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We investigate freely cooling systems of rough spheres in two and three dimensions. Simulations using an
event-driven algorithm are compared with results of an approximate kinetic theory, based on the assumption of
a generalized homogeneous cooling state. For short timeanslational and rotational energy are found to
change linearly wittt. For large times both energies decay Itké with a ratio independent of time, bubt
corresponding to equipartition. Good agreement is found between theory and simulations, as long as no
clustering instability is observed. System parameters, i.e., density, particle size, and particle mass can be
absorbed in a rescaled time, so that the decay of translational and rotational energy is solely determined by
normal restitution and surface roughngs$1063-651X98)12409-1

PACS numbeps): 46.10+2z, 51.10+y, 05.60:+w, 05.40:+]

[. INTRODUCTION the full range of times, from the initial linear change of en-
ergies with time to the asymptotic state for large times, and
Collections of macroscopic, dissipative, and rough con-also including the crossover between the two limiting re-
stituents have attracted a lot of interest recently, mainly irgimes.
the context of granular medjd—3]. In the so-called grain- In Sec. Il we introduce the microscopic interaction laws
inertia regime' one is concerned with rapid granu'ar f|0W,aI’ld the Operators needed in Sec. Il to derive the solution for
which on one hand can be described by methods of statisticRiomogeneously cooling systems. The analytical solution is
mechaniCS, ana|ogous to the kinetic theory of dense gaség)mparEd to the simulations in Sec. IV and the results are
[2—8], and, on the other hand can be well simulated with theSUmmarized and discussed in Sec. V.
help of event-driven algorithm®—-11]. In both approaches
the dynamics of the system is assumed to be dominated by Il. MICROSCOPIC DYNAMICS
two-particle collisions that are modeled by their asymptotic . . . .
stateps. A collision is characterized by thg velocitieﬁ bpefore We consider a system &f D-dimensional spheres inter-
and after the contact, and the contact is assumed to be igeting via a héird-.core. potent!al confined t@adimensional
stantaneous. In the simplest model, one describes inelastYé)Iume V=L" with Imgar sizeL and DZZ. or 3 The
collisions by normal restitution only. However, surface Spheres have mass, radiusa, anq .moment of inertia '_I'he
roughness is important for the dynamics of granular ﬂowdegre_gs of freedom are the p05|t|m;$t)_,_the translational
[8—10] and allows for an exchange of translational and rotaYéloCitiesv,,(1), and the angular velocities,(t) for each
tional energy. The energy loss is then determined by an “ef_sphere, .numbered by=12,...N. Here, the spheres' are
fective restitution coefficient” that depends on both normal™ugh with constant normal and also constant tangential res-

and tangential restitution and also on the moment of inertiéiFUtion'_ The translg_tional and angular velocities aft_er colli-
of the particleg11] sion (primed quantitiesare determined by the velocities be-

The rough sphere model was first introduced for elastiforé collision(unprimed quantitigsso that

cally colliding particles, assuming either perfectly rough or 1+r q(1+8)
perfectly smooth particlell2,13. Subsequently, it has been U;L:"u_ > Un~ 2052 (vi+v,), D)

generalized to intermediate values of the roughness to ac-

count for tangential restitution in inelastic collisions. Several
1+r q(1+p)

groups have investigated the exchange of translational and v =v.+ v, (v,+v,), )
rotational energy, using kinetic theo#—8,1q or numerical voor 2 2q+2

simulations[9,10]. One major result is that in contrast to L

conservative systems, energy is not equipartitioned between . + -

the degrees of freedom in dissipative systdds1(], even W= Ot a(2q+2) [rx(vetool, )

though the ratio of translational and rotational energy ap-
proaches a constant, while both functions decay to zero in and
freely cooling system. In this paper we study the full time
evolution of translational and rotational energy of a gas of o' =+ 1+8 [FX (v+0,)] @)
) . 4 Y o) ]
rough, hard spheres. We compare numerical simulations to v a(2q+2)
kinetic theory, which is based on a pseudo-Liouville- R
operator formalism and makes use of the assumption of @&he unit vectorr=(rﬂ—ry)/|rM—rV| points from particlev
homogeneous cooling statelCS). The computation covers to u, along the line connecting the centers of mass. We have
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introduced abbreviations for the normal velocty=[(v,  heous and depends on time only via the average kinetic en-

—v,)-N)]-T, for the tangential velocity due to translational €79Y Of the grains. It was shown [8] that initially equipar-
titioned translational and rotational energy change with

motionv;=v,—v,— v, and for the tangential velocity due to

. o v". Ov™ On nd y different rates, suggesting a generalized cooling state of the
rotational motiorv, = —a(w, + @,) Xr. The constants and form
B characterize normal and tangential restitution, and
=1/(ma?) depends on the mass distribution inside a grain. Ey E ot

