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Development of a picture of the van der Waals interaction energy between clusters
of nanometer-range particles

V. Arunachalam,* W. H. Marlow, and J. X. Lu†

Department of Nuclear Engineering, Texas A&M University, College Station, Texas 77843-3133
~Received 27 March 1998!

The importance of the long-range Lifshitz–van der Waals interaction energy between condensed bodies is
well known. However, its implementation for interacting bodies that are highly irregular and separated by
distances varying from contact to micrometers has received little attention. As part of a study of collisions of
irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been
developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations.
In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical
molecular clusters are compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum
spheres of radii equal to those of the clusters’ circumscribed spheres and of the same masses as the clusters.
The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters
for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not.
Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in
different relative positions are calculated first by coupling all molecules in the three-cluster system and second
by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this
omission is shown to be very small, and is an indication of the error in computing the long-range interaction
energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies
between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the
short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide
an integrated picture of the van der Waals energy from large separations to contact.@S1063-651X~98!14309-X#

PACS number~s!: 61.46.1w, 73.23.Ad, 34.20.2b, 82.70.2y
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I. INTRODUCTION

The van der Waals~VDW! forces are universal, in the
sense that they act between all atoms and molecules as
as condensed bodies@1#. The origins of these forces are th
instantaneous charge fluctuations in individual atoms
molecules as well as in condensed media. They play role
numerous important physical, chemical, and biological p
nomena. Examples include, but are not limited to, parti
aggregation in the gas phase, adhesion, physical adsorp
wetting, and flocculation of particles in liquids.

Calculations of the VDW energy between condensed b
ies have been made by Bradley@2#, Hamaker@3#, Lifshitz
@4#, Langbein@5#, and others~see Ref.@6# for a list of other
authors!. The approaches can be broadly classified as be
two body and many body. The two-body approaches@2,3#
obtain the interaction energy by a pairwise summation of
direct intermolecular interactions@7–9#. The many-body ap-
proaches@4,5,10#, on the other hand, include both the dire
interactions and the induction correlations of molecu
within each condensed body and between the two interac
condensed bodies. All calculations based on many-body
proaches thus far have been made for geometrically sim
systems. However, many realistic bodies, such as aggreg
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particles formed in colloidal and in gas-phase processes,
geometrically asymmetrical and highly irregular@11,12#.
Calculations of the many-body VDW energy between bod
having irregular geometry, from large separations to cont
to our knowledge, have never been made. The purpos
this study is to develop a method for the calculation of t
VDW energy between a nanometer-range spherical par
and an aggregate comprised of similarly sized primary p
ticles from distant initial separation to contact. Such calcu
tions are useful in molecular dynamic trajectory simulatio
of particle aggregation, in which the force derived from t
interaction energy and the initial conditions play an impo
tant role.

This paper is structured as follows: In Sec. II, we pres
the interaction energy calculations for two spherical partic
for large and near-contact separations and develop an an
sis of the dependences at different distances, which perm
parametrization of the interaction energy over all sepa
tions. In Sec. III, we extend the above calculations to co
plex particles comprised of several spherical particles
find a simple means of calculating the many-body VD
energy, which is readily applicable to clustered particles
arbitrary shapes. Finally, in Sec. IV we present the conc
sions.

II. INTERACTION ENERGY CALCULATIONS:
SPHERICAL PARTICLES

A. Continuum matter

Several approaches are available in the literature for
calculation of the VDW energy between spherical particl

-
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3452 PRE 58V. ARUNACHALAM, W. H. MARLOW, AND J. X. LU
The Hamaker approach calculates the VDW interaction
ergy between two spherical particles assuming simple p
wise addition of corresponding intermolecular energies.
the case of two spherical particles of radiia, b and molecular
number densitiesnA , nB whose center-of-mass separation
R, the result of the summation is

EAB52
AAB

H

6 F 2ab

R22~a1b!2 1
2ab

R22~a2b!2

1 lnH R22~a1b!2

R22~a2b!2J G , ~1!

where the constantAAB
H is called the Hamaker constant and

defined as

AAB
H 5p2nAnBC6 . ~2!

