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Effects of noise on the phase dynamics of nonlinear oscillators
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Various properties of human rhythmic movements have been successfully modeled using nonlinear oscilla-
tors. However, despite some extensions towards stochastical differential equations, these models do not com-
prise different statistical features that can be explained by nondynamical statistics. For instance, one observes
certain lag one serial correlation functions for consecutive periods during periodic motion. This work aims at
an extension of dynamical descriptions in terms of stochastically forced nonlinear oscillators such as
E+ wiE=n(£,8)+q(&,€)W(t), where the nonlinear functiom(¢,£) generates a limit cycle ani(t) denotes
colored noise that is multiplied via(£,&). Nonlinear self-excited systems have been frequently investigated,
particularly emphasizing stability properties and amplitude evolution. Thus, one can focus on the effects of
noise on the frequency or phase dynamics that can be analyzed by use of time-dependent Fokker-Planck
equations. It can be shown that noise multiplied via polynoms of arbitrary finite order cannot generate the
desired period correlation but predominantly results in phase diffusion. The system is extended in terms of
forced oscillators in order to find a minimal model producing the required error correction.
[S1063-651%98)09907-3
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[. INTRODUCTION chastical differential equatior{4.8], they are not yet acom-
modated by dynamical models. For instance, one finds cer-
Nonlinear oscillators have been frequently discussed itain correlation functions for consecutive periods during
various fields, and their mathematical investigation has ahythmic motion whenever a subject tries to voluntarily con-
rather long tradition. Depending on the explicit context onetinue a periodic movement that was previously paced by a
concentrates primarily on specific types of oscillators such ametronomd 19]. Even without the external stimulus, the fre-
Van der Pol, Duffing, or Helmholtz oscillators. In the presentquency of motion remains rather constant, and any errors are
paper we consider the case of randomly forced systems thatorrected immediately within the first subsequent period. In-
especially in case of self-excited systems, have been succedeed, such a negative lag one correlation can be explained by
sively investigated since the early 1940s-3]. Most related nondynamical statisticR20], and the question arises, What
works preferentially stress stability properties of the ampli-kind of (lag one correlation function can be modeled using
tude, or rather their changes under the impact of nize  dynamical systems? Hence, we aim at an extension of a dy-
recent studies see, e.f4—9]). Thus, we concentrate on the namical description of human movement by means of addi-
effects of noise on frequency or phase dynamics that wé&onal random impacts. We therefore study systems with the

analyze by using Fokker-Planck equations and Krylovfgrm é+w§§=n(§,§)+q(§,é)W(t). The nonlinearity n

Bogoliubov approximations. In physics there exist severayenerates a stable limit cycle attractor al@t) denotes col-

Lnf_tanc$s (?f rlllonllne?]r oscilllators ISUbJetCtet?] to ralndorp €XClared noise that is multiplied via a finite polynom(é, £). As

ation. - yplr(]:a y, such systems ﬁong_t.o € rdea{nt.ot_mac—shown below one can estimate that continuous noise alone
roscopic phenomena, since nonlinearities and stalistics agg, produce the sought correlation functions at a desired
involved. For example, in nonlinear optics we find extensive

. . . X ) . order of magnitude. Besides additive noise, which has been
discussions about the influence of noise on optical multista-

bility (e.g.,[10—12). One may also think of the large field to extensively discussed in the literatusze, for instancg21]

which the generalize@comple® Ginzburg-Landau equation and references thergirthese estimates include the case of
applies(e gg [13]) P 9 q noise that is multiplied by polynoms of any arbitrary finite

Here, however, we focus on a fairly different system,order' In order to fi_nd those kind of corrt—_zlations we finally
namely, human movement. Several properties of rhythmicafXt€nd the system in terms of forced oscillators.
coordination patterns have been prosperously modeled in Before we go into the problem of stochastically forced
terms of nonlinear oscillators and many studies concentrategenlinear oscillators, however, we roughly summarize a sim-
on stability of movement and its externally induced change®lified statistical model that can explain the generation of a
by means of phase transitiof4—17. In the present paper negative lag one correlation _betweenlconse.cutlve periods.
we use related models as starting point for our investigatio?"® commonly looks at a series of peridds}, i=1...N,
but emphasize that the entire discussion is by no means r¥here mean period and covariances are given by
stricted to this somewhat specialized application of stochasF: =(UN)=N. T, and 0%(k):=T;T;_— T2 In the context
tically forced oscillators. Strictly speaking, different statisti- of timing and error correction the so-called lag one serial
cal features observed in rhythmic movements motivated theorrelation functionu,(1) is of predominant interest. It is
following work since, despite some extensions towards stodefined as MT(l):=o$(1)/cr$(0),which for largeN can be
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written as ur(1)~(ZTiTi_ 1~ [ TI/I(E T - [2Ti1Y). Il. PERIOD ESTIMATES
Following Wing and Kiristoffersori20], a negative correla- FOR NONLINEAR OSCILLATORS
tion can be directly modeled if the evolution is viewed as the

result of a periodic process; and a transfer delap; . Each Fundamental systems for the description of rhythmic

movement are stable limit cycle oscillators. Besides their

period T; can then be written a%;:=C;+D;—Dj_;. The  paqnic parts these oscillators typically contain weak non-
quantitiesC; andD; are considered to betatistically inde-  |inearities in the form of lower order polynoms. Here, we

pendentFurther, they are Gaussian processes and, except f%nsider the basic equation
X 0
ARE!