The time evolution of a dynamical variablé\(t) PHCS(F;t)NeXF{_N<T 0 + T (t)”' (10
=A; ) =A(r,(1),v,(1),w,(t)};t) is (for positive times " rot
determined by the pseudo-Liouville-operator The N-particle distribution does not depend on the spatial
A(t)=exp(i £, )A(0). 5) coordinateqr,} as a consequence of the assumption of ho-

mogeneity. It depends on time only via the average transla-

The pseudo-Liouville-operatof8,14—16 consists of two tional and rotational energyT(t)=2/D(Ey); and T(t)

partsC, = Lo+ L, . The first,Co, describes the undisturbed =2/(2D=3)(Eop. The factorsD and 2D —3 account for
motion of single particles the number of translational and rotational degrees of freedom

in D dimensions, respectively. To study the time evolution
of the average translational and rotational energy we con-

Lo= _i% "M'Vr# (6) sider the corresponding time derivatives
and the secondf ', = %EHVCJr(,uv), describes hard-core ET"(U:EJ dTp(T;0)i L. Ey
collisions of all pairs of particlesy, ») with dt D

Co(pur) =1 (04 ) O(—0,,-T,,) 81, | —228) (b, —1).  and
;

d

2 .
The operatotb;, acts on the particleg. and » only, and ﬁTrOt(t)ZZD—Sf dlp(I5OIL 4 Eror (1)

instantaneously replaces the translational and angular mo- ] ]
menta just before the collision, by the corresponding valued hen, we assume the generalized homogeneous cooling state
just after. ®(—wv,,T,,) is the Heaviside step function, of Eq. (10), replacingp(1;t) by prcg(I';t) in Egs.(11), and

which is nonzero for approaching particles only. The terma'rve at

v, T, gives the relative velocity of two colliding particles, 2

reflecting that fast particles collide more frequently. Finally, gt v(O= 5(|£+ EwHes
we have Alntroduced the notation,,=v,—v,, r,,=r,

—r,, andr,,=r,,/|r,,|. and

d 2
I1l. HOMOGENEOUS COOLING STATE .
dtTrot(t): 2D_3<|£+Erot>HCS- (12

The ensemble average of a dynamical variagh(€';t) is
defined by All that remains to be done is a high-dimensional phase
space integral, the details of which are delegated to Appen-

<A>t:f dl"p(r‘;o)A([‘;t):f dl p(T;t)AT;0) (8) dix A, where we present calculations for=2. After inte-
gration over phase space has been performed, we find

with the abbreviation for phase space integration (L.Egncs=—G ATE'sr/z + GBTtlr/ZTrot

dr=| [] (dr,dv,dw,) [ ©(r,]—2a). (9 and (13
J J pwEE S 12 n

iL.E =GBT2-GCTY?T
Herep(I';t) is the N-particle phase space distribution func- (£ Erovmes " oot

tion, i.e.,p(T";t)dI' is the probability at time to find particle  \yith the constant#, B, C, andG, whose values depend on
1at(,,v,,m,), particle 2 at (,,v,,w,), etc. The time evo- space dimensionalit.
lution of the N-particle distribution p(I';t)=exp
(—iLt)p(T;0) is governed by the adjoint’ of the time A The 2D case
evolution operator’, . , , ' , _
The quantities of interest are the translational and rota- N two dimensions the constants in E¢3) are given by

tional energies per particIeEtr=(m/2N)EMvi and E,y

_y2
:(|/2N)2Mwi, as well as the total kinetic enerdy=E,, G=8a$\/Eg(2a), A= 1-r
m
2

4

U
> 11 _ : +5(1=7),
+E,q. It is impossible to calculate these expectation values
exactly. To make some progress we resort to an approxima-
tion, known as the homogeneous cooling state. One assumes B U c= L, m
that theN-particle distribution function is spatially homoge- 29’ 2q

(14

1k
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We have introduced the abbreviation=q(1+8)/(2q 0.14 - -
+2), andg(2a) denotes the pair correlation function at con- 012 | FRY2 oo _
tact. We consider homogeneous disks vejth 1/2. T F—

In a system of elastically colliding particle$l3], 0.1 1 y |
(1/2)GTY? is just the Enskog collision frequency, whose 0.08 -/ 1
inverse determines the mean time between collisions. We use 0.06 [ \
this mean collision frequency of the elastic system to rescale 0.04 |
time according t07-=GTtlr’2(0)t, and furthermore introduce ’
the dimensionless translational temperaflireT,(t)/T,(0) 0.0z
and the dimensionless rotational temperatur® 0 .
=T,(t)/T4(0). Expressed in scaled units, Eq42) and -1 -0.5 0 0.5 1
(13) read in D p

d FIG. 1. Dependence of the asymptotic decay prefadtoend
— T=—AT¥24BTYV2R, FK on g for r=0.99.