In Eq. ~2!, C6 is given by

C65
3\

2p E
2`

1`

aA~ i j!aB~ i j!dj, ~3!

wherea( i j) denotes the~scalar! frequency-dependent mo
lecular polarizability taken on the imaginary axis for comp
tational convenience and\ is Planck’s constant. While the
Hamaker potential is mathematically simple, it suffers fro
two general defects:~1! it does not take into account th
collective effects that are operative in condensed matter,
~2! the interaction energy diverges upon contact rather t
converging to a finite value.

The Lifshitz theory of the van der Waals interaction,
the other hand, is based on a continuum approach in th
calculates the interaction energy without direct reference
the molecular structure of the particles. The interaction
ergy is due to the perturbation of the free electromagn
field caused by the introduction of the two bodies into fr
space@4,13#. This approach has full generality, is applicab
to any body at any temperature, and has the correct beha
in the limiting case of rarefied media~i.e., giving the inter-
molecular energy!. However, analytical expressions for th
interaction energies can be obtained from Lifshitz the
only for certain regular interactant geometries. Solutions
available for interacting half-spaces@4#, spheres@14#, films,
layers, and planes@15#, and a sphere with a plane@16#. More-
over, being a continuum approach, it can only be used
distance scales greater than the molecular dimensions.

The Lifshitz-Hamaker approach@1,5,17# is a hybrid in
that it assumes thegeometricaldependence of pairwise ad
dition of the intermolecular interaction similar to the H
maker approach, while incorporating the collective effe
through an alternative form of the Hamaker constant.
interacting half-spacesA and B separated by a vacuum, th
Lifshitz-Hamaker~LH! constant is expressed as

AAB
LH'

3

4
kTF«A~0!21

«A~0!11GF«B~0!21

«B~0!11G
1

3\

8p E
2pkT/\

` F«A~ i j!21

«A~ i j!11GF«B~ i j!21

«B~ i j!11Gdj, ~4!
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whereT is the temperature,«A( i j) and«B( i j) are the dielec-
tric constants of bodiesA andB on the imaginary frequency
axis, andk is Boltzmann’s constant. For interacting hal
spaces, replacement ofAAB

H by AAB
LH exactly expresses th

nonretarded Lifshitz theory results while for spheres,AAB
LH

provides a lower bound of the magnitude of the VDW e
ergy @14# when used in Eq.~1!. Although the replacement o
Eq. ~2! by Eq. ~4! is helpful in accounting for the collective
intermolecular interactions characterizing condensed ma
in the continuum limit, it does not indicate the manner
which the summed discrete interactions approach the c
densed matter interaction energy with increasing number
molecules. Nevertheless, the Lifshitz-Hamaker approach
often been used in the literature. The assumption that it p
vides an adequate approximation for spheres has not b
adequately quantified and will be examined as part of t
study.

Langbein@15# developed an alternative, ‘‘molecular’’ ap
proach to describe the interaction energy of continuous b
ies by adapting Bade’s@18# perturbation theory computatio
of the collective dispersion energy among discrete m
ecules. By regrouping terms and using the standard Claus
Mossotti relation to express the dielectric constant in ter
of the molecular density and polarizability, Langbein@5#
‘‘derived’’ the nonretarded version of the Lifshitz interactio
energy between half-spaces. This same approach was
utilized by Langbein@14# to derive a slowly convergent se
ries solution for the interaction energy of two continuu
spheres. This slow-convergence difficulty can be overco
by using an accurate mathematical approximation to La
bein’s exact expression for the Lifshitz energy. The appro
mation was developed by Keifer, Parsegian, and We
~KPW! @16#, who showed it to have better than 2% accura
Their nonretarded interaction energy for continuum bod
can be expressed as

E~z!5
\

2p E
2pkT/\

`

g~j,z!dj2
kT

2
g~0,z!, ~5!

wherez is the distance between the centers of the interac
spheres, andj is the frequency. The functiong(j,z) @16# is
an infinite sum over terms involvingj andz, some of which
are themselves infinite sums. The calculation ofg(j,z) can
be accelerated by using a rapid summation technique
uses a nonlinear transformation developed by Aitken@19#.