X

y n(x,y), (1)

the mean and variance, all cumulants of higher order vanish.

These simple assumptions already lead to the wanted prop-

erties because one instantly obtains for the covariance matri- arxy 0 1

cesa%(0)=203(0)+ 02(0) ando3(1)=—03(0), respec- dt\y/ \—w3 0

tively. Thus, the lag one serial correlation function be-

comes negativeur(1)=—05(0)/{205(0)+0&(0)} and  \hich is reformulated by using the Van der Pol transforma-

bounded by means of Bu(1)=-0.5. . tion; that is, we use the polar coordinatesr cosé, y=
Certainly, this statistical approach is a strong one in that_, r sing, and rescale time by r=wot. With

its requirements are minimal and in that the introduction of- L . .

an “internal clock” C; and a “motor delay”D; is consistent n(r,6):=n(r cos6,~wr sin 6) we rewrite(1) as

with (neurgphysiological aspects of the system, at least to _

some extent. On the other hand, it disregards dynamical and d/r 0\ n(r,6)(rsing

corresponding stability properties of periodic human move- dr\e/ —11)7 "2\ cos@

: 2
ment. These characteristics, however, have been successfully G
described in terms of nonlinear oscillatds. [22] and ref- 3
erences therejn In the following sections we therefore As mentioned previously we choose the nonlineanitgr n,
present approximations of period correlation functions inrespectively, in such a way that the resulting evolution de-
case the underlying dynamics is described by various typescribes a limit cycle. The corresponding periddf such a

of nonlinear oscillators. dynamical systentl) can be defined as

2

T = /Tdt = 79’-1619 = 3—7[1—M}—1d0
4]

2T

21 1 & A(r,8) cos 6]’ 3
- i e, :

wo  wo =7 W

AP

|
where 6 denotes the derivative with respectttoAccording rm*”*lw{,"2 for m odd, n even

to Eq. (3) the harmonic period 2/w, is corrected by terms o 0 otherwise )

AP that depend om(x,y). If we assume that the nonlinear-
ity n is polynomial, that isn(x,y)<x™y", each integral in It is worthwhile to remark that in Eq5) the latter propor-
Eq. (3) becomes tionality is only correct for an entirely decoupled system, i.e.,
for dr/d9#=0. Without a principle loss of generality we now
concentrate on Rayleigh, Van der Pol, and Duffing oscilla-
(4)  tors. In detail we write the nonlinearity as

- _1\n +1 B p
A(Tp):jz _( 1)"cog""*0 sin"o do
r1fmfnwgfn

B wo7
. . : n(x,y)Ewo(a— SV rely——2=x (6
In particular, the first order correction for E3) can be 3wj
expressed as
and refer toB- - - as Rayleigh,y- - - as Van der Pol, andy

- as Duffing component. It is well known that a Rayleigh
oscillator such ax+x—x+8x3 also describes a Van der
Pol oscillatory +y—y+38y?y for the corresponding veloc-

1)_
AP =

2m(—1)""1cod" 1gsin" o
[ i

0 rlfmfnwgfn
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ity y=x. Thus, for the period estimat®), symmetry prop- de/dt
erties reveal that both Rayleigh and Van der Pol terms do not }
change the period length in the first order approximat®n
whereas the Duffing terme{x®) relates frequency and am- 1.006 1
plitude scaling at?.

Of course, these rough period estimates are only reliable
in the case of stable oscillations. Since we want to discuss 1.0051
the systems’ response to external perturbations, one has t
investigate the transient regime or, in other words, relax- 1.0045 t
ations onto the limit cycle. For the sake of simplicity, how-
ever, we restrict ourselves to the immediate vicinity of the
stable limit cycle. There, perturbations are assumed to be
reasonably small and, as a first estimate, one might averag

1.0055 ¥

1.0041

system(1) over a periodr (see, e.g.,23,24)). Hence, Eq(2) v 1
becomes . . .
FIG. 1. Frequency relaxation. The solutidd/d 7 given by Eq.
— (9) is plotted for different initial valuesr(7=0); a=p8/3=vy
dr no(r) NP
— ~| — , (7 =nl3=wo=1.
dr\ 0 Po(r)

. . versely, the Van der Pol term mainly affects the stabilization
where we introduce the abbreviatiors= 8+ y and of the amplitude and it allows for slight oscillations around
the basic frequency during the relaxation onto the limit cycle
[see Fig. &)]. This effect can even be amplified by adding a
Duffing component, as shown in Fig. 4. In the case of a
reasonably large Duffing coefficieny rather negative lag

o ol o one correlations can be observed. The amplitude dependency
Vo(r):=— 21 g [T «r2, however, might result in a loss of stability so that the
Duffing term should be handled with ca25].
and