dr

(15  efficientF=A—B/K, which contains all the dependence on
iR=ZBT3’2— 2CTY2R B andr. Its solution is given by
dr '

T(70)

We emphasize that the densiyV enters only viar. The T:[1+T(T YY2A(F12) (71— 79) ]2
constantsA, B, and C depend only on the properties of 0 0
individual particles {, B, andq). Thus, if time is measured Asymptotically, for 7—, the translational energy decays
in units of 7, the evolution of the system is independent oflike T~[(F/2)7]"? and the rotational energy likeR
the densityN/V; the physical reason for this is th&tandR ~[(F \/R/Z)T]_Z_ In a double-logarithmic plot o andR
change only during collisions, and the only parameters thaigainstr one should observe straight lines with slope
enter the collision rule, Eqs1)—(4), arer, B, andq. The  and axial sectiongat =1) given by —2In(F/2) for the
density controls the rate of collisions, and thus the rate of thg,gnsiational energy, and by 2 In(FyK/2) for the rotational
evolution of T and R, but has no effect on the collisions energy. For the same slope a larger axial section implies
themselves. This is why all dependence on the density can Bgsrsistence for longer times, i.e., a “slower” decay in time.

(19

removed by rescaling timet least in the HCB In Fig. 1 we plot the prefactors andF+K againstg for r
To find the asymptotic value of the ratio Bf=T/R, we  _( gg
consider the differential equation As a function of 8, F is smallest forB— =1 corre-

sponding to the cases where no energy is lost due to friction.

d_T: —AK+B (16) The decay of translational energy is then pushed out to the
dR 2BK-2C’ longest time scales. In Fig. 1, the maximumFofs reached
. for B¥~0.17, corresponding to the “fastest” decay Bf
which can be solved by a constant For B=—1 we find thatF\K=0, because the rotational

o A T an? energy remains constant as a function of tifieK reaches
K=[2C—A+(2C—A)"+8B7]/(4B) A7 its maximum for B~ —0.29# B, so that the decay of

in agreement with Re{10] rotational energy is “fastest” for a value o8, different
9 o from the one where the translational energy decays fastest. In

tiorgl gzglcrl;ltzt[igxglreesr:elrs thgslgn?ugé?iind;;iﬁg t\ngSIa'the limit 83— 1, the axial sections fof andR have approxi-
gy ' mately the same values. In this case the r#tits close to

would expect the _de(_:ay to be slowest if energy is lost Onlyunity, reflecting the rather effective exchange of rotational
due to normal restitution and not due to roughness. Hence, as

a function of 8, translational and rotational energy should ?nn;jtetrgnjzagcr)tr&%r?nergy for rough spheres and thus approxi-
persist for the longest times fg8=*1. In between, i.e., quip '
—1<B<1, we expect a faster decay, because surface rough-

ness is an additional mechanism for the disspation of energy.

These expectations are born out by the following detailed In 3D we consider spheres with=2/5. The constants in
discussion of Eqs(15) and (17). We assume that the ratio Eq. (13) are given by
K=T/R has reached its asymptotic value given in EL7)

B. The 3D case

for some > 7, and substituteR=T/K into Eg. (15 and . >N \/; _ 1-r2

obtain G=8(2a) v Eg(za)’ A= Tt n(1— 1),
d 2 (20
—T=—FT%, (18) B= c=2(1—2).
dr g al” dq

The resulting equation is of the same functional form as forAs in two dimensions we introduce a dimensionless time
homogeneous cooling of smooth spheres, except for the ce= %GTtlr’Z(O)t with the factor 2D = 2/3, which accounts for
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the number of translational degrees of freedom. The time 1 ' ]
dependence of the dimensionless translational temperatur
T=Tu(t)/Tx(0) and of the dimensionless rotational tem- -
peratureR=T,y(t)/T(0) follows from Eq. (15) (1.0) - ;
large (1.0) v
d 3/2 1/2 01 ¢ Eq'1(15) Eg‘g; a v E
T _ g arge (0. "\
g, 1= "AT+BTTR, small (0.9) & v
dilute (0.9) © N
. (21 ~ Eq. (15) (0.5) v
large (0.5) ® .
—R=BT¥-CTVR. small (0.3)  © *,
dr dilute (0.5) © w
001 FEq. (15) (-0.5) ~ 5 3
The asymptotic value of the ratio d€=T/R is given in Slglrfﬁ z:g:g; : % ¥
Refs.[7] and[10]: dilute (-:0.5) ©
Eq. (15) (_0.9) ..................... %
K=[C—A+(C—A)2+4B?]/(2B). 22 o She (09 @ R e
T 001 0.1 1 10 100

The long time limit can be discussed as in the 2D case. We
find a very similar result for the dependence of the AT

asymptotic decay on and 3. _ _ _ FIG. 2. T as a function of rescaled timr. Different symbols
The full time-dependent solution, obtained by numericalcorrespond to different simulations witthi=99 856, p=0.25

integration of Egs.(15) and (21), will be compared with  (jarge; N=198, p=0.25 (smal); and N=198, p=0.01 (dilute).
simulations in the next section. The coefficient of restitution is=0.99 and the value g8 is given
in brackets in the inset. The curves represent numerical solutions of
IV. NUMERICAL EXPERIMENTS Egs.(19).

