the ‘‘drum-head vibration.’’
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C. All-to-all coupled nodes

This is a coupling type in which all nodes are coupled
each other through an average over the particular coup
component. It is a coupling assumed in many biological s
tems @23,24,28,29# and in the study of Josephson-junctio
arrays@7,25,29,69–72#. The coupling matrix is

G5S 2n11 1 1 ¯ 1

1 2n11 1 ¯ 1

1 1 2n11 ¯ 1

] ] ] ] ]

1 1 1 ¯ 2n11

D .

~24!

This matrix has the complete symmetry of the symme
groupSn and can be diagonalized easily. A discrete Four
transform will do. We get for the eigenvaluesg152n for all
k.0. In this case the stability diagrams for all transve
modes are the same. Even in systems with desynchroni
bifurcations there will be no collapse of the stability regi
to zero in the limiting case for periodic oscillators, nor w
there be a size limit to a synchronizable chaotic array.
can have a synchronized system for any coupling value
low the desynchronization threshold, which is the same
all modes. To put it another way, at the desynchronizat
threshold all modes go unstable simultaneously.

D. Random, symmetric coupling

We can also generate random, symmetric couplings u
the following formulas for components ofG: Gi j 5v for i
. j , Gi j 5Gji for i , j , and Gii 52S j Þ iGi j , wherev is a
uniformly distributed random number from 0 to 1. This fo
mulation guarantees a zero eigenvalue~for the synchroniza-
tion manifold! and other eigenvalues all negative. There
no symmetries so we solve for the eigenvalues numerica
In Fig. 14 we see the stability diagram for sixx-coupled

FIG. 13. Stability diagram for modes 1 through 34 of a
chaotic star-Ro¨ssler array withx coupling showing the size limit
coming as thek534 mode goes unstable just as the 1–33 modes
stable.
g
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Rössler oscillators. In this case we have coupling regime
which global synchronization is possible. However, unli
the other cases we have studied so far, the random coup
could yield a nonsynchronizable situation at potentially a
number of oscillators—we have no symmetry to aid us
finding a formula for the eigenvaluesgk .

Figure 15 shows the modes corresponding to the stab
functions in Fig. 14. We see that they do not resemble
sine and cosine modes we have studied, except for the
chronized modek50.

V. ON A CONJECTURE ON SYNCHRONIZATION
CRITERIA

Recently, Wu and Chua@40# put forth a conjecture on a
criterion for synchronization in an array of linearly couple
oscillators. This conjecture involves a relation between
coupling eigenvalues and the coupling constant in arrays
various sizes. With our developments in this paper we
able to comment conclusively on the conjecture. The con
ture is as follows. If we have two arrays of linearly couple

o

FIG. 14. Stability diagram for modes 1 through 5 of a six ch
otic randomly coupled Ro¨ssler array withx coupling.

FIG. 15. Spatial dependencies of modes for the six chaotic
domly coupled Ro¨ssler array withx coupling.
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oscillators withn1 andn2 oscillators in each array, with cou
pling matricesG1 andG2 and coupling strengthsa1 anda2 ,
then if g~1! andg~2! are the least negative nonzero eigenv
ues ofG1 and G2 , respectively, and the coupling strengt
are such that

a1g~1!5a2g~2! ~25!

then array 1 globally synchronizes if and only if array
globally synchronizes.

Wu and Chua go on to show supporting numerical e
dence for this relation using several systems such as tho
Sec. IV above for many different array sizesn. The numeri-
cal experiments are conducted on the double-scroll oscill
@73,74# and show that for a large range ofn values the prod-
ucts ag @as in Eq.~24!# taken at the threshold for synchro
nization are roughly constant. As Wu and Chua point out t
could mean we can predict the synchronization of an arra
any size for a chosenG just by knowing whether one suc
array synchronizes~e.g., test for synchronization whenn
52!.