. 7 IIl. STOCHASTICALLY FORCED OSCILLATORS
Po(r): =1+ or2, €) . _ _
In real systems, perturbations occur continuously in an

Amplitude and frequency dynamics decouple and Consel_mpredictable fashion. We account for this by extending the

guently systen{7) can be integrated explicitly. Note that the nongneartoscnlta;[or' b% rgeans of.extirnal Inglse. Of course,
simplified Eq.(7) is a rather rough approximation unless the V€ 0O not want 10 Include ang priori knowiedge concern-
ng the sought(time-) correlation functions and, thus, we

nonlinearitiers are chosen properly; that is, the amplitude i% t random d ics in t f Mark |
considered to be nearly constant over a “cycl&lowly reat random dynamics in terms ot varkov processes. n or-

varying amplitude approximatignfor the nonlinearities in der to keTep the det_erm|n|st|c properties of the oscnla_ltor
Eq. (6) we therefore assume thdiz|~|B/3~|y| and (x,y, .).=x, we write the system in form of a Langevm
| 9/3<|a| holds (cf. [23,25)). Especially, in the case of ~ €duation §=N(&,t) whereg, denotes a random variable
=Bl3wi=y=1 and =0 one obtains the exact solution substitutingx. The nonlinear functiomN contains determin-
x=sin wgt. Coming back to the discussion of Eq3) and istic components re_sultlng in sta_ble osu_llatl(_)ns as well as
(8), respectively, we get WithS:=4a/K noise. The system is fully described by its time-dependent
probability density f(x,t), commonly defined asf(x,t)
-1 i=(8[x—&(1)]). We compute (x,t) by integrating the cor-
, responding Fokker-Planck equationf(x,t)= Lgpf (X,t),
where Lrp denotes the Fokker-Planck operaffad]. In fact,
©) in this context we do not require a detailed intergration of the
Fokker-Planck equation but rather look fetochastically
equivalentsystems; that igsimplep Langevin equations that
obey an identical Fokker-Planck operator as the original dy-
namics.

da de e

efa('rfcl)
—2 —
k— e alr—c) dr 8

r2(r)=
K

with an integration constant,; given by exp{ac;}:=«{1
- ré/r(r=0)2]. As shown in Fig. 1, the frequendglsimply
relaxes exponentially to a steady valugl+ nr§/8). The
relaxation is given by the gradient dynamicsréf) orr(t),
respectively. Therefore, one can only expect a positive cor-
relation between consecutive periods. These estimates, how-
ever, only hold within a rather close vicinity of the limit ~ Aiming at stochastic extensions we start with the most
cycle and, for larger perturbations, the transient regime hasimple case, namely, the addition of noise to our initial
to be investigated numerically. model (1). The additive white noise already allows for a
As shown in Fig. 2) the Rayleigh component stabilizes basic understanding of various impacts of noise on periodic
the oscillator at a certain velocity and in this way perturba-dynamics and, as we will see below, most phenomena of
tions of the period length are eliminated rather quickly. Con-more complicated systems can be mapped onto this situation.

A. Additive white noise
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FIG. 2. Rayleigh oscillator. Equatiof®) with «=8/3=1 andy= =0 is integrated for several initial conditiomgt=0) ]0,2] and
x(t=0)=0. (a) shows the phase portraift) vsy(t), (b) are the time series(t) andy(t) each v, and(c) shows the deviation of the mean
period lengthAT,;:=T;—T vs the period humber. The period length is implicitly defined as difference between consecutive roats, i.e.,

=0/\x,.7=0 wherex, andx,,t must have the same sign. For sake of clarity, only the system’s response on period increases is plotted.
Note, that all quantitiesincludingt andT) are considered to be dimensionless.

This special type of randomly excited oscillator has been 4 ol 1[n 20 sin
discussed in the literaturgf., e.g.,[21] and included refer- s ?) :(1) __[(gf_f(’)+ QF(T/wO) g(f;o's;ﬁ’)_
ence$ but we recall it here because of its paradigmatic fea-~ " ' >¢ & o & 0
tures. Explicitly, the nonlinear oscillator now reads (12
d (& 0 1\ (&, 0 Recall that we haven(r,6):=n(r cosé,—wr sin 6). Ac-
a<§y)= —w2 0 §y>+ 1/NCéx.€y) cordingly, the Fokker-Planck operator yields
0 ~ 1 oa- _ wiQ
2 —_ -
+w0\/2Q<1)F(t), (10 Lep o2 ar[n(r,a)sm 0 o (1+cos 29)
whereI'(t) is assumed to b&-correlated Gaussian noise 1 9. 5 ng _
with vanishing mean[(T'(t))=0 and (T'(t")'(t))= &(t’ + 5g| N(r.0)cos f—rwp———sin 29
—1)]. We achieve the corresponding Fokker-Planck operator Fwo
" +Q (1 X) 7 +(1+ ) L7
—{ (1—cos ¥) — cos ¥)— — .
oy N " 2 Jr? r? 06
P Y o Ty N(X,y) — @gX— woQ oy 11 19