B. Discrete clusters

The work of Langbein summarized above suggests@20#
an approach to the calculation of the VDW energy betwe
molecular clusters that is consistent@17# with all levels of
molecular aggregation from London–van der Waals inter
tion of a pair of molecules to the continuum Lifshitz theor
Considering each molecule as a discrete oscillator, the t
energy may be shown@16,15# to be expressed as

~DEAB! total5
h

8p2 E
2`

`

dj ln$det@ I2a~ i j!T#%, ~6!

where
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a~ i j!5S a~A! 0

0 a~B!D ~7!

is the polarizability matrix for the system andI is the 3NA
33NB identity matrix with NX the number of molecules in
cluster X. Each major submatrixa(X) is diagonal in the
333 polarizability tensors, each of which corresponds t
distinct molecule in clusterX. The dipolar coupling tensorT
for the system is comprised of elementsT i j 52“ i“ j@1/(r i
2r j )# and

T5S T~A! T~C!

T~C! T~B! D , ~8!

where the indices are such thatT(A) couples only molecules
within A, T(B) couples only molecules withinB, and T(C)

couples the molecules in the separate clusters. The clu
interaction energyDEAB is given as the difference betwee
the energy of the fully coupled clusters and the sum of
individual cluster self-energies in isolation of each other@i.e.,
Eq. ~6! with T(C) set to 0#,

DEAB5~DEAB! total2~DEA1DEB!. ~9!

The energy as represented by Eq.~9! is the basis for com-
puting the ‘‘discrete’’ long-range cluster interaction energ
in this paper. While it is a relatively crude representation
general intracluster properties, for intercluster attraction
should be realistic, provided no collective states such as c
duction bands form within the clusters. Amadon and Marl
@17# calculated the VDW interaction energy between m
lecular clusters using this formulation of the iterated van
Waals interaction energy over discrete molecules. The p
totype clusters used in their calculations were carbon te
chloride (CCl4) molecular clusters comprised of 13 and
molecules in icosahedral and 33 molecules in dodecahe
configurations. Through the use of a repulsive componen
the VDW energy that varied asr 224, wherer is the separa-
tion between the molecules, they define a molecular ‘‘dia
eter’’ ~s!. The ‘‘contact energy’’ in their calculation there
fore corresponds to a separations between ‘‘point
molecules.’’ The interaction energy calculations requ
large amounts of computer time even for calculations invo
ing small molecular clusters.

C. Comparison

First, the interaction energy is computed using the d
crete approach@Eq. ~9!# and is labeledED . The molecular
clusters are then replaced by spherical particles of the s
mass, corresponding radii, and dielectric properties as
molecular clusters cited above~see@17#!, and then the inter-
action energies using the Lifshitz-Hamaker approach (ELH),
Eqs. ~1!–~4!, and the KPW approximation for the Lifshit
energy (ELif ), Eq. ~5!, are determined. Figures 1~a!–1~c! are
graphs of the relative difference ofELif or ELH andED ver-
sus scaled separation for pairs of 13-, 33-, and 55-mole
CCl4 clusters, respectively. The solid lines correspond
(ELif 2ED)/ED versusdc.m./dav and the dashed lines corre
spond to (ELH2ED)/ED versusdc.m./dav, wheredc.m. is the
center-of-mass separation of the particles anddav is the av-
a
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erage diameter for the discrete cluster@17#. The graphs indi-
cate that for large surface-to-surface separations of the
ticles, ELif converges toED within the accuracy of the
approximation used to computeELif , while ELH underesti-
mates the exact energyED by 10–15%. For small separa
tions, both approximations overestimate the attractive in

FIG. 1. The errors in Lifshitz-Hamaker and Lifshitz energi
relative to the discrete energy for a pair of~a! 13-molecule icosa-
hedral CCl4 clusters,~b! 33-molecule dodecahedral CCl4 clusters,
and ~c! 55-molecule icosahedral CCl4 clusters. The center-of-mas
separation (dc.m.) is in units of the average cluster diameter (dav),
which is 1.558 nm, 2.259 nm, and 2.544 nm for~a!, ~b!, and ~c!,
respectively.
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action energy, a typical result for the macroscop
interaction. Although the Amadon and Marlow approa
avoids the problem of singularity of the interaction ener
upon contact through the use of a repulsive component to
VDW energy between the molecules, it still assumes that
molecules are point particles. Another disadvantage of
approach is that the interaction energy calculations are c
putationally intensive and are, therefore, impractical for
termining interactions between larger particles.