Given our findings above on size limits in chaotic arra
which have desynchronization bifurcations we can imme
ately state that the above conjecture must be false, in gen
But we can still ask why Wu and Chua saw the numeri
relations they did. The answer is that Eq.~25! holds for the
stability of the least stable mode. That is, if we increase
coupling from zero our scaling relation shows that the l
mode to go stable is the mode associated with the smal
nonzero eigenvalue ofG. Call this mode 1~as we did for our
DC examples!. Then we havelmax

k (a1)50 at the synchroni-
zation threshold for a modek in array 1 andlmax

q (a2)50 at
the synchronization threshold for a modeq in array 2. By the
scaling relation we have

a25
gk~1!

gq~2!
a1⇒a2gq~2!5a1gk~1!, ~26!

which is precisely the Wu and Chua relation, except tha
pertains to the stability of individual modes. In using t
smallest, nonzero eigenvalues Wu and Chua were choo
the least stable mode to test, assuming that when it
stable all other modes would remain stable, too. In case
desynchronization, the latter assumption can fail. In ma
coupling schemes~such as DC! this is the last mode to be
come stable as the coupling increase from zero and in th
cases where there is no desynchronization it can serve
guide to global synchronization. Of course, given the sca
relation we have presented, any mode can serve as the g

VI. CONCLUSIONS AND REMARKS

We have shown that given a fixed, chosen compon
couplingE, the stability diagram for many coupling schem
as represented by the matrixG in the node space can b
calculated by knowing only one diagram for a particular co
pling scheme. For example, it suffices to know the stabi
diagram for two DC oscillators. All other stability diagram
for any symmetric coupling of any number of those oscil
tors can be calculated from that one.

When considering the stabilty of the synchronous state
the whole array one must be careful to examine the stab
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diagrams to make sure thatall modes are stable at the chos
coupling. This is the downfall of the Wu and Chua conje
ture, although the conjecture is true if applied to individu
modes.

An area we have only touched upon is that of dynami
systems with random, linear coupling. Such systems are
ten used in neural networks@75#, map lattices@76,77#, and
spin-glass systems@78#. When the individual units are non
linear desynchronization behavior can occur and we m
examine the mode stability diagrams as in this paper. Qu
tions regarding percolation thresholds and probability of
synchronization, among others, can be treated with
present approach. A distribution of couplings will lead to
distribution of scalings of the mode stability curves. T
consequences of this are still not clear.

We can also work with coupling matricesG which are not
symmetric and even those which are calculated numeric
~e.g., from random, linear coupling schemes!. These will, in
general, have complex eigenvalues. In this case we must
culate the surface over the complex planeC defined by the
exponentslmax(a), where nowa is complex. Now when we
rescale the coupling bygk /gq we will, in general, have a
complex number which will give, in general, a complex co
pling whose value oflmax we get from our surface. Onc
again, we have reduced the problem to one of calcula
lmax(a) for one scheme~e.g., two oscillators! once and for
all. We are left with the question, is there any physical me
ing to the complex coupling values? At this point we have
general answer to this question, although we are continu
to work on this general case@79#.
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APPENDIX: DIAGONALIZATION OF A STAR-COUPLING
MATRIX

What we want to do here is show how one goes ab
block diagonalizing a matrix that is invariant under a gro
of transformations. Other methods may also work, but
use of symmetry is algorithmic and guaranteed to acco
plish some level of block diagonalization. It also can oft
lead to explicit formulas for the eigenvalues which are u
ful, for example, in calculatingnmax.

To use the group methods we must~1! find the symmetry
group associated with the star-coupling configuration,~2!
write down the matrices that represent the operations of
group in the node space,~3! find out which irreducible rep-
resentations~IR! are present in those matrices, and~4! trans-
form to the coordinate systems of those IR’s. The last s
will block diagonalize the node coupling matrixG. We show
an example of this forn55. In Fig. 11~a! we see that a sta
configuration will have a rotational symmetry: We can rota
by 2p/(n21) or equivalently shift the outer ring by one an
the configuration does not change. The symmetry group g
erated by these operations is theC4 point group. This group
has four IR’s (A,B,E1 ,E2). The character table is shown i
Table I.
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In Table I we have used the sine and cosine version of
E representations andC4 is a shift by 1,C2 a shift by 2, and
C4

3 a shift by 3 oscillators. This is step~1!.
The transformation matrices@step ~2!# that represent the

group shift operations in the node space are

E5S 1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

D , C45S 1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

D ,

C25S 1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

D , C4
35S 1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

D .