The Van der Pol transformation is applied in order to distin-Analogous to the preceding section we insert the nonlineari-
guish between amplitude and frequency dynamics and Edies (6). Using abbreviation$8) we further average over a
(10) becomes a set of Stratonovich-Langevin equations  period which leads to

(@) (b) (©)
TN e TN
o MOV 1
ok ] ' | 0
s
251 . ° 051 ]
25
25T s 'x'(t) 10 20 30 40 t W, 7T

period number

FIG. 3. Van der Pol oscillator. The systdB) with «=y=1 andB= =0 is integrated for several initial condition$t=0) €]0,2] and

x(t=0)=0 (cf. Fig. 2. In contrast to the Rayleigh system, the Van der Pol oscillator shows a negative correlation between consecutive
periods, since the relative peri@dl can become negative.
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FIG. 4. Van der Pol-Duffing oscillator. Equatig) with «=y=1, 8=0 and »/3=4 is integrated for several initial conditiongt
=0)e]0,2] andx(t=0)=0. Negative correlations are clearly shown in plot

SO — 9 [— Q] — 9
Lep~Lep=— E( No(r)+ Z] — tho(r) 0 system, and we thus have to discuss @§) and its resulting
period and frequency in more detail.
2 1 P Let us first consider the case of a_fixed amplituge-r
+2 EJF Il (14 and let us define a phase via &,= () 7+ £4(7). Note
thatd/dt=w, d/d7 holds so that we obtain

The averaging results in a decoupling of amplitude and fre- wo\/a

guency dynamics. Recall the previous discussion of the pa- Ey= I'y(t)

rameter values that guarantee the validity of the averaging "o

and we further assume th& is reasonably small. Thus for "

Eqg. (12) we find a stochastically equivalent system with the :f(dm')“f f(¢’,0)exp{ _

form
g(fr):(§§r>)+@<§rrr
dr\és) \w(g)) &\ T

In Eq. (15) we use Eq(8) and we additionally abbreviate
2 2
_ e 10 exp{ ro(¢_¢o)}
_ dv )= === I we—
n(é)=——, V27mw5Qt 2w3Qt

dé
2
_ _ =(¢)=0 N\ ($p?)=
V(fr):zvo(gr)_glnfr’ < > ( > rO2

ri(o—¢)?|
203Qt ]M '
(17)

Hence, a certain choice of initial conditions suchfés,t
=0)=6(¢d— ¢pg) Vields directly

. (15

. (18

an additive form is not that obvious in case of our dynamical

Consequently, the variance of the phase increases linearly in

and time, that is{$?)ot, which expresses a “simplediffusion

process of¢. Like the case of steady amplitudes, one can

— = Q
p(&):=o(§)+ — (16) V(r)

2¢;
44
When we compare this form with the noiseless case we re-

alize a diverging termcIng, which is added to the potential 3
V,, resulting in a negligible probability to find the system at 02
the origin (see Figs. 5 and 6, cf2,11,26,27, and see, for 0/\\
differential equations 5 ", =
The termsI’, andI'y in Eqg. (15 are two independent M.
(Gaussian noise sources. With regard to the introduction of '
this paper one might be tempted to relate these two noise -0.21
uesC; andD; in the Wing-Kristofferson model. Aside from FIG. 5. Mean potentiaV/(r) of the amplitude for different fluc-
a possible relation, however, the latter model posits that theuation strength<Q={0,0.01,0.05,0.1,0}5 the remaining param-

instance|28,21,29 for details in the numerics of stochastic
I 2
w ’
sources in some way to the two statistically independent val-
resulting period is a sum of two random components. Sucleters arex= 8/3= y=wo=1.
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d re—4 ~
'ga ~U(r o)+\/6 9<7)+%@Fr<f)

0

75, VQ Q  7r—4Q -
5 +—T(7‘)+2 4—r8J6rr(T).

(22

=1+ —
r0

In Eqg. (22) all the terms of the formI(,I') have been ne-
glected because they vanish when calculating mean values.
The three leading expressions on the right-hand side of Eq.
(22) are of the saméfirst) order of magnitude, whereas the
last two terms are of second or higher order. Therefore, the
random amplitude ; does not really influence the frequency
dynamics and we should preferably write

dé,

ar = 'J’o(ro)+ (23

Lo(7).

This frequency evolution results in a similar estimate as in
the case of a constant amplitudg and we obtain phase

for the original Langevin equatiofi0). The system is integrated  diffusion. Only when the Duffing coefficienj is sufficiently
10* times over 16 periods. For every run the first 50 periods have large we may keep the form
been eliminated as transient regime, that is, the probability distribu-

tion is based on approximately>&L(P iterations per time series

given a time step ofAt=10"%, a=B/3=y=wy=1 and Q
={0.04,...,0.05,0.1...,0.5}. Obviouslyf(r) reflects the potential
V(r) in Fig. 5 by means of (r)« exp{—V/Q}.

further estimate the impact of the amplitude dynamics on
frequency and phase. With respect to the potential given in