Since we are interested in the behavior of granular par-1 until the velocity distribution is Maxwellian. Then the
ticles cooling over several decades in time, we use an evengestitution coefficients are set to the selected values. In order
driven (ED) method. In these simulations, the particles fol-to classify the systems used for the simulations, we need to
low an undisturbed translational motion until an eventspecify the number of particled and the volume fractions
occurs. An event is either the collision of two particles or thep, = (N/V) a2 and pzp=(N/V)(4/3)7a® in two and three
collision of one particle with a boundary of a célh the  dimensions, respectively.
linked-cell structurg The cells have no effect on the
particle-motion here; they were solely introduced to acceler- A. Results in 2D
ate the search for future collision partners in the algorithm i i
(see also Appendix B Using the velocities just before con- ~ FOr short times we can solve Eq4.5) analytically and
tact we compute the particles’ velocities just after the contac@€t T=1—Ar andR=(2B) 7. Hence our data can be effec-
following Egs. (1)—(4). In the ED method the contact dura- tively collapsed for sh_ort times by rescaling time gccorrdmg
tion is implicitly zero, matching well the corresponding as-t0 7—A7 and rotational temperature according ®
sumption of instantaneous contacts used for the theory. We> RA/(2B). We compare the theoretical resfittumerical
remark that ED algorithms run into problems when the timesolution of Eqg.(15)] with simulations for various sets of
between events,, gets too small. In dense systems with parameters. T_he sca[lng collapses (_jata for different particle
strong dissipatiort,, may tend towards zero. As a conse- number, .partlcle radius, and den§|ty on th.e same master
quence the so-called “inelastic collapse” can occur, i.e., thefurves, since all these dependencies are hidden in the res-
divergence of the number of events per unit time. The prob¢@led timer. The shape of the master curves depends only
lem of the inelastic collapsgL7,18 can be handled using ©N the restitution coefflcpntls andg. In ordgr to chegk the
restitution coefficients dependent on the time elapsed sincgependence of the solution on system size, we simulate a
the last evenf19—22. For the contact that occurs attire, ~ large system withN=99 856 particles and amall system
one uses =1 and 8= —1 if at least one of the involved With only N=198. For the small system we consider two
partners had a collision with another particle later than Volume fractionsp=0.25 orp=0.01, the latter correspond-
—t,. The timet, can be identified as a typical duration of a INg to an extremelydilute system. For the large system we
contact. The effect of, on the simulation results is negli- always usep=0.25. For the larger volume fraction we get
gible for larger and smallt,, which we checked in the numericallygoof2a)~1.58, in perfect agreement with the
simulationg 21]. We do not focus on this so-callégdmodel, 2D equivalent of the Carnahan-Stirling formula,
which allows us to avoid the inelastic collapse, since the
theory is valid only in the homogeneous regime where the 1-7p/16
collapse does not occur anywégnd thet, model does not (1-p)? '
have to be used Only for very small values <0.6 was a
cutoff time t;=10 ® s needed to avoid the inelastic col- from Ref. [4,23]. Initially, the normalized energies af®
lapse. For a more detailed discussion of the ED algorithm=1 andR=0 for all data presented here.
used, see Appendix B. In Fig. 2 we plotT against rescaled tim&r for various

Every simulation is first equilibrated with=1 and 8= simulations with a fixed value af=0.99 and different par-

9(2a)= (23
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T T v\,l. T T T
'&%'w“w 6F . Eq (1510 - .
e “y\ | large (1.0) v ]
0.1 o AN . i Bq.(15)(-05) oo
S v RN large (-0.5) = .
- Y tm  small(05) O =
Eq. (15) (0.9) ——— iz AN % a4 Vg dilute (-0.5) © . |
T ool my LT = e .
| smal A A \
B 00l 09 o s < 3t vODO. T |
4 Eq. (15) (0.5) S vy D@%
§ large (0.5) ® vl a Eymaye T GREey )
small (0.5) © 2r Vdv—v-wv—vv—v*v—wv—vw
dilute (0.5) © %
0.001 [Ea.(15) (-0.5) -eeoeer A b i
large (-0.5) = N
small (-05) O 2 (a)
dilute (-0.5) © N 0 . ! .
Eq. (15) (-0.9) - % 0.1 1 10 100
small (-0.9) A4 A
0.0001 |, dilute (-0.9) , © A AT
0.1 1 10 100 . . .
AT 6l Eq. (15) (0.9) - |
dilute (0.9) ©
. . . Eq. (15) (0.5)