A new and computationally feasible calculation of the
teraction energy for ultrafine particles at short-range sep
tion to contact~where the above calculations fail! has been
developed by Lu, Marlow, and Arunachalam@21#, hereafter
referred to as the LMA approach. The calculations show t
at, or near, contact, the molecular size effects are impor
and must be taken into consideration. The contact ener
calculated using this method are finite as opposed to
infinite values obtained with methods that consider the m
ecules to be point particles. As the surface-to-surface s
ration between the particles increases, molecular size eff
become decreasingly important, and the short-range en
converges smoothly to the continuum energy calculated
ing the Lifshitz approach. Let us now examine the doma
within which each of the above approaches are valid, as w
as the convergence criterion. We will then present a par
etrized representation of the interaction energy over all se
rations. This simple, yet accurate, representation is ea
programmable and will be particularly beneficial to dynam
simulations of particle aggregation where considerable t
is spent on the evaluation of interparticle forces.

The rationale behind the LMA approach is based
Langbein’s observation@15# that the two-body potential be
tween condensed bodies has the same dependence o
surface-to-surface separation as the many-body poten
provided that this separation is small compared to the s
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of the condensed bodies involved. In other words, at sm
separations, the many-body effects modify only the inter
tion constant, while leaving the functional dependence of
interaction potential on the separation distance unchange
follows, therefore, that if a two-body potential is obtaine
the corresponding nonretarded many-body potential at sm
separation can be obtained by simply replacing the two-b
interaction constant~Hamaker constant! by the many-body
interaction constant~Hamaker-Lifshitz constant!, which is
defined, to a first approximation, by

C5
kT

4 (
n50

`

8F«~ i jn!2«0~ i jn!

«~ i jn!1«0~ i jn!G
2

, ~10!

where jn52npkT/\ (n50,1,...), «( i j), and «0( i j) are
frequency-dependent dielectric constants evaluated at im
nary frequencies for the condensed body and the surroun
medium, respectively. The prime on the sum indicates t
the n50 term is weighted by1

2. The k represents Boltz-
mann’s constant, andT is the ambient temperature. In add
tion to the small separation requirement, Langbein a
specified@15# that the change in dielectric constant with r
spect to distance should be small near the surface. This
ond proviso is unnecessary for our calculations because
have incorporated the effects of molecular size into our c
siderations to give a finite contact energy. In contrast, La
bein assumed the dielectric constant to be a function of se
ration such that a finite contact energy can be obtained w
the singular potential; consequently, the dielectric const
must be a smooth function of separation near the surface
his energy calculations.

Based upon the above argument and taking into acco
the finite molecular size, Luet al. @21# derived the small-
separation dispersion energy between two spheres of e
radii r as
ESR52
Cr

2d H 4rd

~d12r !2 1
2rd

~d12r !~d14r !
1

2r

d12r
@12G~d!#2

d

d12r
G~d!1

2d

r F2E1S d

aD2E1S 2d

a D1 ln
d~d14r !

~d12r !2 G
2

2r

3~d12r ! S d

aD 4FE1S d

aD2E1S 2d

a D G1
r

d12r S d

aD F7

6
F2S 2d

a D2
27

16
F1S 2d

a D1
39

16
F0S 2d

a D G J , ~11!
whered is the surface-to-surface separation distance betw
the spheres. This formula is applicable whenever the inte
tion between two spheres, made of the same material, i
most entirely due to the dispersion interactions. For t
spheres made of different materials, the surfaces invol
must be low-energy ones, as discussed in detail in@21#. The
molecular size~in atomic units! a is determined by

1

a
51.25S I

I H
D 1/2

, ~12!

whereI and I H are the first ionization potentials of the ato
or molecule considered and a hydrogen atom, respectiv
In the case of condensed bodies,I can be represented well b
@21#
en
c-
al-
o
d

ly.

I 5\vUV , ~13!

wherevUV51.7310216 rad s21 for CCl4. In Eq. ~11!,

G~d!5F3S 2d

a D2
4

3
F2S 2d

a D1
2

3
F1S 2d

a D2
4

3
F0S 2d

a D
22FF3S d

aD2
4

3
F2S d

aD1
2

3
F1S d

aD2
4

3
F0S d

aD G ,
~14!