Eq. (16) for weak noise, we can approximate

dé, VQ
__w(r0+§§r)+(r +§(§‘r)r
*E(ro)"‘\{_a 9““2 ro— %_Egre}fﬁr- (19
0 0 0

If the nonlinearities describina(gr) are also small the de-

viation &5, of the stationary amplitude, can be computed
from the linearized form of Eq.15) given by

d
dgar )\§5r+\/_r
with
Q«x
A=t ———— 20
O T ax 20

Neglecting transient parts, the formal solution of ERBO)
reads

T,(7') dr' =:\QT'\(7)

(21)

ex(n=\Q | e

that, inserted into Eq(19), leads to

dé, — JQ 77\/—
=T+ T () 1ol (7). (29)
d'T ro
Accordingly, we can compute the period as
2
ro—4 27~
T=To+ 10 \/Ef r,do— anro T, do,
4r0w0 0
with
2w 77!’% nré 2
To-—w—o( B 9

For nonergodic systems, the integrals over the noise remain
random quantities, and the period can be written as
T=To+&r,+ &7, (26)
Indeed, this form is equivalent to the Wing-Kristofferson
model sinc%w and &t are two independent noise sources.

It is worthwhile to remark that the existence of a “relevant”
&t requires a fairly large Duffing components [see the

last integral in Eq(25)]. The influence of a random ampli-
tude on the period length, however, is, as a second order
correction, still very weak. The random fordg, is much
more important for the frequency dynamics and will pre-
dominantly lead to a plaiphase diffusionat least in the case

of weak noise and weak nonlinearities. In that respect the
system behaves like a harmonic oscillator and correlations
between consecutive periods can be neglected and they
themselves become random values, as shown in Fig. 7.

B. Multiplicative white noise

Instead of adding noise one can consider multiplicative
random forces that might be viewed as locally dependent
noise. For example, the strength of noise can become a func-
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E T T T T T T T E T T T T T T T Kk
* * r coséd
3 ] 3 ] ﬁgkg::Q[1—2k+2k2+(1—2k—2k2)cosa9
1.0 1.0 E 2r2
-1.0F : -0} ] d
o ] o ] ~[(1-2K)+ (1+ 2K)cos X]r —
1|0 I 3I0 I 4I0 b t 1'0 I 3I0 I 4|0 e t
_ d , 7
ai(1) T T T T o2(1) T T T T —(1+ k)sm 20% + (1_ cos 29)r ﬂTr
1.0 | 1.0 -
(92
o ] VM T +(1+cos ) —— . (30)
10k ] Lo ] 00
S R . F7 T R . In order to average the last term in E®Q), we integrate

over the angular variabl@. Thus fork#0 we have to cal-
FIG. 7. Simulation of randomly forced oscillators. We chose culate integrals such as

wo=a=B/3=vy=1. On the left-hand side we took/3=0.2 and

on the right-hand side/3=5. The random force was given I§y JZ”

=0.2. The upper row shows a typical sequence of the time series 0

x(t), whereas the lower row represents the correspond(d.).

Here the period lengtii is determined as in Figs. 2—4 after smooth- 2m

ing the simulated time series with a Savitzky-Golay filtef(1) f dé’'cos9’ cos X',

remains rather random and the corresponding lag one correlation 0

almost vanishes: for the left simulation we get5.932, (1)

=0.176 and rightT=3.839,u(1)=—0.073; 10 periods have

been considered to compute the mean values.

de’coe’,

and

2
f d6’cos6’sin 26" . (31
tion of the absolute elongatigx|. To analyze this case we 0

introduce multiplicative white noise by means of Since cois even, the last integral will always vanish and an

instantaneous effect on the“dependent” part ¢<d/96) of

i(gx): 0 5 1) & +(O>n(§x,§ ) the Fokker-Planck operator does not occur. The remaining
dtléy/ \—wp 0/1&/) |1 Y terms read with cos@=2 cog6—1
0
+wé¢2Q<§x,§y>(1)r<t>. 27 0 for k odd

2m ki2—1 .
f d@’cosy’ = k—2j—1
. _ _ 0 2m [ ——=— for k even.
For sake of simplicity, the functio®@(¢,,¢,) shall be given i=zo k—2j

by Q(&x,¢,): =Q(&) ==Qi&; that s, a polynom of arbi- (32
trary order. In the literature one typically finds linear func- ) )

tions Q(x)x or low-order polynoms likeQ(x)xx? (see, For even powerk these integrals do not vanish but flor
e.g.,[30] and references therdinAs mentioned above for =0 the productdl- .- are always smaller than unity; that
Qxx2" the noise strength increases with increasing elongals: they are of lower magnitude compared to the case of

tion. Generally, the corresponding Fokker-Planck operatofdditive white noise Kk=0). The dependency on the ampli-
can be written as tude, however, changes essentially because for arbitrary even

k one obtains

J J J
Lep=—Y— ——{ n(X,y)— 02Xx— 0iQ(x) —;. (29 d 1 4 d
ax d J k) — k=1 & kg k-2
Yy Yy Lep= QI prd +k+1,;r2r +r Pyl
Analogous to the case of additive noise we discuss the aver- (33
aged oscillator(6) after the Van der Pol transformation _ _ R _ _
whose Fokker-Planck operator yields Here II, is defined asll:=II;=o(k—2j+1/k—2j+2).
We again find a stochastically equivalent system
- — 0— — 0 1/2
Lep~ Lep=— —No(1) — tho(1)— dé | ;I
FP~ Lrp=— 2 No(1) — Yol )(96 e+ 23S k| T,
1 2 dr k k+1
il BT
"3 Qk[ZWfo 40 5”’]' @9 dé, 1

