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Homogeneous cooling of rough, dissipative particles: Theory and simulations

S. Luding,1 M. Huthmann,2 S. McNamara,1,3 and A. Zippelius2
1Institute for Computer Applications 1, Pfaffenwaldring 27, 70569 Stuttgart, Germany

2Institut für Theoretische Physik, Universita¨t Göttingen, Bunsenstrasse 9, 37073 Go¨ttingen, Germany
3Levich Institute, Steinman Hall T-1M, 140th Street and Convent Avenue, New York, New York 10031

~Received 1 April 1998!

We investigate freely cooling systems of rough spheres in two and three dimensions. Simulations using an
event-driven algorithm are compared with results of an approximate kinetic theory, based on the assumption of
a generalized homogeneous cooling state. For short timest, translational and rotational energy are found to
change linearly witht. For large times both energies decay liket22 with a ratio independent of time, butnot
corresponding to equipartition. Good agreement is found between theory and simulations, as long as no
clustering instability is observed. System parameters, i.e., density, particle size, and particle mass can be
absorbed in a rescaled time, so that the decay of translational and rotational energy is solely determined by
normal restitution and surface roughness.@S1063-651X~98!12409-1#

PACS number~s!: 46.10.1z, 51.10.1y, 05.60.1w, 05.40.1j
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I. INTRODUCTION

Collections of macroscopic, dissipative, and rough c
stituents have attracted a lot of interest recently, mainly
the context of granular media@1–3#. In the so-called grain-
inertia regime, one is concerned with rapid granular flo
which on one hand can be described by methods of statis
mechanics, analogous to the kinetic theory of dense g
@2–8#, and, on the other hand can be well simulated with
help of event-driven algorithms@9–11#. In both approaches
the dynamics of the system is assumed to be dominate
two-particle collisions that are modeled by their asympto
states. A collision is characterized by the velocities bef
and after the contact, and the contact is assumed to be
stantaneous. In the simplest model, one describes inel
collisions by normal restitution only. However, surfa
roughness is important for the dynamics of granular fl
@8–10# and allows for an exchange of translational and ro
tional energy. The energy loss is then determined by an ‘
fective restitution coefficient’’ that depends on both norm
and tangential restitution and also on the moment of ine
of the particles@11#.

The rough sphere model was first introduced for ela
cally colliding particles, assuming either perfectly rough
perfectly smooth particles@12,13#. Subsequently, it has bee
generalized to intermediate values of the roughness to
count for tangential restitution in inelastic collisions. Seve
groups have investigated the exchange of translational
rotational energy, using kinetic theory@4–8,10# or numerical
simulations@9,10#. One major result is that in contrast t
conservative systems, energy is not equipartitioned betw
the degrees of freedom in dissipative systems@4–10#, even
though the ratio of translational and rotational energy
proaches a constant, while both functions decay to zero
freely cooling system. In this paper we study the full tim
evolution of translational and rotational energy of a gas
rough, hard spheres. We compare numerical simulation
kinetic theory, which is based on a pseudo-Liouvill
operator formalism and makes use of the assumption
homogeneous cooling state~HCS!. The computation covers
PRE 581063-651X/98/58~3!/3416~10!/$15.00
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the full range of times, from the initial linear change of e
ergies with time to the asymptotic state for large times, a
also including the crossover between the two limiting
gimes.

In Sec. II we introduce the microscopic interaction law
and the operators needed in Sec. III to derive the solution
homogeneously cooling systems. The analytical solution
compared to the simulations in Sec. IV and the results
summarized and discussed in Sec. V.

II. MICROSCOPIC DYNAMICS

We consider a system ofN D-dimensional spheres inter
acting via a hard-core potential confined to aD-dimensional
volume V5LD with linear size L and D52 or 3. The
spheres have massm, radiusa, and moment of inertiaI . The
degrees of freedom are the positionsrm(t), the translational
velocitiesvm(t), and the angular velocitiesvm(t) for each
sphere, numbered bym51,2, . . . ,N. Here, the spheres ar
rough with constant normal and also constant tangential
titution. The translational and angular velocities after co
sion ~primed quantities! are determined by the velocities be
fore collision ~unprimed quantities! so that

vm8 5vm2
11r

2
vn2

q~11b!

2q12
~vt1vr !, ~1!

vn85vn1
11r

2
vn1

q~11b!

2q12
~vt1vr !, ~2!

vm8 5vm1
11b

a~2q12!
@ r̂3~vt1vr !#, ~3!

and

vn85vn1
11b

a~2q12!
@ r̂3~vt1vr !#. ~4!