Fn~x!5e2x(
i 50

n
1

i !
xi , ~15!
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E1~x!5E
x

` e2y

y
dy. ~16!

At d50, Eq. ~11! can be shown to reduce to a form th
gives a finite value for the contact energy. Whend@a, i.e.,
the interacting surfaces are farther apart than the molec
dimensions, but the separation is still small in comparison
the size of the spheres, i.e.,d!r , the equation for the short
range energy reduces to

ESR52
Cr

2d F 4rd

~d12r !2 1
2rd

~d12r !~d14r !

1
2r

d12r
1

2d

r
ln

d~d14r !

~d12r !2 G . ~17!

Comparing the above equation forESR with the equation for
the Lifshitz energy@14# at comparable separations,

ELif 52
Cr

2d
. ~18!

We can see that, ford!r , ESR→ELif when

F 4rd

~d12r !2 1
2rd

~d12r !~d14r !
1

2r

d12r

1
2d

r
ln

~d14r !

~d12r !2G51. ~19!

Solving for d from the above equation, we obtain the d
tancedc150.01r . For surface-to-surface separations grea
than dc1 , becauseESR converges toELif , we can now say
that the molecular size effect is small. Whereas,
d,dc1 , the molecular size effect must be considered, a
the LMA approach that incorporates this effect should
used to calculate the interaction energy. See@21# for a deter-
mination of separation distance at which Lifshitz theo
should fail.

In the present calculation, the short-range componen
the van der Waals energy, from contact to a surface
surface separation,dc1 , is computed using Eqs.~11!–~16!.
KPW’s approach is then used to obtain the interaction ene
from dc2 , the smallest distance for which the Lifshitz ener
and the energy calculated using the LMA approach conve
@21#, to initial separationd0 in a collision simulation. Using
these energy values as input, we parametrized the intera
energy for all interparticle separations. The aim in devel
ing this set of parameters is to provide a smooth, continu
function for the interaction energy that is easily differe
tiable and programmable. In dynamic simulations wher
considerable fraction of the total CPU time is spent in
force calculation, such a parametrization will allow th
forces to be calculated simply and efficiently by a call to
subroutine containing the equation for the force. The para
etrization for the nonretarded VDW interaction energy
given below as

E~d!5
11a1d1¯1an21dn21

b11b2d1¯1bn16dn15 . ~20!
lar
o

r

r
d
e

of
-

y

e

ion
-
s

-
a
e

-

In the limiting cases corresponding tod50 andd→`, by
proper choice of parameters, the above equation reduce
the correct functional forms and gives the correct limiti
interaction energy values. By setting 1/b15contact energy,
Eq. ~21! can be made to give the contact energy atd50. As
d→`, E(r )→(an21 /bn16)d26. Thus, by setting
an21 /bn165CLif , where CLif is the Lifshitz constant, at
large separations Eq.~21! can be made to reduce to the for
of the nonretarded Lifshitz energy. The parameters used t
the interaction energy for CCl4 are presented in Table I. Th
parametrized interaction energy and the corresponding fo
from a center-of-mass separation of 10d0 , whered0 is the
contact separation between the two clusters, through con
are presented in Figs. 2 and 3, respectively.

III. INTERACTION ENERGY CALCULATIONS:
COMPLEX PARTICLES

At the basis of the calculations ofELif and ofED for two
molecular clusters and their close correspondence with e
other is the fact that all molecules comprising the clusters
collectively coupled to each other. For small clusters,
‘‘iterated-dipole’’ interaction energies of the clusters, i.e
ED , can be calculated as described above. However, in
gregation studies involving typically ultrafine particles wi
diameters of the order of several nanometers, such calc
tions are clearly computer time-intensive and, therefore,
practical. Conversely,ELif provides an adequate accountin
of the energy between spherical particles, but in general a
lytical solutions to the Lifshitz theory of van der Waals in
teraction exist only for a limited number of idealized geom
etries and, hence, cannota priori be expected to portray
accurately the interaction energies involving aggregates
particles. However, we can ask how important the ma
body interactions that represent intermolecular coupling
the aggregate are if the coupling between constituent
ticles in the aggregate is carried out to a sufficiently hi
order. Specifically, if the interaction energy between a p
ticle and an aggregate could be expressed as a simple
over the Lifshitz energy (ELif ) values between each constitu
ent particle of the aggregate and the single particle, the
computationally tractable long-range energy would be av
able for aggregation calculations. Such a calculation is a
mary goal of this study.