FIG. 3. RA/(2B) as a function of rescaled timer. The simu- sl dilute (0.5) © |
lations are the same as in Fig. 2. The curves represent the numerical Eq. ﬁ115) (-8-5) T
solutions of Egs(15). ® Eqdl(ilg §10j3§

= T dilute (-0.9) © ]|
—
ticle numbemN, volume fractionp, and tangential restitution § 3| 4
B. We observe that all simulations with the sageollapse, EE} g
. \p ... o agﬁeﬁﬁeooeo
independent of the specific value Nf or p. This indicates 2t % CogSo-0e ol
that the dimensionless unitsand = are indeed the system’s oo 500000000
inherent “temperature” and “time.” The temperatufiede- 1t b .
cays continuously from its initial valu&= 1, following the ( )
function T=1—Ar for short timesA7r<<0.1 and decaying 0 - . -
like 7~2 for long times. The monotonic dependenceTobn 0.1 1 10 100
B is due to our scaling of the horizontal axis, which includes At

factors of 3 via A. If we plot T .agf"“”St.T’ we observe that FIG. 4. (B/A)T/R as a function of rescaled tim&r for some
the CrOS_SOV_le betwsaen. the initial Ilnlear' decay a}nd thesimulations from Fig. 2(a) The simulation of the large system with
asymptoticr .behawor is nonmonotonic witls: The time  \—gg 856, p=0.25, and8=— 0.5 (solid squaresshows no satu-
of crossover is largest fopp=—1, then decreases and ration of (2B/A) T/R, which instead diverges for largr. (b)
reaches a minimum aroungly®~0.17, and then increases Here only simulations of the dilute system with=198 andp
again forB—1 (in agreement with Fig.)1 =0.01 are compared to theory. All show saturation of the ratio
The simulations of thdarge system deviate from the (2B/A)T/R for large times.
theory and also from the simulations for the small system at
large times or smalll. The deviation from the theoretical monotonic dependence of the crossover timgGaas for the
curve is due to the density instability, i.e., clusters of par-translational energy with, however, the minimum of rota-
ticles form and the homogeneous cooling assumption failstional crossover time occurring at a different valuegJ™
Additional simulations show that the deviation from theory ~—0.29 (see Fig. 1
occurs earlier for stronger dissipation due to either smaller  The results of simulations are in very good agreement
or | 8. with the theoretical results, which are based on the general-
In Fig. 3 we plotRA/(2B) against normalized timé&r  ized homogeneous cooling assumption forikparticle dis-
for the same set of parameters as in Fig. 2. As expected fromibution function. Note that the agreement extends over
the solution for smallA7, we find thatRA/(2B) is propor- many orders of magnitude in time and covers the initial in-
tional to A7 for small timesA7<0.1. In this regime, the crease oR, the crossover, and the algebraic decay for long
initially “cold” rotational degrees of freedom are activated times.
due to the transfer of linear to angular momentum during In Fig. 4 we present the ratio of and RA/(2B) as a
collisions. After some equilibrium between translational andfunction of scaled timeé\r for a selected set of parameters,
rotational temperature is achieved, both degrees of freedomvhich were used in the simulations shown in Fig. 2. Data for
lose energy in the long time limit. Like the translational tem-two valuesg= 1.0 andg= —0.5 are shown in Fig.(4). For
perature, also the rotational temperature is independeNt of the latter we compare systems at different densities and ob-
and p, only r and 8 determine the decay of rotational en- serve that the dilute simulations are in perfect agreement
ergy. As for the translational energy, the observed, almoswith the theory, whereas the dense system with0.25 de-
monotonic dependence of the crossover time for the rotaviates. The small system shows a slightly smaller ratio
tional energy org is due to our scaled units—A7r andR  (2B/A)T/R, whereas for the large system, the ratio
—RA/(2B). If we plot R againstr, we find a similar non- (2B/A)T/R is larger than expected and eventually diverges
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0.01 @2‘% 1
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= Eq. (21) (1.0) ==mrmm %
medium (1.0) <& %
Rgh a9~ %
- medium (0. |
QOOLT Ey 1) 03) %
medium (0.5) O %
Eq. (21) (-0.5) ressseees %‘} %
medium (-0.5) O % %
Eq. (21) (-0.9) e Y %
medium (-0.9) v A -
0.000001 . | A ﬁ
0. 10 1000 100000
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FIG. 5. T as a function of rescaled tim%r in 3D. The symbols
correspond to simulations witN=1331, p=0.087 (medium), r
=0.99, and differenB as given in brackets in the inset. The curves
represent numerical solutions of Eq$21) with the three-
dimensional constants from EgR0).