The unit vectorr̂5(rm2rn)/urm2rnu points from particlen
to m, along the line connecting the centers of mass. We h
3416 © 1998 The American Physical Society
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introduced abbreviations for the normal velocityvn5@(vm

2vn)• r̂)] • r̂, for the tangential velocity due to translation
motionvt5vm2vn2vn and for the tangential velocity due t
rotational motionvr52a(vm1vn)3 r̂. The constantsr and
b characterize normal and tangential restitution, andq
5I /(ma2) depends on the mass distribution inside a gra

The time evolution of a dynamical variableA(t)
5A(G;t)5A„$rm(t),vm(t),vm(t)%;t… is ~for positive times!
determined by the pseudo-Liouville-operatorL1

A~ t !5exp~ iL1t !A~0!. ~5!

The pseudo-Liouville-operator@8,14–16# consists of two
partsL15L01L18 . The first,L0 , describes the undisturbe
motion of single particles

L052 i(
m

vm•¹ rm
~6!

and the second,L18 5 1
2 (mÞnC1(mn), describes hard-core

collisions of all pairs of particles (m, n) with

C1~mn!5 i ~vmn• r̂mn!Q~2vmn• r̂mn!d~ urmnu22a!~bmn
1 21!.

~7!

The operatorbmn
1 acts on the particlesm and n only, and

instantaneously replaces the translational and angular
menta just before the collision, by the corresponding val
just after. Q(2vmn• r̂mn) is the Heaviside step function
which is nonzero for approaching particles only. The te
vmn• r̂mn gives the relative velocity of two colliding particles
reflecting that fast particles collide more frequently. Final
we have introduced the notationvmn5vm2vn , rmn5rm

2rn , and r̂mn5rmn /urmnu.

III. HOMOGENEOUS COOLING STATE

The ensemble average of a dynamical variableA(G;t) is
defined by

^A& t5E dGr~G;0!A~G;t !5E dGr~G;t !A~G;0! ~8!

with the abbreviation for phase space integration

E dG5E )
m

~drmdvmdvm! )
m,k

Q~ urmku22a!. ~9!

Herer(G;t) is theN-particle phase space distribution fun
tion, i.e.,r(G;t)dG is the probability at timet to find particle
1 at (r1 ,v1 ,v1), particle 2 at (r2 ,v2 ,v2), etc. The time evo-
lution of the N-particle distribution r(G;t)5exp
(2iL1

† t)r(G;0) is governed by the adjointL1
† of the time

evolution operatorL1 .
The quantities of interest are the translational and ro

tional energies per particleEtr5(m/2N)(mvm
2 and Erot

5(I /2N)(mvm
2 , as well as the total kinetic energyE5Etr

1Erot . It is impossible to calculate these expectation valu
exactly. To make some progress we resort to an approxi
tion, known as the homogeneous cooling state. One assu
that theN-particle distribution function is spatially homoge
.

o-
s

,

-

s
a-
es

neous and depends on time only via the average kinetic
ergy of the grains. It was shown in@8# that initially equipar-
titioned translational and rotational energy change w
different rates, suggesting a generalized cooling state of
form

rHCS~G;t !;expF2NS Etr

Ttr~ t !
1

Erot

Trot~ t ! D G . ~10!

The N-particle distribution does not depend on the spa
coordinates$rm% as a consequence of the assumption of
mogeneity. It depends on time only via the average tran
tional and rotational energy:Ttr(t)52/D^Etr& t and Trot(t)
52/(2D23)^Erot& t . The factorsD and 2D23 account for
the number of translational and rotational degrees of freed
in D dimensions, respectively. To study the time evoluti
of the average translational and rotational energy we c
sider the corresponding time derivatives

d

dt
Ttr~ t !5

2

DE dGr~G;t !iL1Etr

and

d

dt
Trot~ t !5

2

2D23E dGr~G;t !iL1Erot. ~11!

Then, we assume the generalized homogeneous cooling
of Eq. ~10!, replacingr(G;t) by rHCS(G;t) in Eqs.~11!, and
arrive at

d

dt
Ttr~ t !5

2

D
^ iL1Etr&HCS

and

d

dt
Trot~ t !5

2

2D23
^ iL1Erot&HCS. ~12!

All that remains to be done is a high-dimensional pha
space integral, the details of which are delegated to App
dix A, where we present calculations forD52. After inte-
gration over phase space has been performed, we find

^ iL1Etr&HCS52GATtr
3/21GBTtr

1/2Trot

and ~13!

^ iL1Erot&HCS5GBTtr
3/22GCTtr

1/2Trot

with the constantsA, B, C, andG, whose values depend o
space dimensionalityD.