2Ek’ ankff} Ty, (39

/\_:(’Zf(é:r)'i__
R K dr &
The multiplication ofI' leads to correctionsC¥), that are

defined by with the additional abbreviations
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) v 1, Quk+2 £(7)=To+Ea~To+ QoI (7). (40
D=——, V(&):=Vo(&)——>, — ——TII &
M(E== g VE=Vol&) o g
(39 T is similarily defingd ad in (21) and since the explicit

Note thatS’ denotes a summation over even indices only.calculation ofr, andl exceeds the aims of the present paper
The deterministic part of the amplitude dynamics in Bff)  and their explicit form does not change the forthcoming ar-
remains a gradient dynamics with the potent@) that is  gument, we skip it here. The expressi@®) can b%inserted
quite similar toV [cf. definition (16)]. For the frequency into Eq.(39) and an expansion of the factof - - - ] results

dynamicsdé,/d in (34) we used in a comparable form like Eqg22) or (23), respectively.
Besides the correction of the Duffing component that is due

to an additional drift coefficient, the multiplication of noise
can be directly reduced to additive noise. Apparently, polyn-

R _ 1 , ) oms of higher than fourth order can be treated equivalently
Y& = dhol&)—— > Quk—2)IT, & since they only lead to corrections of even higher order com-
2g7L X pared to the considered case. As the dominant process, we
m 112 always observe phase diffusion and correlations between
2, 0 k kg" consecutive periods that are more or less random.
& k1
X| —— . (36)
Ek:/ QulI &

C. Forcing via colored noise

Concentrating on the discussion of the frequency dynamics SO far we have shown that uncorrelated noise sources

plicitly, we take polynoms up to the fourth order and definegenerate a certain period correlation. We now introduce fur-
ther correlations within the noise itself in terms of colored

noise sources. An immediate approach can be given by a
o time-dependent stiffnessyy— wo+ €&, (t), wheree is used
Q2§f+ Q4§f as a smallness parameter. The stiffness of the oscillator may
8Q0+6Q2§r2+5Q4§f' have stochastical properties such as

- — 1
¢4(§r):¢0(§r)+?

X

5
QO—§Q4§:‘). (37 w=wl+eW¥(t)] N (¥(1))=0,

For sake of simplicity, the term[---]1¥2 will be dropped
because it does not really influence the dependendy and (POP(1))=0Q e It=tlIm (41)
we approximate '

which is well-known to be equivalent to the Ornstein-
Uhlenbeck proces21]

. — Q 5Q., .. 7, Qo
¢4(§r)~¢o(§r)+2—§r2— g &t g&t Z_étrz
(39 . 1 20
o : . w=wo(ltely) N == —&t \ —T(1). (42
A fourth order multiplicative noise obviously corrects the Tc Tc

Duffing coefficient »— 37 Since the quadratic termrQ,

does not affect the deterministic part of the frequency dyn gther words, colored noise can be expressed via an auxil-

namics, we neglect it in the stochastic part as wttlere it jary dynamics that is forced by white noise. The harmonic

mainly acts as additive noiseAccordingly, the dynamics of  sciliator including the stiffness dynami¢42) is known as

the frequency can be approximated as the Kubo oscillator and is characterized by a vanishing am-
plitude[31,21]. Here, however, we consider the case of finite
amplitudes generated by nonlinear oscillators with stable

1/2 limit cycles such as

r,. (39)

d¢, . 1
E%‘//A(gr)_" 2

5 4
£ Qut gQu!

Followifg the discussipn of Ec{;LQ) we expand thg gmpli- 3'<+w§(l+s§w)2x=n(x,>'<) (43)
tudeé, =(ro+ &5) and if we again focus on the vicinity of a

stable limit cycle; that is, we assume the noise to be reason-

ably weak, the amplitude can be estimated by that lead to a Fokker-Planck operator of the following form:
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I o In contrast to the white noise case the phase dynamics is now
Lep=— Yox~ —{n(x,y) — wj(1+ew)?x} a second order differential equation due to the exponential
X Yy o T )
correlation in¥. Hence, we can distinguish different corre-
Jd[lw Q 4 lation timesr.. The extreme limits lead to
+——+——. (44
0w | 7. Tc 0@
Following our standard procedure, we apply the Van der Pol 7.—0= '§¢% wee2QT7. I'(1), 48)

transformation and average over a period where we auxiliary

define &, (t): =£&,(7). Note that the averaging requires the

correlation length of the noise to be small, i.£,<1/w, (cf. 7o = €4~ woe2Q/ 7, T'(1).
[2]). Forn(x,y) given in Eq.(6) we achieve