F ROUGH, DISSIPATIVE ... 3421

0.01

Eq. (21) (0.9)
medium (0.9)
dilute (0.9)
dense (0.9)
Eq. (21) (-0.9)
medium (-0.9)
dilute (-0.9)
large (-0.9)
dense (-0.9)

0.0001

0.000001

BOOCC

0.1

FIG. 6. T as a function of rescaled timer in 3D from simula-
tions withr=0.99 andB= —0.9 or 8= +0.9 as given in brackets.
Different symbols correspond to simulations witth=1331, p
=0.087 (medium; N=4096, p=0.0021 (dilute); N=68 921, p
=0.0023(large); andN=54 872, p=0.23(dens¢. The curves are
numerical solutions of Eqq21) with the three-dimensional con-
stants from Eqs(20).

for large A7. This is again the regime where the homoge-
neous cooling assumption fails. Interestingly, the large simuof magnitude in time. Fo8< 0.5 most of the dependence on

lation with N=99 856,p=0.25, and8=1.0 is in reasonable
agreement with theory. From Fig(B}, we learn that the

B is taken into account by our scaling;—Ar, so that the
scaled data almost collapse 16, 0.5.

simulations of dilute systems are always in good agreement |n Fig. 6 we compare simulations of different systems

with theory. The ratio (B/A)T/R is constant for large

with the numerical solution of Eq921). Only the dense

times, but there is no equipartition of energies in the transsimulations deviate from the theoretical result. The scaling of

lational and rotational degrees of freedom.

B. Results in 3D

As in 2D, we can solve Eq21) analytically for short
times, and geT=1—- A7 andR=B7. Hence we rescale time
7— AT and rotational temperatuir— RA/B.

We simulated various systems characterized by volum
fraction p and particle numbeN. One system with density
p=0.087 andN=1331 particles is denoted asedium two

other systems with lower density have the parameters

p=0.0021, N=4096 dilute and p=0.0023, N=68 921
large. Finally, a system with higher density, i.e.=0.23 and
N=54 872 dense is examined. The abbreviation corre-

sponds to the density, only for the large system one shoulc

read “dilute and large.” To calculate the pair correlation
function at contact, we use the Carnahan-Starling formula

1+p+p°=p°
-p)®

1-pl/2
(1-p)%

4pg(2a)= (24

4p

in 3D from Ref.[24]. Initially, the normalized energies are
T=1 andR=0 for all data presented here.

Constant r=0.99, variable g8 and p

In Fig. 5 we plotT against normalized timér for r
=0.99 and various values of the tangential restitugoriVe

time with A7 is rather successful for small and moderately
dilute systems; in dense systems a deviation from the theory
occurs for largeAr.

In Fig. 7 we plotRA/B versus normalized timér for
mediumand densesystems. As in 2D, we find thaRA/B
increases proportional t&+ for small times A7<0.1), re-
(felecting the activation of initially “cold” rotational degrees

1

0.1

0.01
Eq. 21) (1.0)
medium (1.0)

dense (1.0)
Eq. (21) (0.9)
medium (0.9)

dense (0.9)
Eq. (21) (0.5)
medium (0.5)

Eq. (21) (-0.9)

medium (-0.9)

dense (-0.9)

3

*>

0.001

0.0001

0.01

0.1 1

FIG. 7. RA/B as a function of rescaled tim&r. The data are

observe a very similar picture as in 2D and, again, reasonabkelected situations from Fig. 5. The curves represent the numerical

agreement between theory and simulation over many orde

kplutions of Eqs(21).
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FIG. 8. T, RA/B, and B/A)T/R for 3D simulations with3 AT

=-0.9 andr=0.6 in the medium systentsymbols. The thick

lines give the solutions of Eq21). The thin line is discussed after ~ FIG. 9. T as a function of rescaled tim&r. The density isp
Eq. (25). =0.087, B=—0.9, and the restitution coefficientis given in the

inset. The curves represent again the numerical solutions of Egs.

of freedom due to collisions. This feature as well as the full(21).

time dependence is well reproduced by our theoretical analy-
sis. for R andT are equally important. We then observe a cross-

over from ar~ “to a2 decay of the rotational energy. This
Constantg=—0.9, variable r andp true asymptotic state is characterized by a constant Té&o
and has been discussed above. The crossover between the

RA/B as a function of scaled timar for r=0.6 andg= two regimes shows up as a parallel shift for(see Figs. 8

—0.9, where interesting structure is observed. The open sy 'gfh ?e bi?r:::éjst?utthv(\a/ittrzagscjlﬁf;gg?][[ errl:fragéodrecays #ike in
bols correspond to thenediumsystem withp=0.087, N 9 ' b )