A. The 2D case

In two dimensions the constants in Eqs.~13! are given by

G58a
N

V
Ap

m
g~2a!, A5

12r 2

4
1

h

2
~12h!,

~14!

B5
h2

2q
, C5

h

2qS 12
h

q D .
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We have introduced the abbreviationh5q(11b)/(2q
12), andg(2a) denotes the pair correlation function at co
tact. We consider homogeneous disks withq51/2.

In a system of elastically colliding particles@13#,
(1/2)GTtr

1/2 is just the Enskog collision frequency, whos
inverse determines the mean time between collisions. We
this mean collision frequency of the elastic system to resc
time according tot5GTtr

1/2(0)t, and furthermore introduce
the dimensionless translational temperatureT5Ttr(t)/Ttr(0)
and the dimensionless rotational temperatureR
5Trot(t)/Ttr(0). Expressed in scaled units, Eqs.~12! and
~13! read in 2D

d

dt
T52AT3/21BT1/2R,

~15!
d

dt
R52BT3/222CT1/2R.

We emphasize that the densityN/V enters only viat. The
constantsA, B, and C depend only on the properties o
individual particles (r , b, andq). Thus, if time is measured
in units of t, the evolution of the system is independent
the densityN/V; the physical reason for this is thatT andR
change only during collisions, and the only parameters
enter the collision rule, Eqs.~1!–~4!, are r , b, andq. The
density controls the rate of collisions, and thus the rate of
evolution of T and R, but has no effect on the collision
themselves. This is why all dependence on the density ca
removed by rescaling time~at least in the HCS!.

To find the asymptotic value of the ratio ofK5T/R, we
consider the differential equation

dT

dR
5

2AK1B

2BK22C
, ~16!

which can be solved by a constant

K5@2C2A1A~2C2A!218B2#/~4B! ~17!

in agreement with Ref.@10#.
Of particular interest is the long time decay of trans

tional and rotational energy as a function ofr and b. We
would expect the decay to be slowest if energy is lost o
due to normal restitution and not due to roughness. Hence
a function ofb, translational and rotational energy shou
persist for the longest times forb561. In between, i.e.,
21,b,1, we expect a faster decay, because surface ro
ness is an additional mechanism for the disspation of ene
These expectations are born out by the following deta
discussion of Eqs.~15! and ~17!. We assume that the rati
K5T/R has reached its asymptotic value given in Eq.~17!
for some t.t0 and substituteR5T/K into Eq. ~15! and
obtain

d

dt
T52FT3/2. ~18!

The resulting equation is of the same functional form as
homogeneous cooling of smooth spheres, except for the
se
le

f

at

e

be

-

y
as

h-
y.
d

r
o-

efficient F5A2B/K, which contains all the dependence o
b and r . Its solution is given by

T5
T~t0!

@11T~t0!1/2~F/2!~t2t0!#2
. ~19!

Asymptotically, for t→`, the translational energy decay
like T'@(F/2)t#22 and the rotational energy likeR
'@(FAK/2)t#22. In a double-logarithmic plot ofT and R
againstt one should observe straight lines with slope22
and axial sections~at t51) given by 22 ln(F/2) for the
translational energy, and by22 ln(FAK/2) for the rotational
energy. For the same slope a larger axial section imp
persistence for longer times, i.e., a ‘‘slower’’ decay in tim
In Fig. 1 we plot the prefactorsF andFAK againstb for r
50.99.

As a function of b, F is smallest forb→61 corre-
sponding to the cases where no energy is lost due to frict
The decay of translational energy is then pushed out to
longest time scales. In Fig. 1, the maximum ofF is reached
for b tr

max'0.17, corresponding to the ‘‘fastest’’ decay ofT.
For b521 we find thatFAK50, because the rotationa
energy remains constant as a function of time.FAK reaches
its maximum forb rot

max'20.29Þb tr
max, so that the decay o

rotational energy is ‘‘fastest’’ for a value ofb, different
from the one where the translational energy decays fastes
the limit b→1, the axial sections forT andR have approxi-
mately the same values. In this case the ratioK is close to
unity, reflecting the rather effective exchange of rotation
and translational energy for rough spheres and thus appr
mate equipartition.

B. The 3D case

In 3D we consider spheres withq52/5. The constants in
Eq. ~13! are given by

G58~2a!2
N

V
Ap

m
g~2a!, A5

12r 2

4
1h~12h!,

~20!

B5
h2

q
, C5

h

qS 12
h

q D .