Both situations describe pure diffusion processesfp(see,
e.g.,[32] for a more general discussiprSummarizing we

— 0= g? ) recognize that a stochastic forcing of the stiffness only re-
Lrp=——2Mo(r) — do(r)+ew+ 2% (38 sults in phase diffusion so that correlations between periods
are again negligible.
1 9 Q d 45 At last, we further extend the discussion to more general
oncé’_ﬁf wo o (45 multiplicative colored noise sources. The basic equation
reads
and thus we find again a stochastically equivalent system
d & 0o 1 0 &y 0
Gil &= —@6 0 atéd) || & | +| 1] nég)
0O 0 -V 0
g ‘? e B . ) 82 gw T gz . Tc gz
E_ 0 - n(r)a l/l(r) ng- ?gmi WoTe 2Q
. +1/—| 0| (1) (49)
Tc
0 1
2Q
+ (46)
wO\/7c . .
with a Fokker-Planck operator given by
If we consider the cas€,~r, and g(,:E(rO)rJr &4, this of )
system can be reduced to Lep=— &—@{“(X YY) — wgX+za(X,y)}
dlz Q0
&z[r_ T—ﬁ]- 50
d g(j) wpe<1 € \/?U 0 .
Eﬁ(fm ~ (—l/rc £t o 1)F Transforming the operator by means of the Van dfr Pol
1 20 transformation and definingé,:=¢,(7) as well as qQ:
ﬁédﬂ- T_c-§¢:w08 /T_c _ 47) (=6)q(rcose,—wor sind) we obtain for the averaged system
. J _ - 0 d ( Q 0
Lre = —z-fo(r) = do(r) 55 + 57

0 woTe + Wi, 8—0

,, 10 :
/d@([—sm@ +—wcos0 g(r,0") .

27rw0

Y

(51)
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Similar to the case of multiplicative white noise we discussphase of a self-sustained or autonomous limit cycle oscilla-
polynomial forms of multiplier g and take q(é,é,): tor. Thus, we finally extend the nonlinear oscillator by means
=w§2k|qk|§)'§§'y. Then we achieve the corrections of Eg. of an external deterministic force. The force is assumed to be
(51) as periodic in time and it can therefore bias the phase dynamics
by means of phase locking. Without loss of generality we

treat the case of a sinusoidal force oscillating with frequency
Q). The dynamical system becomes

o % e
at\g,) Tl —w2 oflg) i1

sin Qt+ wgJE( 2)r(t). (55)

|
Bq) 2 (_(l)o) Akl grkJrl*lszda/

Ieind —1p7
=2 | cogg’sin~ 1o

n(éx.€y)

J
—co@’sin 1o’ +r cokp’sin 1o’ F

,[0
—2Fe0? |
. (52

Jd
+cos 1 o'sin o' —
a9 In contrast to our standard Van der Pol transformation, we
The last term in Eq(52) corrects the drift coefficient of the project to polar coordinates regarding the forcing frequency

frequency and is therefore the most important componentg_; that is, &=¢,00s(rt+¢y), §=—Q0sin(r+£y), and
Obviously, this term remains finite only in case of odd ex-7—}- Equivalent to Eq(14) the averaged Fokker-Planck

ponentsk and concurrently even exponeihts=or the sake of OPerator(we average over /(1) becomes
simplicity we reduce ourselves to the casd 0 and write

2 2
q(éx.&y)=0a(&y). Actually, we discuss the special case yol i — N _i wy— {2 7 5
a(£,): = wa(a1€4+as€3), higher order polynoms will result Lrp = grin(r) = Focos 4} ad| 202 T
in higher order corrections that can be neglected as shown
below. Inserting that form into Eq52) leads to Fo . Q #* 1 &
——sin¢g|++{—+—=—- (56)
¢(3q P r 2 gr2 r2 ¢
BF(QZE(Tsﬂ*'CIl]ﬁ- (53
As a stochastically equivalent system we find

Note that for the Kubo system discussed above we have to —
replace¥ — W2, Given the operato(53) the frequency dy- d &) _[n&) L Fo[&coséy) @ &Iy
namics can be further reduced to dri &y (&) &\ —sing, E\ Ty )’

dfg - 1 3q3 2 )

—= +o| =&+ qq | V(7). 54 — —

dr v(&) 2\ 72 St (v 4 wheren is given in Eq.(16) and y is defined as
Even if & itself is given by a Langevin equation, it will only w202
affect the dynamics off, via the Duffing component X(&):= 0 +z§r2+ % (58)
(~ o) or via £ . Analogous to the discussion of multipli- 20% 87 2g
cative white noise, this effect is of higher order and can thus ) )
be neglected. Let us again concentrate on the phase dynamics. We as-