=1331. The data are in good agreement with the theoretical W_henr IS mcre_ased to a val_ue CIOS? to unity, i.e., the
elastic case, the intermediate time regime disappears, be-

curves, while we obtain substantial differences between ) o !
. Lo ause normal and tangential restitution are equally important.
theory and simulation in the case of the dense system, due g . = D
is is demonstrated in Fig. 9, where we shadwplotted

the density instability¥not shown here For the medium sys- against the normalized timér for medium density p

tem the loss of energy during collisions is predominantly due”> _ . X .
to normal restitution and only after the translational energy _ 0.087, =—0.9, and different values of as given in the
has decayed to a very small valuB<{10"%) does one ob- Ieglintdﬁe intermediate time regime all curves follow the de-
serve the energy loss due to friction. The two regimes can bga of sn;ooth S f;erd;ee E %'25)] whighvis inde véndent
discussed analytically with the help of Eq21). For inter- y P a: ’ P

mediate times, when the translational energy is still appre(—)f r, because we use scaled tihe. In the true asymptotic

ciable, the equations can be simplified for almost smootf€9'Me. a.II curves hav_e the same s_Iope W.'th' .however, an
spheres, i.e. i~ —1): axial section(see the discussion of Fig),iwhich increases

with decreasing. Without scalingr with A the axial section
decreases with decreasingeflecting the more efficient dis-

In Fig. 8 we presen, RA/B, and the ratio ofT and

iTz—AT3/2, sipation of energy for smaller. The agreement between
dr theory and simulations is quite good for values @fs low as
(25 r=0.6, and even for=0.2 only the crossover regime is not
i R=_ CT?R captured by theory.
dr '

. V. MMARY AND DI ION
We have neglected terms @((1+ 8)?) and approximate U Scussio

A~(1-r?)/4 andC~5(1+ B)/14. The solution fof is that Homogeneous cooling of colliding inelastic rough spheres
of smooth spheres, decaying liké 7)~(A7/2) "2 for large  has been investigated with numerical simulations and an ap-
7. Substituting this result into the equation fB we find  proximate kinetic theory in two and three dimensions. We
R(7)/R(7g) = (7/75)~* with «a=2C/A. Herery is some in- have confirmed that surface roughness is an important char-
termediate time scale, larger than the time for the initial in-acteristic of the grains, in so far as it determines the decay of
crease oR, but smaller than the time scale to reach the trudranslational energy, i.e., the rate of cooling. If energy loss
asymptotic state. The above algebraic decay is shown in Figlue to small normal and tangential restitution is comparable,
8 as a straight dashed line with=0.396. Once the transla- then one observes an initial linear change of translational and
tional energy has decayed to a very small value as compargdtational energy, followed by a crossover to the asymptotic
to the rotational energy, all terms in the differential equationgegime, where both functions decay like?. This regime is
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characterized by a constant rafiéR, whose value depends features that are accurately reproduced by our theoretical an-
onboth randB. The dependence gB is nonmonotonic, the satz. These findings certainly support the assumption of a
ratio being smallest fo= + 1. This nonmonotonic depen- homogeneous cooling state and suggest expanding around
dence ong also holds for the crossover time, which is long- the HCS to study deviations from homogeneous cooling.
est for 8=+ 1. If the coefficients of normal and tangential One possibility would be to study the stability of the HCS
restitution are such that energy is lost mainly due to normawith rough particles, which determines the domain of valid-
restitution, then we observe an intermediate time regime, ity of this theory. It is not clear if an effective restitution
between the initial linear change and the true asymptoticoefficientis a sufficient control parameter, or if the interplay
behavior with constant rati®/R. This intermediate regime between rotational and translational degrees of freedom will
is also characterized by agebraic decay of translational change the behavior of the system in a more subtle way.
and rotational energy: Translational energy decays as for

smooth sphereg(?), whereas rqtational energy decays with ACKNOWLEDGMENTS

an exponent that depends continuouslyrcand 8.
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generalized homogeneous cooling state: Maparticle dis- Niedersachsen for financial support. S.M. gratefully ac-
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rotational energy Without 'furthe'r approximations. Good APPENDIX A: DETAILED CALCULATION IN 2D
agreement with numerical simulations was found for a large
range of time scales and parameter sets, provided no density In this appendix we explain, as an example, the main
instability builds up. The initial linear change, the asymptoticsteps to calculaté £ , E),cs of Eq. (13) in 2D. The expec-
t~2 behavior, the crossover in between, as well as the intettation value is calculated with thdl-particle distribution
mediate algebraic decay for almost smooth spheres are dlinction, properly normalized

(A1)

1 m \N W2 " !
st~ | (o) -2 |y 5
RESE N 27 Ty(t) ) | 27T o) = 2Ttr<t> T 2T ]|

The angular velocity is a scalar in two dimensions, but a vector in more than two dimensions. Free streaming does not change
the energy, so we have to take into account only the collison opédrdfoand we keep the abbreviation fbrfrom Eq. (9)
so that

i m
(iL}Ex)ncs= — f dl prcs(T; t)C+(aﬁ)2N2 mo’= 'N ;ﬁ J dl s Tit)Ca(aB) 5 (Vi vh).  (A2)