As in two dimensions we introduce a dimensionless timet
5 2

3 GTtr
1/2(0)t with the factor 2/D52/3, which accounts for

FIG. 1. Dependence of the asymptotic decay prefactorsF and
FAK on b for r 50.99.
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the number of translational degrees of freedom. The t
dependence of the dimensionless translational tempera
T5Ttr(t)/Ttr(0) and of the dimensionless rotational tem
peratureR5Trot(t)/Ttr(0) follows from

d

dt
T52AT3/21BT1/2R,

~21!
d

dt
R5BT3/22CT1/2R.

The asymptotic value of the ratio ofK5T/R is given in
Refs.@7# and @10#:

K5@C2A1A~C2A!214B2#/~2B!. ~22!

The long time limit can be discussed as in the 2D case.
find a very similar result for the dependence of t
asymptotic decay onr andb.

The full time-dependent solution, obtained by numeri
integration of Eqs.~15! and ~21!, will be compared with
simulations in the next section.

IV. NUMERICAL EXPERIMENTS

Since we are interested in the behavior of granular p
ticles cooling over several decades in time, we use an ev
driven ~ED! method. In these simulations, the particles f
low an undisturbed translational motion until an eve
occurs. An event is either the collision of two particles or t
collision of one particle with a boundary of a cell~in the
linked-cell structure!. The cells have no effect on th
particle-motion here; they were solely introduced to acce
ate the search for future collision partners in the algorit
~see also Appendix B!. Using the velocities just before con
tact we compute the particles’ velocities just after the con
following Eqs.~1!–~4!. In the ED method the contact dura
tion is implicitly zero, matching well the corresponding a
sumption of instantaneous contacts used for the theory.
remark that ED algorithms run into problems when the ti
between eventstev gets too small. In dense systems wi
strong dissipationtev may tend towards zero. As a cons
quence the so-called ‘‘inelastic collapse’’ can occur, i.e.,
divergence of the number of events per unit time. The pr
lem of the inelastic collapse@17,18# can be handled using
restitution coefficients dependent on the time elapsed s
the last event@19–22#. For the contact that occurs at timet i j ,
one usesr 51 and b521 if at least one of the involved
partners had a collision with another particle later thant i j
2tc . The timetc can be identified as a typical duration of
contact. The effect oftc on the simulation results is negl
gible for large r and small tc , which we checked in the
simulations@21#. We do not focus on this so-calledtc model,
which allows us to avoid the inelastic collapse, since
theory is valid only in the homogeneous regime where
collapse does not occur anyway~and thetc model does not
have to be used!. Only for very small valuesr<0.6 was a
cutoff time tc51026 s needed to avoid the inelastic co
lapse. For a more detailed discussion of the ED algorit
used, see Appendix B.

Every simulation is first equilibrated withr 51 andb5
e
re

e

l

r-
nt-

t

r-

ct

e
e

e
-

ce

e
e

21 until the velocity distribution is Maxwellian. Then th
restitution coefficients are set to the selected values. In o
to classify the systems used for the simulations, we nee
specify the number of particlesN and the volume fractions
r2D5(N/V)pa2 andr3D5(N/V)(4/3)pa3 in two and three
dimensions, respectively.

A. Results in 2D

For short times we can solve Eqs.~15! analytically and
get T512At andR5(2B)t. Hence our data can be effec
tively collapsed for short times by rescaling time accorrdi
to t→At and rotational temperature according toR
→RA/(2B). We compare the theoretical result@numerical
solution of Eq. ~15!# with simulations for various sets o
parameters. The scaling collapses data for different part
number, particle radius, and density on the same ma
curves, since all these dependencies are hidden in the
caled timet. The shape of the master curves depends o
on the restitution coefficientsr andb. In order to check the
dependence of the solution on system size, we simula
large system withN599 856 particles and asmall system
with only N5198. For the small system we consider tw
volume fractionsr50.25 orr50.01, the latter correspond
ing to an extremelydilute system. For the large system w
always user50.25. For the larger volume fraction we g
numericallyg0.25(2a)'1.58, in perfect agreement with th
2D equivalent of the Carnahan-Stirling formula,

g~2a!5
127r/16

~12r!2
, ~23!

from Ref. @4,23#. Initially, the normalized energies areT
51 andR50 for all data presented here.