To determine if the above interaction picture is usef
three 55-molecule CCl4 clusters~circumscribed sphere diam
eter of 2.82 nm@17#! were arranged so that two were
contact and the third was some distance away from th
The completely coupled, iterated-dipole energies among
three clusters were computed over a range of separation
tances. Next, only the energy resulting from coupling t
single cluster separately to each of the contacting clus
~referred to as the discrete-pairwise sum! was calculated. In
this manner, the effect of the coupling between the m
ecules of the contacting clusters~coupling energy! on the
total interaction energy was computed. These calculati
were performed for two extreme relative orientations of t
contacting clusters and the isolated cluster. In the first
stance, the centers of the three clusters lie on a line~linear
orientation!, whereas in the second instance, the contac
pair of clusters were rotated by 90° about their contact po
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3456 PRE 58V. ARUNACHALAM, W. H. MARLOW, AND J. X. LU
relative to the first orientation so the three clusters were
the T orientation. The results of these calculations, alo
with the energy between a sphere and set of paired sph
calculated according to the Lifshitz theory, are shown
Figs. 4~a! and 4~b!. It is evident that for both orientations, th
difference between the discrete energies due to comp
coupling and partial coupling of the molecules~referred to as
the coupling energy! is orders of magnitude smaller tha
either one of the discrete energies. This result, combi
with the observation that the Lifshitz and discrete ene
have a close correspondence, indicates that, regardless o
orientations of the interacting clusters, the difference m
by calculating the total interaction energy as a sum over
individual Lifshitz energy (ELif ) values, as suggested abov
is small. Comparison of the coupling energies in Figs. 4~a!
and 4~b! shows that for the same center-of-mass separat
the coupling energy for the linear orientation is greater th
that for theT orientation. This observation further corrob
rates the results of Vold@22#, who demonstrated, based o
the Hamaker theory, that for a given center-of-mass sep
tion, the interaction energy for ellipsoidal particles is larg
for end-to-end orientation of particles.

FIG. 2. The parametrized van der Waals energy as a functio
the scaled center-of-mass separation for a pair of CCl4 continuum
particles of diameter 2.544 nm.

TABLE I. The parameters used to fit the van der Waals ene
from contact to large separations for a pair of CCl4 continuum
spherical particles of diameter 2.544 nm.

Parameters Values

a1 257.8460
a2 954.8547
a3 23093.6990
b1 29.5677
b2 4.1931
b3 218.9670
b4 2724.6654
b5 1113.7198
b6 6055.6064
b7 7423.4565
b8 2613.6556
b9 505.7056
b10 32.6514
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FIG. 3. The parametrized van der Waals force as a function
the scaled center of mass separation for a pair of CCl4 continuum
particles of diameter 2.544 nm.

FIG. 4. The interaction energies and coupling energy betwee
contacting pair of CCl4 clusters and a third cluster in:~a! the linear
orientation, and~b! the T orientation. The coupling energy is th
difference between the interaction energy obtained by coupling
molecules in the three-cluster system and the energy obtaine
ignoring the interactions between the molecules in the adhe
clusters.
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IV. CONCLUSIONS

To summarize, we have formulated a method for cal
lating the van der Waals energy between complex partic
aggregates of spherical particles, from large separat
through contact. The method has several advantages.~1! It
presents an integrated and internally consistent picture o
van der Waals energy from the large separations, where
collective effects characteristic of condensed matter are
portant, to near contact separations, where the molecula
fects become increasingly important.~2! It provides a param-
etrization of the interaction energy over all separatio
which can significantly reduce computation time, while r
taining all of the physics of the interactions. Such a para
ol

s

-
s,
ns

he
he
-

ef-

,
-
-

etrization is especially beneficial for molecular dynam
simulation calculations@23#, where the largest part of th
computational time is spent in the calculations of the int
particle energies and forces.~3! It enables the calculation o
the Lifshitz–van der Waals interaction energy between
regularly shaped aggregates of particles.
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