~A1!

The vector of characters~matrix traces! for these transforma
tions isu5(5,1,1,1). We now use the standard orthogona
relations for IR’s@65–68# to find out which IR’s are present
if v is the vector of characters for thekth IR, then the number
of times this IR appears in the transformation matrices
given by (u•v)/N, where N is the order of the group~4
here!. Using this formula we see that theA ~trivial! repre-
sentation is present twice, and all other IR’s are present o
The degeneracy inA will show up as an undiagonalized
32 block, which we will diagonalize by other means. W
have completed step~3!.

We are ready for step~4!: diagonalizeG, Eq. ~20!. To do
this we need to know the basis vectors in our node spac
the various IR’s (A,B,E1 ,E2). This construction is not usu
ally covered well in standard group theory representat
books. We show here one simple way to go about it.

We can use the transformations@Eq. ~A1!# along with the
IR characters to form projection operators onto the subsp
associated with each IR@65–68#. The projection operator fo
the kth IR is

Pk5
l k

N (
i 51

N

n iTi , ~A2!

wheren i is thei th component of the trace vectorv associated
with the kth IR, Ti is the node-space transformation asso
ated with thei th group operation@e.g., Eq.~A1!#, and l k is
the dimension of thekth IR. The application of the projection
operator will project out of any vector that part which

TABLE I. Characters for the irreducible representations of
C4 point group.

IR E C4 C2 C4
3

A 1 1 1 1
B 1 21 1 21
E1 1 21 21 1
E2 1 1 21 21
e

y

s

e.

of

n

es

-

contained in the subspace spanned by the basis of that
ticular IR. For example, applying theB IR projection to
~0,1,0,0,0! we get (0,1,21,1,21). Since this IR is one di-
mensional we can normalize this vector and it is the basis
the B IR. For higher-dimensional IR’s we can orthonorma
ize the set of vectors projected into the subspace. We
similar operations on other five-dimensional vectors and
obtain the basis for all the IR subspaces. Note that the s
space for theA IR is two dimensional. Hence, we have som
flexibility to choose any two basis vectors in that subspa

We put all the basis vectors together to form a transf
mation matrix that will take us from the standard node-sp
basis (ei) to the IR basis:

S5
1

2 S 2 0 0 0 0

0 1 1 1 1

0 1 21 1 21

0 1 21 21 1

0 1 1 21 21

D . ~A3!

Then calculating the induced similarity transformatio
SGS21 we have a block-diagonalized coupling matrix:

D85S 24 2 0 0 0

2 21 0 0 0

0 0 21 0 0

0 0 0 21 0

0 0 0 0 21

D . ~A4!

The block in the upper-left-hand corner is associated with
trivial A IR. One eigenvector of this block will be associate
with the synchronization manifold~with zero eigenvalue!,
the other will be associated with the highest frequency m
of Fig. 11~b!. This confirms our statement in the text that t
association of the trivial IR with the synchronized state is n
unique.

We can easily complete the diagonalization of Eq.~A4! in
the remaining block and get

D5S 0 0 0 0 0

0 25 0 0 0

0 0 21 0 0

0 0 0 21 0

0 0 0 0 21

D . ~A5!

Using the same approach we can easily show that fon
nodes in the star configuration we will get

D5S 0 0 0 ¯ 0

0 2n 0 ¯ 0

0 0 21 ¯ 0

] ] ] ] ]

0 0 0 ¯ 21

D , ~A6!

which confirms the eigenvalues we used in the star-coup
example.
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