In Fig. 2 we plotT against rescaled timeAt for various
simulations with a fixed value ofr 50.99 and different par-

FIG. 2. T as a function of rescaled timeAt. Different symbols
correspond to different simulations withN599 856, r50.25
~large!; N5198, r50.25 ~small!; and N5198, r50.01 ~dilute!.
The coefficient of restitution isr 50.99 and the value ofb is given
in brackets in the inset. The curves represent numerical solution
Eqs.~15!.
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ticle numberN, volume fractionr, and tangential restitution
b. We observe that all simulations with the sameb collapse,
independent of the specific value ofN or r. This indicates
that the dimensionless unitsT andt are indeed the system’
inherent ‘‘temperature’’ and ‘‘time.’’ The temperatureT de-
cays continuously from its initial valueT51, following the
function T512At for short timesAt,0.1 and decaying
like t22 for long times. The monotonic dependence ofT on
b is due to our scaling of the horizontal axis, which includ
factors ofb via A. If we plot T againstt, we observe that
the crossover between the initial linear decay and
asymptotict22 behavior is nonmonotonic withb: The time
of crossover is largest forb521, then decreases an
reaches a minimum aroundb tr

max'0.17, and then increase
again forb→1 ~in agreement with Fig. 1!.

The simulations of thelarge system deviate from the
theory and also from the simulations for the small system
large times or smallT. The deviation from the theoretica
curve is due to the density instability, i.e., clusters of p
ticles form and the homogeneous cooling assumption fa
Additional simulations show that the deviation from theo
occurs earlier for stronger dissipation due to either smaller
or ubu.

In Fig. 3 we plotRA/(2B) against normalized timeAt
for the same set of parameters as in Fig. 2. As expected f
the solution for smallAt, we find thatRA/(2B) is propor-
tional to At for small timesAt,0.1. In this regime, the
initially ‘‘cold’’ rotational degrees of freedom are activate
due to the transfer of linear to angular momentum dur
collisions. After some equilibrium between translational a
rotational temperature is achieved, both degrees of free
lose energy in the long time limit. Like the translational tem
perature, also the rotational temperature is independentN
and r, only r and b determine the decay of rotational e
ergy. As for the translational energy, the observed, alm
monotonic dependence of the crossover time for the r
tional energy onb is due to our scaled unitst→At andR
→RA/(2B). If we plot R againstt, we find a similar non-

FIG. 3. RA/(2B) as a function of rescaled timeAt. The simu-
lations are the same as in Fig. 2. The curves represent the num
solutions of Eqs.~15!.
s

e

t

-
s.

m

g
d
m

-

st
a-

monotonic dependence of the crossover time onb as for the
translational energy with, however, the minimum of rot
tional crossover time occurring at a different value ofb rot

max

'20.29 ~see Fig. 1!.
The results of simulations are in very good agreem

with the theoretical results, which are based on the gene
ized homogeneous cooling assumption for theN-particle dis-
tribution function. Note that the agreement extends o
many orders of magnitude in time and covers the initial
crease ofR, the crossover, and the algebraic decay for lo
times.

In Fig. 4 we present the ratio ofT and RA/(2B) as a
function of scaled timeAt for a selected set of parameter
which were used in the simulations shown in Fig. 2. Data
two valuesb51.0 andb520.5 are shown in Fig. 4~a!. For
the latter we compare systems at different densities and
serve that the dilute simulations are in perfect agreem
with the theory, whereas the dense system withr50.25 de-
viates. The small system shows a slightly smaller ra
(2B/A)T/R, whereas for the large system, the ra
(2B/A)T/R is larger than expected and eventually diverg

ical

FIG. 4. (2B/A)T/R as a function of rescaled timeAt for some
simulations from Fig. 2.~a! The simulation of the large system wit
N599 856, r50.25, andb520.5 ~solid squares! shows no satu-
ration of (2B/A) T/R, which instead diverges for largeAt. ~b!
Here only simulations of the dilute system withN5198 andr
50.01 are compared to theory. All show saturation of the ra
(2B/A)T/R for large times.
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for large At. This is again the regime where the homog
neous cooling assumption fails. Interestingly, the large sim
lation with N599 856,r50.25, andb51.0 is in reasonable
agreement with theory. From Fig. 4~b!, we learn that the
simulations of dilute systems are always in good agreem
with theory. The ratio (2B/A)T/R is constant for large
times, but there is no equipartition of energies in the tra
lational and rotational degrees of freedom.

B. Results in 3D

As in 2D, we can solve Eq.~21! analytically for short
times, and getT512At andR5Bt. Hence we rescale time
t→At and rotational temperatureR→RA/B.

We simulated various systems characterized by volu
fraction r and particle numberN. One system with density
r50.087 andN51331 particles is denoted asmedium; two
other systems with lower density have the parame
r50.0021, N54096 dilute and r50.0023, N568 921
large. Finally, a system with higher density, i.e.,r50.23 and
N554 872 dense, is examined. The abbreviation corr
sponds to the density, only for the large system one sho
read ‘‘dilute and large.’’ To calculate the pair correlatio
function at contact, we use the Carnahan-Starling formu

4rg~2a!5
11r1r22r3

~12r!3
2154r

12r/2

~12r!3
, ~24!

in 3D from Ref. @24#. Initially, the normalized energies ar
T51 andR50 for all data presented here.