In conclusion, we see that neither Gaussian nor colore§ume that the oscillator is forced in resonance, gz ().
noise sources can generate the desired correlation functidrirther we neglect the Duffing component=0) as well as
for consecutive periods. Fluctuations always produce som#e termQ/2¢2 since they mainly result in a detuning that
dominating phase diffusion that destroys any further correlacan be covered by the definition. In case of a weak forcing
tion within frequency and period, respectively. It is worth- (FO<F) we can approximate the amplitudg by & ~r,,.
while to remark that these claims are not restricted to therhus, we reduce the problem to that of Brownian motion in
thusfar applied approximations. Of course, we achieve a dea periodic potential V= — (Fo/r,) cosé, since we have
coupling of frequency and amplitude basically by use of a
first order Krylov-Bogoliubov approximation by means of déy 0. Jo o . JQ
averaging. Higher order expansions, however, yield higher ar —sin §¢+§—F¢~ ~.sin §¢+r—F¢.
order corrections only and thus diffusion remains the domi- ' r 0 0 (59)
nant process. Moreover, the period of the oscillator is defined

as integral over the frequency variatde{cf. Def. (3)] and  For weak noise we can assume that the mean phase will
through that integration we already perform some kind ofg\yays relax to a steady value with a fixed variance in con-

averaging along the intervalf [ 0,27]. trast to Eq.(18), where the variance increases linearly in
time. This follows directly if we linearize the potential and
IV. FORCED OSCILLATIONS WITH NOISE write the dynamicg59) as

We have seen that diffusion is the prevailing effect result- d E Jo 1 5
ing from various, essentially different, noise sources. Indeed, ﬁ% — _°§¢+_QF¢: =+ /&F(ﬁ. (60)
this fact expresses the absense of any “force” acting on the dr o o TF TF
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E T o¥(1) A M Aaaas mean lag one correlation function is rather close to the lower
- E bound in the Wing-Kristofferson modgk1(1)~ —0.5]. As

1.0 7 .

1.0 already noted, correlations become dependent on the relax-

A\/\W\/\/\/\N\N\ﬁ 0 ] ation time that itself depends on the forcing strength and via

-Lop _I‘OWA ro depends on both, the eigenfrequengy of the oscillator,

3 ] and on the forcing frequend. For the sake of legibility of
030 40 P 020 30 the present paper we refer to forthcoming works that will

show explicit dependencies in order to fit certain frequency

FIG. 8. Simulation of a driven oscillator under the impact of and amplitude dependencies in the case of rhythmic human

white noise. We chosewg=a=pB/3=vy=1, and »/3=0.2. The movement.

noise strength is identical to Fig. Q& 0.2). The forcing is deter-

mined byFy,=1 andQ=1, i.e., a strong external force in reso- V. CONCLUSION

nance with the harmonic part resulting The27. Obviously, we

achieve a rather negative covariam:é(l) and, accordingly, the

lag one correlation becomes;(1)=—0.487(cf. Fig. 7).

Aiming at a modeling of certain lag one serial correlation
functions during a periodic dynamics we have shown that a
negative correlation between consecutive periods during

volution along a limit cycle cannot be realized by introduc-
ing unspecific random forces. Additional white, as well as
colored noise sources that both have been multiplied in terms
of arbitrary finite polynoms, do not achieve the desired re-
sponse because fluctuations acting on self-sustained nonlin-

For this Ornstein-Uhlenbeck process one can immediatel

equation. Assuming that we have initial conditions like
f(p,t=0)=8(¢p— ¢), we achieve

ear oscillators predominantly result in phase diffusion pro-
f(p,t)= \/2—Q—[1—e*2"TF]1’2 cesses that are always superimposed on everitoaler
TeRTE ordep correlations.
1 (p—ppe VF)2 _ Consequently, we extended the system to high_e_r d_imen-
Xexpy — Lo — sions, here by means of a nhonautonomous deterministic part.
1-e F Alternatively one may also think of two or more coupled

=(d)= e VTF N ($2)=( )2+ Qp(1— e 2/7F) oscillators. In.particular, periodicqlly force_d systems can al-
low for negative lag one correlation functions. In that case,
$o=0 the dynamics of the phase is reduced to Brownian motion in
= ($)=0 N\ (p?)=Qp(1— e 27), (61  a periodic potential. Thus, significant properties like stability
) or relaxation times are well known and be approximated for
The system’s response on a decre@seincreasg of phase  actual values of serial correlations. Forthcoming works will
({#)) is an increaséor decreaseof frequency (¢)~(6)). show that such estimates will cover special amplitude and
Note that in both cases, with and without external forcing thefrequency dependencies of that type of correlation function.
mean phase vanishes whereas the variances essentially differin contrast to more traditional approachg@saditional in
[see Eq.(18)]. Depending on the mean relaxation time, the field of human movementhat are based on nondynami-
the resulting correlation function of consecutive periods cartal statistics of at least two independent noise sources, forced
become negative. Even for strong noise such random masr coupled oscillators require only one additive Gaussian
tions in periodic potentials have been extensively discussedoise source generating the wanted correlation function. Cor-
in the literature. Recent studies mainly focus on stochasticelations are therefore not a result of statistical properties
resonanc¢33,34,29, so that we restrict ourselves to numeri- only but a consequence of the deterministic interaction be-
cal experiments presented in Fig. 8. In that simulation, theween two systems, the oscillator and the force.
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