The binary collision operata?, («8) gives a contribution only if eithes= « or if v= 8. Next, we introduce twd functions,

i m
<i£;Etr>HCS:—mgﬁfdrfdedRza(Rl—ra)(s(Rz—rﬁ)pHcs(r;t)a(aﬁ)E(vgﬂ)i), (A3)

which allows us to replace, by R, andrg by R, in C, (a8). Integration over alf, of the respective part of E¢QA3) can then
be performed and yields a factor

N
f 11 dr, 11 O —2a)8(Ry=ro) 8(Re=19) =V #(r32). (A4)

The pair correlation functiom(r,,) depends orjriJ|=|R;—R,| only. Similarly integration over all velocities and angular

velocities with indexu and a# u# B gives 1 due to normalization. We can sum odéMIN—1) identical integrals and get

(N-1)/ m )2
2V/2 \ZWTtr(t) 27 Troi(1)

<i£:rEtr>HCS: - J’ dwldwzdeddevldvzeX% ((1)%‘*’ (1)%)

m 2,2 |
27,0 V12 o7,
Xg(r) (012 T)O(—v151)3(|r| —2a) AE,,. (A5)

The loss of translational energy of two colliding particles is denoted By and is given by

AEU%{Mn—l)[viz—wlz-F>2]—<1/2)<1—r2>(v12-F)2+2n2a292}. (A6)
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Here we use the abbreviations=q(1+ 8)/(2q+2), Q= (w,;+w,)/\2, and Rl—R2=r=rF. To perform the remaining
integrations we substitute

1 1
Q:E(a’ﬁ'wz), wzﬁ(wl_wz)a (A7)

1 1
V:E(Uﬁ'vz)a U:E(Ul_vz), (A8)

The Jacobian determinant for the above transformation is 1. IntegrationsgWér andR; can be done, which all give the
value 1 due to normalization. The resulting integral is

L _ (N-L)m[ 2l )1’2 mv? 102 R R
<|£*E">HCS__4thr(t)V\2wTr0t(t) fderdvex T 2T g(N(v-r)B(—v-r)é(|r|—2a)

Xg{zn(n—l)[vz—(v-F)2]—(1/2)(1—r2)(v-F)2+2772a202}.

The integration ovejr| yields 2ag(2a). Choosing, e.gi to  Objectj, which can change its status due to a collision with
point along thex axis, the integrals over linear and angular yet another particle. During the simulation this may be nec-
velocities can easily be done as moments of a Gaussian digssary several times so that the predicted “new” status has

tribution. The result is independent of so that the integra- {0 be modified. An objecf is either a particle (=1, . . .i

tion overr gives 2. Finally we assume that<N, approxi- —1i+1... ’N) ora cgll wall (=N+1,...). Thenjinli—
mateN~(N—1), and obtain the result of E¢L3) mum of allt;; is stored in the “new” status of particle,
’ ' together with the corresponding partjerDepending on the

implementation, also positions and velocities after the colli-
sion can be calculated. This would be a waste of computer
Simple ED algorithms update the whole system after eaclime, since before the timig; , the predicted partnersandj
event, a method that is straightforward but inefficient formight be involved in several collisions with other particles,
large numbers of particles. In R¢R5], an ED algorithm was so that we apply a delayed update schd2. The mini-
introduced that updates only those two particles that werghum times of event, i.e., the times that indicate the next
involved in the last collision. For this a double buffering dataevent for a certain particle, are stored in an ordered heap tree,
structure is implemented, which contains the “old” statussuch that the next event is found at the top of the heap with
and the “new” status, each consisting of time of event, po-computational effort ofO(1); changing the position of one
sition, velocities, and event partner. When a collision occursparticle in the tree from the top to a new position needs
the “old” and “new” status of the participating particles are O(log;oN) operations. The search for possible collision part-
exchanged. Thus, the former “new” status becomes the acners is accelerated by the use of a standard linked-cell data
tual “old” one, while the former “old” status becomes the structure and consum&3(1) of numerical resources. In to-
“new” one and is free for future calculations. This seem- tal, this results in numerical effort o®D(N log;gN) for N
ingly complicated exchange of information is carried out ex-particles. For a detailed description of the algorithm, see Ref.
tremely simply and fast by only exchanging the pointers to[25]. Using all these algorithmic tricks, we are able to simu-
the “new” and “old” status, respectively. The “old” status late up to 18 particles within reasonable time on a small
of particlei has to be kept in memory, in order to calculate workstation(IBM P43/133MH2 [26]. The particle number
the time of the next contact;; , of particlei with any other is limited by RAM-size(64MB) rather than CPU-power.
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