Constant r50.99,variable b and r

In Fig. 5 we plot T against normalized timeAt for r
50.99 and various values of the tangential restitutionb. We
observe a very similar picture as in 2D and, again, reason
agreement between theory and simulation over many or

FIG. 5. T as a function of rescaled timeAt in 3D. The symbols
correspond to simulations withN51331, r50.087 ~medium!, r
50.99, and differentb as given in brackets in the inset. The curv
represent numerical solutions of Eqs.~21! with the three-
dimensional constants from Eqs.~20!.
-
-

nt

-

e

rs

ld

le
rs

of magnitude in time. Forb,0.5 most of the dependence o
b is taken into account by our scaling,t→At, so that the
scaled data almost collapse forb,0.5.

In Fig. 6 we compare simulations of different system
with the numerical solution of Eqs.~21!. Only the dense
simulations deviate from the theoretical result. The scaling
time with At is rather successful for small and moderate
dilute systems; in dense systems a deviation from the the
occurs for largeAt.

In Fig. 7 we plotRA/B versus normalized timeAt for
mediumand densesystems. As in 2D, we find thatRA/B
increases proportional toAt for small times (At,0.1), re-
flecting the activation of initially ‘‘cold’’ rotational degrees

FIG. 6. T as a function of rescaled timeAt in 3D from simula-
tions with r 50.99 andb520.9 orb510.9 as given in brackets
Different symbols correspond to simulations withN51331, r
50.087 ~medium!; N54096, r50.0021 ~dilute!; N568 921, r
50.0023~large!; andN554 872, r50.23 ~dense!. The curves are
numerical solutions of Eqs.~21! with the three-dimensional con
stants from Eqs.~20!.

FIG. 7. RA/B as a function of rescaled timeAt. The data are
selected situations from Fig. 5. The curves represent the nume
solutions of Eqs.~21!.
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of freedom due to collisions. This feature as well as the
time dependence is well reproduced by our theoretical an
sis.

Constantb520.9, variable r andr

In Fig. 8 we presentT, RA/B, and the ratio ofT and
RA/B as a function of scaled timeAt for r 50.6 andb5
20.9, where interesting structure is observed. The open s
bols correspond to themediumsystem withr50.087, N
51331. The data are in good agreement with the theore
curves, while we obtain substantial differences betwe
theory and simulation in the case of the dense system, du
the density instability~not shown here!. For the medium sys-
tem the loss of energy during collisions is predominantly d
to normal restitution and only after the translational ene
has decayed to a very small value (T,1025) does one ob-
serve the energy loss due to friction. The two regimes can
discussed analytically with the help of Eqs.~21!. For inter-
mediate times, when the translational energy is still app
ciable, the equations can be simplified for almost smo
spheres, i.e., (b'21):

d

dt
T52AT3/2,

~25!
d

dt
R52CT1/2R.

We have neglected terms ofO„(11b)2
… and approximate

A'(12r 2)/4 andC'5(11b)/14. The solution forT is that
of smooth spheres, decaying likeT(t)'(At/2)22 for large
t. Substituting this result into the equation forR, we find
R(t)/R(t0)5(t/t0)2a with a52C/A. Heret0 is some in-
termediate time scale, larger than the time for the initial
crease ofR, but smaller than the time scale to reach the t
asymptotic state. The above algebraic decay is shown in
8 as a straight dashed line witha'0.396. Once the transla
tional energy has decayed to a very small value as comp
to the rotational energy, all terms in the differential equatio

FIG. 8. T, RA/B, and (B/A)T/R for 3D simulations withb
520.9 and r 50.6 in the medium system~symbols!. The thick
lines give the solutions of Eqs.~21!. The thin line is discussed afte
Eq. ~25!.
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for R andT are equally important. We then observe a cro
over from at2a to at22 decay of the rotational energy. Thi
true asymptotic state is characterized by a constant ratioT/R
and has been discussed above. The crossover betwee
two regimes shows up as a parallel shift forT ~see Figs. 8
and 9!, because the translational energy decays liket22 in
both regimes, but with a different prefactor.

When r is increased to a value close to unity, i.e., t
elastic case, the intermediate time regime disappears,
cause normal and tangential restitution are equally import
This is demonstrated in Fig. 9, where we showT plotted
against the normalized timeAt for medium density r
50.087, b520.9, and different values ofr , as given in the
legend.

In the intermediate time regime all curves follow the d
cay of smooth spheres@see Eq.~25!#, which is independent
of r , because we use scaled timeAt. In the true asymptotic
regime, all curves have the same slope with, however,
axial section~see the discussion of Fig. 1!, which increases
with decreasingr . Without scalingt with A the axial section
decreases with decreasingr reflecting the more efficient dis
sipation of energy for smallerr . The agreement betwee
theory and simulations is quite good for values ofr as low as
r 50.6, and even forr 50.2 only the crossover regime is no
captured by theory.

V. SUMMARY AND DISCUSSION

Homogeneous cooling of colliding inelastic rough sphe
has been investigated with numerical simulations and an
proximate kinetic theory in two and three dimensions. W
have confirmed that surface roughness is an important c
acteristic of the grains, in so far as it determines the deca
translational energy, i.e., the rate of cooling. If energy lo
due to small normal and tangential restitution is compara
then one observes an initial linear change of translational
rotational energy, followed by a crossover to the asympto
regime, where both functions decay liket22. This regime is

FIG. 9. T as a function of rescaled timeAt. The density isr
50.087, b520.9, and the restitution coefficientr is given in the
inset. The curves represent again the numerical solutions of
~21!.
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characterized by a constant ratioT/R, whose value depend
on both r andb. The dependence onb is nonmonotonic, the
ratio being smallest forb561. This nonmonotonic depen
dence onb also holds for the crossover time, which is lon
est for b561. If the coefficients of normal and tangenti
restitution are such that energy is lost mainly due to norm
restitution, then we observe an intermediate time regime
between the initial linear change and the true asympt
behavior with constant ratioT/R. This intermediate regime
is also characterized by analgebraic decay of translationa
and rotational energy: Translational energy decays as
smooth spheres (t22), whereas rotational energy decays w
an exponent that depends continuously onr andb.

The theoretical approach is based on the assumption
generalized homogeneous cooling state: TheN-particle dis-
tribution is assumed to depend on time only via the aver
energies of translation and rotation. Based on this assu
tion, we computed the time decay of translational energy
rotational energy without further approximations. Go
agreement with numerical simulations was found for a la
range of time scales and parameter sets, provided no de
instability builds up. The initial linear change, the asympto
t22 behavior, the crossover in between, as well as the in
mediate algebraic decay for almost smooth spheres ar
l
in
ic

or

f a

e
p-
d

e
ity

r-
all

features that are accurately reproduced by our theoretica
satz. These findings certainly support the assumption o
homogeneous cooling state and suggest expanding ar
the HCS to study deviations from homogeneous cooli
One possibility would be to study the stability of the HC
with rough particles, which determines the domain of val
ity of this theory. It is not clear if an effective restitutio
coefficient is a sufficient control parameter, or if the interpl
between rotational and translational degrees of freedom
change the behavior of the system in a more subtle way
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APPENDIX A: DETAILED CALCULATION IN 2D

In this appendix we explain, as an example, the m
steps to calculatêiL1Etr&HCS of Eq. ~13! in 2D. The expec-
tation value is calculated with theN-particle distribution
function, properly normalized
t change

ar
rHCS~G;t !5
1

VNS m

2pTtr~ t ! D
NS I

2pTrot~ t ! D
N/2

expF2 (
n51

N S m

2Ttr~ t !
vn

21
I

2Trot~ t !
vn

2D G . ~A1!

The angular velocity is a scalar in two dimensions, but a vector in more than two dimensions. Free streaming does no
the energy, so we have to take into account only the collison operatoriL18 and we keep the abbreviation forG from Eq. ~9!
so that

^ iL18 Etr&HCS52
i

2 (
aÞb

E dGrHCS~G;t !C1~ab!
1

2N(
n51

N

mvn
252

i

2N (
aÞb

E dGrHCS~G;t !C1~ab!
m

2
~va

21vb
2 !. ~A2!

The binary collision operatorC1(ab) gives a contribution only if eithern5a or if n5b. Next, we introduce twod functions,

^ iL18 Etr&HCS52
i

2N (
aÞb

E dGE dR1dR2d~R12ra!d~R22rb!rHCS~G;t !C1~ab!
m

2
~vb

21va
2 !, ~A3!

which allows us to replacera by R1 andrb by R2 in C1(ab). Integration over allrm of the respective part of Eq.~A3! can then
be performed and yields a factor

E )
m51

N

drm )
m,k

Q~ urmku22a!d~R12ra!d~R22rb!5VN22g~r12!. ~A4!

The pair correlation functiong(r12) depends onur12u5uR12R2u only. Similarly integration over all velocities and angul
velocities with indexm andaÞmÞb gives 1 due to normalization. We can sum overN(N21) identical integrals and get

^ iL18 Etr&HCS52
~N21!

2V2 S m

2pTtr~ t ! D
2 I

2pTrot~ t !E dv1dv2dR1dR2dv1dv2expS 2
m

2Ttr~ t !
~v1

21v2
2!2

I

2Trot~ t !
~v1

21v2
2! D

3g~r!~v12• r̂ !Q~2v12• r̂ !d~ uru22a!DEtr . ~A5!

The loss of translational energy of two colliding particles is denoted byDEtr and is given by

DEtr5
m

2
$2h~h21!@v12

2 2~v12• r̂ !2#2~1/2!~12r 2!~v12• r̂ !212h2a2V2%. ~A6!
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Here we use the abbreviationsh5q(11b)/(2q12), V5(v11v2)/A2, and R12R25r5r r̂. To perform the remaining
integrations we substitute

V5
1

A2
~v11v2!, v5

1

A2
~v12v2!, ~A7!

V5
1

A2
~v11v2!, v5

1

A2
~v12v2!, ~A8!

The Jacobian determinant for the above transformation is 1. Integration overv, V, andR1 can be done, which all give the
value 1 due to normalization. The resulting integral is

^ iL18 Etr&HCS52
~N21!m

4pTtr~ t !VS 2I

2pTrot~ t ! D
1/2E dVdrdv expS 2

mv2

2Ttr~ t !
2

IV2

2Trot~ t ! Dg~r!~v• r̂ !Q~2v• r̂ !d~ uru22a!

3
m

2
$2h~h21!@v22~v• r̂ !2#2~1/2!~12r 2!~v• r̂ !212h2a2V2%.
ar
d

ac
fo

e
ta
us
o
r

e
a

e
-
x
t

te

ith
ec-
has
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ter

s,

ext
tree,
ith

ds
rt-
data
-

ef.
u-
ll
The integration overuru yields 2ag(2a). Choosing, e.g.,r̂ to
point along thex axis, the integrals over linear and angul
velocities can easily be done as moments of a Gaussian
tribution. The result is independent ofr̂, so that the integra-
tion overr̂ gives 2p. Finally we assume that 1!N, approxi-
mateN'(N21), and obtain the result of Eq.~13!.

APPENDIX B: ED ALGORITHM

Simple ED algorithms update the whole system after e
event, a method that is straightforward but inefficient
large numbers of particles. In Ref.@25#, an ED algorithm was
introduced that updates only those two particles that w
involved in the last collision. For this a double buffering da
structure is implemented, which contains the ‘‘old’’ stat
and the ‘‘new’’ status, each consisting of time of event, p
sition, velocities, and event partner. When a collision occu
the ‘‘old’’ and ‘‘new’’ status of the participating particles ar
exchanged. Thus, the former ‘‘new’’ status becomes the
tual ‘‘old’’ one, while the former ‘‘old’’ status becomes th
‘‘new’’ one and is free for future calculations. This seem
ingly complicated exchange of information is carried out e
tremely simply and fast by only exchanging the pointers
the ‘‘new’’ and ‘‘old’’ status, respectively. The ‘‘old’’ status
of particle i has to be kept in memory, in order to calcula
the time of the next contact,t i j , of particlei with any other
i,
e

is-

h
r

re

-
s,

c-

-
o

object j , which can change its status due to a collision w
yet another particle. During the simulation this may be n
essary several times so that the predicted ‘‘new’’ status
to be modified. An objectj is either a particle (j 51, . . . i
21, i 11, . . . ,N) or a cell wall (j 5N11, . . . ). Themini-
mum of all t i j is stored in the ‘‘new’’ status of particlei ,
together with the corresponding partnerj . Depending on the
implementation, also positions and velocities after the co
sion can be calculated. This would be a waste of compu
time, since before the timet i j , the predicted partnersi and j
might be involved in several collisions with other particle
so that we apply a delayed update scheme@25#. The mini-
mum times of event, i.e., the times that indicate the n
event for a certain particle, are stored in an ordered heap
such that the next event is found at the top of the heap w
computational effort ofO(1); changing the position of one
particle in the tree from the top to a new position nee
O(log10N) operations. The search for possible collision pa
ners is accelerated by the use of a standard linked-cell
structure and consumesO(1) of numerical resources. In to
tal, this results in numerical effort ofO(N log10N) for N
particles. For a detailed description of the algorithm, see R
@25#. Using all these algorithmic tricks, we are able to sim
late up to 105 particles within reasonable time on a sma
workstation~IBM P43/133MHz! @26#. The particle number
is limited by RAM-size~64MB! rather than CPU-power.
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